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Abstract

In the present paper we study a regularization techniques for the constraint aggregation

method for solving large scale convex optimization problems. Idea of the constraint

aggregation is in replacing the set of original constraints by a single one which is a certain

linear combination of them. This makes the resulting relaxed problemmuch easier to solve.

However, previous algorithms that used this scheme exhibited quite a slow convergence.

The motivation for the present work was to make an attempt to improve the convergence

by using the idea of constraint aggregation in the framework of proximal point method.

In the paper we propose the regularized constraint aggregation method and conduct its

convergence analysis. Estimates for the rate of convergence of the trajectory to the feasible

set and to the optimal solution set are derived under certain regularity assumptions.

These estimates appear to be better than those for the method without regularization.

Comparative numerical tests of both algorithms are reported.
Key words: Regularization, proximal-point method, constraint aggregation, nons-

mooth optimization, error bounds.
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Proximal point mappings and

constraint aggregation principle

Mikhail Davidson

1 Introduction

We are interested in solving the following optimization problem

min
x2X

f(x) (1)

subject to

Ax � b; (2)

where x 2 Rn, f : Rn ! R is convex and possibly nonsmooth, A is a m � n matrix,
b 2 Rm, and the set X is convex and compact. We also assume that the dimension of
the problem (the numbers n and m) is very large and therefore direct use of classical
iterative nonsmooth optimization methods for this problem, such as bundle methods (see,
e.g. [1, 2]) or projected subgradient methods (see [3, 4, 5]), in practice encounter substantial

di�culties because of necessity to solve a very complicated subproblem at each iteration.
The issue of increasing dimension is characteristic for optimization nowdays. Modern

applications in modelling (particularly, modelling in presence of uncertainty), stochastic
programming provide examples of such problems. Therefore, there is a need for special
techniques addressing these issues.

Recently, in [6] there has been suggested an approach re�ered to as constraint aggrega-

tion principle aimed at overcoming these di�culties. We shall assume that the structure
of X is simple and the main di�culty comes from the large number of constraints (2).
The idea of the constraint aggregation is in replacing (2) with a certain linear combina-
tion of the constraints of (2) which makes the resulting problem much easier to solve.
More speci�cally, let yk be the current solution approximation, then the subproblem to

be solved (as suggested in [6]) is

min
x2X

f(x)

subject to

h[Ayk � b]+; Ax� bi � 0;

where [�]+ denotes max[�; 0] (componentwice). The subsequent solution approximation
yk+1 is obtained by moving from yk towards the solution of the relaxed subproblem zk:

yk+1 = yk + �k(z
k
� yk);

where �k � 0 are such that �k ! 0 and
P

k �k = +1: In sequel the method described will

be re�ered to as constraint aggregation method (CAM). Constraint aggregation (however
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in a somewhat di�erent form) has been used in earlier work [7] for numerically solving

certain control problems.

One drawback of CAM is slow convergence. The reason for this is that the solution zk

to the relaxed subproblem can diviate very far from the current solution approximation

and the \average course" of the trajectory, which dictates quite strong conditions on the

stepsize and causes slow decrease in the norm of the residual j[Ayk � b]+j.

A way to improve the situation may be to use certain regularization techniques. This is

the subject of the present paper. We introduce the regularized version of CAM and study

its behavior. Namely, we make an attempt to use the constraint aggregation principle in

the general framework of the proximal point method.

The paper is organized as follows. In section 1 the regularized constraint aggregation

method is introduced and it is proved that the trajectory of the method is convergent to

the set of optimal solutions of problem (1)-(2) without any regularity assumptions about

the problem's data. In the rest of the paper we study the convergence properties of the

method under the regularity assumptions regarding (a) the feasible set and (b) the set of

optimal solutions of problem (1)-(2). In section 3, using only the �rst type assumptions

we prove that the trajectory is converging to an optimal point. In section 4 we consider a

special case where f(x) � 0, i.e. the problem reduces to solving a system of inequalities.
Here, linear convergence rate estimates are obtained and a simple criterion of consistency

of the system is derived. Note that this criterion does not use the regularity assumptions.
Section 5 is devoted to deriving convergence rate estimate of the trajectory of the method
to the set of optimal solutions in the general case (where f is not necessarily zero). For
this we need at �rst to obtain the convergence rate of the trajectory to the feasible set.
These rates appear to be assymptotically better than the corresponding rates for CAM.

