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DISCLAIMER 

Any part of the hereìn presented AEZ model and model parameters, as well as the clìmate 
change scenarìos used, may be modified or replaced in the lìght of ìmproved knowledge 
andor changed objectìves. 

The designations employed and the presentation of the materia1 in thìs document do not 
imply the expression whatsoever on the part of IIASA concemìng the lega1 or 
constitutional status of any sea area or conceming the delineation of frontiers. 
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SUMMARY OF RESULTS 

Kenya is endowed with a wide range of agro-ecologica1 conditions, varying from 

hot arid lowlands to cool humid highlands. As expected, the results of the impact analysis 

of climate change and increases of atmospheric carbon dioxide, therefore show a wide 

spectrum of impacts on land resources make-up and agricultural production. At the sub- 

national level results of impacts on agricultural productivity vary substantially both in 

terms of magnitude and direction. 

At present, agricultural production in the low altitude areas in Kenya is mainly 

constrained by water availability, highland areas are constrained by low temperatures 

and locally by water availability, while in parts of central and western Kenya rainfall in 

excess of optimal levels occurs. 

Rising temperatures, without corresponding increases in precipitation to balance 

the increased plant water requirements due to higher evapotranspiration may lead to 

dramatic reductions in agricultural production potential, especially in eastern and 

southern Kenya, i.e., in parts of Eastern province, North-Eastern province and Coast 

province. In central and western Kenya temperature increases would result in larger 

extents of lands with cultivation potential, because some higher altitude areas would 

become suitable for cropping. This, together with potentials for higher cropping 

intensities in these highland areas, more than ouiweighs effects of diminished misture 

conditions, even in scenarios assuming no change in precipitation. Under such conditions 

in the presently humid areas (>270 days of growing period), diminished wetness, in 

instances, could reduce the potential impact of pest and disease constraints. 

Results of the impact assessment suggest that the national level food productivity 

potential of Kenya may well increase with higher levels of atmospheric CO, and climate 

change induced increases in temperature, provided this is accompanied by some increase 

in precipitation as predicted by severa1 global circulation models. If no balanced increase 

in precipitation were to take place then the impact on agricultural productivity in the 

semi-arid parts of Kenya could be devastating. 

Although land productivity in Kenya as a whole appears most likely positively 

affected by climate change, impacts vary considerably depending on location. Negative 



impacts are expected to occur in Coast province and North-Eastern province. The inain 

reasons being: 

Exceeding optimal temperature ranges for photosynthesis and growth; 

Shortening of cereal growth cycles and periods of yield formation; 

Iizcreased water stress. 

For Centra1 province, Nairobi area, important parts of Eastern province, Nyanza 

province and Western province the impacts are mostly positive. However, some negative 

irnpacts in western Kenya may occur due to pest and disease damage and worsening of 

workability conditions due to increased wetness. The high-potential agricultural lands in 

centra1 and western Kenya will dominate the agricultural production potential even more 

under projected climate change coizditions. The main reasons of positive impacts appear 

to be: 

Temperature increase in the midntigh altitudes, enlarging the area with crop 
production potential; 

Iizcreased cropping interzsity potentials; 

C 0 2  fertilization. 

In Rift Valley province, coinprising of a wide rarzge of thermal and moisture 

conditioizs, iinpacts rtre nzixed. Negative iinpacts are. for instance, expected in Laikipia 

rtnd Narok while positive iinpacts are anticipated in Nakuru and West Pokot. 

Despite of overall positive effects for Kenya as a whole, impacts of climate change 

on laizd productiviw nzay intensib regional disparities. Therefore, preparedness is critical 

in order to: 

take advantage of potential blessings of climate change and increased atmospheric 
C 0 2  concentrations ; 

mitigate likely negative impacts in low-lying and semi-arid areas; 

cope with the socio-economic consequences of changing patterns of land 
productivity. 

These observations are consistent with short and medium term considerations for 

sustainable developrnent, emphasizing the critical need for careful planning and 

protectioiz of high potential areas. 



CHAPTER 1 

INTRODUCTION 

1.1 Background 

There is ample scientific evidence that global climate is gradually changing, and 

not the least as result of increasing levels of atmospheric greenhouse gases due to human 

activities, notably fossi1 fuel burning (IPCC, 1996a). It has also become clear that the 

expected changes in climate will alter agricultural potentials in various agro-ecologica1 

regions of the world. The projected increase of atmospheric carbon dioxide C 0 2  will result 

in erihanced potential agricultural productivity and improve the efficiency of water-use by 

various crops. The effects of global warming will extend agro-ecologica1 potentials 

polewards and into higher altitudes. These positive effects, however. may be undercut by 

altered temperature conditions. amounts and distribution of precipitation, evaporation 

patterns, radiation regimes, and indirect effects on land productivity such as increased 

impacts of pests, diseases and weeds. In the long term, these changes of climate pattems 

will significantly alter land potentials for producing food and other agricultural and forest 

products. 

A number of initiatives on climate change have begun to compile assessments of 

climate change and its potential impact on agriculture. For example, the Intergovernmental 

Pane1 on Climate Change (IPCC) has been conducting a review of available data and more 

in-depth studies are being carried out by the Commission of the European Union, the 

United States Environmental Protection Agency (USEPA) and the Organization for 

Economic Cooperation and Development (OECD). Further work on impacts of climate 

change is being conducted by the International Geosphere-Biosphere Programme: A Study 

of Global Change (IGBP). Country case studies on the potential impacts of climate change 

on agriculture have been compiled for a growing number of countries, e.g., Australia, the 

Commonwealth of Independent States, Egypt, Finland, Indonesia, Malaysia, the 

Netherlands, New Zealand, Norway, Thailand, the United Kingdom, the United States of 

America, and Vietnam. 

These initiatives differ markedly in their baseline data, methods of analysis, and 

scenarios of climate change. The majority of these studies have been based on climate 



change experiment with general circulation models (GCM), but often do not apply the 

same scenarios and do not share a common implementation strategy. Most of these studies 

have relied on both field-leve1 results of crop mode1 experiments and regional shifts in 

agro-climatic indices. Although results have enabled regional changes in vegetation zones 

to be mapped, the equivalent changes to agro-ecologica1 potential on a more global scale 

has yet to be compiled. 

In addition, there are a few key areas related to a shifting agricultural potential that 

have not been addressed at a global scale. For example, few of the country studies have 

systematically mapped the possible shifts in agricultural potential for a wide variety of 

crops and anal yzed the implications for national development planning. Al though these 

studies have contributed to a more detailed understanding of the sensitivity of specific 

crops to climate change, a more rigorous sensitivity on such factors as technological 

growth and development have received far less attention. In addition, few global studies 

have directly addressed the potential for adaptive responses such as crop switching, the 

development of new varieties, expansion of the crops under cultivation, and changes of 

cropping intensity. In general, the interplay between climate change and other 

environmental factors that affect sustainable development have often been omitted. 

In the next few years new scenarios of climate change can be expected that will 

incorporate more realistic land-cover models, ocean-atmosphere interaction and improved 

modeling of the hydrological cycle. It is hoped that a next generation of GCM scenarios 

will provide greater insight into critica1 variables for agriculture such as the frequency of 

occurrence of extreme events (drought, frost or heat), rainfall intensity and distribution, 

and colar radiation(acc0unting for changed cloudiness and aerosols). 

This present 'Climate Change and Global Agricultural Potential Project' intends to 

formulate methodologies that allow incorporation of climate related factors in land 

productivity assessments. The methodologies and applications to existing data bases, 

should allow scientists and policy makers to better assess present agricultural production 

conditions and should enable them to improve identification of future agricultural 

scenarios on national, regional, and global scales. As part of this project, a methodology is 

being applied and tested using existing land resources databases for Bangladesh, Kenya, 

Nigeria and for the World. 



1.2 Agro-ecologica1 zones approach 

FA0 has developed a methodological framework for assessments of land 

productivity which originally was designed for use in agricultural development planning 

and natura1 resources management. 

Agro-ecologica1 zoning (AEZ) involves the inventory, characterization and 

classification of the land resources which are meaningful for assessments of the potential 

of agricultural production systems. This characterization of land resources includes 

components of climate, soils and landform, basic for the supply of water, energy, nutrients 

and physical support to plants. 

Crops require heat, light and water in varying amounts. The geographic distribution 

of crops is mainly governed by these climatic elements. Temperature, water and solar 

radiation are key climatic parameters which condition the net photosynthesis and allow 

crops to accumulate dry matter according to the rates and patterns which are specific to 

individua1 crop species. Crops have specific temperature requirements for their growth and 

development, and prevailing temperatures set the limits of crop performance when 

moisture (and radiation) requirements are met. Vice versa, when temperature requirements 

are met, the growth of a crop is largely dependent on how well the length of its growth 

cycle matches the period when water is available. In the AEZ approach, this has led to the 

concept of the length-of-growing-period (LGP) which is defined as the period (in days) 

during the year in which water availability and prevailing temperature can sustain crop 

growth. 

Crop performance depends as well on the availability of nutrients in the soil, the 

capacity to store water, and mechanical support for crops. Therefore, agro-ecologica1 

zoning also includes an inventory of relevant soil and landform characteristics. The 

specific combinations of climatic, soil and terrain inventories (i.e., land resources 

inventoryldatabase) form the basic units of analysis, and are referred to as agro-ecologica1 

cells (AEZ cells). 

Technical specifications (including management) within a socio-economic setting 

under which a specific crop is grown have been defined as land utilization types (LUT). 

Crop suitability assessments, in essence, are based on matching of crop specific 



adaptability characteristics and croplLUT ecological requirements with the attributes of 

individua1 AEZ cells. 

The choice of using the AEZ methodology as the point of departure for developing 

a climate impact assessment methodology is based on the fact that AEZ is an 

environmental approach which provides a geographic dimension for establishing spatial 

inventories and databases on land resources and crop production potential. The data 

requirements are limited and it uses readily available data to the maximum. Moreover, it is 

comprehensive in terms of coverage of factors affecting agricultural production. The 

approach promises to be relevant for assessments of potential agricultural responses to 

scenarios of climate change. 

For selected countries FA0 has embarked on country case studies in the context of 

the present 'Climate Change and Global Agricultural Potential Project : Chapter 4 

contains technical details of adaptations made to the AEZ methodologies to enable 

assessment of agricultural potentials for various climate change scenarios applicable for 

the Kenya climate change impact case study. 

For the Kenya case study, existing AEZ inventories and databases (FAOIIIASA, 

1993) were updated and computer procedures expanded and enhanced, resulting in the 

following activities with regard to the main steps of AEZ procedures: 

Selection of GCM outputs for the formulation of relevant climate change scenarios for 
Kenya for ca. 2030,2050 and beyond (new); 

Selection and definition of crop typesLUTs (reviewed); 

Compilation of crop ecological adaptability inventory (updated); 

Compilation of soil and terrain resources inventory and database (updated, expanded); 

Applications of various selected climate change scenarios (new); 

Application of AEZ water balance mode1 at grid ce11 leve1 to determine location 
specific length, type and quality of growing periods (new); 

Calculation of potential net biomass and yield (enhanced with additional variables); 

Assessment of crop suitability (enhanced for application with updated and expanded 
land resources database); 

Formulation of criteria for selection of optimum crop combinations and rotations 
(reviewed); 

Assessment of land productivity under various scenarios of climate change and 
atmospheric C 0 2  concentrations (new). 



1.3 Socio-econornic setting 

The socio-economic setting which describes both the study area (Kenya) and the 

exposure unit (agriculture) is the context in which the climatic impact assessment 

methodology is applied and tested. The setting is fully described in  Onyeji et al. (1996). 

Below some of the salient features are summarized. 

Kenya is largely an agricultural economy. The country is denominated into eight 

administrative provinces including Nairobi. Each province. except Nairobi, is made up of 

districts divided further into smaller administrative units (e.g., division, location and sub- 

location). Kenya's agricultural economy is dominated by small holder farms, particularly in 

the Central, Eastern, Nyanza, Western, Rift Valley and Coast provinces. In 1961, 

agricultural population accounted for 89% of the total population. By 1990 this share has 

declined to 76%. Similarly, agriculture's contribution to gross domestic product (GDP) has 

steadily declined over the years, and so has the share of the agricultural labor force in the 

total labor force. With the gradua1 decline of the share of agriculture population, rural 

Kenya is also gradually urbanizing. Kenya's urban population is projected to increase from 

3.8 million in 1989 to 6.4 million in 2000 at an annual rate of 4.8% (Republic of Kenya 

1994a. 1994b). Inevi tably, this increase in urbanization creates competition over land 

between agriculture and human settlements. Among other problems of Kenya agriculture 

are topsoil losses and degradation of vegetation due to low input, subsistence agricultural 

management practices; climate change is expected to bring on added consequences - 

some positive, some negative. 

Sustainable agriculture and food production is a major agricultural development 

policy of the Government of Kenya. This policy, set out in various Kenya government 

documents, stresses the importance of the agricultural sector which in 1990 accounted for 

24% of Kenya's total GDP, about 77% of total employment in the economy, and also 

earned a substantial amount of foreign exchange. To attain self-su.fficiency in food by the 

year 2000, food commodity requirements are projected by the Kenyan Government as 

follows: rice production should grow at an annual rate of 12.5%; wheat by 7.8% and beans 

by 6.8%; maize, sorghum/millet as well as milk production are each required to grow by 

almost 5.0% annua11 y. 



The present study assesses the agricultural potential under climate change 

conditions beyond the current policy target year 2000. The employed methodology which 

is based on the agro-ecologica1 zones approach is particularly suited to this problems as i t  

focuses on environmental resources that are modifiable by climate change and are essential 

for understanding its long term implications on the agricultural sector. 



CHAPTER 2 

CLIMATE CHANGE SCENARIOS 

Scenarios of climate change were developed in order to estimate their effects on 

crop yields, extents of land with cultivation potential, and the number and type of crop 

combinations that can be cultivated. A climate change scenario is defined as a physically 

consistent set of changes in meteorological variables, based on generally accepted 

projections of CO, (and other trace gases) levels. The range of scenarios analyzed is 

intended to capture the range of possible effects and to set limits on the associated 

uncertainty . 

A number of sensitivity and GCM-based climate scenarios were prepared for use in 

the AEZ-Kenya climate change study. Two kinds of climate scenarios were developed. 

First, several sensitivity experiments were defined, varying a single meteorological 

variable such as monthly temperatures or rainfall. Simulations were done exploring the 

potential consequences of temperature increases of between 1-5°C. Similarly, precipitation 

changes were tested in the range of -10% to +lo% of baseline conditions. Secondly, 

several climate change scenarios were constructed based on available results of 

simulations with genera1 circulation models. Three types of GCM based scenarios were 

used in the study: 

2.1 Doubled CO1 equilibrium experiments 

Equilibrium experiments determine the steady state of the simulated physical 

climate system under baseline and altered radiative conditions, usually equivalent to a 

doubling of current radiative forcing from greenhouse gases. Rates of future emissions of 

trace gases and the point in time when their effects will be fully realized are not certain. 

