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Preface 

The paper presents a mathematical analysis of an endogenous growth model for two 
economies with absorptive capacities. The model was proposed by Gernot Hutschenre- 
iter (the Austrian Institute of Economic Research, WIFO), Yuri Kaniovski (IIASA, TED 
Project), and Arkadii Kryazhimskii (IIASA, DYN Project), and generalizes the one stud- 
ied in Hutschenreiter et. al., 1996 [2]. The paper has been prepared in the course of the 
YSSP-1996 at IIASA as a part of a joint research in DYN and TED Projects. The re- 
search was partly supported by the Russian Fund of Fundamental Investigations (RFFI) ,  
project N 96-01-00890. 
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Mat hemat ical Analysis of 
a Model of Interacting Economics 

with Absorptive Capacities 

Vladimir Borisou 

1 Introduction 

We study a coupled endogenous model of economic growth. It describes two interacting 
economies each with an absorptive capacity. Our analysis refers to the endogenous growth 
theory of Grossman and Helpman [I] who introduced a model for isolated (autarkic) 
development. The model associates a process of growth of the knowledge stock in an 
autarkic country A with the two-dimensional differential equation 

Here (nA, vA) = (nA(t) ,  vA(t))  E Rz describes the econo~nic state of country A at time 
t ;  nA( t )  characterizes the measure of intermediate goods invented before time 2 ;  vA(t)  
reflects the value of the representative firm or the cost for developing a unit of scientific 
production (blueprint). Notation [p]+ stands for the maximum of p and 0. Parameters 
c", p, cr are arbitrary positive reals. They have the following economic sense: cA = LA/n 
where LA is the endogenous labor supply, l / u  stands for the amount of labor needed to 
develop a unit of new product; p is the discount rate; cr is related to the elasticity of the 
substitution; it is assumed that cr E ( 0 , l )  (for details, see [I]).  

The analysis in [l] is primarily concerned with a steady solution to (1.1) characterized 
by the fact that the aggregate equity value VA = l /nAvA remains constant; equivalently 

A A n (t)v ( 2 )  = const. 

For a steady solution to (1.1) one has 

where the coefficient 

represents the steady state growth rate of the autarkic economy A. A remarkable feature of 
the steady solution (nA(t ) ,  vA(t))  is that it meets the so-called perfect-foresight condition; 
the latter claims that the stock market sets the value of the firm at time t equal to the 
present value of its steam of profits subsequent to 2: 

- 1 - a  v ~ ( t )  = Jou s(t-s)- ds. 
t nA (4 



The notion of absorptive capacity was introduced in Hutschenreiter et. al. [2] to cover 
the situation of coupled economies in countries A and B ,  where A, a technological leader 
with greater labor supply L ~ ,  is an autarky and B, a tecl~nological follower with smaller 
labor supply LB, is able to absorb knowledge originated in A and use it in its own 
ma.nufacturing. Country A is assumed to have reached the steady state growth rate, 

The economic growth in country B is due to utilization of knowledge developed domesti- 
cally and that absorbed from the knowledge stock of country A: 

Here cB = LB/a and function yB(nB) reflects the absorptive capacity of B, i.e. the share 
of the knowledge developed in A which is absorbed by B.  The absorptive capacity YB(nB) 
grows as nB increases. 

It was stated in [2] that,  under appropriate relations between the parameters, there 
exist solutions to (1.6)-(1.7) such that 

nB ( t )  = nB(0)egAt(l  + O(t) )  (1.8) 

where O( t )  -+ 0 as t + +a. In other words, the growth rate of the follower reaches 
a . ~ ~ i ~ ~ ~ t o t i c a l l y  that of the leader. Besides, the aggregate equity value in B in the long 
run approaches that in country A, 

1 1 
lim = lim A 

= c  + p ,  
t++m nB(t)vB(t) t++m nA(t )vA( t )  

and the perfect-foresight condition holds true for both economies. Rigorous proves are 
given in I\'ryazhimskii [3]. 

In the present paper we explore a symmetric case when 110th economies have absorptive 
ca.pacities (this setting was suggested by G. Hutschenreiter). We focus primarily on a, 
formal part of the theory postponing the accurate justification of the model and the 
complete conceptual analysis of the results to the future. 

Consider a growth model for countries A and B under the assumption that each of 
them is able to  absorb the technological advances developed by the other one. Thus, we 
arrive at  the following system of differential equations: 

Here yi(n) ,  i = A, B, are nonnegative monotonically increasing functions representing 
absorptive capacities of countries A and B. We assume that 

1 ( n )  = ri 1, i =  A , B ,  
n++m 



Our principal mathematical problem is to  find sufficient conditions for the existence 
of solutions nA( t ) ,  vA( t ) ,  nB( t ) ,  vB(t) to  system (1.10) such that 

nA ( t )  lim - = T 
t++m nB(t )  

with r # 0, m. We shall refer to  such solutions as balanced solutions. Along a balanced 
solution the growth rates of countries A and B are asymptotically equalized. An additions,] 

restriction on balanced solutions will be the asymptotic counterpart of the steady growth 
condition (1.2): 

lim nA(t )vA( t )  = al, lim nB(t)vB(t)  = a2. 
t++m t++m 

Let us give a brief description of our mathematical approach to  identifying balanced 
solutions including those satisfying the asymptotic steady growth condition (1.12). First, 
we select regions where nA and nB increase to infinity along the solutions to  (1.10). This 
allows us to  reduce the number of variables by taking nA for the independent variable ( a  
new "time" in (1.10) instead of t ) .  Thus, we arrive at  an equivalent three-dimensional 
system. Next, we pass to the inverse t = l / n A  reducing therefore the original problem to 
the asymptotic analysis, with t -+ SO, of a three-dimensional differential equation of the 
form 

This equation has a singularity in the right-hand side - the state velocities are not 
bounded in a vicinity of the plane t = 0. We need to learn how a solution to  (1.13) 
can reach the plane t = 0 starting at a point (to, xo) in the half-space t > 0. We use 
a inodified technique of resolution of singularities and end up with a complete theory of 
low codimension singularities for differential equation (1.13). The  theory is presented in 
section 2. In subsection 2.1 one-dimensional equations are explored. We give a detailed 
characterization of solutions having finite limits as t -+ $0 in terms of Taylor's expansions 
of F ( t ,  2). In subsection 2.2 the technique is generalized for the case of an arbitrary 
dimension. 

Applications to  the interactive growth model (1.10) are given in section 3. Our prin- 
cipal results are as follows. 

