
The Design of Optimal Insurance 
Decisions in the Presence of 
Catastrophic Risks

Ermolieva, T.Y.

IIASA Interim Report
October 1997

 



Ermolieva TY (1997) The Design of Optimal Insurance Decisions in the Presence of Catastrophic Risks. IIASA Interim 

Report. IR-97-068, IIASA, Laxenburg, Austria Copyright © 1997 by the author(s). http://pure.iiasa.ac.at/5227/

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at  

mailto:repository@iiasa.ac.at


International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Approved by

INTERIM REPORT

IIASA

IR-97-068/October

The Design of Optimal Insurance

Decisions in the Presence of

Catastrophic Risks

Tatiana Ermolieva (ermol@iiasa.ac.at)

Joanne Linnerooth-Bayer (bayer@iiasa.ac.at)

Co-Leader, Risk, Modeling and Policy



ii

Contents

1. Introduction.....................................................................................1
2. Classical Insurance Model, Insurability of Risk.............................3

2.1.   Risk Reserves...........................................................................................4
2.2.   Long Term Stability of Insurers.................................................................8
2.3.   Stochastic Optimization Procedure...........................................................10

3. Optimal Diversification .................................................................12
3.1.   Borch’s Model: Substitutable Risks...............................................................12
3.2.   Measuring the Capacity of an Insurance Market........................................15

4. Spatial Dynamic Model of Stochastic Optimization .....................17
4.1.   Flows and Stocks of Risk Reserves..........................................................18
4.2.   Simulation of Catastrophic Events...........................................................20
4.3.   General Description of the Model............................................................22
4.4.   Pareto Optimal Coverages.......................................................................24
4.5.   The Role of the Insurance Industry in Managing Catastrophic Risks ...........28

5. Adaptive Monte Carlo Method ......................................................29
5.1.   Hypotheses Testing, Response Surface Method............................................31
5.2.   Sample Mean Approximation ........................................................................32
5.3.   Stochastic Quasi-Gradient Methods ..............................................................32
5.4.   Adaptive Importance Sampling .....................................................................36

6. Numerical Experiments .................................................................38
7. Concluding Remarks......................................................................43
8. References......................................................................................45



iii

Abstract

This paper deals with the development of decision making tools for managing
catastrophic (low probability – high consequences) risks. Catastrophes produce rare and
highly correlated claims, which depend on various decision variables, i.e. coverages at
different locations, mitigation measures and reinsurance agreements. Joint probability
distributions of these claims depicting their complex spatial and temporal interactions
and effects of decision variables are analytically intractable. Spatial stochastic models
of catastrophes can bypass these difficulties. Catastrophic models combine the
simulation of realistic and geographically explicit catastrophic events with the
differentiation of property values and insurance coverages in different locations of the
region. Catastrophic models can be combined with stochastic optimization techniques
to aid decision making on the spatial diversification of contracts, insurance premiums,
reinsurance requirements, effects of mitigation measures, and the use of other financial
mechanisms. The aim of this paper is to extend a two-stage spatial catastrophic model
to dynamic cases reflecting dependencies of risk accumulation processes in time. This
extension is important since it can be used for the analysis of decisions under changing
frequencies of events and values of properties. It is also possible to incorporate
catastrophes caused by the clustering in time of such events as rains and droughts due to
persistence in climate. The model can be used by individual insurers, pools of insurers
or regulatory authorities.

Key words: Catastrophes, Insurance, Decisions under uncertainty, Risk, Stochastic
optimization, Adaptive Monte Carlo method.
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The Design of Optimal Insurance

Decisions in the Presence of

Catastrophic Risks

Tatiana Ermolieva

1. Introduction

The concentration of property values and population in certain regions

combined with the introduction of new technologies in different sectors of the

economy imposes risks to the public and environment. Possible climate changes [29]

may also increase the exposure of society to human-made and natural disasters [25].

Natural hazards alone cost in 1995 about $150 billion.