Because other greenhouse gases besides COz, such as methane (CH4), nitrous oxide (N20), 

and the chlorofluorocarbons (CFCs), are also changing, an 'effective C 0 2  doubling' has 

been defined as the combined radiative forcing of al1 greenhouse gases having the same 

forcing as doubled C02 (usually defined as -600 ppm). Doubled C 0 2  experiments from 

three different GCMs were used in the Kenya study: the models are those from Goddard 

Institute for Space Studies (GISS) (Hansen et al., 1983), from Geophysical Fluid 



Dynamics Laboratory (GFDL) (Manabe & Wetherald, 1987), and from United Kingdom 

Meteorologica1 Office (UKMO) (Wilson & Mitchell, 1987). 

2.2 Quasi-transient equilibrium experiments 

The GISS Transient Scenario A (Hansen et al., 1988) consists of separate 

equilibrium GCM runs calculated for transient increased atmospheric C02 levels. In the 

experiment, C 0 2  concentrations were set at 405 ppm, 460 ppm and 530 ppm, and have 

been associated respectively with year 2010, 2030 and 2050. We have termed these GCM 

calculations quasi-transient equilibrium experiments as they are quite different in their 

characteristics from the more recent experiments with coupled ocean-atmosphere models. 

2.3 Transient GCM experiments 

Transient climate change experiments aim to capture the time-dependent response 

of climate to time-dependent increases in greenhouse gases, using coupled ocean- 

atmosphere models. Because of the thermal inerti a of the oceans, temperature increases 

obtained at the time of reaching a doubling of C02 in the atmosphere are much lower than 

for corresponding doubled C 0 2  equilibrium experiments (4.0-52°C). Results from three 

GCMs were used, provided to Working Group I1 (see TSU, 1994) for preparation of the 

1995 IPCC Second Assessment Report (IPCC, 1996b): from the GFDL group (Manabe et 

al., 1991), from the Max Planck Institute (MPI) (Cubasch et al., 1992), and from the 

UKMO (Murphy, 1995; Murphy & Mitchell, 1995). 

Three climatic parameters from the GCM results were used to modify the baseline 

climate conditions of each grid-point of the land resources database. The difference in 

temperature, between a GCM climate change run and the respective GCM control 

experiment (assuming current ambient atmospheric greenhouse gas concentration levels) 

was added to the mean monthly maximum and minimum temperatures of the reference 

climate as described by the KARVCIMMYT climate surfaces (see Chapter 4). Multipliers, 

i.e., the ratio between GCM climate change and control experiment, were used to impose 

changes in precipitation and incident solar radiation, respectively. Consequently, for each 

climate change scenario gridded surfaces of monthly values of four climate parameters 

were generated: mean monthly minimum and maximum temperature, monthly rainfall, and 

monthly solar radiation. Due to lack of reliable information, windrun was kept unchanged 



from reference conditions in al1 climate change scenarios. Relative humidity (RH) has 

been derived from regressions of actual RH data with the other climatic parameters of the 

baseline climate. For the different climate scenarios relative humidity is obtained through 

application of this regression equation with the altered climatic parameters. 

In accordance with the soil and terrain resources inventory, a 2 km by 2 km grid 

size was used. Pixel values of climate change were spatially interpolated from the coarser 

grids used in GCMs. Each sensitivity test or GCM based climate scenario is also 

characterized by leve1 of atmospheric C02 concentrations and assumed improvement in 

water-use efficiency. These parameters affect both the estimated reference 

evapotranspiration as well as parameterization of the biomass calculation procedures. 

Table 2.1 (see Tables section at the end of the report) presents for three-monthly periods 

the ranges of changes of temperatures ("C), precipitation (%) and solar radiation (%), 

scenario implied levels of atmospheric C02 concentrations (ppm)], and assumed leaf 

stornata resistance changes (%) for the various scenarios applied. 

Even in scenarios assuming a doubling of C02  equivalent concentrations carbon dioxide itself does not double since 
some of the other greenhouse gasses are expected to increase faster than COz. 



CHAPTER 3 

EFFECTS OF CLIMATE CHANGE AND INCREASED ATMOSPHERIC 
CARBON DIOXIDE CONCENTRATIONS ON CROP PRODUCTIVITY2 

Plant species vary in their response to C 0 2  in part because of differing 

photosynthetic mechanisms. C3 plants use up some of the solar energy they absorb in a 

process known as photorespiration. In this process, which occurs only in the light, a 

considerable fraction of the carbon initially reduced from C02 and fixed into 

carbohydrates is reoxidized to C02. C3 species tend to respond readily to increased C02 

levels because photorespiration is suppressed in these conditions. Important crop plants 

with the C3 photosynthetic pathway are wheat, rice, and soybean. In C4 plants, on the 

other hand, C 0 2  is trapped inside the leaf and then concentrated in the cells which carry on 

photosynthesis. These plants are more efficient photosynthetically than C3 plants under 

present C 0 2  levels, but in  crop experiments were less responsive to C 0 2  enrichment. C4 

plants of economic importance include maize, sorghum, millet, and sugarcane. Due to 

altered plant development in a C02-enriched atmosphere therefore, C4 plants may be more 

vulnerable to increased competition from C3 weeds. 

Another important physiological effect of C02 enrichment is the closure of 

stomates, the small openings in leaf surfaces through which C02 is absorbed and water 

vapor released. Accordingly, a rise in atmospheric C02 may reduce transpiration even 

while promoting photosynthesis. This dual effect may improve water-use efficiency. Thus, 

by itself, increased C02 can increase yield and reduce water use per unit of biomass. 

Temperature, solar radiation, water and atmospheric C 0 2  concentration are the 

main climate and atmospheric vai-iables of importance to plant productivity. There are 

important differences in temperature requirements and responses to concentration of 

atmospheric C 0 2  among Cg, C4 and CAM3 plants. Also, most of the crop plants presently 

used in agriculture have been selected and bred into different varieties for producing 

efficiently high yields under specific environmental and farming systems conditions. 

Nutrients and water may be augmented via fertilization and irrigation, while radiation and 

Summarized and adapted from IPCC, WGII, Second Assessment Report (IPCC, 1996b) and Rozema et al. (1993). 

Crassulacean acid metabolism 



temperature are more difficult to control, in particular in  large scale agricultural 

operations. 

Responses of plants to climate change have been studied in  a large number of 

experiments and in detailed modeling of basic processes. Results of this research and 

knowledge of basic physical and biologica1 processes, together with research into the 

problems of up-scaling of research results obtained at micro level (e.g., individua] leaf) to 

macro-scales (e.g., farm field level for entire cropping seasons) have provided basic 

understanding of direct and indirect effects of climate change on agricultural productivity. 

Climate change will most likely result in new combinations of soil, climate, 

atmospheric constituents, solar radiation and pests, diseases and weeds. Some of the 

interactions of temperature, moisture availability and increased COI on plant growth have 

been investigated through crop response models. These models have been widely used to 

assess yield response to climate change at many different sites around the world and have 

produced valuable insights in these interactions (e.g., Rosenzweig & Parry, 1994; Fischer 

et al., 1996). However, details of the many different effects of climate changes and 

increased C02 on crop production, across widely varying conditions that exist in different 

agro-ecologica1 regions, have yet to be summarized. 

3.1 Effects of increased COI levels 

There is generally agreement that an increase of atmospheric C02  levels leads to 

increased crop productivity. In experiments, C3 plants, like wheat and soybeans, exhibit 

an increased productivity at doubled C02 concentrations of about 30%. Response however 

depends on crop species as well as soil fertility conditions and other possibly limiting 

factors. C4 plants, such as maize and sugarcane, show a much less pronounced response 

than the C3 crops, on the average in the order of 510%. In genera], higher C02  

concentrations also lead to improved water-use efficiency of both C3 and C4 plants. 

Established trends of plant responses to increased C02  concentrations on the basis 

of experiments, in terms of plant growth, plant water-use efficiency, and quantity and 

quality of harvested produce are summarized below: 



Plant growth 

C3 plants (temperate and boreal) show a pronounced response to increased C 0 2  

concen trations. 

C4 plants (warm tropical) show only limited response to increased C 0 2  

concen trations. 

C3 plants with nitrogen fixing symbionts tend to benefit more from enhanced C 0 2  

supplies than other C3 plants. 

Photosynthesis rate increases occur immediately following exposure to increased C 0 2  

concentrations. 

Initial strong response is often reduced under long-term exposure to higher C02 levels; 

experimen tal evidence suggests that growth responses would be lower for perennials 

thaii for annuals. 

Increased leaf area production, as a result of increased rate of photosynthesis, leads to 

an earlier and more complete light interception and therefore stimulates biomass 

increases. 

Higher biomass requires higher energy supply for maintenance, expressed in higher 

respiration, partly compensated by lower specific respiration. 

Leaf turn-over rate increases due to self shading and decrease of specific leaf surface, 

and both tend to reduce photosynthesis per leaf. 

At higher C 0 2  levels, plant growth damages inflicted by air pollutants, such as 

nitrogen oxides (NO,), sulfur dioxide (SO2) and ozone (O3), are at least partly limited 

because of reduced stomatal opening. 

Water use efficiency 

Increased C 0 2  levels reduce stomatal conductance and transpiration rate. However, 

water consumption on a ground area basis, i.e., canopy evapotranspiration, versus 

consumption on a leaf area basis is reporied to be much less affected. 

The range in water-use efficiency (WUE) of major crops is fairly wide and most 

distinct for C4 crops. Many studies report an increase in the water-use efficiency in 

terms of dry matter produced per unit of water transpired. 



As a consequence of reduced transpiration, leaf temperature will rise and may lead to a 

faster rate of plant development and considerable increase in leaf area development, 

especially in the early crop growth stages. 

Reduced transpiration and resulting higher leaf temperature leads to an accelerated 

aging of the leaf tissue. 

Overall effects of leaf temperature rise will depend upon whether or not optimum 

temperatures for photosynthesis are approached or exceeded. 

iii. Harvest index and quality of produce 

Biomass and yield increased in almost al1 experiments under controlled conditions. 

Dry matter allocation patterns to roots, shoot and leaves have been observed to change 

differently for C3 an C4 crops. Rootlshoot ratios often increase under elevated C 0 2  

levels, favoring root and tuber crops (and also contribute to soil organic matter build- 

UP) 

Increased C02 accelerates crop development due to increased leaf temperature 

resulting from reduced transpiration, reducing the efficiency of biomass or seed 

production. 

The content of non-structural carbohydrates generally increases under high C02 while 

the concentration of mineral nutrients and proteins is reduced. Food quality of leaf 

tissue may decline leading to an increased requirement of biomass by herbivores. 

3.2 Effects of changes in clirnate varìables 

Current climate change scenarios predict a warming of between 1-4.5 degree 

Celsius and changing precipitation patterns with generally increasing rainfall levels. 

Changes in climatic variability are still uncertain, and discussion of its eventual effects on 

crop productivity would be rather speculative, and therefore has been omitted. 

Trends of plant responses to changes of temperature, precipitation, humidity and 

(potential) evapotranspiration are summarized below: 

i. Temperature efects 

Temperature effects depend strongly on interactions with other environmental effects 

such as elevated C02. There appears to be a clear temperature effect on C02 



fertilization, especially for C3 plants, Le., the processes responding to increased COI 

tend to intensify with temperature. 

Night-time temperatures are expected to increase more than average temperatures. 

This may result in higher respiration losses for C3 and C4 plants. 

Higher temperatures have a positive effect on crops of the CAM type, strengthen the 

C02  fertilization effect, and improve water-use efficiency of C3 and C4 plants unless 

plants get overheated. 

Higher mean temperatures during the cold season allow earlier planting, and cause 

earlier ripening of annual crops. Reduced length of the crop growth duration generally 

din~inishes crop yields. On the other hand, the reduced growth cycle duration of crops 

in some cases might lead to more crops per year and extension of the growing season 

for perennials. For annual crops. shortening of the growing season is not fully 

compensated by a changed ontogenetic development and higher growth vigor at the 

higher temperature. Therefore a net yield loss is expected to occur. The duration of the 

vegetative growth and the light interception during the reproductive stages largely 

defines the occurrence of net yield losses. 

Temperature influences the partitioning of dry matter and the growth rate of biomass. 

Higher temperatures in mountainous areas will provide more plant growth at high 

altitudes. Improved heat provision will also benefit high latitude regions. 

Higher temperatures might effect phenological development of crops or induce 

temperature stresses (e.g., risk of reversed vernalization in  wheat, or the risk of 

increased spikelett sterility in rice). 

Precipitation, hurnidi~ and evaporation 

Climate change projections point to ai1 intensifi cation of the hydrological cycle; higher 

evaporation, humidity and precipitation. However, changes in seasonal precipitation 

distribution and intensity, in most instances, would affect crop productivity more than 

changes in annual precipitation and evapotranspiration do. 

Under equa1 temperature conditions, increased C 0 2  levels might decrease, potential 

evapotranspiration rates due to reduced crop transpiration. Actual evapotranspiration 

rates will partly compensate for improved WUE due to an increase in leaf area index 

(see change in water-use efficiencies under increased levels of atmospheric COz). 



O Both positive and negative impacts are likely to be most pronounced in arid and semi- 

arid regions where the moisture balance is most sensitive to changes in precipitation 

and temperatures. Higher precipitation and humidity might improve moisture balances 

in some of these areas in favor of natura1 vegetation and crop yields. In humid and 

perhumid areas, however, increased precipitation and humidity might lead to 

extending of periods with excess moisture which could result in hampered field 

operations and increased incidence of pests and diseases; al1 of which may depress 

crop yields. 

3.3 Zndirect effects through weeds, insect pests and diseases 

Weeds, insect pests and diseases are generally affected by climate and atmospheric 

constituents. Resultant changes in the geographic distribution, with vigor in current 

ranges, will most likely affect crop production. 

i. Cornpetition of weeds 

O Weeds compete with crops for resources essential for plant growth and unless 

controlled, weeds generally reduce potential crop yields in agro-ecosystems. 

Changes in COz concentration, temperature, water and nutrient availability, differently 

affect the competition between weeds and crops. 

Differences in response of C3 and C4 plants to increases in atmospheric C 0 2  are of 

importance to weed-crop competition. In fact, most of the important food crops are C3 

plants, while most weeds are C4 plants. 

. . r r .  Crop insect pests 

Climate is a critica1 factor in determining habitats available to insect communities thus 

influencing insect survival rates. Changes in habitat generally leads to increased 

mortality but may also lead to higher reproduction rates, changes in diapause, 

migration, or even to genetic adaptation. Similarly, changes in seasonal and 

interannual climatic variation may influence life cycle duration, fecundity, diapause 

abilities and genetic adaptation of insects. 



iii. Croy diseases 

Crop diseases are primarily related to climate and soil conditions. Evidences of 

changes in occurrence patterns of crop diseases related to climate change or increased 

C 0 2  concentrations have. to our knowledge, not systematically been recorded or 

documented. 