They are also essentially dependent on the regularity constants of the set of optima and
the feasible set of the problem in question. The latter provides an explanation for certain
qualitative fenomena in the behavior of the regularized method, see section 7. Section 7
also contains numerical results of comparative tests of both algorithms.

2 Regularized constraint aggregation method

2.1 De�nition of the algorithm RCAM

Choose the sequence of numbers �k � 0 such that �k ! 0 and
P

k �k = +1. Let
the starting point x0 be an arbitrary point from X and xk 2 X be a current solution

approximation. De�ne xk+1 as

xk+1 := argmin
x2X

[�kf(x) + jx� xkj2=2] (3)

subject to

h[Axk � b]+; Ax� bi � 0:

Throughout the paper the algorithm described will be referred to as regularized con-

straint aggregation method (RCAM). Note that in RCAM the parameters �k are no longer
the stepsizes but rather they play a role in a way similar to inverse penalty multipliers.
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2.2 Convergence analysis

In this section we prove that the algorithm de�ned above is convergent to the set of

optimal solutions of (1)-(2). Below we will use the following notation

X := fx 2 XjAx � bg

is the constraint set of (1)-(2);

X
� := fx 2 Xjf(x) � f�g

is the optimal solution set of (1)-(2) (with f� being the optimum of (1)-(2)).

In the proof we will use the Euclidean distance function �(�;X �) to the optimal solution

set X � as a merit function. Let x� be an arbitrary point from X �, then

�(xk+1;X �) � jxk+1 � x�j;

and the following arguments provide an estimate for the right-hand side of the latter

inequality. We have

jxk+1 � x�j2 = jxk � x�j2 + 2hxk+1 � xk; xk � x�i+ jxk+1 � xkj2: (4)

KKT optimality conditons in the subproblem (3) yield

h�k@f(x
k+1) + xk+1 � xk + �AT [Axk � b]+; x� xk+1i � 0 (5)

for all x 2 X, where � is an optimal dual multiplier to the aggregate constraint. Set
x = x�, then using nonnegativity of �, complementarity slackness, and the fact that x� is
admissible for the relaxed set in (3), one obtains

�hAT [Axk � b]+; x
�
� xk+1i = �h[Axk � b]+; Ax

�
� bi+

�h[Axk � b]+; b�Axk+1i � 0: (6)

Using this estimate in (5) we obtain

h�k@f(x
k+1); x� � xk+1i+ hxk+1 � xk; x� � xk+1i � 0:

The second term in (4) can be rewritten as follows

hxk+1 � xk; xk � x�i = �jxk+1 � xkj2 + hxk+1 � xk; xk+1 � x�i

and we can use the previous estimate to obtain

�2(xk+1;X �) � jxk+1 � x�j2 = jxk � x�j2 + 2hxk+1 � xk; xk+1 � x�i�

jxk+1 � xkj2 � jxk � x�j2 + 2�k(f� � f(xk+1))� jxk+1 � xkj2

for each x� 2 X�: Thus,

�2(xk+1;X �) � �2(xk;X �) + 2�k(f� � f(xk+1))� jxk+1 � xkj2: (7)

Let us �x a sequence of numbers �k � 0 such that

�k ! 0;
X
k

�k = +1; lim
k!1

�k=�k = 0;
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and de�ne two sets of indexes

K� := fk = 1; 2; : : : j 2�k(f(x
k+1)� f�) + jxk+1 � xkj2 � �kg;

K+ := fk = 1; 2; : : :g nK�:

Evidently, K+ is in�nite. Indeed, suppose K+ is �nite and jK+j � N . Then for all k � N

one has

�2(xk+1;X �) � �2(xk;X �)� �k:

Summing up these inequalities for each k and recalling that the series of �k is devergent

we arrive at a contradiction with the compactness of X. Thus, K+ contains an in�nite

number of elements.