Hurricane Andrew in the U.S., for instance, is estimated to have caused $20

billion of insured loss, and is the most costly natural disaster in the history of the

insurance industry. Insurers such as State Farm and Allstate suffered losses from

Andrew of $3.5 and $2.5 billions respectively [18]. This summer also showed that

such events as rain clustered in time in the same region may produce high losses.

Human-made catastrophes [25] are also of great concern. The meltdown of the

atomic power plant in Chernobyl, the explosion of a chemical tank in Bhopal, and oil

spills from tanker crashes, as well as other technological catastrophes may have cost

even more then natural catastrophes.

Insurance is a mechanism for the financial protection against different kinds of

disasters. Insurers are currently concerned with the possibility of claims even higher

than already experienced [6]. Traditional insurance operates with well-defined cases.

For example, automobile and life insurance are types of insurance where decisions on
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premiums, estimates of insolvency and possible losses are calculated using rich data

bases collected over long periods.

The principal problem in insuring catastrophic risks is insufficient historical

data for predicting events at any particular location, although rich data may exist on

their occurrence and magnitude on an aggregated (say regional) level. Potential

damages in a particular location may be unlike anything that has been experienced in

the past. Catastrophes produce highly correlated damages and claims, which depend

on the region of occurrence, coverages at different locations, mitigation measures,

reinsurance agreements and so on.

The lack of data and the complex spatial and dynamic interdependencies make

it dangerous to use purely adaptive "trial-and-error" approaches. For this reason,

models can be useful for specifying the implicit dependencies and for predicting

possible damages and losses. Models can be used to study company solvency,

decisions on insurance premiums, reinsurance requirements, effects of mitigation

measures, and the diversification of contracts (see [12], [14]). The occurrence of

various catastrophic events in a region can be simulated on a computer in the same

way as it might happen in reality. For tracking dependencies between all possible

damages the model has to be geographically explicit, allowing for geographical

representation of catastrophic patterns in space and time, distribution of property

values and insurance contracts.

The aim of this paper is to further the development of spatial stochastic

catastrophic models. The dynamic version of a two-stage model (Ermolieva,

Ermoliev, Norkin [12]) is introduced together with stochastic optimization procedures

for improving the geographical diversification of insurance contracts, stabilizing the

insurance business, increasing insurance profits, and providing financial protection of

the population. In the general case, dependencies between possible claims have a

complex character defined by spatial patterns of events and feasible policy variables.

The spatial dynamic stochastic model tracks these dependencies with Monte-Carlo

simulations, and a stochastic optimization procedure sequentially adjusts the decision

variables without exact evaluation of all the risks associated with the infinite

combinations of feasible policy variables. Section 2 overviews the classical risk
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models, premium calculation and estimation of insolvency. Section 3 briefly discusses

Borch’s classical model for the optimal diversification of risks. The crucial limitation

of the model is the assumption on the substitutability of risks.  In Section 4, a dynamic

spatial stochastic model is proposed for the optimal diversification of dependent

nonsubstitutable risks. Section 5 describes the implemented adaptive Monte Carlo

methods based on stochastic optimization techniques. Numerical experiments in

Section 6 demonstrate how adaptive Monte Carlo methods may easily "learn" about

dependencies among damages and "propose" that insurers either reduce risks in some

locations or (and) take more catastrophic risks from other locations to stabilize their

business. Section 7 presents some concluding remarks related to the development and

use of the catastrophic model.

2. Classical Insurance Model, Insurability of Risk

Insurance, a mechanism for reducing financial risk and spreading financial

loss, is a major social institution that is essential to the functioning of many

industrialized economies. Historically, insurance dates back at least as far as the

Romans, whose burial clubs financed funeral expenses and made payments to families

of the deceased. In the United States, where one active company dates from before the

Revolutionary War, some 6000 insurance companies collect well in excess of $200

billion in annual premiums, employ more than 2 million people, and hold assets

valued at close to $800 billion.