CHAPTER 4 

AGRO-ECOLOGICAL ZONES METHODOLOGY FOR CLIMATE CHANGE 
IMPACT ASSESSMENTS 

4.1 Overvie W 

Figure 4.1 provides a genera1 overview of the flow and integration of information 

as implemented in the Kenya Climate Change study. In the following explanation the 

numbers in brackets relate to the numbering used in Figure 4.1. Boxes shown in light gray 

indicate components of the AEZ-KENYA system that received a major update, 

components in dark gray have been newly implemented or added to expand the 

methodology for climate change impact assessments. 

(1) Land utilization types (LUT): LUT descriptions comprise sets of 

alternative activities available to achieve specified objectives, Le., usually production of 

crops, fodder or fuelwood. The first step in an AEZ application is the selection and 

description of land utilization types to be considered il1 the study. FA0 (FAO, 1984) 

defines LUT as follows: 'A Land Utilization Type consists of a set of technical 

specifications withirz a socio-economic setting. As a miniinum requirement, both the nature 

of tlze produce and the settirzg inust be specified'. The description has been organized in a 

hierarchical sti-ucture that defines: 

Level l ,  elements common to al1 land utilization types: These elements include the 

socio-economic setting of a 'homogenous' region for which a number of land utilization 

types may be defined. 

Level 2 ,  elements common to groups of land utilization types: e.g., severa1 land 

utilization types may be defined for a particular farming system. Holding size, farm 

resources, etc. are to be presented at this level of LUT description. 

Level 3,  elements specific to particular land utilization types: crop specific 

information such as cultivation practices, input requirements, crop calendars, utilization of 

main produce, crop residues and by-products, are to be described at this level. The variety 

of aspects that can be n~eaningfully included in the description as well as the amount and 

detail of quantitative information provided should match the needs and scale of a study. 

The Kenya study distinguishes 64 crop LUTs, 31 fuelwood LUTs and a compound 



grassland L U T ~ ,  each at three levels of inputs. Similarly, 10 livestock systems are 

considered per input level. 

(2) Crop, forage and fuelwood catalog: The term catalog refers to a computer 

representation of the quantitative aspects of the LUT description in a database format. As 

pointed out above, the level of detail regarding the representation of different crop, forage 

and fuelwood species and varieties in the database should reflect the study objectives as 

well as match the sophistication of its methodological components and the scale at which 

the study operates. For the Kenya study, the crop, forage and fuelwood catalog database 

includes parameters describing thermal requirements of crop types, reference crop cycle 

lengths, relative lengths of crop development stages (i.e., percentages of total crop cycle 

length), photosynthetic pathway, crop adaptability group, maximum leaf area index, 

parameters for biomass calculation, harvest index, development stage specific crop water 

requirement coefficients, moisture stress related yield reduction coefficients, food content 

coefficients (energy, protein), extraction/conversion rates, crop by-productlresidue 

coefficients, commodity aggregation weights. 

(3, 4, 5)  Climate database: In the present study the historical records of rainfall and 

synoptic station data have been scrutinized and updated, now covering, where available, 

the period of the 1920's unti1 1992. In addition to these data, average climate data from the 

FAOCLIM database (FAO, 1995) for Kenya and neighboring countries. and gridded 

climate surfaces data developed within the KARIICIMMYT Kenya Maize Data Base 

Project (Box 4), provide the basic spatial and temporal climate information used in the 

assessment. Al1 climatic parameters are kept in a 'baseline' gridded database (Box 5). 

(6) GCM-based climate scenarios: A number of sensitivity and genera1 

circulation models (GCM) based climate scenarios were prepared for use in the AEZ- 

Kenya climate change study. Scenarios were used from doubled C 0 2  equilibrium 

experiments (GISS - Goddard Institute of Space Studies, GFDL - Geophysical Fluid 

Dynamics Laboratory, and UKMO - United Kingdom Meteorologica1 Office) and from 

coupled ocean-atmosphere transient experiments (GFTR - Geophysical Fluid Dynamics 

24 grass and 8 legume pasture species were rated in relation to temperature regime and moisture availability, and 
combined into a generalized grassland productivity assessment, assuming that for different ranges of environmental 
conditions respectively the most suitable and productive species would dominate, depending on level of inputs. 



Laboratory, MPTR - Max Planck Institute of Meteorology, UKTR - United Kingdom 

Meteorologica1 Office). 

(7) Scenario-derived climatic parameters: Three climatic parameters from the 

GCM results were used to adjust the baseline climate conditions of each grid-point of the 

climate surfaces. For this, indicators of climate change were spatially interpolated from 

the coarser grids used in GCMs. The differente in temperature, between a GCM climate 

change run and the respective GCM control experiment (assuming approximately current 

ambient atmospheric greenhouse gas concentration levels) was added to the mean monthly 

maximum and minimum temperatures of the baseline climate surfaces. Multipliers, i.e., 

the ratio between GCM climate change and control experiment, were used to impose 

changes in precipitation and incident solar radiation, respectively. Each sensitivity test or 

GCM-based climate scenario is also characterized by leve1 of atmospheric CO, 

concentrations and assumed changes of water-use efficiency. These parameters affect both 

the estimated reference evapotranspiration as well as the parameterization of the biomass 

calculation procedures. 

(8, 9) Lund resources inventories (GZS): The storage and manipulation of 

complex spatial information, i.e., various thematic maps such as soils, landform, slope, 

vegetation, present land use, social and economic characteristics, and administrative 

boundaries are facilitated by the application of Geographical Information Systems (GIS). 

Several layers of digital data were updated or added to the GIS database of the origina1 

AEZ-KENYA system, including administrative boundaries (districts, divisions, locations), 

a 1:lM soil map recently updated at KARI in the KENSOTER project (Kenya Soil 

Survey, 1995), and a recent approximately 1 by 1 krn resolution DEM (digital elevation 

model) available for Africa from the GRID Center in Sioux Falls, U.S.A. 

(1 0) Climate data analysis: Monthly values of average daily reference 

evapotranspiration (ET,) are calculated for each grid-ce11 according to the Penman- 

Monteith equation (FAO, 1992b). Details of the calculation procedure are described in 

Appendix 2. The methodology for the calculation of reference length of growing period 

(LGP) used in the AEZ-KENYA system is based on a simple water balance model, by 

comparing moisture supply from rainfall and soil storage with potential 

evapotranspiration. The algorithm determines the number and type of growing periods per 



year, starting and ending dates of each growing period and moisture excess and deficits 

during the growing periods. Further details are described in Appendix 3. Thermal zones 

(TZ) were obtained through classification of mean annual temperature and are defined for 

eleven classes in 2.5"C intervals, Le., >30°C mean annual temperature, 27.5-30°C, 25- 

27S°C, etc. 

(1 1)  Soil association composition database: Additional data related to the 

mapped information, e.g., a description of soil associations in terms of soil types, soil 

phases and texture classes, landform, slope, etc., is kept in the computerized system in the 

form of an attribute database file. The soil association attribute database of the AEZ- 

KENYA system was reviewed and updated by KARI with information from the 

KENSOTER project and reformulated in terms of the Revised Legend of the Soil Map of 

the World (FAO, 1988). 

(12) Gridded land resources database: Combining overlaid spatial information 

with the contents of relevant attribute files (Boxes 5, 9, and 10 and 11) results in the 

creation of unique geo-referenced extents of land units, termed agro-ecologica1 cells, 

which form the basic unit of analysis used in AEZ applications. The collection of agro- 

ecologica1 cells, for given climate change scenarios, constitutes the land resources 

inventory. For the assessment of potential climate change impacts in Kenya, grid-ce11 leve1 

land resources databases were compiled from the ARCIINFO vector databases. Each grid- 

ce11 covers and area of 4 km2, requiring a rectangular grid of 565 rows by 450 columns 

containing about 147,500 grid-points within Kenyan national boundaries. 

(13) Biomass and yield calculation: The constraint-free crop yields computed 

in the biomass module reflect yield potentials with regard to temperature and radiation 

regimes prevailing in the respective grid-cells. Biomass accumulation is described in terms 

of photosynthetic characteristics and phenological requirements, enabling the calculation 

of site specific constraint-free maximum yields. The method of biomass estimation used in 

this AEZ-KENYA system accounts for different levels of atmospheric C 0 2  concentrations. 

Details of the calculation procedures are given in Appendix 1. 

(13) Edaphic requirernents: To assess the suitability of soils for individua1 

LUTs, edaphic requirements of LUTs have been inventoried. In addition, these 

requirements must be understood within the context of limitations imposed by landform 



and other features which do not form a part of soil but may have a significant influence on 

the use that can be made of ,the soil. Distinction is made between interna1 soil 

requirements of LUTs, such as soil temperature regime, soil moisture regime, soil fertility, 

effective soil depth for root development and other physical and chemical soil properties, 

and external requirements related to soil slope, occurrence of flooding and soil 

accessibility. 

(15) Climatic requirements: Crops, grasses and fuelwood species have climatic 

requirements which have been inventoried for the climatic suitability assessment. These 

include, for instance, temperature limitations for cultivation, tolerance to drought or frost, 

optimal and margina1 temperature ranges for cultivation, and specific requirements at 

different phenological stages. 

(16) Matching procedures: Matching rules and ratings for comparing 

requirements of crops, forages and fuelwood to the attributes of individual agro-ecologica1 

cells have been stored in a database. The matching procedures include the applicaiion of 

agro-climate specific reduction factors (agroclimatic coizstraints), accounting for rainfall 

variability/moisture stress, pests and diseases, and workability constraints. As a result of 

the agro-climatic and agro-edaphic matching procedures, each agro-ecologica1 ce11 is rated 

in terms of five suitability classes with respect to al1 LUTs relevant in that location. 

(1 7) LUT suitability: The result of matching the LUT specific edaphic and 

climatic requirements to the attributes of individual agro-ecologica1 cells in combination 

with calculated potential biomass and yields (as in ( 1  3) above). provides specific estimates 

of attainable yields for LUTs at different levels of management and inputs. 

(18) Sustainable land productivity : On the basis of crop suitabili ty, the 

productivity assessment captures sustainability factors that impact upon the production 

levels that can be attained. Production increases due to multiple cropping resulting from 

intensification of cultivation in space and time are taken into account in the analysis, as are 

productivity losses due to soil erosion. Since the productivity estimates should relate to 

production achievable on a sustainable basis, fallow requirements, to maintain soil fertility 

and structure and to counteract soil degradation caused by cultivation, are imposed 

depending on environmental conditions and LUTs, including leve1 of inputs and 

management applied. 



(19) AEZ ce11 productivity database: The productivity assessment records input 

level specific production of relevant and agro-ecologically feasible land utilization 

activities. The stored information includes a quantification of main produce and by- 

products, input requirements and estimates of associated soil erosion. The algorithm 

imposes a filter that eliminates activities that are ecologically unsuitable, too risky with 

respect to climatic uncertainties, environmentally unacceptable (i.e., producing soil 

degradation in excess of tolerable levels, or are much inferior to other possible activities in 

the particular land unit in terms of both expected economic benefit and nutritional value. 

At this stage of the analysis a database is created that contains for each agro-ecologica1 ce11 

quantified information on al1 feasible LUTs. This database allows for tabulating and 

mapping potential arable land by LUT and different levels of area aggregation. It provides 

the necessary geo-referenced agronomic data for district and national land-use planning 

scenarios, and allows for comparison of impacts on agricultural productivity of different 

climate change scenarios. 

(20, 21,22) Optimal AEZ ce11 allocation: Different sets of assumptions. e.g., in 

planning scenarios regarding population growth, availability and level of inputs, consumer 

demand, etc., are stored in  a scenario catalog, Le., a database of contro1 parameter files 

used by the application programs. Planning scenarios in  the AEZ application are specified 

by selecting and quantifying objectives and various constraints related to aspects such as 

demand preferences, production targets, nutritional requirements, input constraints, feed 

balances, crop-mix constraints, and tolerable environmental impacts. In the AEZ-KENYA 

climate change study, land productivity is defined rigorously by the capability of land to 

produce food energy and protein; Le., the objective in  the optimal AEZ-ce11 allocation 

procedure is to search for crop combinations that maximize total output from agriculture 

land in terms of a weighted sum of food calories and protein. 

(23) Applicatìon report writer: The application report writer summarizes the 

scenario results by district, province and national totals. 

(24,25) Scenario summary database: Output from the AEZ application report 

writer can be kept in a scenario summary database and be linked to the geographical 

information system for visualization of the results. 



Figure 4.1 AEZ climate change application: Information flow and integration 
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4.2 Cliinatic resources 

The origina1 AEZ climatic resources inventory of Kenya (FAOIIIASA, 1993) 

recorded both temperature and soil moisture conditions in a compiled form. The 

quantification of temperature attributes had been achieved by defining reference thermal 

zones. Temperature seasonality effects of latitude are minor in Kenya due to its location at 

the equator. Therefore thermal zones are closely related to altitude ranges. To cater for 

differences in temperature adaptability characteristics of crops, pasture and fuelwood 

species, nine thermal zones were distinguished in the origina1 inventory, generally based 

on ranges of 2.5"C in mean annual temperatures, starting with areas of mean annual 

temperature >25"C, 22.5-25"C, 20-22.5"C, etc. 

Quantification of soil moisture conditions was achieved through the concept of 

reference length of growing period (LGP). Reference LGP is defined as duration (in days) 

of the period when temperature permits plant growth and soil moisture supply exceeds 

half reference evapotranspiration; it includes the time required to evapotranspire up to a 

reference 100 mm of soil moisture storage (FAO, 1978-81). Growing periods which 

include a sub-period when precipitation exceeds reference evapotranspiration are termed 

nornzal LGPs as compared to intermediate LGPs with no such sub-period. The moisture 

regime had been inventoried by means of three complementary attributes (FAO, 199 1 ): 

number of separate LGPs within a year, summarized as a historical profile of pattern of 

LGPs per year (LGP-pattern). Twenty-two such LGP-pattern classes were originally 

recognized; 

mean total dominant LGP, Le., the sum of mean dominant and associated lengths of 

LGPs occurring during the year. Fifteen LGP zone classes, at thirty-day intervals were 

distinguished, and 

year to year variability of each LGP and associated moisture conditions. 

For the present climate change impact assessment the historical records of rainfall 

and synoptic station climate data have been scrutinized and updated now covering where 

available the period 1920-1992. Together witli these, additional data of the FAOCLIM 

database (FAO, 1995) for Kenya and neighboring countries and gridded climate surface 

data developed in a KARVCIMMYT Maize Data Base Project have been used in the 



present assessment. Al1 climate parameters are kept in a baseline gridded database with a 

grid-size of 2 by 2 kmL. From these datasets, thermal zones and LGP data have been 

evaluated in each grid-cell, to serve as baseline inventories in the present study. Also with 

each climate change scenario separate map layers of thermal and LGP zones are derived. 

Examples of thermal zones, LGP and LGP-pattern zones are shown in Figure 5.1. 