1. For an open subset of parameters of system (1.10) there exists a solution to  (1 . lo )  
satisfying the relations: 

n,B (t ) 
lim - lim nA(t )vA( t )  = yo, lim nB(t)vB(t)  = XOZO. (1.14) 

t++m n,A(t) = x07 t++m t++m 

Here (xo, yo, zo) E IW: is uniquely specified as a solution of 



3. This solution has the asymptotics 

ni(t) = ni(0)ep"(l + O(t)),  i = A,  B 

where 

The solution is therefore balanced, i.e. meets (1.11)-(1.12) with r # 0, oo. Asymp- 
totically it leads to the same growth rate pA = / i ~  in countries A and B. We 
emphasize that this common growth rate (arising in interacting economies) exceeds 
each of the autarkic growth rates: 

3. Along the above balanced solution the perfect-foresight condition is valid for each 
country, 

A 6" 1 -a1 1 - a 2  
( t )  = 

e~l(s- t )-  ils, vb(t) = / ep~(~-')- ds. 
nA (4 t n B ( 4  

We conclude with a sensitivity analysis of limit growth rates pA,  pB with respect to 
variations of parameters. 

2 Ordinary differential equatioiis with unbounded 
right-hand sides 

2.1 One-dimensional equatioils 

In this section we develop a technique for qualitative analysis of differential equations 
with unbounded right-hand sides. In the next section, the technique will be applied to 
the interactive economic growth model (1 .lo). We treat an ordinary differential equation 
with a singularity in the right-hand side: 

Here (t ,  x)  E R2, function F ( t ,  x)  is smooth enough (say, C0 in both variables and 
Lipschitz in x) .  What we wish to learn is in what way a solution to (2.1) can reach the 
border line t = 0 if it starts at some point (to, xo) in the half-plane t > 0 (we assume the 
reverse time current). 

The simplest case is the following. Assume that F(0,  zO)  # 0 for some xo E R1, e.g. 
F (0 ,  zo)  > 0. Denote 

Given a pair ( t l , x l )  E D,, let 5 ( t )  be a solution to (2.1) such that 5 ( t l )  = x l .  



Lemma 2.1. Let F ( t ,  x )  2 C > 0 if ( t ,  x )  E D,, then there exists t" E (e-2'lctl, t l )  
slich that %(t") = xo - E .  

Remark 2.1. Since F ( t , x )  is a continuous function at least, the set of those E that 
meet the conditions of Lemma 2.1 is not empty. 

Remark 2.2. Lemma 2.1 claims that the trajectory ~ ( t )  inevitably hits the lower 
boundary of the open square D, after staying in D, (in the reverse time) no longer than 
t l ( l  - e-2'/C) (see Fig. 1). 

Fig. 1. 

Proof of Lemma 2.1. We have dxldt > 0 provided that ( t ,  x )  E D,, i.e. ~ ( t )  is a 
strictly increasing function. Let t' < t l  be any instant such that 5 ( t )  E D, for t E (t', t l ) .  
It follows from (2.1) that 

or, equivalently, 

Hence, 

1 
l n t l  - lnt '  5 dz( t )  = - (z ( t l )  - 5(t1)).  

C C 

Since 5 ( t l )  5 xo + E and 5(t1) > xo - E ,  it follows that l n t l  - In t' 5 ~ E / C ,  or t' > - tie-"I", 
which implies the statement to be proved. Q.E.D. 

Much more complicated behavior of solutions to (2.1) can be observed in the vicinity of 
a point (0, xo) where F (0 ,  xo) = 0. Everywhere below we deal with simple zeros of function 
F(O,x) ,  i.e. when F(O,xo) = 0, %(0,xo)  # 0. In particular, the latter inequality implies 
function F (0 ,  x )  to change sign any time as x runs through an arbitrary interval including 
xo. Thus, we exclude the zeroes of F (0 ,  .) which are touchpoints. 

We need the following auxiliary statement. 

Lemma 2.2. Given two points xl  and x2 and a time instant f such that 



m i n  F ( t ,  2 2 )  > 0,  
o<t<t 

Let ~ ( t )  be a solution to (2.1) such that ~ ( q  = x E ( x l , x 2 ) .  Then ~ ( t ) ,  t E ( O , f ) ,  
has no intersections with the lines x = xl  and x = 2 2 ,  i.e. for any t E ( 0 ,  f) we have 
~ ( t )  E (x1,x2) .  

Proof. Denote { A +  = { t  E ( 0 , f )  : ~ ( t )  = x 2 ) .  Assume that A+ is not empty and set 
t* = sup { t  : t E A+).  It is easily seen that t* < f. Due to the inequality F( t* ,  x ( t * ) )  > 0,  
the function x ( t )  increases at t * ,  so there exists t** E ( t* ,  f) such as ~ ( t * * )  > x2 .  This 
coiltradicts the definition of t*. The case x = xl can be treated in the same manner. 
Q.E.D. 

Proposition 2.1. Assume that there exists €0 > 0 such that F ( 0 , x )  > 0 if x E 
( x O ,  xo + to)  and F ( 0 ,  x )  < 0 if x E ( x o  - c0,  xO) .  Then tlzere exists D, such that for any 
point (i, 2 )  E D, the solution x ( t )  to (2.1) which is passing through (t, Z )  tends to xo as t 
teizds to SO, i.e. lim ~ ( t )  = X O ,  (see Fig. 2.) 

t++o 

Fig. 2. 

Proof. Let us choose E < €0 so small that F ( t ,  xO+ E )  > 0,  F ( t ,  x0 - E )  < 0 if 0 < t < E.  
Let ( t ,x )  be an arbitrary point in D, and ~ ( t )  be the trajectory of (2.1.) such as ?(q = x.  
Denote by the set of a-limit points of ~ ( t ) .  By the definition of a-limit set, x E if 
and only if lim inf IT(t) - X I  = 0. We assert that = { x o ) .  

t++o 
As a consequence of Lemma 2.2, is not empty and belongs to the interval x E 

( x o  - E ,  x0 + E ) .  Suppose to the contrary that contains a point xl  # xo, say x1  > xo. 
Then F ( t , x )  > 0 in a neighborhood of (O ,x l ) .  Due to the definition of a, for any 6 > 0 
there exists 0 < i < 6 such that J z ( i )  - xll < 6. If z ( i )  < x i ,  it follows from Lemma 2.2 
that the closure of the set U t c ( O , Z l ~ ( t )  belongs to the rectangle 

{ ( t ,  x )  10 <_ t 5 6, xo - E <_ x 5 ~ ( i ) )  

and does not contain x i .  Hence, ? ( t )  2 x1 for any 0 < t 5 i. If contains also some 
point 2 2  > X I ,  then a similar argument leads to the conclusion that ~ ( t )  2 2 2  on some 
interval t E ( 0 ,  6 i )  and x1 $ therefore. It means that consists of a single point, i.e. 