Next we obtain a bound for the norm j[Axk+1 � b]+j
2 via jxk+1 � xkj2:

j[Axk+1 � b]+j
2 = j[Axk+1 �Axk +Axk � b]+j

2
� jA(xk+1 � xk) + [Axk � b]+j

2 =

j[Axk � b]+j
2 + 2hA(xk+1 � xk); [Axk � b]+i + jA(xk+1 � xk)j2:

The scalar product can be bounded as follows

hAxk+1 � b; [Axk � b]+i + hb�Axk; [Axk � b]+i � �j[Axk � b]+j
2

which upon the substitution and rearrangement yields

j[Axk+1 � b]+j
2 + j[Axk � b]+j

2
� jA(xk+1 � xk)j2 � jAj2 jxk+1 � xkj2: (8)

For each k 2 K+, therefore, one has

2�k(f(x
k+1)� f�) + j[Axk+1 � b]+j

2=jAj2 � �k:

Let fktjt = 1; 2; : : :g be an arbitrary in�nite subsequence of indexes from the set K+. By
de�nition of the sequence of �k one has

f(xkt+1) +
j[Axkt+1 � b]+j

2

2jAj2�kt
� f� ! 0; t!1: (9)

Since the di�erence f(xkt+1)� f� is bounded then the norm jAxkt+1� bj2 tends to zero as
t tends to in�nity which means that the limitting set of the subsequence of xkt+1 belongs

to X . In fact, a stronger assertion holds, namely

j[Axkt+1 � b]+j
2

�kt
! 0; t!1: (10)

Indeed, assume the contrary, i.e.,

lim sup
j[Axkt+1 � b]+j

2

�kt
= � > 0:

Therefore, from (9),

lim inf f(xkt+1)� f� � ��:

At the same time, since the limitting set of fxkt+1g belongs to X we arrive at a contra-

diction.
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Now, formulas (9) and (10) immediately imply that f(xkt+1)�f� ! 0, i.e. the limitting

set of fxkt+1g belongs, in fact, to X �:

�(xkt+1;X �)! 0; t!1:

Next we prove that the whole sequence of xk; k = 1; 2 : : : is converging to the optimal

solution set X �. By de�nition of K� and K+, the latter formulae and (7) provide that

�2(xk+1;X �) � max[�(�k); �
2(xk;X �)� �k]

where �(�k) tends to zero together with �k. This is wellknown Wasan's inequality [8] that

implies �2(xk;X �)! 0.

Thus, we conclude that the whole sequence fxkg is converging to the optimal solution

set X �.

3 Regular case

This section and the following sections are devoted to the convergence analysis of the
algorithm in the case where the problem (1)-(2) satis�es certain regularity assumptions.
These assumptions postulate the error bounds relating the distance to solution set of a

system of inequalities or optimal solution set of an optimization problem to the residual
of this system or the optimality gap calculated at some point. We will be interested in
regularity of the feasible set X of problem (1)-(2) and the optimal solution set X � of this
problem.

De�nition 1.The set X is said to be �-regular, � � 1, if there exists a constant l1
such that for all x 2 X

j[Ax� b]+j � l1�
�(x;X ):

De�nition 2.The problem (1)-(2) is said to be �-regular, � � 1, if there exists a

constant l2 such that for all x 2 X

f(x)� f� � l2�
�(x;X �):

Thus, the assumption of �-regularity requires that the norm of the residual of the

system of inequalities or the optimality gap be bounded from below with a polynomial of
degree � of the distance function.

In the case X = Rn the notion of �-regularity (as in de�nition 2) was introduced in

[9]. In [10], the case of arbitrary convex constraint set was considered. In the case � = 1,
de�nition 2 coincides with the concept of the weak sharp minimum, see, for example, [11]

and [12].
In many cases of practical importance the assumption of regularity for the constraint

set X is less restrictive than that for the set X �. Furthemore, it is often the case that

for the constant l1, in practice, reasonable lower bounds can be constructed while the
constant l2 is often much smaller than l1 and it is much more di�cult to bound it from

below.
As will be shown later convergence rate estimates for RCAM depend essentially on l1

and l2 and di�erence between these constants can provide some insight on the behavior

of the trajectory generated by the algorithm.
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In this section we prove that only under the assumption of �-regularity for the feasible

set X , the trajectory is convergent to an optimal point. In other words, this property is

invariant with regard to the objective function (within the class of Lipschitzian functions).

Theorem 1.Let f(x) be Lipschitzian with the constant L and the set X be �-regular

with � � 1. De�ne the sequence of numbers �k � 0 as follows

�k ! 0;
X

�k = +1;
X

�
2�=(2��1)
k <1:

Then the sequence of xk 2 X generated by the algorithm is convergent to some point

y� 2 X �.