4.2.1 GCM-derived data 

The present generation of GCM experiments are based on recent projections of 

increases of concentrations of greenhouse gases in the atmosphere (IPCC, 1992). Apart 

from changes of atmospheric C02  concentrations, three climate attributes (for defined 

scenariosltime horizons) have been derived from the GCM results and interpolated to the 

2 by 2 km2 grid from the relatively coarse GCM grid-points falling within and 

immediately around Kenya. These are: 

change of temperature regimes ("C); 

change of amount and distribution of precipitation (%); 

change of incident solar radiation (%). 

The difference in temperature, between a GCM climate change run and the 

respective GCM control experiment was added to the mean monthly maximum and 

minin~um temperatures of the baseline climate surfaces. Multipliers, i.e., the ratio between 

GCM climate change and control experiment, were used to impose changes in 

precipitation and incident solar radiation, respectively. Adjustments were determined 

separately for each three-month period starting in December, i.e., December-January- 

February, March-April-May, etc., as well as annual changes in precipitation and radiation 

were calculated. These quarterly disturbance terms were scaled such that the application to 

monthly climate attributes matches the calculated annual changes. This method of 

generating climate scenarios captures the seasonal characteristics of GCM experiments but 

largely avoids unrealistic multipliers which could result from differences between GCM 

control experiments and actual baseline climate conditions. Consequently, for each 

climate change scenario gridded surfaces of monthly values of four climate parameters 

were generated: mean monthly minimum and maximum temperature, monthly rainfall, 

and solar radiation. 



At baseline and scenario conditions relative humidity has been estimated through 

regressions with selected climate parameters, distance to the coast and altitude. Due to 

lack of reliable information, the windrun data has been kept unchanged from baseline 

values for al1 climate change scenarios, both GCM-based and sensitivity scenarios. 

Each sensitivity test or GCM-based climate scenario is also characterized by leve1 

of atmospheric C 0 2  concentrations and assumed changes of water-use efficiency. These 

parameters affect both the estimated reference evapotranspiration as well as the 

parameterization of the biomass calculation procedures. 

In the AEZ biomass model the photosynthetic active radiation (PAR) is required to 

be adjusted according to actual global radiation (Rg) or sunshine duration relative to day- 

length. Further the model requires average daily as well as day-time temperatures. Both 

actual radiation and temperatures are read or calculated from the climatic data sets. 

4.2.2 Reference evapotranspìratìon 

From the baseline and scenario climate data sets potential evapotranspiration has 

been estimated by using the modified Penman-Monteith equation, as recommended by 

FA0 (FAO, 1992b). In the estimation of reference evapotranspiration, the interactions 

between increased C02 concentrations and stomatal resistance which influence the crop 

canopy resistance (rc) has been accounted for. The canopy resistance is related to stomatal 

resistance and leaf area index (LAI) as follows (Allen et al., 1989): 

r, = R[ /0.5 LAI  

where: 

RI = average daily stornata resistance of a single leaf [s m-l] 4 0 0  

LAI  = leaf area index 

Stomatal resistance at doubling of ambient C02  concentrations has been reported 

to increase up to 50% (de Bruin & Jacobs, 1993). With such information and estimates of 

expected C 0 2  concentrations for scenariosltime horizons to be considered, reasonable 

estimates of reference evapotranspiration can be made. 



4.2.3 AEZ climatic resources inventory 

Subsequently in combination with 'scenario' precipitation, through the AEZ 

growing period calculation procedures, 'scenario' LGPs have been calculated and gridded 

LGP and LGP-pattern inventories have been compiled. Similarly, 'scenario' thermal zones 

inventories have been compiled. 

The three layers, LGP, LGP-pattern and thermal zones, make-up 'scenario' (AEZ) 

climatic resources inventories which function in applications of AEZ crop suitability and 

land productivity assessments. From the monthly climate variables, the LGP analysis 

generates pseudo-daily values through spline-interpolation. These can be used to assess 

growing conditions during different crop stages as well as among different growing 

seasons. 

4.3 Biomass and yield 

The model for the estimation of potential net biomass and yields (Kassam, 1977) is 

based on data of radiation and temperature regimes, and crop eco-physiological 

characteristics. A summary description of the procedures is given in the Appendix 1. 

4.3.1 Photosynthesis 

For the AEZ biomass and yield model, a division of crops into five adaptability 

groups is used, based on the difference between crop species in  their photosynthesis 

pathways and the response of photosynthesis to temperature and radiation, because these 

differences determine productivity when climatic phenological requirements are met. 

The two major photosynthesis pathways are the C3 pathway and the C4 pathway. 

In the former, the first product of photosynthesis is a 3-carbon organic acid (3- 

phosphoglyceric acid), while in the latter the first products are 4-carbon organic acids 

(malate and aspartate). At current levels of atmospheric C02  concentrations, crop species 

with a C3 assimilation pathway have relatively much lower rates of C 0 2  exchange at a 

given radiation leve1 than C4 species. 

However, both pathways are adapted to operate at optimum rates over ranges of 

temperatures that are specific to the pathways. In case of C3 species, one group is adapted 

to operate under conditions of moderately cool and cool temperatures (10-20°C), e.g., 



wheat, barley, white potato. Another group is adapted to operate under conditions of 

moderately warm to warm temperatures (25-30°C), e.g., rice, cotton, groundnut. These C3 

species constitute adaptability groups I and I1 of the AEZ system. 

In the case of C4 species, one group of cultivars or ecotypes is adapted to operate 

under conditions of warm to very warm temperatures (25-35"C), e.g., lowland maize, 

lowland sorghum, sugarcane, and another group of cultivars or ecotypes is adapted to 

operate under conditions of moderately cool to moderately warm temperatures (1 5-25"C), 

including, for instance, highland maize and highland sorghum. These C4 groups of crop 

ecotypes constitute adaptability groups I11 and IV of the AEZ system. 

One further group of species has the Crassulacean acid metabolism (CAM). The 

biochemistry of photosynthesis in the CAM-species has severa1 features in common with 

C4 species, in particular the synthesis of Cq-carbon organic acids. CAM-species are 

adapted to operate under moderately warm and warm temperature conditions (20-30°C), 

including crops such as pineapple and sisal. The CAM species constitute adaptability 

group V in the AEZ system. 

Climate change and increase of atmospheric C 0 2  concentrations affect rates of 

photosynthesis and range of optimum temperatures for photosynthesis differently for C3 

and C4 crops. As quoted from literature in the previous section, C3 species would benefit 

more from increased C02 concentrations than C4 species (respectively 30% and 5%, on 

the average, at doubled C02 concentrations). It has become evident, however, that there is 

an interaction between temperature and relative increase in growth (photosynthesis). For a 

selection of C3 species, Idso et al. (1987) have demonstrated that the C02  fertilization 

effect increases W ith temperature. From experiments in open-top C02 enrichment 

chambers the relative growth increase ranges, from slightly negative at temperatures below 

19°C to more than 80% at more than 30°C (Kimball et al., 1993). A linear regression 

based on the experimental data suggests that relative growth increase is related to 

temperature in the following way: 

f, = -0.452 + 0.0824 T (r2 = 0.63) 

wheref, is relative yield increase and T is temperature ("C). 



Another important aspect is the observation that the temperature optimum for 

photosynthesis, specifically for C3 species, shifts considerably to higher temperatures with 

increasing C02 concentrations (Allen et al., 1990, 199 1 ). 

Based on the above quoted experiments and evidence, it is believed that greater 

COz growth stimulation at higher temperatures is rea1 and thus would lead to different 

changes of maximum rates of photosynthesis (P,) for different temperatures. Below in 

Table 4.1, maximum photosynthesis rates by day-time temperatures for current 

atmospheric C 0 2  concentrations, as used in  the AEZ system, are reproduced for crop 

adaptability groups I, n, EI and IV. To enable the AEZ biomass model to handle 

maximum photosynthesis rates at different concentrations of atmospheric C02, an 

alternative set of photosynthesis rates, Table 4.2, has been set up similar to Table 4.1. The 

values in Table 4.2 represent maximum photosynthesis rates at doubled atmospheric C02. 

Depending on the projections of increase of atmospheric C 0 2  used for climate change 

scenarios, interpolations between the values of Table 4.1 and Table 4.2 are made in the 

study . 

Table 4.1 Maximum photosynthesis rates (P, in kg CH20 ha-1 hr-l) by mean day-time 
temperatures for crop adaptability groups I to IV at present atmospheric C 0 2  
concentrations. 

4.3.2 Respiration 

Crop 
Group 

I ( c3 )  

11 (C31 

111 (C41 

Iv (C41 

Changes in growth and maintenance respiration, as far as related to changes of 

temperature, are accounted for in the AEZ biomass model (see Appendix 1). Changes of 

atmospheric C 0 2  concentrations on respiration seem uncertain and therefore could not be 

included in the present stage of the model development. 

Mean Day-time Temperatures 

5°C 10°C 15°C 20°C 25 "C 30°C 35°C 40°C 45°C 

5 15 20 20 15 5 O O O 

O O 15 32.5 35 3 5 32.5 5 O 

O O 5 45 65 65 65 45 5 

O 5 45 65 65 65 45 5 O 



Elevated levels of CO, concentrations slow transpiration by inducing partial 

closure of leaf stornata. This appears to be important in particular for C4 plants. For C3 

plants elevated CO, concentrations lead mainly to increase of photosynthesis, through 

efficiency enhancements. Table 4.3 shows the relative contributions to changes in net 

photosynthesis and transpiration to a CO, induced, approximately doubling of leaf water- 

use efficiency for C3 and C4 plants (generalized from Rogers & Dahlman, 1993). 

Table 4.2 Maximum photosynthesis rates (in kg CH,O ha-l hr-l) by mean day time 
temperatures for crop adaptability groups I to IV at doubled atmospheric CO, 
concen trations5. 

Table 4.3 Relative contribution (%) to changes in net photosynthesis and transpiration of 
a CO, induced approximately doubling of leaf water-use efficiency for C3 and 
C4 plants. 

Crop 
Group 

I (C31 

11 (C31 

111 (C41 

Iv (C41 

Mean Day-time Temperatures 

5°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C 45°C 

5 10 22 28 21 7 O O O 

O O 13 3 7 50 56 52 8 O 

O O 5 47 68 68 68 47 5 

O 5 47 68 6 8 68 47 5 O 

Higher stomatal resistance, reducing transpiration rates leads to increased leaf 

temperatures, which influences the rates of plant development. In particular, this 

considerably increases leaf area development in early growth stages of plants. In this way 

the average leaf area over the growth cycle can increase substantially and will enhance 

biomass production. 

4.3.4 Harvest index 

Transpiration 

25 

70 

Crop Adaptability Group 

Group I and I1 (C3) 

Group I11 and I V  (C4) 

There is extensive evidence that both quantity and quality of the yield 

(economically useful parts) of crops change under elevated CO, concentrations. However, 

Photosynthesis 

75 

30 

The values presented in Table 4.2 generalize present knowledge as discussed in previous sections. 



there is not sufficient convergence of evidence that yield quantities in  relation to total 

biomass would change. Therefore, in the present analysis, harvest indexes in  the model 

have not been modified with regard to changes of atmospheric COI concentrations. 

4.3.5 Growth cycle duration 

At higher temperatures annual determinate crops will exhibit shortened growth 

cycles. The changed ontogenetic development and higher growth vigor at higher 

temperatures will not fully compensate for the shortening of the growth cycle, therefore a 

net yield loss will occur. The duration of crop growth cycles is defined in the AEZ 

biomass model and those of annual determinate crops need to be adjusted according to the 

expected temperature changes. For this adjustment use is made of relationships between 

growth cycle durations and crop variety specific heat unit requirements (degree days). 

4.4 Climafic suitability 

In the present implementation, matching rules and ratings for comparing 

requirements of crops, forages and fuelwood to the climatic attributes of each grid-ce11 are 

assumed to remain valid also under a change of atmospheric C 0 2  concentrations. 

4.4.1 Growth cycle curtailment 

The procedures accounting for shortfall of available length of growing period to 

crop growth cycle requirement may be affected through possible changes in crop specific 

yield response to water stress (ky factor, see FAO, 1992a). This might change under the 

influence of changed crop water-use efficiencies. At present, there is insufficient evidence 

to consider adaptations to the crop and crop phenological stage specific S, values. 

4.4.2 Agro-climatic constraints 

The agro-climatic constraints related to effects of pests, diseases and weeds, and 

workability ('b', 'C' and 'd' constraints as used in FAO, 1978-81 and FAOIIIASA, 1993) 

remain linked to the respective LGP and thermal zones as used in baseline conditions. It is 

assumed that these agro-climatic constraints will remain linked to corresponding agro- 

climatic conditions. For individual year assessments, length of growing period and soil 

moisture deficit is quantified according to climatic data. The agro-climatic constraints 

related to inter-annua1 rainfall variability ('a' constraints) are removed for individual year 



assessments and remain unchanged for long-term averages. Thus, it is assumed that 

rainfall variability remains similarly related to LGP as it is at present. 

4.5 Soil and terrain resources 

The original AEZ soil and terrain resources inventory (FAOIILASA, 1993) was 

based on the 1: 1 million scale Exploratory Soil Map of Kenya (Sombroek et al., 1982). 

This information, in particular the soil association composition database, has been updated 

at KARI in  the frame of the KENSOTER project (Kenya Soil Survey, 1995). In addition, 

for the purpose of the present study, the soil classification has been reformulated in terms 

of the Revised Legend of the Soil Map of the World (FAO, 1988). 

Apart from the soil and terrain layer, also the vegetation (forest areas), national 

parks and tsetse infestation area GIS coverages were updated with recent information from 

KARI. Other layers as used in the original AEZ-GIS inventory (cash crop zones and 

irrigation areas) remain unchanged. The administrati ve areas layer has been updated and 

refined; now including provinces, districts, divisions and locations. A recently available 

approximately 1 by 1 km2 resolution DEM (Digital Elevation Model) available for Africa 

from the GRID Center in Sioux Falls, U.S.A. was converted to UTM projection and added 

to the database. 

4.5.1 Soil and terrain characteristics and climate change 

L. Changes to soil characteristics 

There is insufficient systematic quantitative evidence in which way and how far 

soil characteristics would change as result of climate change and increase of atmospheric 

C02  (Brinkman & Sombroek, 1993). At present, climate change impacts that may affect 

soils in the longer-term have not been taken into account in the simulations. 

. . 
11 .  Changed crop/soil relationships 

There is as yet also no quantitative evidence to support any modification to the 

edaphic crop suitability classifications as result of climate change or increased 

atmospheric C02 concentrations. Therefore, the edaphic suitability assessment has, in 

principle, remained unchanged in the present study. 



4.5.2 Soil and terrain suitability classificatioizs 

The soil and terrain suitability ratings and rules have been reviewed and updated, 

in particular in view of the newly introduced soil classification of the Revised Legend of 

the Soil Map of the World (FAO, 1988). 

Unti1 sufficient evidence becomes available it is assumed in the AEZ system that 

increased atmospheric C02 and C02 x Temperature interactions will enhance growth of 

crops only when soils are not suffering severe nutrient deficiencies or toxic substances. 