= { x l ) ,  which contradicts Lemma 2.1. Q.E.D. 



Proposition 2.2. Assume that F ( 0 , x )  < 0 if x E ( X O ,  xo + €0) and F (0 ,  x )  > 0 
if r E (xo - EO, xO) for some €0 > 0. Then there exists a pair (5, f) with the following 
property: the trajectory x( t )  of (2.1), %(E) = 5, tends to r o  as  t tends to $0. 

Proof. Let us fix xl  and 2 2 ,  x1 < 2 2  such that 

I )  F ( 0 ,  x l )  > 0, F(O,x2) < 0; 
2) there are no zeroes of F (0 ,  x )  on (x l ,  2 2 )  except for xo. 
Let us also fix a small f > 0 such that functions F(-, xi) do not change sign on (0, f ) ,  

i = 1,2. Consider a subset A+ of the interval (x l ,  2 2 )  defined as follows. We say that  
2 E A+ if and only if the solution 5 ( t )  to (2.1) with ~ ( f )  = 5 intersects the upper boundary 
x = x2 a t  some t E (0,f) .  If we replace x2 by x1 in this definition, we define another subset 
of (x1 ,x2)  which we call A_.  Since solutions to (2.1) are continuous functions of initial 
data  and all trajectories in the corresponding neighborhood intersect the straightlines 
x = xi (i = 1,2) at  non-zero angles with non-zero velocities, it follows that both A+ and 
A- are open. It can be easily verified that both A+ and A- are one-connected sets, hence 
their supplement in (x l ,  2 2 )  is some non-empty segment [x-, x+]  c ( x l ,  xz).  We assert 
that an arbitrary solution 5 ( t )  to (2.1) with 5(?) E [x-, x+] tends to xo as t tends to $0. 

Being intersected with a line x = const where F ( t ,  x )  does not change sign, a solution 
to (2.1) cannot return to this line in the reverse time. This idea has been already used 
in the proofs of Lemma 2.2 and Proposition 2.1. Repea.ting step by step the proof of 
Proposition 2.1 one can easily show that the a-limit set of 5 ( t )  is non-empty, that it 
cannot contain two distinct points and, consequently, that it coincides with xo (see Fig. 

3). Q.E.D. 

Fig. 3. 

To clarify the behavior of solutions to (2.1) in a vicinity of a point (0, xo) in which 
F ( 0 ,  xo) = 0, one needs further assumptions regarding F ( t ,  x).  Assume that  F ( t ,  x )  can 
be represented in the following form: 

where h( t ,  x )  is a Co-function in ( t ,  x) and a C1-function in x,  g(x)  is C1, and f ( x )  is 
a C2-function. Representation (2.2) can be easily obtained from Taylor's formula if we 
apply it to an arbitrary C2-function of ( t , x ) .  (The restrictions on smooth properties of 
F ( t ,  x )  can be slightly weakened indeed, but it is not principal.) 



Now (2.1) is equivalent to  the following system 

Let us consider the point xo such that 

A standard method of exploring systems with singularities is so-called "blowing-up pro- 
cedure" or "resolution of singularities" - transfer to a special coordinate system where 
a one-to-one correspondence is lost. These new coordinates map the point in which the 
system degenerates on an entire manifold in the new space. Let us introduce instead of 
( t ,  R')  the coordinates ( t ,  Y )  as follows: 

hence, y = (x  - xo)/t .  The  point t = 0, x = so is associated to the straight-line t = 0, 
y E R' on the plane ( t ,  y).  System (2.3) converts now to the following one 

or, which, in its turn, is equivalent to the system 

def 
for r ( t ,  y) = h(t ,  xo+ty)+  

9(zo + ty) - P f (xo + t ~ )  - sty + being a C"-function in ( t ,  y) 
t t 2  

and C1 in y on the half-space t 2 0. (The derivatives at  the line t = 0 are understood as 
limits as t + $0 of corresponding derivatives for t > 0.) We shall assume that r ( t ,  y )  is 
~~ni formly  bounded, i.e. 

Ir(t, y) 1 5 rl for all (t , y) in the half-  lane t > 0, 

beca,use only this case is important for all that follows. We esplore here all non-degenerate 
cases i.e. all possible relationships between (a, P) except for the cases (a = 1, P = 0) and 
a = 0. 

Case 1. a = 1, ,B # 0. A general solution to the equation dyldt = P/ t  can be 
written as y = p ln t  + C.  If we consider C as a function of t ,  i.e. y = Plnt  + C( t ) ,  and 
substitute the latter relation for y in the equation y = p / t  + r ( t ,  y), we arrive a t  the 
following equation for C( t ) :  

d C  

dt - = r ( t ,  P ln t  + C).  

Function r ( . ,  a )  being uniformly bounded, we get 

~ c ( t )  - c ( t o )  = l: r ( t ,  Pint + ~ ( t ) ) l  dt 5 r l ( t  - to),  

~ ( t )  = Pint + C(t0) + t( t0,  t ) ( t  - to), 

where to > 0 is some fixed initial time moment, C(to)  = yo - pinto, and the absolute 
value of function f ( to ,  t )  does not exceed r l .  The corresponding solutions to  (2.3) reads 



~ ( t )  = xo + Pt  ln t  + tC( t ) ,  

where C ( t )  is bounded. Thus, any trajectory x( t )  approaches xo as t tends to +0, at  the 
sa.nle time its derivative tends to -a if P > 0. The behavior of this family of solutions 
(for p > 0) is given in Fig. 4. 

Fig. 4. 

Case 2. a # 1. In the vicinity of points (0, yo), yo # -P/(a - I ) ,  the behavior of 
solutions to (2.4) is described by Lemma 2.2. Consider the point yo = -P/(a - 1).  A 
general solution to the homogeneous sys tem 

can be written as 

P y = c ia- '  - - 
a-1 '  

Supposing C = C ( t )  and substituting (2.5) into (2.4), we get 

Integration of the latter relation yields 

t t r d t  lo dC =lo j E T .  

Case 2.(i) : a > 1, a # 2. We have 

hence, 



In particular, all x( t )  are tangent to the line x = xo - Pt/(cr - 1) at the point t = 0, 
x = xo (see Fig. 5). 

Case 2.(ii) : a = 2. Now 

P 
~ ( t )  = -a--] + O(t1n t) ,  

x( t )  = xo - - Pt +o( t21n t ) .  
cr-1 

The phase portrait of x( t )  is the same as in Fig. 5. 