Proof. In the previous section it was proved that the sequence fxkg is converging to

the optimal solution set X �. Let y� be an arbitrary limit point of fxkg. Similar to the

previous section we obtain

jxk+1 � y�j2 � jxk � y�j2 + 2�k(f� � f(xk+1))� jxk+1 � xkj2;

and using (8) we can write this as follows

jxk+1 � y�j2 � jxk � y�j2 + 2�k(f� � f(xk+1))� j[Axk+1 � b]+j
2=jAj2:

For f(xk+1) one can write the following estimates

f(xk+1) � f(yk+1)� L�(xk+1;X ) � f� � L�(xk+1;X );

where �yk+1 2 X minimizes the distance from xk+1 to X .
Then using regularity of the set X we arrive at the following inequality

jxk+1 � y�j2 � jxk � y�j2 + 2�kL�k+1 � l2
1
�2�k+1=jAj

2;

where �k+1 � �(xk+1;X ):Maximizing the right-hand side with respect to �k+1 one obtains

jxk+1 � y�j2 � jxk � y�j2 + const�
2�=(2��1)
k ; (11)

where const is a positive constant depending only on L; l1; �; and jAj: Since by the as-

sumption, the series of �
2�=(2��1)
k is convergent then for arbitrary small positive � there

exists a su�ciently large N such that for all p � 1 one has

const
N+pX
k=N

� 2�=(2��1) � �

and hence

jxN+p
� y�j2 � jxN � y�j2 + �;

which is obtained by summing up the inequalities (11) starting from k = N to k = N +
p�1. Without loss of generality we may assume that N is chosen such that jxN�y�j2 � �.
This is because there exists a subsequence of xk converging to y�. But then

jxN+p
� y�j2 � 2�;

for all p � 1 which means that the limitting set of the entire sequence fxkg consists of a

single point y�. The proof is complete.
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4 System of inequalities

In this section we consider the special case of problem (1)-(2) where f(x) � 0, i.e. the

problem is to �nd a point z� 2 X . The iterative solution procedure to be suggested

is also a special case of the algorithm RCAM. Namely, let xk be the current solution

approximation, then de�ne xk+1 as follows

xk+1 := argmin
x2X

jx� xkj2=2 (12)

subject to

h[Axk � b]+; Ax� bi � 0:

It turns out that in the case of the system of inequalities much stronger convergence

properties of the algorithm can be obtained.

Let us �rst assume that X is nonempty and z� be an arbitrary point in X . Using the

arguments similar to those from section 2 we obtain

jxk+1 � z�j2 � jxk � z�j2 � jxk+1 � xkj2: (13)

From here it follows that the sequence of jxk � z�j is nonincreasing and thus, it is conver-
gent. In other words, if z� is a limit point of the sequence of xk, then the limiting set of
fxkg consists of the unique point z� which means that in the case f(x) � 0, the algorithm

is converging to a point without additional regularity assumptions.
Now let us show that under the regularity assumptions, the rate of convergence of the

algorithm can be established. Namely, suppose that the set X is �-regular with � = 1.
For example, when X is a linearly constrained set, from Ho�man's lemma, [13], it follows
that the assumption is true. For some recent generalizations of the Ho�man's result see,

for example, [14].
Using estimate (8) we obtain

jxk+1 � z�j2 � jxk � z�j2 � j[Axk � b]+j
2=jAj2:

From the regularity it follows

jxk+1 � z�j2 � (1 � l2
1
=jAj2)jxk � z�j2

which means that the algorithm is linearly convergent.
Now let us consider the case where the set X may be empty. The following property

holds.

Assertion. If for each k = 1; 2; : : : the subproblem (3) (with f(x) � 0) is solvable

(i.e., the relaxed set is nonempty) then

X 6= ; ,

TX
k=1

jxk+1 � xkj2 � d2 (14)

for every T = 1; 2; : : : ; where d is the diameter of the set X.

Proof. If X is not an emptyset then the boundedness of the sum in (14) follows

directly from (13). To prove the inverse implication, assume that X is empty. Hence, for

some � > 0 and all x 2 X we have jAx � bj � �. Taking into account (8) and summig
up the corresponding inequalities up to a su�ciently large T we arrive at a contradiction

with the boundedness of the sum.