Hence, enhanced biomass production due to increased atmospheric C02 levels is applied 

in relation to edaphic suitability. The fu11 effect (100%) of C02 fertilization has been 

applied where soils do not impose limitations to productivity of the defined LUTs (S1 

rating). At S2, S3, S4 and N soil ratings respectively 75%, 50% 25% and 0% of the 

potential enhancement due to C02 fertilization have been assumed. 

4.5.3 Land productivity 

1. Multiple cropping increments 

The total effect of changed crop component suitability and changed growth cycle 

duration is accounted for in the AEZ model. There is no conclusive data or indications of 

some evidence available on changed crop-crop interactions in sequential, relay or 

intercropping systems as would result from climate change or increased atmospheric C 0 2  

concentrations. Therefore, the interaction effects as established in the agro-ecologica1 land 

resources assessment study of Kenya remained unchanged. 

. . 
1 1 .  Sustainability crìterìa 

The AEZ-KENYA system uses an implementation of a modified version of the 

Universal Soil Loss Equation (USLE) to quantify erosion impacts (FAOIIIASA, 1993). 

The USLE factors accounting for rainfall erosivity (R) and related to crop cover and 

management (C*) are calculated within the AEZ programs and will change as result of 

altered amount and distribution of rainfall and changes in cropping patterns and crop 

component leaf area parameters. Thus, these effects have been included in the 

calculations. There is, however, no evidence that soil erosion/productivity loss 

relationships with or without consideration of soil conservation measures would 

significantly change. 



Fallow period requirements would be affected by changed nutrient cycling. There 

emerges some evidence that increased levels of atmospheric Coi would enhance nutrient 

cycling and increase soil organic matter status. This could, for example, lead to diminished 

fallow period requirements. In the present analysis this has not been taken into account but 

can be implemented in the system as quantitative estimates become available. 



CHAPTER 5 

CLIMATE CHANGE IMPACTS 

In this section the results of various sensitivity and GCM-based climate change 

scenarios (as described in Chapter 2) are discussed in terms of: ( i )  changes of climatic 

resources, and (ii) changes of potential crop production and land productivity . Further, the 

factors underlying the changes of potential productivity are discussed, i.e., changes of crop 

yield levels, changes of extents of land with cultivation potential, and changes of cropping 

patterns and cropping intensities potentially induced by climate change. 

The results are presented primarily for the national leve1 in a number of tables, 

charts and small-scale maps. A selection of indicators, Le.. potential productivity of maize 

and wheat, and an overall measure of potential land productivity is presented by province 

and district (Appendix 4). 

5.1 Changes of climate resources 

Temperature changes have a direct effect on the spatial distribution of individual 

thermal zones. Table 5.1 shows extents of thermal zones for both reference conditions and 

a range of climate scenarios. Figure 5.1 presents small-scale maps of thermal zones for 

reference conditions and for four selected scenarios (T-Sensitivity T20, GSA 2030, GFTR- 

D2 and GFTR-D3). 

As shown in Table 5.1, depending on climate scenario, extents in thermal zones TZ 

3 to TZ 11  decrease quite substantially, while zones TZ l and TZ 2 generally increase. 

This is a necessary consequence of a 'pyramid effect', i.e., the fact that (i) average 

temperatures and thus thermal zones are highly correlated with altitude, and (ii) extents of 

individua1 zones decrease with altitude (see Table 5.1). Hence, extents 'lost' from any 

particular zone because of global warming to warmer thermal zones are not fully 

compensated for by extents 'gained' from previously cooler regions. In fact, thermal zone 

TZ 1, indicating hot and agronomically unfavorable conditions with average annua1 

temperatures above 30°C, does not occur under baseline conditions but occupies as much 

as 85,000 km2 in response to a warming of 2"C, however, falling mostly in the arid and dry 

semi-arid zone. 



A number of parameters derived from the climate scenarios, i.e., temperature, 

sunshine duration and atmospheric CO, concentrations, affect estimations of reference 

evapotranspiration, ET,. Changed ETo and changed rainfall regimes alter soil-water 

balances and, in turn, result in changes of growing period conditions: (i) of the number of 

growing periods per year; (ii) the types of growing periods (norma1 growing periods 

which fully meet crop water requirements, and intermediate ones which only partly meet 

crop water requirements), and (iii) the lengths of growing periods (LGPs). 

Table 5.2 presents for some thirty-three climate scenarios the changes in extents of 

LGP zones, relative to the reference conditions. Table 5.3 summarizes changes of number 

and types of growing periods, comparing them to LGPs under reference conditions. Figure 

5.2 presents small-scale maps of LGP zones for reference conditions and for four selected 

scenarios. Figure 5.3 shows small-scale maps of growing period pattern zones, also for 

reference conditions and four selected climate scenarios. 

Due to generally favorable increases in annua1 rainfall most GCM-based climate 

scenarios result in improved moisture conditions and a substantial reduction of the hyper- 

arid zone. In addition, higher temperatures usually lead to a reduction of extents in the 

perhumid zone, although this covers only tiny parts under baseline conditions. Extents in 

the moist semi-arid and sub-humid zones, the most productive regions for agricultural 

activities, are in genera1 expected to increase under GCM-based climate change scenarios 

(see Table 5.2). 

The prevalence of improved moisture conditions in climate scenarios based on 

transient GCM experiments can also be clearly detected in Table 5.3 where extents of 

intermediate growing period zones (i.e., zones with moisture stress during the growing 

period) generally decline, whereas extents of norma1 growing periods (i.e., growing 

conditions which include a sub-period when rainfall exceeds reference evapotranspiration) 

expand. 

Changes of thermal zones and LGP zones affect the combinations of these. For 

reference conditions and three scenarios cross tabulations of thermal zones and LGPs are 

presented in Table 5.4. 

The diagonal structure of Table 5.4 demonstrates the obvious correlation between 

altitude (i.e., thermal zone) and moisture supply. Secondly, when considering the most 



favorable agro-climatic conditions, say moist semi-arid and sub-humid zones in thermal 

zones TZ 3 to TZ 7, we find, for the selected climate scenarios, a complex pattern of both 

increases and declines within the corresponding sub-matrix in Table 5.4. More uniformly 

for these moisture zones, there is a substantial increase of extents in thermal zone TZ 2. 

5.2 Changes of potential crop production and land productivity 

Assessing altered production conditions requires understanding of severa1 complex 

and intertwined factors determining overall land productivity. These include changes of 

attainable yield levels and production potential of individua] crops, changes in extents and 

quality of land with cultivation potential, and alterations of type and multi-cropping 

intensity of available crop combinations. This section first highlights impacts on 

production potentials of two important food staples, maize and wheat, and then discusses 

implications for land productivity as emerging from a wide range of simulation 

experiments. 

5.2.1 Potential crop production 

The impacts of climate change on potential rainfed production of important crops 

in Kenya (maize, sorghum, pearl millet, wheat, beans and cassava) is presented in Table 

5.5. Table 5.6 and 5.7 present the effects of climate changes on potential maize and wheat 

production by province. Figure 5.4 and 5.5 present maps of changes to maize and wheat 

potential productivity respectively, for four scenarios (T-Sensitivity T20, GSA 2030, 

GFTR-D2 and GFTR-D3) in comparison with potential production from reference 

conditions. Finally, Figures 5.6 and 5.7 (bar charts) present productivity changes for wheat 

and maize by provinces for four climate change scenarios. 

Maize, being by far the most important food crop in Kenya, shows for the 

aggregate national leve1 both decreases and increases depending on climate scenario, 

although positive impacts occur in the majority of GCM-based climate scenarios. Also, 

positive impacts appear to be more pronounced, i.e., larger in magnitude, than decreases. 

The situation of maize is complex as it occurs both in lowland and highland areas. Like 

maize, potential sorghum productioii is mostly increasing in response to GCM-based 

climate scenarios. There are, however, also some unambiguous crop responses to climate 



change to be observed. For instance, millet and cassava gain importance in al1 the analyzed 

climate scenarios, while wheat cultivation is likely to suffer strong negative impacts. 

Table 5.6 summarizes the spatial distribution of gains and losses in maize 

production potential. We observe strong positive impacts in Central and Eastern provinces, 

for al1 climate scenarios including the climate sensitivity experiments. This is a clear 

indication that the impacts in these regions mainly result from beneficial temperature 

increases in higher altitude areas. Less pronounced, though generally positive, are 

percentage changes in Rift Valley province. This province is fairly heterogeneous so that 

both large positive and large negative impacts occur in individua1 districts of the region, 

partly canceling out in the aggregate. Coast and Nyanza provinces are likely to be 

negatively impacted by climate change. The widely varying results for Coast province in 

Table 5.6, derived from transient GCM experiments, require some further explanation. 

Taking a closer look, in general, the impact of climate change on potential maize 

producti vity is negative. However, for Taita Taveta district maize grow ing conditions 

improve under the projected climate scenarios. Therefore, the exact strength and balance 

of these two antagonistic developments produce a wide range of estimates for the 

aggregate outcome in Coast province, even though individua1 district results change in a 

more consistent way. This again points to the fact that aggregate results of climate impact 

studies may be grossly misleading without being derived with careful interpretation. 

A very iilteresting combination of temperature and moisture impacts plays out in 

the climate scenarios for Western province. According to the sensitivity experiments, 

temperature increases appear to be fairl y beneficial. Moisture increases, however, as 

observed in most GCM based scenarios, are likely to cause conditions too wet for optimal 

maize cultivation so that overall effects on maize production may well be negative. 

Western province benefits from higher temperatures, as indicated by results of T- 

Sensitivity climate scenarios, but may be negatively affected by aggravated wetness under 

climate scenarios based on transient GCM experiments due to worsening of workability 

conditions as well as increased pests and diseases. 

The results of changes in potential wheat production offer a straightforward 

interpretation. Large negative impacts on potential wheat productivity mainly result from 

the projected temperature increases. With very few exceptions, such as in Central 



province, this devastating impact on wheat potential occurs in most regions to the tune of 

complete loss of wheat production potential in Nyanza and Western provinces. 

5.2.2 Land productivity 

Land productivity encompasses a broad set of issues which are open to multiple 

interpretations if not defined precisely. In this study we concentrate on the capability of 

land to produce crops for human food consumption. Thus, land productivity is measured 

here in terms of a weighted sum of food energy and protein available from crop production 

after subtraction of harvesting losses and conversion to products suitable for human 

consumption. 

In each of the approximately 145,000 grid-cells the best-performing (in terms of 

the defined food production objective) crop combinations are determined, thereby defining 

land productivity locally. The selection of 'optimal' cropping patterns has been repeated for 

al1 climate change scenarios. We. therefore, assume that farmers are 'smart' in the sense 

that they will adapt cropping activities optimally in response to climate change as possible 

with the set of available cropping options. Furthermore, to be able to separate climate 

impacts from results due to C02 fertilization and enhanced water-use efficiency, al1 GCM- 

based climate scenarios were simulated at both baseline and projected increased C 0 2  

concentration levels. 

Tables A4.1 and A4.2 in Appendix 4 present the impacts on potential land 

productivity and extents with cultivation potential, respectively, by province and district, 

for the various climate change scenarios. The results in Table A4.2, for baseline conditions 

(REF) and percentage changes according to different climate change scenarios, refer to a 

weighted sum of land with cultivation potential in four land productivity classes. The 

weights used are 1.0, 0.77, 0.55, and 0.33 for classes C1 to C4, respectively. The 

multipliers were chosen in accordance with the definition of productivity classes C1 to C4. 

Figure 5.8 presents small-scale maps of changes to potential land productivity for four 

scenarios. Figure 5.9 comprises of bar charts indicating changes of potential land 

productivity by province for four climate change scenarios. Complementing these results, 

Figure 5.10 presents bar charts of changes of extents of land with crop production potential 

by province for four climate change scenarios. The fu11 set of results is shown in Table 



A4.3 in Appendix 4 providing estimates of potential arable land in Kenya and in each 

province by land productivity classes for the various climate change scenarios. 

An overview of the changes to reference land productivity for Kenya and the 

individual provinces for al1 the climate change scenarios is contained in Table 5.8. At the 

aggregate national level, potential land productivity increases in all GCM-based climate 

scenarios. Note that this conclusion holds both with and without taking into account 

physiological effects of enhanced atmospheric C 0 2  concentrations. Only in temperature 

sensitivity experiments, when increasing temperature and holding precipitation levels at 

ambient levels, overall negative impacts result for temperature increases exceeding 2°C. 

Note that potential land productivity, as defined in this AEZ application, assumes efficient 

use of land resources, i.e., fu11 adaptation of cropping patterns to changing conditions. This 

may partly explain the overall positive response. Clearly positive impacts on land 

productivity potential can be observed for Central, Eastern and Rift Valley provinces. 

Other regions experience mixed outcomes. With the range of climate scenarios analyzed 

here, strong negative impacts may, however, result only for Coast and North-Eastern 

provinces. 

Changes in climate also affect the relative contribution of individual crops to 

potential land productivity, Le., with other words, the 'optimal' cropping pattern changes. 

Table 5.9 presen ts, by climate change scenario, the relative contribu tion of major crop 

groups to total potential land productivity. Cereal crops are shown in two classes 

corresponding to lowland and highland zones, respectively. The most drastic alteration 

occurs in the contribution of the highland cereals group which currently dominates 

potential food production. This group would become much less important in response to 

climate change, whereas lowland cereals, legumes and the other crops group could expand, 

with some variations depending on the moisture conditions in the different climate 

scenarios. 

Table 5.10 analyzes the impacts of climate change on potential land productivity in 

terms of the main contributing factors, namely changes of extents of land with cultivation 

potential, changes of crop yields, and changes of cropping intensities. Figure 5.1 1 (bar 

charts) summarizes our findings in graphical format, showing the relative contribution to 



land productivity changes of changes in the above main contributing factors, with and 

without consideration of impacts due to increases of atmospheric C 0 2  concentration. 

Given the wide range of landforn~ and climate conditions characterizing the 

baseline conditions of Kenya, it is not surprising to note that the response of land 

productivity to the analyzed climate change scenarios is rather complex. In al1 cases we 

observe an increase in average cropping intensity, i.e., the average number of crops that 

can be grown per year increases. In severa1 scenarios, although not in al1 cases, the 

estimated extents of land with crop cultivation potential increase as well. Average crop 

yields, however, generally decline in response to climate change. As noted earlier, the net 

effect at country level of combining these three factors is positive for al1 GCM-based 

climate change scenarios. The tables included in Appendix 4 are focused on providing 

province and district level results. We leave it to the reader to explore these results in 

detail. Evidently, there is a wide range of possible outcomes, both among provinces as 

well as between climate change scenarios. 



CHAPTER 6 

CONCLUSIONS 

Kenya comprises of a diversity of landscapes: desert-like areas stretching in the 

north and north-east of the country, wide savannas in the semi-arid regions providing 

habitats to numerous beasts and attractions for curious tourists, lively coast lands, and 

fertile highlands producing high-value cash-crops such as coffee and tea. From the hot and 

dry to the cool and wet, a very broad range of environmental conditions can be found in 

Kenya. This makes Kenya an interesting and fascinating yet complex subject of analysis 

regarding climate change impacts. 