Fig. 5. 

Case 2.(iii) : 0 < cr < 1. Consider the integral equation: 

C( t l )  - C(to) = J t l  t l -ar  dt. 
to 

Since function r(. ,  .) is uniformly bounded in D,, then, if the corresponding solution does 
not leave D,, the integral J:: t'-ar dt can be uniformly upper estimated by const - 1.52 - & I  1. 
This implies both convergence of the integral Jot1 tl-Or dt and existence of the limit of C(to)  
as to + SO. 

Consider the mapping R1 + R1 which relates C( t l )  with C(0) for some small t l ,  

c ( t l )  t C(O) = c ( t l )  - It' tl-"r dt. 
0 

As far as the corresponding solution does not leave D, the derivative 



call be uniformly upper estimated. This implies that 

and by Implicit Function Theorem the mapping is reversible. Now we have C ( t )  = 

Co + t2 -* t (Co1  t ) l  where t (Co ,  t )  and its derivative in t are bounded as t + S O ,  

P x ( t )  = xo + Cot f f  - -t + t ( C o ,  t ) t 2 .  
a - 1  (2 .6)  

All solutions (except for the single one which corresponds to  the value Co = 0 )  have a 
vertical tangent line at  the point (O,xo)  (see Fig. 6 ) .  

0 '  
Fig. 6.  

Case 2.(iv) : a < 0 . The representation (2 .6)  is still valid. There is a single solution 
with a finite limit (the one which corresponds to the value Co = 0 )  and all others leave 
the neighborhood of the point ( 0 ,  x o ) ,  see Fig. 7.  

O 1 t 
Fig. 7. 

Let us put together the results we have obtained in the following proposition. 

Proposition 2.3. Let F ( 0 ,  x o )  = 0 and E ( 0 ,  so) = a ,  g ( x o )  = P .  There exists c > 0 
that solutions to (2.3) with initial data in D, have the following property as t -+ SO: 



1)  cr = 1, ,O # 0 ,  then being tangent to the vertical axis at (0 ,  xo)  the solutions approach 

( 0 ,  xo); 
2) cr > 1, then the solutions tend to (0 ,  xo )  being tangent to the line x = -,Ot/(cr - 1)  

at the limit point; 
3) 0 < cu < 1, then the solutions tend to ( 0 ,  xo)  and all of them except for a single one 

haue the vertical tangent line at the limit point; 
4 )  cu < 0,  then there exists a single solution approaching (0 ,  xo) ,  all others leave the 

neighborhood D, in the reverse time. 

2.2 Multi-dimensional equations 

Up to now, we have dealt with one-dimensional equatioils with unbounded right-hand 
sides. Let us switch now to  the multidimensional case. Consider the system 

1 
x = - F ( t ,  x ) .  

t (2.7) 

Here x E R n ,  t > 0 ,  F E C 1 .  Let F(O,xo)  # 0 at a point xo E Rn.  Denote D, = 

{ ( t ,  x )  I 0 < t < E ,  (Ix - xO1l < c) where 1 1  1 1  means the standard Euclidean norm in Rn ,  

E I I  = J-. I I : 
Lemma 2.3. If F(O,xo)  # 0 then there exists E > 0 such that any solution ~ ( t )  

to (Z.?'), (t, ~ ( q )  E D,, leaves D, in the reverse time during a period not greater than 
i ( 1 -  e-2'lF*) where F* = sup inf IF,(t, x ) l .  In other- words, if T ( t )  E D, at t E ( t l ,  E)  

i=l, ..., n ( t 7 ~ ) E D c  
- 2c/F* then t l  _> te- 

Proof. Straightforward integration of (2.7) yields 

Since F ( t ,  x )  # 0 in D,, one can take c small enough to  obtain the inequality IFi(t, X ~ I  I 2 F* 
in D, at least for some i ,  1 < i 5 n .  It follows that 

Ilx(E) - x(tl:~Il 2 Ix,(E) - x i ( t l ) l  > F * ( l n t  - l n t l ) .  

As a result, t l  2 fe-2'1F*. Q.E.D. 
Everywhere below in this section we assume xo to  be an isolated zero of the following 

system of equations 

i.e. we assume that there exists an open neighborhood U E Rn of xo such that for any 
y E U ,  y # xo, we have Fi(y)  # 0 for some i .  The simplest sufficient condition for xo t o  be 
such isolated zero is non-degeneracy of the Jacobian of the mapping F ( 0 ,  a )  : Rn + Rn ,  
x e F ( 0 ,  x ) ,  a t  the point xo, 

det 

aFn 
-(0,xo)  . . .  aFn 
a x  1 

- (O,  xo) 
a x ,  

# 0. 



Indeed, this implies that the mapping F is a local diffeomorphism, hence, it locally takes 
the value Fl = 0, . . . , Fn = 0 only at the point xo. But sometimes, instead of checking 
the correspondent Jacobian, it is convenient to prove the uniqueness of the solution to  
(2.S) directly. 

The simplest analogue of Proposition 2.1 is the following statement. 

Proposition 2.4. Assume that F(O,xo) = 0. Denote by J the Jacobian of the 
mapping Rn + Rn, x ++ F(0 ,x ) .  Let the quadratic form c(x) = xTJx be strictly 
positive definite, i.e. c(x) > 0 for any x # 0. Then there exists E > 0 such that a12y 
solution to (2.7) with initial data in D, tends to xo as t tends to $0. 

Proof. Consider the function N ( x )  = llx - x01I2 and differentiate it along solutions 
to (2.7). We have 

If F(t, x)  is smooth enough, then 

where 

o;'(t, x - xo) 
lim = 0, i = l , . . . , n ,  
x+xo (Ix - x0ll 

and the limits are uniform with respect to all t E [0, c0]. It follows that 

n 
t , 
-=( t ,x )  2 = C ( x i  - xio)Fi(t, xo) + a ( t ,  X )  + 02(t, - xO), 

i=l 

where 

02(t, z - xO) 
lim = 0. 
x-+xo 115 - x01l2 

By assumption, the quadratic form a(0, x )  = c(x) is strictly positive definite, hence there 
exists Al > 0 such that 

In view of continuity arguments, if €0 > 0 is small enough then there exists A2 > 0 such 
that 

a ( t ,  x )  2 A2llx - xol12 

for all 0 5 t 5 €0. I t  follows that there exists ro > 0 and a constant Ag > 0 such that 



for all ( ( x  - xoll 5 ro and 0 5 t < €0. Fix ro, let x be an arbitrary point of the sphere 
Iln. - xoll = ro and consider Z(t,  x)  as t + +O. 