7



Remark. In the assertion we did not use the regularity assumptions regarding the set

X . Under 1-regularity one can show the length of the path of the method
P

k jx
k+1 � xkj

will be bounded with qd, where q is a constant dependent on the regularity of the set X .

This allows one to strengthen the assertion replacing the bound in (14) with

TX
k=1

jxk+1 � xkj � qd; T = 1; 2; : : :

Similar estimates of the length of the path can be found in [15].

The assertion gives us a simple criterion for identifying whether the system of inequali-

ties de�ning the set X is consistent. Given a positive tolerance � one has two alternatives.

The �rst one is where j[Ax� b]+j � � for each x 2 X, i.e., there is no a �-feasible solution

to the system. In this case, after at most d2=�2 steps either the sum in (14) will exceed

d2 or an infeasible subproblem will be encountered and the fact that X is empty will be

identi�ed. The second alternative is where the set X is nonempty and here, according to

the assertion, after at most d2=�2 steps the �-feasible point will be found.

5 Convergence rate estimates: general case

In this section we again consider the general case where the function f(x) is not necessarily

zero. The purpose is to give an estimate for the rate of convergence of the trajectory of
the method to the optimal solution set X � under the regularity assumptions introduced
in section 3. Here we restrict ourselves with the case of 1-regularity.

The section is divided into two subsections. In the �rst one the rate of convergence to
the feasible set is estimated. The second one uses this result in order to provide a bound
for the rate of convergence to the optimal solution set.

Throughout the rest of the paper we impose an additional requirement for the choise
of the sequence of �k:

lim
k!1

�k+1=�k � 1: (15)

Note, for example, that for every � 2 (0; 1] and positive N and s, the sequence of �k =
s=(k +N)� satis�es this requirement.

5.1 Convergence to the feasible set

We start by providing a bound for the distance between the solutions to subproblems (3)

and (12), respectively. Since �k tends to zero as k tends to in�nity, the distance between

the solutions is decreasing. It turns out that the following estimate holds

jxk+1 � ykj � �kL; (16)

where yk denotes the orthogonal projection of xk onto X k, the relaxed set in subproblem
(3), and L is the Lipscitzian constant of the function f(x). To show this, let us substitute
yk for x in KKT optimality conditions (5):

h�k@f(x
k+1) + xk+1 � xk + �AT [Axk � b]+; y

k
� xk+1i � 0: (17)

Let us estimate the terms in the latter inequality separately. Substituting yk for x� in (6)

one analogously obtains

�hAT [Axk � b]+; y
k
� xk+1i � 0:
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Furthermore,

hxk+1 � xk; yk � xk+1i = �jxk+1 � ykj2 + hyk � xk; yk � xk+1i �

�jxk+1 � ykj2:

In the latter inequality we used the condition for yk to be the projection of xk onto X k:

hxk � yk; x� yki � 0; x 2 X k

Substituting these estimates in (17) and using convexity of f we obtain

jxk+1 � ykj2 � �k(f(y
k)� f(xk+1)) � �kLjx

k+1
� ykj

which implies the desired estimate.

Now let us turn to estimating the distance of trajectory to the feasible set. Denote by

�yk � ProjX (x
k) the orthogonal projection of the current iterate xk onto the feasible set

X . Then

�2(xk+1;X ) � jxk+1 � �ykj2 = jxk � �ykj2+

2hxk+1 � xk; xk � �yki + jxk+1 � xkj2 (18)

Let us rewrite the second term:

hxk+1 � xk; xk � �yki = �jxk+1 � xkj2 + hxk+1 � xk; xk+1 � �yki:

To estimate the latter scalar product we will again employ optimality conditions (5) with
x = �yk:

h�k@f(x
k+1) + xk+1 � xk + �AT [Axk � b]+; �yk � xk+1i � 0:

Substituting �yk for yk in (6) one has

�hAT [Axk � b]+; �yk � xk+1i � 0:

Hence, by convexity of f(x)

hxk+1 � xk; xk+1 � �yki � �k(f(�y
k)� f(xk+1)):

Thus, substituting these estimates into (18), using (16), and the fact that f(x) is Lips-

chitzian we obtain

jxk+1 � �ykj2 � jxk � �ykj2 + �k(f(�y
k)� f(xk+1))� jxk+1 � xkj2 =

jxk � �ykj2 + �k(f(y
k)� f(xk+1)) + �k(f(�y

k)� f(yk))� jxk+1 � xkj2 �

jxk � �ykj2 + � 2kL
2 + �kLj�y

k
� ykj � jxk+1 � xkj2:

Using (8) and the regularity assumption regarding the feasible set X , one gets the estimate

l1jx
k
� �ykj � jAj jxk+1 � xkj:

Besides, by de�nition of yk and using (13) one has

jyk � �ykj � jxk � �ykj:
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(Note that here �yk and yk stand for z� and xk+1 from (13), respectively.) Finally, the

estimate for the �(xk+1;X ) appears to be as follows

�2(xk+1;X ) � ��2(xk;X ) + � 2kL
2 + �kL�(x

k;X ); (19)

where � = (1� l2
1
=jAj2) < 1.

Consider two cases: the �rst one is where

�kL �
1 � �

4
�(xk;X ): (20)

Then, the following estimate holds

�2(xk+1;X ) �
�+ 1

2
�2(xk;X );

(we have used that (1 � �)=4 < 1). Secondly, assume that in (20) the inverse inequality

holds, which means that �(xk;X ) is bounded from above with C�k, where C = 4L=(1��)

is a certain constant independent of the iteration number. Using formula (19) one can

estimate �(xk+1;X ):

�2(xk+1;X ) � � 2k (�C
2 + L2 + LC):

Let us show that the expression in braces at the right-hand side does not exceed qC2 with
some q < 1. Indeed, using the de�nition of C

C2
� �C2

� L2
� LC =

16L2

(1 � �)2
�

16�L2

(1 � �)2
� L2

�
4L2

1� �
=

12L2

1� �
� L2

�
11L2

1 � �
:

From here we derive that

�C2 + L2 + LC

C2
�

C2 � 11L2=(1 � �)

C2
=

1�
11(1 � �)

16
� q < 1:

Therefore,

�2(xk+1;X ) � � 2k qC
2:

Using the requirement (15) for the sequence of �k one concludes that starting with some
K and for all k � K the following is true: q1=2 � �k+1=�k; and hence

�2(xk+1;X ) � � 2k+1C
2:

This means that if for some k � K the second opportunity realizes then the estimate

�(xt;X ) � C�t

will hold for all t � k. If for all k � K the �rst alternative takes place, the sequence of
�(xk;X ) is decreasing at least at a linear rate with the coe�cient

�
1 + �

2

�1=2
=

 
1 �

l2
1

2jAj2

!1=2
:
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Summarizing the arguments above we arrive at the following assertion

Theorem 2. Let X be 1-regular and the sequence of �k in the de�nition of RCAM

satisfy additional requirement (15). Then for all t � K one has

�(xt;X ) � max

2
4C�t;

 
1�

l2
1

2jAj2

! t�K

2

�(xK;X )

3
5 ; (21)

where K is such that

 
1�

l2
1

2jAj2

!
1=2

�
�k+1

�k

for all k � K and

C =
4L

1 � �
=

4LjAj2

l21
:

Hence, it turns out that starting from a su�ciently large k, the rate of convergence

of the trajectory to the feasible set is greater than in the constraint aggregation method
without regularization.

5.2 Convergence to the optimal solution set

In this subsection, based on the results of the previous one, we establish the assymptotic
rate of convergence of the trajectory of the method to the optimal solution set of the
problem (1)-(2).

We will need the following auxiliary property.

Lemma.Let the parameters 
 � 0, � � 0, p � 0, s � 0, and � be �xed and satisfy the

relationships below. Let the sequence f�kg, �k � 0, be such that starting with some T

�2k+1 � �2k � 
�k�k + �� 2k ; k = T; T + 1; : : : ; (22)

with �T � 2�s=(
(T + p)), where

�k =
s

k + p
; k = T; T + 1; : : : ;

p2

(1 + p)2
� max[�; 1� �]; � = 1 �


2

4�
; 
2 < 4�:

Then, for all k = 0; 1; : : :

�k �
2�s


(k + p)
: (23)

Proof. Denote M = 2�s=
. By the assumption, for k = T the assertion is true.