Under such conditions. the revised and expanded agro-ecologica1 zones approach 

developed in this study appears most appropriate to capturing the diverse impacts that may 

affect the agricultural production potential in different ecologica1 conditions. The AEZ 

method is capable of quantifying both direct impacts in terms of single-crop yield changes 

and alterations of extents with cultivation potential as well as more subtle changes related 

to quality and length of growing conditions and resulting multi-cropping intensity . 

The conclusions extracted from the analysis of climate change impacts on Kenyan 

agricultural production potential are multifaceted: 

Overall, land productivity in Kenya is likely to be positively affected by global 

climate change. However, impacts of climate change are likely to vary much 

depending on location. 

Negative impacts at provincia1 leve1 occur in severa1 climate sensitivity tests and 

GCM-based climate scenarios, primarily in Coast province and North-eastern 

province. Main reasons for negative impacts are exceeding of optimal temperature 

ranges of crop photosynthesis, shortening of crop cycle and yield formation periods 

due to warming, and increased evapotranspiration requirements. In some instances, 

particularly in scenarios based on transient GCM results, negative impacts in 

western Kenya occur due to simulated pest and disease damage and worsening of 

workability conditions due to increased wetness. 



Irnpacts are usually positive for Centra1 province, Nairobi area, and Eastern 

province. The main reasons for simulated positive impacts can be attributed to 

temperature increases in midlhigh al ti tude zones, increased multi-cropping index, 

and gains from C 0 2  fertilization. 

Impacts are mixed (though often positive) for Rift Valley, Nyanza and Western 

provinces. Depending on location and scenario, negative impacts are observed 

(e.g., Laikipia, Narok, Kericho) as well as very positive ones (e.g., Nakuru, West 

Pokot, Elgeyol'arakwet). 

Despite of overall positive results, impacts of climate change on land productivity 

are likely to intensify regional disparities and thereby may increase the potential for 

social conflicts. 

The high-potential agricultural lands in centra1 and western Kenya will dominate 

the agricultural production potential even more under projected climate change 

conditions. Utmost protection and care in developing these limited and precious 

land resources should be given highest priority in agricultural policy formulation. 

The uncertainty associated with projections of climate change and assessments of 

impacts on agricultural potential calls for attentive preparedness, to readily take advantage 

of beneficial impacts of climate change and increased atmospheric C02,  to mitigate 

negative impacts of climate change where they cause loss of productive capacity, and to 

cope with the technological and social challenges of changing patterns of land 

productivity. In essence, however, this will require addressing many problems which 

concern farmers and decision makers already today. 
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Table 5.5 Impacts of climate change on potential production of major rainfed crops (% change) 



Table 5.6 Impacts of climate change on potential production of maize by province (% change) 



Table 5.7 Impacts of climate change on potential production of wheat by province (% change) 
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Table 5.9 Impacts of climate change on relative contribution of major crops to potential land 
productivity (% of total) 

Note: 
Cereals I: Lowland Maize. Lowland Sorghum, Pearl Millet, Wetland Rice. Dryland Rice 
Cereals 11: Highland Maize, Highland Sorghum, Wheat, Barley, Rye, Oat 
Legumes: Cowpea, Pigeonpea, Gram, Groundnut, Phaseolus Beans, Soybean 
Roots & Tubers: White potato, Sweet Potato, Cassava 
Rest: Banana, Sugarcane, Oilpalm, (Cotton, Coffee, Tea, Pineapple, Pyrethrum, Sisal), Grasses 



Table 5.10 Impacts of climate change on land productivity, arable land, yields, and cropping 
intensities (% change relative to reference conditions) 



FIGURES 



Figure 5 . 1  a Spatial distribution of thermal zones 
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Figure 5.1 b Spatial distribution of thermal zones 



Figure 5.2a Spatial distribution of growing period zones 
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Figure 5.2b Spatial distribution of growing period zones 



Figure 5.3a Spatial distribution of growing period pattern zones 
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Figure 5.3b Spatial distribution of growing period pattern zones 
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Figure 5.4 Changes of maize productivity for four climate change scenarios, relative 
to reference conditions 
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Figure 5 . 5  Changes of wheat productivity for four climate change scenarios, relative 
to reference conditions 
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Figure 5.6 Impacts on maize productivity by province for four climate change 
scenarios, relative to reference conditions (% change) 
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Figure 5.7 Impacts on wheat productivity by province for four climate change 
scenarios, relative to reference conditions (% change) 
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Figure 5.8 Changes of land productivity for four climate change scenarios, relative to 
reference conditions 

OSA 2030 

P I .  

I 



Figure 5.9 Impacts on land productivity by province for four climate change scenarios, 
relative to reference conditions (% change) 
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Figure 5.10 Impacts on extents of arable land by province for four climate change 
scenarios, relative to reference conditions (% change) 
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Figure 5.1 1 Impacts of climate change on land productivity in terms of relative 
contributions from changes of arable land, yield change, and changes in 
cropping intensity, for scenarios with and without physiological effects 
from increases of atmospheric C 0 2  (% change) 
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APPENDIX 1 

CALCULATION OF POTENTIAL NET BIOMASS AND POTENTIAL YIELD 

The AEZ methodology for the calculation of potential net biomass and yields is 

according to Kassam (1977). This model, based on eco-physiological principles, is 

outlined below: 

To calculate the net biomass production (B,) of a crop, an estimation of the gross 

biomass production (Bg) and respiration loss (R) is required: 

B, = Bg - R (1 )  

The equation relating the rate of net biomass production (b,) to the rate of gross 

biomass production (bg) and the respiration rate (r) is: 

b, = bg - r (2) 

The maximum rate of net biomass production (b,,) is reached when the crop fully 

covers the ground surface. The inflection point of the cumulative growth curve (b,,) is 

equal to the first derivative of the net growth occurring during the period of maximum 

growth. If the first derivative of growth is plotted against time the resulting curve shows a 

normal distribution. The model assumes that the seasonal average rate of net production 

(b,,) is half the maximum growth rate, i.e., 0.5 b,,. The net biomass production for a 

crop of N days (B,) is then: 

B, = 0.5 b,, x N 

The maximum rate of gross biomass production (bg,,) is dependent on the maximum 

rate of C02 exchange (P,) which is dependent on temperature and the photosynthesis 

pathway of the crop. 

For a crop in adaptability group I with P, = 20 kg ha-1 hr-I and a leaf area index of 

LA1 = 5,  rate of gross biomass production bg, is calculated from the equation: 

where: 

F = the fraction of the daytime the sky is clouded, F = (Ac - 0.5 Rg) / (0.8 A,), 
where Ac, (or PAR) is the maximum active incoming short-wave radiation on 



clear days (de Wit 1965), and Rg is incoming short-wave radiation (both in 
cal cm-2.day-1) 

b, = gross dry mater production rate of a standard crop for a given location and 
time of the year on a completely overcast day, (kg ha-I day-1) (de Wit 1965) 

bc = gross dry mater production rate of a standard crop for a given location and 
time of the year on a clear overcast day, (kg ha-l day-l) (de Wit 1965) 

When P, is greater than 20 kg ha-l.hr-l, bgm is given by the equation: 

When P, is less than 20 kg ha-l .hr-l, bgm is given by the equation: 

To calculate the maximum rate of net biomass production (b,,) from the maximum 

rate of gross biomass production (bg,) the rate of respiration is required. Here, growth 

respiration is considered a linear function of the rate of gross biomass production (McCree, 

1974), and maintenance respiration a linear function of net biomass that has already been 

accumulated (B,) When the rate of gross biomass production is bg,, the respiration rate 

(r,) is: 

where k and c are the proportionality constants for growth respiration and maintenance 

respiration respectively, and B, is the net biomass accumulated at the time of maximum 

rate of net biomass production. For both legume and non legume crops k equals 0.28. 

However c is temperature dependent and different for both groups of species. At 30 OC, 

factor c for a legume crop is 0.0283 and for a non-legume crop 0.0108. The temperature 

dependence of c for both species is included : 

It is assumed that the cumulative net biomass (B,) of the crop equals half the net 

biomass that would be accumulated at the end of the crop's growth cycle Therefore, we set 

B, = 0.5 Bn, and, B, for a crop of N days is determined according to: 

B, = 0.25 b,, x N (9)  

By combining the respiration equation with the equation for the rate of gross 

photosynthesis, the maximum rate of net biomass production (b,,) or the rate of dry 

matter production at fill cover for a crop of N days becomes: 



b,, = 0.72 bgJ( l  + 0.25 Ct N )  (10) 

Finally, the net biomass production (B,) for a crop of N days, where 0.5 b,, is the 

seasonal average rate of net biomass production, can be derived as: 

where: 

bRm = maximum rate of gross biomass production at leaf area index (LAI) of 5 
- 

L = maximum growth ratio, equal to the ratio of bg, at actual LA1 to bg, at 
LA1 of 5 

N = length of normal growth cycle 

Ct= maintenance respiration, dependent on both crop and temperature 
according to equation (8) 

Potential yield (Yp )  is calculated from net biomass (B,) from the equation: 

where: 

Hi= harvest index, i.e., proportion of the net biomass of the crop that is 
economically useful 

Thus, climate and crop characteristics that apply in the computation of net biomass and 

yield are: (a) heat and radiation regime over crop cycle, (b) crop adaptability group to 

determine applicable rate of photosynthesis P,, (c) length of growth cycle (from 

emergence to physiological maturity); (d) length of yield formation period;.(e) leaf area 

index at maximum growth rate, and (f) harvest index. 



APPENDIX 2 

CALCULATION OF REFERENCE EVAPOTRANSPIRATION 

In the Kenya-AEZ system, the calculation of reference evapotranspiration (ETo), i.e., 

the rate of evapotranspiration from a hypothetical crop with an assumed crop height of 12 

cm, a fixed canopy resistance of 70ms-1 and an albedo of 0.23 (closely resembling the 

evapotranspiration from an extensive surface of green grass), is done according to the 

Penman-Monteith equation (Monteith 1965, 198 1 ; FAO, 1992b). The calculation 

procedure uses a standardized set of input parameters, as follows: 

T max ... maximum daily temperature ("C) 
T min ... minimum daily temperature ("C) 
RH ... mean daily relative humidity (96) 
U2 ... wind speed measurement (ms-1) 
SD ... bright sunshine hours per day (hours) 
A ... elevation (m) 
L ... latitude (deg) 
J ... number of days in year 

The Penman-Monteith combination equation can be written in terms of an 

aerodynamic and a radiation term: 

where the aerodynamic term can be approximated by 

and the radiation term by 

where variables in (2) and (3) are as follows: 

7 ... psychrometric constant (kPa "c-1) 
?* .. modified psychrometric constant (kPa "C-1) 
8 ... slope vapor pressure curve (kPa "c-1) 
T(, ... average daily temperature ("C) 
eu ... saturation vapor pressure (kPa) 
ed ... vapor pressure at dew point (kPa) 
(ell - ed) vapor pressure deficit (kPa) 



U2 ... wind speed measurement (ms-1) 
Rn ... net radiation flux at surface (MJ m-2 d-1) 
G ... soil heat flux (MJ m-2 d-l) 
A ... latent heat of vaporization (MJ kg-1) 

In the calculation procedure for the reference crop we use the following relationships 

to define terms in (2): 

Average daily temperature: 

Latent heat of vaporization: 

Atmospheric pressure (kPa) at elevation A: 

Psychrometric constant: 

Aerodynamic resistance: 

Crop canopy resistance: 

re = 
RI 

0.5 LAI 

where under ambient CO2 concentrations the average daily stomata resistance of a single 

leaf, RI (sm-I), is set to RI = 100, and leaf area index of the reference crop is assumed as 

LAI=24.0.12=2.88. 

Modified psychrometric constant: 

Saturation vapor pressure ea for given temperatures T ",in and T max 



17.27 T max 
eo, = 0.6 108 exp 

237.3 + T max 

17.27 T min 
eon = 0.6 108 exp 

237.3 + T min 

Vapor pressure at dew point, ed 

\cox eon j 

Slope vapor pressure curve, 8, for given temperatures T max and T min : 

Using (4)-(9) all variables in (2) can be calculated from the input parameters of the 

ET,, computer subroutine. To determine the remaining variables R, and G used in the 

radiation term ET,,, of equation (3), we proceed with the following calculation steps: 

Latitude expressed in rad: 

Solar declination (rad): 

6 = 0.4093. sin 

Relative distance Earth to Sun: 

Sunset hour angle (rad): 

= arc cos (- tan cp tan 6) 



Extraterrestrial radiation (MJ m-2 d-l): 

R,I = 37.586 d ( ysin cpsin 6+cos cpcos Gsin y )  

Maximum daylight hours: 

Short-wave radiation R.$ (MJ m-2 d-1) 

For a reference crop with an assumed albedo coefficient ff = 0.23 net incoming short-wave 

radiation RIls (MJ m-2 d-l) is: 

Net outgoing long-wave radiation Rni (MJ m-2 d-I) is estimated using: 

Th = 273.16 + T m s x  (26) 

T k n  = 273.1 6 + T nlin (27) 

RIw= 4.903 . 1 o - ~  (0.34 - 0.1 39&) ( ~ b )  + ( K ~ )  
2 

(28) 

Using (25) and (28), net radiationflux at surface, Rll, becomes 

Finally, soil heatflux is approximated using 

where Tu. and Tu, - I are average monthly temperatures of current and previous month, 

respectively. With equations (9, (lo), (17), (29) and (30) all variables in (3) are defined 

and can be calculated from the input parameters described at the beginning of this 

Appendix. 



APPENDIX 3 

DETERMINATION OF GROWING PERIOD 

The methodology for the calculation of reference length of growing period used in the 

AEZ-Kenya system is based on a water balance model comparing moisture supply from 

rainfall and storage with potential evapotranspiration. The implementation is based on 

methods described in FAO, 1991, 1992a, 1992b, as follows: 

First the climatic (or weather) input parameters are prepared from the database of 

monthly climate averages: 

Average day-time tenzperature, T,I ("C): 

Tmnx-Tmin l l + h  . I l - h  
TJ = Tu + sin n- 

4 n  - 12-h ( l l + h )  

Average night-time temperature, Tn (OC) 

Tmax-Tmin I l + h  
T,, = Tu + 

4 n  h 

where 

h=12-0.5.DL 
Tmsx ... maximum daily temperature ("C) 
T min ... minimum daily temperature (OC) 

Relative hunzidity, RH(%), is either given (when using station data) or calculated 

according to a regression equation (when working with the gridded climate dataset): 

with 

R ... monthly rainfall (mm) 
A ... elevation (m) 
CD2 ... the smaller of distance to coast and 200 (km) 

Sunshine duration, S D  (hours), is either given (station data) or calculated according to 

a regression equation (gridded climate dataset) 

S D w /  = 0.8548. T msx - 0.8739. T min - 0.0926857. R 

- 0.00 16 132. A + 0.0 139573. U2 - 0.2952. RH + 79.9745 
(5) 



Reference evapotranspiration, ETo (mm), is calculated according to the combination 

method of Penman-Monteith, as described in Appendix 2: 

ETu = f (T ma., T min, R, U 2, RH, SD, A, L, J) (7 )  

For convenience, the monthly (or 10-day) average climate parameters are then 

converted to daily data by means of piece-wise linear functions ensuring consistency of 

daily levels with monthly means, resulting in daily values for Tmax, Tmin, Ta, Td, ETO, 

U2, RH, and SD. From these series a daily water balance, W, and actual 

evapotranspiration, ETa is calculated: 

Wj+1 = min(W,+ R -  ETU, Sa) (8) 

where 

i f ( W j + R ) . d > S a . d . ( l - p )  
else 

Sa ... field capacity (mmlm) 
d ... rooting depth (m) 
p ... soil water depletion fraction when ETa < ETO 
p ... actual evapotranspiration proportionality factor. 