By assumption, F;(t, xo) + 0, hence, if roll F(t, xo)ll < A3ri, the derivative Z(t ,  x)  is 
positive. It follows that for some c = c(ro) E (0, €0) all solutions to (2.7) with initial points 
inside the cylinder 

does not leave C,,,, in the reverse time. Thus, their a-limit sets are not empty. Let ?( t )  
be such solution and assume that a point x1 # xo belongs to its a-limit set. Setting 
ro = llxl - xoll and arguing as above one concludes that there exists c > 0 such that 
2(t)  lies strictly inside C,,,, for all t E ( 0 , ~ )  (the velocity of decreasing of the function 
N(x)  along ? ( t )  is separated from zero). This contradicts the definition of the a-limit 
set. Q.E.D. 

To check the strictly positive defineteness of the quadratic form c(x) one can use, for 
example, the standard Silverstre criterion for the matrix $(J + JT).  

Fig. 8. 

The next statement describes the situation which is directly opposite to that in Propo- 
sition 2.4. 

Proposition 2.5. Assume that F(O,xo) = 0 and the  quadratic form c(x) defined in 
Pi-oposition 2.4 is strictly negative definite. Then there erists a solution to (2.7) approach- 
ing x0 as t tends to +O. 

Proof. Consider the set C,,,, defined in (2.10). In the same way as in the proof of 
Proposition 2.4 one can show that for any fixed small enough ro there exists c = c(ro) > 0 
such that l ( t ,  x) < 0 for any t E ( 0 , ~ )  at any x: 112 - xoJ(  = ro (the function E(t ,  s) 

is defined in (2.9)). This implies that solutions to (2.7) intersect the boundary of C,,,, 
transversally (under non-zero angle and with non-zero velocity). 

Let ( t l , x l )  be a point on dC,,,, = {t ,x  I IIx - xoll = 7.0, t E ( 0 , ~ ) )  and denote 
by i ( t )  the solution to (2.7) starting at ( t l ,  xl) .  We conclude that i ( t )  intersects the 
"cover" of the cylinder C,,,, - the plane t = c - at some point x2 inside the ball 

def 
B,,,, - {(t, x)  1 t = c, ( ( x  - xoll < ro). Consider the mapping p : dC,,,, + B,,,,, 
( t l ,  x l )  ++ (c,  x2).  It is easy to see that p is a diffeomorphism, hence, its image is an open 
subset of B,,,, whose homotopic type is the same as that of n - 1-dimensional sphere. 
Thus, the mapping P is not an epimorphism and the supplement B,,,,\Imp is a closed 
noll-empty set. 

Let 5 E B,,,,\Imp and denote by ?(t)  the solution to (2.7) passing through (c,?).  
The solution ?( t )  has a non-empty a-limit set as t + +O. Assume that its a-limit set 



coiltains some x* # xo. Setting r* = Ilx* - xoll and proceeding as above we conclude that 
i ( t )  is separated from the ball llx - xoll < IIx* - xo/l for t E (c*  ( r * ) ) .  This contradicts the 
definition of the a-limit set. Hence, x* = xo which implies the statement to be proved. 
Q.E.D. 

I / 

0 € t 
Fig. 9 

A simplest generalization of Proposition 2.5 to the case of non-definite in signs quadratic 
forms is the following. 

Proposition 2.6. Let c ( [ )  = ( 3 [ ,  [) (3 = E ( 0 ,  xo ) ,  det 3 # 0 )  be a non-degenerate 
qlrndmtic form such that max c ( [ )  5 pll[112 for some p < 1 .  Then there exists a solution 
2 ( t )  to (2.7) for which lim i ( t )  = xo. 

t++o 
Proof. Consider the cone CR = { t , x  I y R ( t , x )  = 0 )  for y R ( t , x )  = R2t2 - 1)x - x01I2. 

Differentiate g~ along a solution to (2.7) at points of CR. We have 

At points of CR we have: 

where ( 1  (g(t7 l o )  - 3) ( X  - xo)ll 5 O( t ) l / x  - xo(l = O ( t 2 ) .  Thus, up to higher order 
terms, 

Since c(x-xo)  < p / l x - ~ ~ 1 1 ~  = pR2t2,  then Z ( t ,  x )  2 ( 1 - p ) R 2 t -  R I I g ( 0 ,  xo)ll . t+O(t2) > 
0 for large enough R > 0 and small t > 0. We conclude that solutions to (2.7) are strictly 
transversal to the boundary of cone CR. Consider the following mapping along solutions 
to (2.7) 



p : C i + B  

where C k  = { t , x  10 < t < E ,  llx - x011 = Rt}  and B = { t ,  x ,  It = E ,  llx - xoll < R E }  
( the  mapping p associates a point ( E ,  x )  E B with a point on C; through which the 
corresponding solution to  (2.7) is passing). As above, p is a homeomorphism and is not 
an epimorphism. It implies the existence o f  a solution to  (2.7) which does not leave the 
interior o f  CR  in the reverse t ime current. Q.E.D.  

T o  outline one ~oss ib l e  generalization o f  Proposition 2.3, let us prove the following 
statement (Proposition 2.7 below). Assume that F ( t ,  x )  can be represented in the form: 

F ( t  , 2 )  = f ( x )  + t g ( x )  + t 2h ( t ,  x ) ,  

where f ,  g ,  h are C 2  vector-functions such as 

(here A is ( n  x n)-matrix,  a E Rn.) Set y = ( x  - x o ) / t ,  then 

1 
= - ( ( A  - E ) y  + a + t H ( t ,  y ) ) ,  

t 

where 

is C 2 .  

Proposition 2.7. Assume that eigenvalues XI,. . . , A, of matrix A - E in (2.11) are 
positive or have positive real parts. Then there exists a neighborhood D, of the point (0 ,  x o )  
st~cll that solutions to (2.7) with initial data in D, have the following properties: 

1) the solutions approaches (0 ,  xo)  as t tends to +O; 
2) if Jordan form of the matrix A - E is diagonal then the solutions are tangent at 

(O,xO) to the vector - ( A  - E)- 'a  . 
Consider first the linear system 

1 
y = - ( ( A  - E ) y  + a ) ,  (2.11) 

t 
for E being the unit ( n  x n)-matrix. A general solution to  (2.11) can be written as follows 

where T = In t .  
W e  need the following auxiliary result. 