Traditionally insurance companies deal only with what is called "pure risk",

which has to satisfy certain conditions [7]:

1) The risk must be predictable. That means there should exist sufficient data

to permit actuaries to predict the number and average size of insured losses for a given

period.

2) Each risk must be measurable.

3) The premium charged on the risk must be low enough to attract a sufficient

number of insured people, yet high enough to support the numbers of probable losses.

4)  The risk must be free of any potential catastrophe that could produce loss

in excess of the ability of the insurer to respond.
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5) Homogeneous units must be independently exposed to loss. That is, a loss

of one should not lead to a loss of another.

The existing insurance risk theory gives reliable results for dealing with such

risks. Though the theory is not perfect it deepens the intuition and helps to understand

insurance as a complex dynamic process [2].

2.1. Risk Reserves

 For each insurance company the main variable of concern is its risk reserve at

time t  or in other words the money which a company has at its disposal. In general

form, risk reserve is calculated as

                         0   ),()()( 0 >−+= ttStPRtR ,                                       (1.1)

where  P t( )  is aggregated premiums on [ , )0 t , S t( ) is aggregated claims, and 0R  is

the initial risk reserve. A trajectory of a risk reserve process is shown in Fig.1 (section

2.2). At time moments ,...,ii 21  ,  =τ  claims pushes it down, whereas premiums push

it up.

Aggregated claims S t( ) are also called in insurance risk theory the aggregated

claim size process. It depends on the number of claims and their sizes. Claim number

process is usually characterized by a probability ))((),( ktNprobtkp k ==  that the

number of claims )(tNk  up to time t is equal to k. A very often proposed model for

),( tkp  is the Poisson law

!

)(
),(

k

t
etkp

k
t ρρ−= ,

where ρ  is a parameter indicating the average number of claims in a time unit. Claim

size up to time t is

∑
=

=
)(

1

)(
tN

i
i

k

StS ,
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where )(tNk  is a random variable of claim numbers up to time t , and iS  is the claim

size at time i . If we assume that )()( 11 XSprobXF ≤=  is a distribution function

(d.f.) of a single claim size,  )()( XSprobXF kk ≤=  is a d.f. of the sum of exactly   k

mutually independent claims each of them distributed according to

)()( 11 XSprobXF ≤= . Then d.f. of the sum of k claims )(tSk   is

)()()()( 1

0

11 XFZdFZXFXF k
x

kk
∗

− =−= ∫ ,

which is called a k-th convolution of the d.f. )(1 XF . Therefore the distribution

function of the aggregated claim S t( )

∑=∑=
∞

=

∗∞

= 0
1

0
)(),()()(

k

k

k
kkt XFtkpXFpXF ,

where ),( tkp  is the probability of k claims up to time t. The distribution function

)(XFt  is called a compound distribution function. This simple formula shows the

difficulties of deriving tractable analytical formulas for the distribution, )(XFt , even

for simple cases with only one insurer. In more general cases, the distribution of claim

size, 1,2,...k  , =kS  depends on reinsurance policy variables and applicable mitigation

measures, leading to additional difficulties. In these cases the development of

computational approaches is crucially important for the practical applications of

mathematical models. One approach is concerned with analytical approximation of

complex probability distributions. The most important approach is based on the use of

Monte Carlo Methods [15].

The choice of distributions approximating claim sizes with possible

catastrophic volumes is approached in the following way. Large claims are rare

events, having a low probability of occurrence concentrated in the tails of

distributions. It is important not to underestimate these tails, but to consider them
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separately from the main part of the distribution. The distribution of the claim size

may be a composition of two or more weighted distribution functions, each taken for a

particular interval. For example, a distribution function )(1 XG  may represent volumes

of claims below or equal to some predefined level 0Z , and )(2 XG  is a distribution

function of catastrophic claims with claim size exceeding 0Z . Distribution )(2 XG  is

often approximated by the Pareto law

0  ,  ,)/(1)()(Pr 002 >≥−==≤ αα ZXXZXGXSob ,

 where 0Z  is the smallest claim considered as catastrophic. If the risk index α  is less

then 2, the distribution can be characterized as heavy tailed. The Pareto distribution

has the following property that is convenient in modeling large claims

0
0

0
0    ,

)(Pr

)(Pr
)|(Pr ZX

X

Z

ZSob

XSob
ZSXSob >





=

≥
≥=≥≥

α

.