Suppose that it is true for some k > T and we prove it for k + 1. Maximum of the

right-hand side of (22) with respect to �k is attained either at �k = 0 or �k = M=(k + p)
(the latter is by the assumption of induction). If �k = 0 maximizes the right-hand side of

(22) then

�2k+1 �
�s2

(k + p)2
:

11



Let us check that the latter ratio is less than M2=(k + p + 1)2. Indeed,

M2

(k + p+ 1)2
�

�s2

(k + p)2
=

�s2

(k + p + 1)2

 
4�


2
�

(k + p+ 1)2

(k + p)2

!
�

�s2

(k + p+ 1)2

 
1

1� �
�

(p+ 1)2

p2

!
� 0:

The latter is by the de�nition of p.

Consider the case where the maximum is attained at �k = M=(k + p). We have

�2k+1 �
M2 � 
sM + �s2

(k + p)2
:

It is su�cient to prove that

M2
� 
sM + �s2 �M2� (24)

since by de�nition of p

M2� �M2
p2

(p+ 1)2
�M2

(k + p)2

(k + p + 1)2
; k = 0; 1; : : : ;

which would imply the desired estimate. Inequality (24) is checked straightforwardly
using the de�nitions of M and �. The proof is complete.

Now we can prove the rate of convergence of the trajectory of the method.
Theorem 3. Let the set X and problem (1)-(2) be 1-regular and the sequence of �k

be chosen as in the lemma. Then there exists index K1 (depending only on l1) and s such

that for all k � K1 the estimate (23) holds with

�k = �(xk;X �); 
 = 2l2; � = max[
2=4; LC + l2C + L2];

and p as speci�ed in the lemma.

Proof. Let us employ the estimate (7) obtained earlier. The di�erence f(xk+1) � f�
can be rewritten as follows

f(xk+1)� f� = f(�yk)� f� + f(xk+1)� f(�yk);

For the �rst di�erence, using the 1-regularity assumption for the problem (1)-(2), we have

f(�yk)� f� � l2�(�y
k;X �) � l2�(x

k;X �)� l2�(x
k;X ):

The second di�erence can be bounded as follows

f(�yk)� f(xk+1) = f(�yk)� f(yk) + f(yk)� f(xk+1) �

L(jxk+1 � ykj+ jyk � �ykj) � L(jxk+1 � ykj+ �(xk;X )):

Using these bounds we arrive at the following estimate for �(xk+1;X �):

�2(xk+1;X �) � �2(xk;X �)� 2�kl2�(x
k;X �) + 2�k(L+ l2)�(x

k;X )+

2�kLjx
k+1

� ykj:

Set the sequence of �k as speci�ed in the lemma. From the estimate (21) of the rate of

convergence of trajectory to the feasible set it follows that for all k � K one has

12



�(xk;X ) � max[C�k; d[(1 + �)=2](k�K)=2];

where d is the diameter of the set X. It is clear that for some K1 � K and all k � K1

this maximum is attained at C�k. Then, using (16) one can further bound the distance

to the optimal solution set as follows

�2(xk+1;X �) � �2(xk;X �)� 2�kl2�(x
k;X �) + 2� 2k (LC + l2C + L2)

for all k � K1. Finally, to estimate �(xk;X �) one can apply lemma with the parameters

as speci�ed in the theorem and setting T = K1 To ensure that the initial condition for

the �T is satis�ed, one has to choose s su�ciently large. The proof is complete.

Thus the rate of convergence of the algorithm to the set of optimal solutions of problem

(1)-(2) is established.

6 Numerical results

This section presents the results of numerical tests of the regularized constraint aggrega-
tion method for problem (1)-(2). In reviewing these results two important issues should
be addressed. The �rst issue is the comparative performance of RCAM and the method

without aggregation (CAM). The second issue is the behavior of the trajectory of the
method under di�erent strategies for choosing the sequence of �k.

In all the tests we have used the dual transportaion problem with the same set of data
as in [16]:

max

2
4 NX
i=1

siwi �

NX
j=1

djvj

3
5 (25)

wi � vj � aij; i = 1; 2 : : : ; N; j = 1; 2; : : : ; N; (26)

where N = 48. The aggregate constraint was constructed by convolving (26) for all
i = 1; 2 : : : ; N; j = 1; 2; : : : ; N . The set X was formed by the box constraints wi; vj 2

[0;M ] (for the upper bound M the value 3000 was choosen as one of the possible variants
suggested in [16]). The initial approximation for the method was obtained by minimizing
the objective function (25) over X (as in [16]).