Lenl~na 2.4. Let ( n  x n)-matrix M belong to one of the following three types: 
i )  the Jordan representation of the matrix M reads 



where X 1 ,  . . . , An are real numbers (not necessarily diflerent); 
ii) n = 2 and the Jordan form of M is as follows: 

- sin 4 

where 4 E [ O ,  27r); 
i i i)  the Jordan form of M is 

Then the matrix e M t  can be represented in the forms 

i i )  

iii) 

et cosb cos(t sin 4) - sin(t sin 4) 
( sin(t sin 4) cos(t sin 4) 

Proof. Case i )  is evident. Let us consider case ii) .  We have 

- sin n 4  
Since M n  = ( cos nm 

and cos n 4  = Re einb, sin 124 = Im einb, we conclude 

that the element in the upper' left corner of eMt  is equal to 

= R~ ee'4t - - et cos 4 cos(t sin 4) 

Other elements of the matrix eMt  can be calculated in the same way. 
Consider case iii) .  To calculate e M t ,  denote by I the matrix 



Then 

M I  = ( X E  + I ) ~  = C c ,ox~-" I~  

where I" is t h e  ( n  x 12)-matrix which has units on the  ( a  + 1)-th upper-diagonal and  
zeroes on all others. Now 

This is a n  upper-triangular matr ix  for which t h e  (1 + 1)-th diagonal contains the  elements 

Thus,  

I 
1 1  

1 1 - - . . .  
1 

2! 3! (12 - l ) !  
1 1 

e M t  = eAt 0 1 1 - . . .  
2! (n - a)! 

Q.E.D. 

Corollary 2.1. Under conditions of Lem.ma 2.4 so1,utions to the eq,nation 

can be represented in the Jordan basis in one of the following forms: 

i) 

. . . 

ii) 

y( t )  = e t c o s $  
cos(t sin 4) - sin(t sin 4)) . (g?) + 

(s in( t  sin 4) cos(t sin 4) 
(-m, cos q5 - m 2  sin 4 )  cos(t sin 4 )  + ( m l  sin 4 - m 2  cos 4 )  sin(t sin 4 )  
(-m2 cos 4 + m l  sin 4) cos(t sin 4) + (ma sin 4 + m l  cos 4) sin(t sin 4) 

iii) 



The proof is simple and consists in direct integrating the relation 

t 
y(t)  = eMty(0) + eMt Jo e -Ms~n  (1s. 

Proof of Proposition 2.7. Without loss of generality one can assume that matrix 
A - E in (2.11) is already reduced to its Jordan form. Applying Corollary 2.1 to each of 
the Jordan boxes one can check that corresponding coordinates of solutions to the linear 
system (2.11) can be written as 

where c(t) and d(t)  are Cm everywhere except for t = 0 and are uniformly bounded as 
t -+ $0. The  most "irregular" case takes place for complex-conjugated eigenvalues. In 
this case d( t)  consists of the following terms: 

dl cos(1nt . Irn X1) + d2 sin(1nt Im XI). 

Returning back to original system of the coordinates x tve obtain the assertion of the 
proposition for the non-disturbed linear equation. Solutions to the non-linear equation 
can be obtained by setting Co = Co(t). As before, we can prove that function Co(t) does 
not change the asymptotics which is, hence, the same as for solutions of the linear system. 
Q.E.D. 

3 A model of technological leading-following 

Consider the following differential equation 

Note that (nA,  vA, nB,  vB) E R4 stand for state variables and cA, cB, pl, p2, al, a 2  are 
seine positive constants, a; E (0, l ) ,  i = 1,2 .  Functions yi(.) are positive, increasing 
and continuously differentiable, lim yi(n) = I'; > 0, i = 1,2.  We consider solutions to  

n++m 

(3.1) such that all nA ,  vA, nB, vB are positive simultaneously. The goal is to determine 
"asymptotically balanced" solutions to (3.1) that means exactly that there exists 



7 t A  ( t )  
lim - = -y E (0, a ) .  

t++w 72B(t) 
The first possible case which allows a complete analysis is the following. 

3.1 Tile upper asymptotics (nA + +cu, nB + +oo, uA + +co, 

vB + +m). 

Thus, the initial values nA(0) ,  vA(0), nB(0),  vB(0) being large enough: 

for some ro > 0, we compare the growth of two components of the solution: 7zA(t) and 
nB( t )  as t + + a .  

Lemma 3.1. There exists such 1-0 that solutions to (3.1) with initial conditions (3.2) 
are monotonously increasing in each coordinate. 

Indeed, we prove another statement which implies Lemma 3.1 as a consequence. 
Namely, we show that Lemma 3.1 remains in place even if we refuse the preliminary 
restriction 7iA > 0, nB > 0. 

Lemma 3.2. Consider the system 

Tlze1.e exists an open subset of initial points for which solutions to (3.3) are monotonously 
incr-easing in each coordinate. 

Proof. Indeed, ro can be chosen in such a way that nA > 0, nB > 0 at the initial 
moment t = 0. Hence, 7zA(t), vA(t)  increase at  least for all small enough t > 0. The 
differences c A ~ t A  - crl/vA and ,,lvA - (1 - a l ) / n A  begin to grow therefore. But since the 
velocities izA(t) and vA( t )  grow, the values nA( t )  and v"(t) in their turn remain such 
that the right hand sides are positive, nA > 0, vA  > 0. The pair (nB( t ) ,vB( t ) )  can be 
considered in the same way. The statement of Lemma 3.2 is proved. In particular, it 
implies that systems (3.1) and (3.2) are asymptotically equivalent if the initial data  are 
large enough. 

It  follows from Lemmas 3.1 and 3.2 that the function nA( t )  is strictly increasing in 
an appropriate region. Hence, we can take the value of nA( t )  as the new independent 
variable (instead of t) .  We obtain 



Since we are looking for solutions for which lirn n B / n A  = y E ( 0 ,  a) ,  we exclude for a 
nA++cu 

while the functions v A ( t ) ,  v B ( t )  from the analysis. It is important only that 

A A B A  lim 27 ( n  ) = lim v  ( n  ) = + a .  
nA++no nA++cu 

B B -  Setting n A  = r ,  n B  = n ,  c B / c A  = c , - a ~ / ( c  v  ) - f l ( r ) ,  - a l / ( c A v A )  = f 2 ( r ) ,  we arrive 
at  the equation 

It is convenient to express the last equation in terms of the variables x  = nlr ,  s  = l / r .  
Straightforward calculations lead to the system 

F ( s , x )  = x - c  x  + 7 2 ( x / s )  + s  . f 1 ( l / s )  

1  + 7 l ( l l  s ) x  + s  f 2 ( l / s )  ' 

Equation (3.5) is a particular case of what has been studied in section 2  for equation (2.1.). 
It is easy to see that the balanced solutions to (3.3) correspond to the values xo such as 
F ( 0 ,  xo)  = 0. This leads to the following quadratic equation: 

x ( 1  + r l x )  - c ( x  + r ' 2 )  = 0 .  