The two parametric Pareto distribution function

0
0

0     ,11)(Pr ZX
Z

ZX
bXSob ≥

















 −
+−=<

−αβ

,

where α  and β  are positive parameters, 0Z  is the limit for the tail for which the

formula is fitted, b  indicates the weight of probability mass concentrated in the tail

area 0ZS ≥ , that is )(Pr1 0ZSobb <−= . Often )(2 XG  is also represented by

Weibull distribution

[ ]{ }baZSXSob  /)(exp1)(Pr 0−−−=< ,

where a , b  are distribution parameters.
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Another existing approach to model catastrophic claim size is to use extreme

value distributions connected with the modeling of maximum-magnitude events ([4]),

i.e. when a catastrophe is considered as one rare event with a high consequence.

Catastrophes produce dependent damages at different locations. If the insurer

has coverages in these locations, then the distribution of aggregated claims depends on

existing coverages of insurer and the geographical pattern of catastrophic events. The

use of joint distributions may be rather cumbersome for this task since the

catastrophes may have rather complicated patterns. To bypass these difficulties it is

possible to use claim-generating stochastic processes (1.1) instead of the probability

distribution )(XF , which leads to Monte Carlo methods.

The aggregated premiumP t( ) significantly influences the whole insurance

business and should strictly reflect the distribution of claim size. It is clear that the

distribution of damaged values without insurance should not be better (in a sense) than

the distribution of damaged values plus the difference between coverage by insurance

damages and paid premiums. The meaning "better distribution" is discussed in

sections 4, 5. In general we can say that the volume of premium depends on the

distribution )(XF  of accumulated claims. If )(XF  is a distribution function of

accumulated claims from a single risk, then ))(( ⋅FP  is called a premium; if )(XF  is a

d.f. of collective risks, then ))(( ⋅FP is called a collective premium.

Actuaries use known basic principles for the calculation of premiums [7], [23].

According to the equivalence principle premiums are usually calculated relying on the

mean value of aggregated claims increased by the so-called safety loading. For the

expected value principle

LFP Ε+=⋅ )1())(( λ ,

where 0>λ  is the safety loading, reflecting possible fluctuations of the risk process

and uncertainties in the loss distribution. In practice expected value ΕL  of losses L

according to the law of large numbers is substituted by observable average loss

∑=
−

=

N

k
kN L

N
L

1

1
.
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For the standard deviation principle

)())(( XLFP ασ+Ε=⋅ ,

where 0>α . The variance principle  requires

)())(( 2 XLFP βσ+Ε=⋅ ,

where )))((()( 22 XEXEX −=σ , and 0>β .

The expected value principle is almost always used in life insurance, and in

contrast, it is only seldom used in property and casualty insurance. The standard

deviation principle is probably the most frequently used approach in property and

casualty insurance. The variance principle is not so popular as the standard deviation

principle. In the case of heavy tailed distributions, premiums may be calculated not

only on the bases of the first moments, but also higher moments of distribution F

may be required.

The choice of λβα  , ,  depends individually on each type of risk and each

particular company. The levels of λβα  , ,  and, therefore, the levels of premiums in the

case of large losses should ensure the desired probability of survival for each insurer

[2], [7]. In the case of catastrophic losses it becomes extremely difficult to make

decisions on premiums. They often may not suffice to cover losses of insurers, and the

need for reinsurance and other financial mechanisms and regulations becomes

obvious.