The beginning of a growing period is reached when actual evapotranspiration, ETa, 

reaches half potential evapotranspiration (and temperature is above 5 "C), 

for at least LGPrnin days] A growing period ends on the day when first 

In this way all the growing periods are fully determined with starting and ending dates, 

length and ETa values. The procedure also records the dates and length of any humid 

The algorithm first keeps track of all periods with ETu > 0.5 ETo, then discards such multiple periods if length is less than 

LGP min = I0 days. 



phase, of each growing period defined as days where moisture supply exceeds potential 

evapotranspiration, i.e., with 

Wj + R > ETo 

Keeping exact records of moisture and temperature profiles then allows a more 

accurate calculation of potential biomass production as detailed in Appendix 1. 



APPENDIX 4 

SUB-NATIONAL RESULTS OF IMPACTS OF CLIMATE CHANGE ON CROP 
PRODUCTION POTENTIAL AND LAND PRODUCTIVITY 



Table A4.la Impacts on land potential productivity, by province and district for sensitivity climate 
change scenarios (% change) 

TI0 T20 T30 T40 T50 PO5 PI0  PM05 PM10 
330 330 330 330 330 330 330 330 330 

-3 -6 -9 -10 -4 12 25 -14 -29 
-18 -23 -19 -12 -13 5 20 -15 -29 
-1 0 -4 7 6 0 9 24 -8 -20 
33 86 119 115 92 - 1 -2 3 5 
-9 -19 -20 -12 -4 24 44 -16 -31 
5 20 32 33 27 10 20 -8 -17 

-26 -53 -67 -74 -81 17 35 -17 -36 

-29 -46 -56 -64 -71 23 45 -23 -38 
-21 -35 -42 -52 -61 12 28 -12 -22 

-3 -48 -67 -69 -72 9 19 -2 -26 

-15 -30 -41 -52 -59 23 43 -21 -39 
-1 2 -29 -40 -51 -62 12 40 -13 -26 
-23 -44 -55 -64 -71 19 39 -19 -35 

-2 -6 -9 -12 -13 4 9 -4 -7 
-14 -25 -37 -45 -54 22 39 -19 -38 
-4 -10 -16 -20 -25 3 7 -3 -6 
-3 -7 -13 -18 -23 4 8 -4 -7 

-15 -28 -38 -50 -60 21 38 -20 -42 
7 20 31 36 37 8 15 -6 -12 

-3 -6 -9 -12 -17 8 15 -7 -14 

9 6 -4 2 -11 8 14 -14 -31 

-25 -49 -60 -68 -76 16 33 -14 -31 
-15 -29 -45 -60 -71 35 89 -28 -60 
-2 1 -37 -51 -62 -70 45 100 -33 -56 
-2 1 -42 -54 -65 -73 28 63 -22 -45 

-3 -7 -8 -1 7 -23 5 9 -6 -15 
22 48 78 103 138 -25 -42 30 56 
20 20 11 6 0 -3 -6 0 -6 
23 5 -14 -25 -37 - 1 -6 -3 -18 
12 10 7 4 3 -3 -6 2 -3 

-9 -16 -22 -25 -29 8 20 -10 -18 
5 9 5 - 1 -7 7 15 -6 -18 

-1 1 -2 1 -31 -38 -47 28 59 -22 -40 
9 8 1 2 11 -6 -13 6 4 

-1 -12 -37 -53 -63 33 64 -23 -44 
16 34 37 27 18 3 7 -5 -8 
14 18 17 26 28 -4 -11 -1 -5 
-5 -10 -21 -35 -51 7 13 -9 -18 

-13 -21 -33 -46 -55 3 1 72 -23 -44 
2 18 34 40 4 1 5 3 -4 -5 

-25 -43 -57 -66 -75 58 134 -38 -55 
5 5 -5 -9 -1 1 2 -3 -6 
1 13 14 10 6 8 17 -10 -17 
1 2 -4 -9 -14 6 12 -7 -14 

17 42 56 66 68 -6 -12 7 11 
34 30 23 16 12 - 1 -2 1 -1 -6 
19 36 54 66 76 -7 -15 8 14 

22 37 48 55 59 -5 -15 6 9 

1 0 -4 -8 -12 6 11 -6 -14 

REF 
ppm 330 

4332 
1314 
4249 
7171 
5054 

22121 

28777 
25243 

6388 
1602 

13140 
61 78 

81 330 

1332 
2063 
9038 
6695 
3571 
6420 

29119 

249 

1283 
620 
634 

2537 

3631 6 
14968 
15305 
25609 
921 99 

27364 
10493 
8029 

42170 
201 66 
22331 
20139 
88300 
2465 

25340 
909 

23947 
34553 

326207 

16141 
11114 
24066 
51 321 

605081 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
71 2 
71 3 

801 
802 
803 

Kiambu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

Embu 
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakamega 
WESTERN 

KENYA TOTAL 



Table A4.lb Impacts on land potential productivity, by province and district for GCM equilibrium 
climate change scenarios (% change) 

GSA GSA GSA 
2010 2030 2050 
405 460 530 

20 -6 6 
5 -23 -9 

14 -7 25 
48 112 136 
20 -31 -17 
27 25 46 

-9 -9 -31 
-1 1 -29 
5 -20 -32 

-1 17 -4 
12 -1 -14 
0 -2 -22 

-1 -4 -26 

3 -4 -5 
-2 -8 -18 
3 3 4 
4 11 12 

-2 10 -2 
12 21 40 
4 9 11 

27 16 26 

-1 -13 -40 
21 53 43 
13 46 31 
8 18 -2 

1 -11 -3 
21 50 92 
16 -2 14 
31 -24 -23 
15 -3 10 

-6 2 6 
11 26 37 
0 5 9 
5 5 13 

28 -23 -34 
26 49 54 
13 18 30 
3 -24 -24 
5 -6 -7 
6 36 61 

-15 -38 -32 
5 26 22 
8 38 42 
7 7 11 

25 53 68 
35 24 25 
23 45 63 
26 43 56 

10 8 11 

GSA GSA GSA 
2010 2030 2050 
330 330 330 

16 -13 -7 
1 -26 -18 

10 -14 12 
46 103 117 
13 -38 -19 
23 18 33 

-12 -15 -38 
-5 -7 -38 
2 -24 -36 

-3 11 -24 
7 -9 -24 

-2 -6 -28 
-5 -1 1 -35 

2 -8 -11 
-5 -1 4 -27 
-3 -12 -17 
0 -8 -13 

-4 5 -9 
7 10 23 
0 -4 -7 

25 10 17 

-7 -1 9 -46 
17 39 24 
10 37 18 
3 9 -13 

0 -16 -9 
19 43 73 
14 -5 7 
27 -30 -30 
13 -8 1 

-7 -4 -6 
8 16 23 

-1 -1 -4 
2 1 6 

23 -31 -42 
24 41 41 
12 12 20 
-1 -31 -38 
3 -11 -13 
3 29 45 

-16 -42 -37 
4 22 12 
5 29 30 
4 0 0 

22 48 58 
35 19 17 
22 39 52 
25 38 46 

7 1 0 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
712 
71 3 

801 
802 
803 

Kiambu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

Embu 
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakamega 
WESTERN 

KENYA TOTAL 

GlSS GFDL UKMO 
2E 2E 2E 

330 330 330 

2 34 -4 
-5 36 23 
17 72 8 

118 107 90 
-18 71 -31 
37 74 24 

-37 -21 -63 
-35 -30 -41 
-37 -23 -51 
-11 9 -70 
-24 -16 1 
-28 4 -24 
-33 -21 -42 

-5 18 22 
-31 40 -13 
-15 -4 -10 
-12 2 20 
-31 -25 -4 
40 73 52 
-5 16 13 

20 41 43 

-55 2 -46 
-25 53 90 
-31 30 85 
-42 21 20 

-9 22 -24 
122 6 104 

-2 15 -25 
-37 29 -49 

5 20 -11 

-26 31 -18 
-3 47 6 
-5 37 15 
19 16 -8 

-54 82 -20 
29 72 19 
28 8 -1 
-7 20 -4 

-34 96 21 
43 23 27 

-52 187 176 
-9 9 -13 
16 41 28 
2 31 2 

73 32 57 
17 26 8 
82 22 75 
65 26 55 

4 23 0 

GlSS GFDL UKMO 
2E 2E 2E 

550 550 550 

15 60 9 
8 56 40 

31 86 19 
143 124 112 
-14 104 -22 
53 95 39 

-29 -10 -59 
-23 -16 -33 
-32 -17 -46 
10 21 -64 

-1 1 - 1 18 
-22 11 -20 
-23 -9 -35 

5 35 49 
-21 55 0 
17 29 10 
18 32 39 

-24 -16 8 
67 113 83 
20 45 34 

29 52 61 

-49 10 -42 
-12 72 113 
-23 47 117 
-33 34 36 

0 33 -16 
147 13 116 

5 25 -17 
-30 43 -41 
17 31 -2 

-18 41 -10 
12 66 20 
11 56 36 
31 23 6 

-46 111 -5 
47 89 30 
41 16 9 
13 32 10 

-26 123 31 
60 38 41 

-46 21 1 218 
-3 19 -9 
30 56 43 
17 44 14 

86 44 69 
26 33 15 
93 33 86 
76 36 65 

18 36 12 



Table A 4 . l ~  Impacts on land potential productivity, by province and district for GCM transient 
climate change scenarios (% change) 

MPTR GFTR UKTR 
D2 D2 D2 

460 460 460 

28 41 192 
6 25 11 

21 37 53 
40 31 17 
39 82 52 
32 45 66 

28 15 -54 
31 27 -21 
18 14 -39 
21 18 -5 
39 19 52 
27 23 -13 
30 20 -21 

5 10 44 
39 45 38 

8 4 24 
12 7 155 
46 51 -26 
23 8 89 
19 14 64 

25 27 23 

35 31 -42 
165 187 -47 
146 173 -32 
94 104 -41 

27 0 13 
-14 -27 -40 
12 -12 2 
35 -5 2 
20 -8 0 

22 31 46 
32 43 50 
57 14 296 

-20 -34 -17 
65 131 157 
40 27 29 
-3 -29 -24 
19 7 39 
79 125 220 
10 -10 -6 

113 167 1335 
13 -12 2 
30 29 37 
19 13 40 

13 -5 -18 
24 -1 -2 
8 -7 -15 

13 -5 -13 

21 11 23 

MPTR GFTR UKTR 
D3 D3 D3 

330 330 330 

20 -3 445 
20 -8 261 
37 0 397 
96 87 52 
7 -7 334 

45 25 272 

-49 -56 -48 
-32 -31 -8 
-26 -29 -40 
-39 -52 -1 1 
-7 8 235 

-12 - 1 6 
-32 -31 16 

8 -5 382 
5 20 172 

-5 -11 53 
2 -1 736 
3 -2 -13 

31 19 386 
7 2 299 

23 29 375 

-26 -10 -16 
82 98 81 
61 41 63 
22 29 27 

5 -5 26 
52 -1 -52 

6 -2 -5 
9 -5 -6 

14 -4 -1 

7 22 36 
26 33 42 
-1 16 1124 
-4 -14 -42 
70 49 230 
47 44 44 
6 -10 -28 
7 -4 47 

102 69 349 
15 1 -15 

400 96 1882 
-4 -8 -20 
31 37 41 
17 10 64 

45 8 -10 
27 -5 11 
43 9 -4 
41 5 -3 

12 2 61 

MPTR GFTR UKTR 
D3 D3 D3 

550 550 550 

40 14 491 
30 7 316 
53 11 445 

111 104 64 
34 11 376 
63 41 307 

-40 -51 -37 
-22 -19 11 
-20 -22 -36 
-30 -53 11 

9 23 299 
-6 7 12 

-22 -22 37 

23 6 422 
17 33 216 
17 8 84 
24 17 834 
14 9 -4 
54 39 450 
27 19 351 

36 24 493 

-17 -3 -3 
104 121 103 
85 62 85 
38 44 45 

15 3 36 
64 8 -49 
13 6 0 
21 3 6 
25 4 8 

14 29 42 
41 47 56 
10 26 1294 
6 -7 -41 

95 69 270 
59 55 56 
15 -4 -21 
15 9 60 

131 86 395 
29 13 -9 

436 117 2032 
0 -7 -23 

44 49 53 
28 21 79 

55 17 1 
35 4 22 
52 22 3 
49 16 6 

24 13 78 

MPTR GFTR UKTR 
D2 D2 D2 

330 330 330 

17 30 152 
-4 8 2 
16 27 36 
34 26 10 
26 63 35 
23 34 48 

20 7 -59 
22 19 -28 

6 5 -41 
15 6 -53 
28 9 38 
14 17 -16 
20 12 -29 

-2 4 33 
31 37 29 
-5 -5 9 
1 1 126 

41 45 -29 
9 -1 61 
8 7 45 

20 21 16 

23 24 -48 
145 166 -51 
132 155 -36 
80 92 -46 

22 -4 7 
-19 -31 -42 

9 -13 0 
28 -10 -2 
15 -11 -5 

17 27 43 
24 36 42 
47 8 272 

-24 -35 -19 
52 112 137 
36 23 23 
-7 -31 -26 
11 -2 30 
69 114 190 
4 -15 -10 

101 150 1273 
10 -11 1 
22 22 33 
13 7 34 

8 -8 -21 
22 -6 -6 

1 -12 -19 

8 , -10 -17 

14 5 16 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
712 
713 

801 
802 
803 

7 

Kiambu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

Embu 
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakamega 
WESTERN 

KENYA TOTAL 



Table A4.2a Impacts on extents with rainfed cultivation potential, by province and district for 
sensitivity climate change scenarios (% change) 

TI0  T20 T30 T40 T50 PO5 P I0  PM05 PM10 
330 330 330 330 330 330 330 330 330 

-10 -25 -27 -7 22 11 25 -10 -21 
-37 -58 -48 -27 -24 5 6 -14 -32 
-24 -21 8 19 20 7 15 -7 -16 
11 19 26 18 11 -10 -21 6 9 
-5 -21 -35 -24 -10 14 26 -14 -29 
-8 -14 -9 -1 8 5 10 -7 -15 