Hence, 

Denote by x+ the root which corresponds to the sign "+" in (3.6) and denote by x-  
the other root. It is worth noting that x+ and x-  have always opposite signs, x+ > 0 ,  
x -  < 0. Hence, the function F ( 0 ,  x )  is increasing at x+ and Proposition 2.1 proves the 
following statement. 

Proposition 3.1. There exists an open set of initial values nA(@) ,  v A ( @ ) ,  n B ( @ ) ,  
v B ( 0 )  such that the corresponding solutions to system (3.1) have the following properties: 

I) n A ( t )  + +a, n B ( t )  + +a, v A ( t )  4 +a, v B ( t )  + + a ;  

nB ( t >  C -  1  + J ( C -  1 ) 2 + 4 C ~ l r 2  
2) lim - = x+,  where x+ = 

t++m n A ( t )  2r1 
The qualitative behavior of solutions to (3.4) is depicted in Fig. 10. To analyze the 

picture in Fig. 10 in the vicinity of the point (0, x + )  in more details one needs to study 
the function F ( t ,  x ) .  Impose the following additional restriction. 



Fig. 10. 

Assuinption 3.1. Functions y l ( n )  and y 2 ( n )  admit the following representation: 

ul/ze~-e S1,  S2 stand for positive constants and functions c l ( n ) ,  c 2 ( n )  are uniformly bounded 
as i z  + +a. 

From now on we shall be assuming that Assumption 3.1 holds true. We need the 
following auxiliary result. 

Lemma 3.3. Consider the solution to (3.4) with initial conditions v A ( n t )  = v t ,  
i zB(nt)  = n t ,  v B ( n t )  = v:, where ( l / n t , n t / n t )  E R 2  is close enough to (O,x+)  E R2 
and the assertions of Proposition 3.1 hold true for it.  Assume also that 

B Theiz there exist v l  > 0, v;! 2 0 such that v A  _> v l n A ,  v B  2 v2n . 

Proof. Since n B ( n A ) / n A  tends to x+ as n A  + +a, by Lemma 3.1, we have 

for all large n A  or, equivalently, 

Consequently, In v A ( n A )  - In v A ( n t )  2 In n A  - In n t ,  which implies that v A  > const . izA. 
The estimate for v B  can be obtained in the same manner. Q.E.D. 



If conditions of Lemma 3.1 hold true, then the following representation for the function 
F (s ,  x) takes place: 

x + I'2 - 6 2 ~ / ~  
F ( s , x )  = x - c + s2h(s,  x) ,  

1 + (rl - s l s ) ~  
where h(s,  x)  is uniformly bounded for (s ,  x) E D,. By Taylor's expansion, up to higher 
order terms, we get 

As was shown in section 2, the behavior of the system 

Sf in a vicinity of a root xo of the function f (x)  depends on two parameters, namely %(xo) = 

cu and g(xo) = p. Straightforward calculations give 

It is easy to see that a E (0,2) and all possible relationships between a and /3 depend on 
the values c, r l ,  r2, dl ,  62. This allows to determine how solutions to system (3.5) reach 
the limit point. It can be done using the theory developed in section 2 (Proposition 2.3). 

A A B B 3.2 Intermediate growth ( n A / n B + 6 ,  n v + 0 1 ,  n v + 0 2 ) .  

Our goal is to find such relations between the parameters of system (3.1) that allow for 
the asymptotics given above where a1 and 0 2  are some positive constants. Our plan is 
as follows. Though, a priori, we cannot be sure now tha.t the variable nA is monotone 
increasing, we still transfer to nA as to an independent va.riable instead of t .  Then using 
the technique developed in section 2 we determine some region in the space of variables 
nA,  nB, vA, vB where solutions to (3.1) have the desired asymptotics. In particular, we 
shall be able to show that nA increases in this region. 

First of all let us show that this solution satisfies "perfect-foresight" condition (1.5). 
The following statement contains a simple necessary and sufficient condition for the 
perfect-foresight property. 

Lemma 3.4. For any non-decreasing positive function n(t)  a solution to the equation 

satisfies for the relation 

if and only if 



lim sup Iv(t)  1 < co. 
t++m 

Proof. The general solution to (3.7) can be written as 

Since n ( t )  is not decreasing, then the following integral is converging 

m l - a -  def e P Y s  = CO. 

Now 

The relation (3 .8)  is equivalent to v ( 0 )  = Co. By Lopital rool, the limit of the function 

e - ~ t  

as t + +co can be upper estimated by 

limsup ' ' <- 
t++m -pe-Pt - ~ ( O ) P  ' 

It follows that the condition v ( 0 )  = Co is equivalent to the inequivality lim sup Iv(t :I 1 < co. 
t++m 

Q.E.D. 
Corollary 3.1. The perfect-foresight condition holds true along any so1,ution to (3.1) 

with the asyrnptotics n i ( t )  + +co, v i ( t ) n i ( t )  + ai E (0, c o )  as t + co (i = A, B) .  

Consider equation (3 .4)  and set 

Straightforward calculations lead to the system 

Setting s = 117 we arrive at the system 



As follows from Lemma 2.3, (xo, yo, zo, s = 0) is a stable point for system (3.9) only if 
the following equations hold: 

-p2z + (1 - a2)/x 
-2 + = 0, 

C A ( I +  r l x )  - a l l y  

or, equivalently, 

Tlle second equation in (3.11) yields 

If we substitute the expression for y from (3.12) to  the third equation in (3.11), we get 

On the other hand, if we add the first equation of (3.11) to the third one, we have 

It allows to exclude z and set the following equation for determining x: 

or, equivalently, 



The discriminant of the quadratic equation (3.13) is always positive and only one root of 
(3.13) is positive. Denote the root by xo. It uniquely determines the coordinates yo, z0, 
hence we have a single point (xo, yo, zo) on the plane s = 0 where system (3.9) can possess 
asymptotically stable solutions. 