 2.2. Long Term Stability of Insurers

The long term stability of the insurer depends on the type of coverages, the

distribution of claims, the volumes of premiums, reinsurance contracts, and the

mitigation measures. It is defined by the risk reserve R t( ) , a complex jumping



9

stochastic process. A random trajectory of this process is shown in Fig.1 for

0  ,)( >= ccttP .

R(t)

τ

0
ctR

τ
2

τ
3

τ
4

τ
5

t
1

Figure1. A sample trajectory

As we can see the timing of claims and their sizes cause the ruin at 5τ . The

long-term stability of R t( )  can be characterized by the probability of ruin

(insolvency)

                          }0 somefor   0)(Pr{),( 0 >≤= ttRcRq .                          (2.1)

An important problem of an optimal insurance policy is the choice of premium

c  and initial risk reserve 0R  which guarantee a given level of insolvency

( levelgivencRq  ),( 0 ≤ ) and maximize profit within the feasible demand for insurance.

In Sections 4, 5 we discuss the general problems on the optimal choice of contracts by

carefully selected coverages from different geographical locations. Let us outline here

the general methodological challenges.

An analytical formula for q  is available only in the simple cases, for simple

distributions of claim processes and claim sizes (see [2], [7]). The Monte Carlo

methods were developed for the study of complex, stochastic processes where

analytical approaches fail. It is important that these methods avoid the use of integro-
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differential equations governing the change of the probability distribution of the

stochastic processes.

The direct computer simulation of accumulated risk reserve processes )(tR

can easily be done for any given decision variables such as λ,r  and for a large

enough interval [ , ]0 T . An example of a possible random trajectory is shown in Fig.1.

The straightforward estimation of q  can be based on the identity:

                                        )),((),( τλ REIrq =                                           (2.2)

where 0  if  ,0)( ;0  if  ,1)( >=≤= yyIyyI , and τ  is the random stopping time

},0)(:inf{ TttRt ≤≤=τ .  The function ))(( τRI  indicates ruin, i.e. it is equal to 1 in

the case of ruin and 0 otherwise. Unfortunately, the consistent estimation of q r( , )λ

may be time consuming, especially when low probability/high consequence events

play an essential role.

The first problem is to develop fast Monte Carlo estimation procedure using

importance sampling and possible analytical transformation of the model [24]. The

second problem is the search for decision variables, λ,r , which guarantee a desirable

performance, for example, a given level of ruin probability with minimal λ  and fixed

r . Large λ -s increase premiums and decrease the demand for coverages. The

minimization of λ  in this case implicitly takes this into account and avoids more

complicated models. The straightforward application of the Monte Carlo method for

each combination of desirable policy variables is impossible, since the number of such

combinations is equal to infinity. Let us now demonstrate the advantages of adaptive

Monte Carlo methods and fast estimation procedures.

2.3. Stochastic Optimization Procedure

Let us distinguish between two parts of the risk portfolio: “normal”, associated

with ordinary, independent claims, and “catastrophic”, associated with catastrophic

risks. Consider a discrete time interval, 1,...,1,0 −= Tt , and assume that at time 0≥t
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the “normal” part is characterized by a random variable, tM , accumulated premiums

from catastrophic risks are xt , where x  is a desirable policy variable. If the

probability of a catastrophic event at t  is ppp ≤≤ , then the probability of ruin is

defined as the expectation

)0()1()(
1

1 <−+−= ∑
=

−
tt

T

t

t SxtMIppExq ,

where tS  is the catastrophic claim generated at time t . Assume that the probability

distribution ]Pr[)( zMzV tt <=  can be evaluated. Then it is possible to reduce the

variance of this estimator by taking the conditional expectation with respect to tM :

                                 ∑
=

− −−=
T

t
tt

t xtSVppExq
1

1 )()1()( .                         (2.3)

This simple formula provides faster estimates of )(xq  than formula (2.2).

Assume that the goal is to choose an x  that guarantees a given level of stability:

0  ,)( >= γγxq ,

which also can be achieved by maximizing the function

∫ −=
x

xdqxF
0

)()( γαα .