Table 1 summarizes the results of comparative tests. In all cases the starting values

for the residual and the function were j[Ax0� b]+j = 9:78e+4 and f(x0) = 7:27e+6. The
upper part of table 1 presents the results for RCAM and CAM with �k = 1=k; k = 1; 2; : : :,
and the lower part with �k = 5=k; k = 1; 2; : : :. The optimal value of the objectve function

f� = 638565.

Table 1, (�k = 1=k)

iter. no. RCAM CAM

j[Axk � b]+j f(xk) j[Axk � b]+j f(xk)

50 8.02 5.47e+5 1.01e+4 2.24e+6
100 5.2 5.54e+5 6.45e+3 1.81e+6

500 0.79 5.67e+5 2.13e+3 1.14e+6
1000 0.53 5.73e+5 1.34e+3 9.82e+5
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Table 1, (�k = 5=k)

iter. no. RCAM CAM

j[Axk � b]+j f(xk) j[Axk � b]+j f(xk)

50 51.2 1.10e+6 1.07e+4 2.87e+6

100 24.6 6.11e+5 1.07e+4 2.29e+6

500 5.14 6.13e+5 3.18e+3 1.32e+6

1000 2.49 6.15e+5 1.96e+3 1.10e+6

From table 1 it is seen that RCAM clearly outperforms CAM. Another important

remark is that RCAM tends to be very sensitive to the choice of the sequence of �k
which suggests a possibility of better tuning the method. The tests have shown that the

behavior of the trajectory had a certain speciality: decrease in the norm of the residual

was comparatively fast as opposed to the decrease in the optimality gap of the objective

function. In other words, there is an e�ect of \glueing up" of the trajectory to the feasible

set.

This speciality can be easily explained from the point of view of the convergence rate

results from the previous section. The estimates obtained are essentially dependent on

the regularity constants l1 and l2 of the fesible set X and the optimal solutions set X �,
respectively. Constant l1 is determined by a nondegeneracy measure of the constraint
matrix of (26), and, moreover, it can be easily bounded from below using the Sleiter
condition. At the same time, constant l2 is determined by a nondegeneracy measure of
the matrix de�ning the optimal solutions set and the Sleiter condition can not be used.

Hence, the feasible set is \more regular" than the set of optima, and thus, the rate of
convergence to the feasible set is greater than that to the set of optima, which explains
the e�ect of \glueing up".

In view of these observations the following strategies for choosing the sequence of �k
were suggested

�k =

(
1= log(k + 1); k = 1; 2; : : : ; T;
1=(k � T + 1); k > T;

where T =100, 200, 300, and 500. The idea is to make the sequence f�kg tend to zero more
smoothly in order to increase the role of the objective function term in the subproblem
(3).

The results are summarized in the following table (the columns correspond to the
speci�ed values of T ).

Table 2, (T =100, 200)

iter. no. j[Axk � b]+j f(xk) j[Axk � b]+j f(xk)

50 126 6.24e+5 126 6.24e+5

500 1.16 6.16e+5 1.59 6.27e+5
1000 0.51 6.17e+5 0.69 6.28e+5

Table 2, (T =300, 500)

iter. no. j[Axk � b]+j f(xk) j[Axk � b]+j f(xk)

50 126 6.24e+5 126 6.24e+5

500 3.01 6.31e+5 833 7.80e+5

1000 0.75 6.31e+5 0.96 6.35e+5
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Table 2 shows that the more the T , the smaller the gap jf(x1000)� f�j.

7 Conclusions

Convergence analysis conducted in the paper shows that the regularized constraint aggre-

gation method outperforms (at least assymptotically) the method without regularization.

The numerical results (even under limited amount of iterations performed as compared to

the theoretical bounds) also provide the evidence that RCAM behaves better than CAM.

Convergence rate estimates obtained also allow one to relate certain qualitative prop-

erties in the behavior of the method, namely, the e�ect of \glueing up" the trajectory

to the feasible set, to the fact that the feasible set is more regular than the set of op-

timal solutions. The presence of such an e�ect suggests that the choice of the sequence

of the parameters �k should be more speci�c in order to acheive a better convergence to

the set of optima. In connection with this, further analytical work and more extensive

computational tests are required, which together make a subject for future research.
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