To apply Proposition 2.6 to (3.9) we have to impose some further restrictions on y;(n), 
i = 1,2. Let Assumption 3.1 holds true. Then (3.9) can be written as follows 

where 

To apply Proposition 2.6 one has to check that the maximal positive eigenvalue of the 
quadratic form c(J) = JT3J, J E R3, 

aFl aFl a ~ ,  
- - -  

ax dy dz 

is less than the unit at the point (xo, yo, zo). Let us calculate 3 in an explicit way. Denote 

p  = cA(l + rlxo) - al/yo = (1 - al)cA(l + rlxo) - alpl. 
Straightforward calculations yield 

a Fl A B dF1 - QlX0 a Fl - 2 

LL dz = p + c  rlxO-C , P- - P z  - -- 
z; ' 

a F2 A 
= -c rl yo, P- = -cA(l + rlxo) - pl, a F2 

Pz Pz = 0, 

dF3 A 1 - a2 
= -C rlzO - - - - OF3 - 

Pz , P- -- a~ P z  - -P - P2. 
x; YO2 ' 



Hence, 

+ ~~r~~~ - CB C Y ~ X ~ / Y ;  

- cAr l yo  -cA( l  + r l x O )  - P I  
-cArlzo - ( I  - -al z0/y; -P - ~2 

Consider 3 under the following assumptions on the parameters of (3 .9):  

@ I  = CY2 = 0 ,  p1 = p2 = p ,  r1 = 0.  

It follows from (3.13) that 

~~r~ 1 cA - cB 
5 0  = 

CA - CB' YO = - Z o  = 
P + C A ,  ( P  + cA)cBr2  a 

For matrix 3 we have 

To simplify the analysis let us put cA - cB = 6 for some small positive 6 ,  then up to higher 
order terms, matrix 3 is diagonal with the eigenvalue c /cA ,  - (cA - p ) / cA ,  - (cA + p ) / c A .  
Thus, for some set of parameters, the matrix meets the conditions of Proposition 2.6. Since 
the eigenvalues of the corresponding quadratic form are continuous in the parameters, we 
obtain the following result. 

Proposition 3.2. There exists an open set of parameters C Y ~ ,  C Y ~ ,  pl,  pa, cA,  c", r l ,  r2 
such !hat for an open subset of initial points lzA(0),  n B ( 0 ) ,  v A ( 0 ) ,  v B ( 0 )  the correspo~zdirzg 
solutio7zs to (3.1) have intern~ediate balanced asymptotics: 

n B ( t )  - lim --- - 
t+m n A ( t )  5 0  , 

lim v A ( t ) n A ( t )  = yo, 
t+m 

lim v B ( t ) n A ( t )  = zo, 
t-+cQ 

where ( x o ,  yo, zo )  are uniquely specified b y  (3.13). 

4 Conclusions 

The mathematical analysis performed in the previous section leads to observations plainly 
interpreted in economic terms. Recall that it has been proved that if pl and p;! are large 
enough, there exists a family of solutions to system (3.3) having the asymptotics (3.14). 
Hence, even when the ratio costs of developing new technologies are high enough, there 
esist balanced regimes of growth such that the measures of products tend to infinity, 
n.4, 7 z B  4 m as t 4 +m, while the values of the representative firms asymptotically 
vanish, v A ,  v B  4 0 as t 4 $00. 

The second and the third equalities in (3.14) show that for these balanced regimes the 
asymptotic counterpart of Grossman&Helpman steady growth condition (1 .2)  holds. The 



fact that vA(t),  vB(t) + $0 as t + +m easily implies that for both economies the perfect- 
W 1-a foresight condition is satisfied, i.e. vA(t) = -!$$epl('-')ds, vB(t) = Jt +e~2(~-')ds. 

( s )  

The proof reflects that given in [2]. 
It is easy to see that along solutions to (3.3) having the asymptotics (3.14) we have 

where the terms O(t ,  nA) ,  0(t, nB)  are uniformly bounded as ( t ,  n A )  E W:, ( t ,  nB) t W:. 
Hence, 

where pA = cA( l  + xOI'l) - ~xl/yo, pB = cB(l  + r2/~0) - ( 3 ~ 2 / ~ 0 ~ 0 ,  and 

lim e-p ' t - i  
n ( t )  = 0, i = A, B.  

t++m 

Consequently, it holds that 

in other words, pA and pB represent the limit growth rates for countries A and B, re- 
spectively. The first equation in system (3.10) for x = xo , y = yo implies that pA = pB. 
Using (3.12), one gets 

where xo solves the quadratic equation (3.13). Note that if we formally set I'l = r2 = 0, 
then p A  and pB turn into the autarkic steady state growth rates gA and gB respec- 
tively. Thus, we arrive at the following principal conclusion: growth rate p A  = pB in the 
economies interacting through the absorptive capacities (r l  and r2 are positive) strictly 
dominates each of the autarkic growth rates, pA > gA, pB > gB. Straightforward calcu- 
lations give 

(%A (1 - crl)cA(l - cu2)cBr2 
- 

dr l  ~ c ~ ~ ~ ( ~ - ~ ~ ) x ~ + ( ~ ~ P ~ + ~ ~ ~ ~ + c ~ ( ~ - c ~ ~ ) - c ~ ( ~ - ~ ~ ) ) '  (4.1) 

The denominator in the latter ratio equals the derivative at xo of the quadratic polynomial 
on the left-hand side of (3.13). Since xo is the largest root of the polynomial, the derivative 
is positive. Since the numerator in (4.1) is positive, p A ( r l )  is strictly increasing. Similarly, 
we obtain that pB(r2)  is also strictly increasing. In other words, for each country it is 
beneficial to develop its own absorptive capacity; the greater is the limit value of the 
absorptive capacity (r l  for country A and r2 for country B) the greater is the asymptotic 
growth rate (provided all other parameters are fixed). 

M'e summarize as follows. 

Proposition 4.1. Let the economies of countries A and B interact through absorptive 
capacities whose limit values are rl  > 0 and r2 > 0, respectively. Let parameters 01, c r 2 ,  



p1, p2, cA ,  cB,  r l ,  r2 of the economies lie in an appropriate region specified in  Proposition 
3.2. Theta there exists a balanced regime of growth n A ( t ) ,  n B ( t ) ,  v A ( t ) ,  v B ( t )  for A and 
B such that: 

1. For both economies the asymptotic counterpart of Grossman&Helpman steady growth 
criterion holds true: 

lim v A ( t ) n A ( t )  = yo > 0, 
t++m 

lim v B ( t ) n B ( t )  = zox0 > 0. 
t++m 

2. For both economies the perfect-foresight condition is satisfied, 

1 - crl 1 - cY2 
ds ,  v B ( t )  = Sm e~2(s-t)- C ~ S .  

t n B  (4  

3. The asymptotic growth rates P A ,  p~ in products n A ( t ) ,  n B ( t )  of countries A and B 
are equal and given by 

4 .  The growth rate p~ is increasing in  rl  and the growth rate p~ is increasing in r2 .  
5. The common growth rate in interacting economies strictly dominates the autarkic 

growth rates in  both countries, pA > gA,  pB > gB.  
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