-20 -34 -42 -53 -66 3 8 -16 -25 
-7 -19 -32 -40 -52 14 30 -3 -15 

-24 -38 -37 -48 -57 14 29 -14 -22 
-1 -8 -15 -15 -1 4 0 0 -1 -3 
-8 -26 -33 -43 -46 28 46 -34 -51 

-20 -43 -45 -50 -59 22 48 -17 -24 
-14 -29 -37 -46 -56 14 27 -15 -26 

4 -1 -23 -29 -2 25 27 1 -12 
-26 -58 -25 2 -4 13 72 -45 -58 
18 20 -3 -21 -34 -17 -2 -22 -44 
26 23 -7 -28 -35 -4 1 0 -38 

-39 -74 -82 -86 -87 60 91 -54 -85 
5 22 51 70 72 17 36 -16 -26 

10 12 7 2 -3 3 19 -19 -39 

14 0 -18 27 9 5 14 -14 -41 

-40 -77 -84 -90 -97 13 16 -13 -38 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
-67 -100 -100 -100 -100 -100 33 -67 -100 
-4 1 -77 -84 -91 -97 10 16 -14 -40 

13 20 20 11 1 -1 -3 2 0 
11 38 59 7 1 84 -18 -25 30 45 
11 13 15 14 11 -7 -11 5 6 
8 9 2 0 -4 -2 -6 0 -2 

11 19 20 17 13 -5 -8 6 6 
-8 -13 -20 -26 -31 7 15 -10 -19 

0 -1 -5 -10 -13 3 7 -5 -13 
10 14 11 6 -3 40 66 -27 -44 
8 18 21 22 25 -7 -12 9 15 

-1 1 -25 -46 -65 -76 28 59 -22 -44 
4 6 8 6 3 1 5 -3 -5 
5 13 22 26 26 -7 -14 6 13 

-7 -13 -19 -32 -43 8 18 -7 -16 
-15 -27 -35 -52 -60 30 64 -20 -42 

6 11 13 14 13 -2 -7 3 5 
-29 -37 -49 -58 -85 63 132 -35 -48 
10 13 13 13 16 1 0 0 1 

1 3 -1 -4 -9 0 3 -3 -7 
-1 -2 -6 -12 -17 6 13 -5 -1 1 

15 29 32 28 24 -2 -3 4 7 
22 17 14 11 8 2 -2 2 2 
8 38 49 45 32 -1 -8 6 12 

13 31 36 33 24 - 1 -5 4 8 

-1 -2 -5 -11 -1 6 6 12 -6 -12 

REF 
330 

61 4 
166 
604 
728 
73 1 

2846 

2313 
2242 
1024 

87 
1447 
499 

761 1 

83 
53 

964 
327 
148 
698 

2274 

22 

125 
0 
3 

128 

2075 
629 
795 

1158 
4657 

2220 
848 
636 

1820 
1781 
1945 
957 

5138 
184 

1602 
142 

1614 
2506 

21 396 

954 
594 

1346 
2894 

41 827 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
712 
713 

801 
802 
803 

Kiarnbu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

E r n b ~  
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakarnega 
WESTERN 

KENYA TOTAL 



Table A4.2b Impacts on extents with rainfed cultivation potential, by province and district for equilibrium 
climate change scenarios (% change) 

GSA GSA GSA 
2010 2030 2050 
405 460 530 

7 -26 -9 
-1 -64 -27 
-13 -24 28 
12 14 12 
4 -40 -39 
3 -21 -5 

3 -1 1 -26 
7 -5 -13 
6 -25 -36 
-1 0 -5 
41 17 -3 
4 14 -21 
12 -4 -19 

2 -22 -40 
-47 -26 11 
6 7 -23 

-28 20 52 
17 -55 -72 
-5 4 41 
-3 2 4 

64 14 59 

-3 -34 -76 
n.a. n.a. n.a. 
-100 -100 -67 
-5 -36 -76 

19 10 14 
12 38 55 
11 11 12 
8 7 3 
14 13 16 
-2 -23 -20 
3 -10 -7 
36 42 66 
9 15 20 
6 -43 -58 
17 4 11 
8 3 19 
3 -16 -18 
-3 -33 -30 
7 3 8 

-15 -35 -32 
1 1  14 15 
4 -9 -3 
7 -8 -5 

16 32 39 
22 18 22 
14 52 70 
16 39 50 

8 -2 - 1 

GSA GSA GSA 
2010 2030 2050 
330 330 330 

5 -30 -15 
-1 -67 -44 
-13 -28 22 
14 15 11 
2 -36 -33 
2 -22 -7 

2 -12 -29 
7 -8 -1 1 
3 -27 -36 
-1 0 -7 
41 15 -3 
-2 8 -30 
1 1  -6 -20 

18 -5 -36 
-40 -28 19 
45 45 -9 
10 41 57 
14 -59 -76 
-2 10 38 
20 24 10 

64 0 36 

-17 -41 -82 
n.a. n.a. n.a. 
-67 0 -33 
-18 -39 -80 

19 8 10 
11 38 54 
10 11 11 
8 4 -1 
14 11 14 

-2 -25 -23 
2 -10 -9 
40 53 70 
9 16 20 
4 -42 -59 
15 1 5 
8 2 18 
1 -22 -29 
-3 -35 -33 
7 3 8 

-15 -36 -34 
10 14 14 
3 -10 -4 
6 -9 -9 

15 29 34 
22 15 18 
13 47 56 
16 34 41 

9 -2 -4 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
71 2 
713 

801 
802 
803 

. 

Kiambu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

Embu 
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakamega 
WESTERN 

KENYA TOTAL 

GlSS GFDL UKMO 
2E 2E 2E 
330 330 330 

-7 7 -10 
-7 57 66 
30 38 34 
16 16 26 
-32 12 -40 
0 20 5 

-29 -17 -36 
-12 -14 -4 
-38 -26 -48 
-5 0 -23 
-2 -10 54 
-37 19 -31 
-20 -14 -11 

4 99 148 
4 164 251 
33 102 127 
65 120 345 
-82 71 122 
69 98 42 
39 102 136 

59 68 145 
-82 -28 -92 
n.a. n.a. n.a. 
-100 -33 67 
-83 -28 -88 

17 17 12 
76 17 74 
11 10 1 
0 1 1  -8 
20 14 13 

-27 17 -14 
-12 19 -10 
71 91 140 
28 15 21 
-66 57 -34 
3 25 10 
26 -3 -6 
-19 18 15 
-42 96 -3 
14 6 8 
-44 166 177 
14 7 -5 
-4 14 5 
-6 22 7 

30 40 18 
8 13 2 
40 42 19 
30 35 15 

-1 20 12 

GlSS GFDL UKMO 
2E 2E 2E 
550 550 550 

-2 18 -5 
17 80 90 
37 47 51 
18 15 28 
-35 24 -42 
4 28 11  

-23 -13 -27 
-15 -18 10 
-35 -24 -42 
-1 0 -26 
-2 -8 88 
-28 21 -30 
-18 -13 3 

8 82 207 
-11 147 281 
29 40 4 
65 85 196 
-70 86 166 
76 103 43 
40 73 68 

68 68 155 

-74 -24 -89 
n.a. n.a. n.a. 
-67 33 467 
-74 -23 -76 

20 17 16 
74 17 74 
13 10 8 
1 12 -2 
21 14 18 

-24 20 -9 
-10 20 -4 
72 85 165 
29 16 25 
-64 69 -25 
9 29 12 
27 0 3 
-7 25 26 
-38 112 8 
13 8 10 
-38 192 222 
14 1 1  0 
-2 16 11 
-2 27 15 

38 49 27 
23 31 -1 
47 42 24 
39 42 20 

3 22 16 



Table A 4 . 2 ~  Impacts on extents with rainfed cultivation potential, by province and district for transient 
climate change scenarios (% change) 

MPTR GFTR UKTR 
D2 D2 D2 

460 460 460 

16 30 49 
-17 9 -20 
-16 3 11 
-26 -29 -36 
13 31 15 
-4 8 6 

-1 -3 -33 
15 18 -25 
19 20 -28 
0 0 -8 

53 66 14 
41 42 -32 
19 22 -21 

24 18 29 
53 25 66 
6 -39 0 

-7 -48 312 
101 118 65 
21 -21 102 
17 -21 83 

18 36 18 

15 -14 -76 
n.a. n.a. n.a. 
-67 0 -100 
13 -15 -77 

16 -2 0 
-4 -19 -13 
-4 -14 -13 
10 2 -3 
8 -5 -5 

4 8 17 
5 6 11 

69 53 235 
-24 -30 -20 
31 88 101 
10 4 8 

-15 -28 -30 
11 13 37 
31 82 220 
-3 -25 -25 

141 192 985 
8 -25 -16 
0 -6 3 
8 7 30 

31 22 -5 
37 62 52 
23 9 -9 
29 24 5 

11 8 16 

MPTR GFTR UKTR 
D2 D2 D2 

330 330 330 

9 25 43 
-23 4 -22 
-19 -2 5 
-23 -28 -30 

8 24 8 
-7 4 3 

-2 -5 -31 
11 16 -28 
9 13 -28 
0 0 -24 

52 65 12 
36 41 -31 
16 20 -21 

46 47 58 
81 42 109 
75 53 52 
28 -13 317 

114 122 66 
27 -8 97 
55 29 106 

18 41 18 

-6 -18 -85 
n.a. n.a. n.a. 
67 100 -100 
-4 -14 -85 

16 -3 -2 
-15 -26 -19 

-3 -16 -14 
9 -5 -7 
7 -9 -8 

3 7 16 
4 6 12 

61 52 221 
-23 -29 -18 
28 78 93 

8 4 7 
-15 -29 -28 

7 8 34 
25 79 201 
-4 -27 -28 

132 181 947 
8 -23 -15 
0 -7 2 
6 5 28 

29 21 -6 
32 60 49 
20 4 -10 
26 21 4 

11 8 15 

101 
102 
103 
104 
105 

201 
202 
203 
204 
205 
206 

301 
302 
303 
304 
305 
306 

501 
502 
503 

601 
602 
603 
604 

701 
702 
703 
704 
705 
706 
707 
708 
709 
71 0 
71 1 
71 2 
71 3 

801 
802 
803 

Kiambu 
Kirinyaga 
Muranga 
Nyandarua 
Nyeri 
CENTRAL 

Kilifi 
Kwale 
Lamu 
Mombasa 
Taita 
Tana River 
COAST 

Embu 
lsiolo 
Kitui 
Machakos 
Marsabit 
Meru 
EASTERN 

Nairobi Area 

Garissa 
Mandera 
Wajir 
NORTH-EAST. 

South Nyanza 
Kisii 
Kisumu 
Siaya 
NYANZA 

Baringo 
Elgeyo Mar. 
Kajiado 
Kericho 
Laikipia 
Nakuru 
Nandi 
Narok 
Samburu 
Trans-Nzoia 
Turkana 
Uasin Gishu 
West Pokot 
RIFT VALLEY 

Bungoma 
Busia 
Kakamega 
WESTERN 

KENYA TOTAL 

MPTR GFTR UKTR 
D3 D3 D3 

330 330 330 

6 -23 91 
43 -21 99 
34 -15 93 
26 -1 -30 

-12 -16 70 
14 -14 55 

-22 -32 -31 
-8 -3 -1 1 

-27 -34 -30 
-7 -28 -6 
37 70 89 

-12 -3 -5 
-7 -2 0 

58 20 530 
57 64 958 
65 116 28 
94 29 1065 
93 79 120 
23 19 230 
58 66 285 

82 45 177 

-50 -38 -64 
n.a. n.a. n.a. 
33 -100 67 

-48 -40 -62 

23 -2 0 
48 7 -14 
11 -6 -4 
3 5 -2 

19 0 -3 

11 -7 6 
16 -4 1 
89 69 862 
14 -7 -34 
55 17 127 
23 -3 0 

9 -13 -28 
15 7 42 

123 26 326 
9 -15 -28 

352 125 1518 
5 -23 -41 

13 -6 4 
22 0 51 

21 48 16 
21 40 48 
31 33 4 
26 39 17 

18 5 46 

MPTR GFTR UKTR 
D3 D3 D3 

550 550 550 

15 -10 101 
75 -2 110 
48 -15 113 
25 -1 -32 

1 -6 74 
25 -8 63 

-14 -29 -24 
3 9 -3 

-24 -31 -32 
-8 -20 - 1 
46 71 94 
-9 13 - 1 
2 4 5 

39 2 546 
55 38 1004 

-30 -1 71 
44 -4 1156 

118 98 145 
32 20 229 
14 13 319 

95 23 227 

-41 -35 -46 
n.a, n.a. n.a. 
167 133 133 
-36 -32 -41 

25 0 2 
48 9 -9 
14 -5 -4 
9 8 -2 

22 2 -2 

14 -3 7 
18 -2 3 
90 78 910 
17 -4 -33 
66 19 133 
28 - 1 4 
11 -12 -34 
20 15 46 

142 37 323 
11 -14 -27 

392 139 1606 
8 -27 -43 

15 -6 7 
27 4 55 

28 53 20 
31 53 49 
40 38 4 
34 46 19 

21 6 52 



Table A4.3 Estimates of land with rainfed crop production potential in Kenya and individual 
provinces for the various climate change scenarios 

KENYA 

Note: Results are presented in terms of four productivity classes, C1 to C4 referring to land where attainable 
yields reach 80-100 percent of maximum attainable yield (MAY), 60-80 percent, 40-60 percent and 20-40 
percent respectively. Crops producing yields of less than 20 percent of MAY are considered economically not 
viable and are not included in the estimates 



Table A4.3 Continued 

CENTRAL PROVINCE 

COAST PROVINCE 

Note: Results are presented in terms of four productivity classes, CI to C4 referring to land where attainable 
yields reach 80-100 percent of maximum attainable yield (MAY). 60-80 percent, 40-60 percent and 20-40 
percent respectively. Crops producing yields of less than 20 percent of MAY are considered economically not 
viable and are not included in the estimates 



Table A4.3 Continued 

EASTERN PROVINCE 

NORTH-EAST PROVINCE 

Note: Results are presented in terms of four productivity classes, C1 to C4 referring to land where attainable 
yields reach 80-100 percent of maximum attainable yield (MAY), 60-80 percent, 40-60 percent and 20-40 
percent respectively. Crops producing yields of less than 20 percent of MAY are considered economically not 
viable and are not included i n  the estimates 



Table A4.3 Continued 

NYANZA PROVINCE 

RIFT VALLEY PROVINCE 

Note: Results are presented in terms of four productivity classes, CI to C4 referring to land where attainable 
yields reach 80-100 percent of maximum attainable yield (MAY), 60-80 percent, 40-60 percent and 20-40 
percent respectively. Crops producing yields of less than 20 percent of MAY are considered economically not 
viable and are not included in the estimates 



Table A4.3 Continued 

WESTERN PROVINCE 

Note: Results are presented in terms of four productivity classes, CI to C4 referring to land where attainable 
yields reach 80-100 percent of maximum attainable yield (MAY), 60-80 percent, 40-60 percent and 20-40 
percent respectively. Crops producing yields of less than 20 percent of MAY are considered economically not 
viable and are not included in the estimates 