The stochastic optimization procedure starts with a given initial combination of

policy variables. In this case it is only the value of premium 0x . Let us denote kx  as

the value of the premium after k  simulations.  Step 1+k : choose kt  with probability
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T/1  from the set },...,2,1{ T , generate ],[ pppk ∈  and the claim k
tk

S . Adjust the

current value kx  according to the feedback:







 −−−

+
+= −+ ])()1([

1
,0max 11 γρ kkk

tt
tkk txSVpTp

k
xx

kk

k ,

where ρ  is a positive constant. The value kx  converges to the desired value of

premium such that γ=)(xq .  This follows from the fact that the term

)()1( 1 kkk
tt

t txSVpTp
kk

k −− −  is an estimate of )(xq  given by (2.3). We develop this

type of approach for the general problem with many insurers and complex dependent

claim processes in sections 4, 5.

3. Optimal Diversification

The surplus of the insurance industry is potentially enough to pay for losses

from catastrophic events. However (see Cummins, Doherty [6]) in practice the

available capacity of reinsurers is very limited and, depending on the spread of

coverages, many insurers could become insolvent in the case of large catastrophes.

Cummins and Doherty analyzed the capacity of the insurance industry to respond to

catastrophic events assuming that the industry acts as a single firm. This analyses

critically rests on the results of Borch [3] for optimal arrangements of a reinsurance

market, which are valid only for substitutable risks. The analysis is, therefore, not

applicable to the general problems of sections 4, 5.

3.1. Borch’s Model: Substitutable Risks

The model deals with optimal redistribution of risks which companies have

accepted by their direct underwriting. In the initial situation company ),...,2,1 (  nii =

is committed to pay ix , the total amount of claims which occur in its own portfolio.

The company also has the initial reserve of 0
iR , which is available to pay the

commitment. Thus the initial risk situation of company, i , is characterized by the
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random variable, ii xR −0 . Reinsurance contracts redistribute the initial commitments,

ix , and change the probability distribution of the risk reserves. The new commitments

of companies can be characterized by a set of nonnegative functions

nixxxy ni ,...2,1  ),,...,,( 21 = , where ),...,,( 21 ni xxxy  is the amount company i  has to

pay if claims in the respective portfolios amounts to nxxx ,...,, 21 . It is assumed that

companies act as a single company and all risks (claims) are substitutable, i.e. new

commitments are constrained only by the aggregated claim ∑
=

n

i
ix

1

:

                         ∑∑
==

=
n

i
in

n

i
i xxxxy

1
21

1

),...,,(                                          (3.1)

and new risks of companies are characterized by )(0 xyR ii −  with the same 0
iR .

Thus, reinsurance contracts )(xyi  change the initial risk reserve of company i

from the random variable ii xR −0  to )(0 xyR ii − . What is the optimal redistribution of

)(xy ?  How can we compare random outcomes (variables)? In the general case

random outcomes are characterized by probability distributions and other indicators

such as average costs, profits, moments of (probability, cost, profit) distributions. An

ordering among random variables can be achieved in a variety of ways depending on

the problem at hand.

Assume that company i  attaches an expected utility

               ))(()())(()( 00 xyRuExdHxyRuyU iiix

R

iiii
n

−=−= ∫
+

           (3.2)

to the risk situation )(0 xyR ii − , where )(⋅iu  is continuous function with decreasing

positive derivatives, )(xH  is the joint distribution of  ),...,,( 21 nxxxx = , and nR+

stands for the positive orthant in the n-dimensional Euclidean space. A Pareto optimal

set of redistributions )(xyi , ni ,...,2,1=  is achieved when there is no other set of
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contracts )(xy i  such that niyuyu iiii ,...,1  ),()( =≤ , with at least one strict

inequality.

Borch proved that for any Pareto optimal set of redistributions { })(xyi  the

amount )(xyi  which company i  has to pay will depend only on the total amount of

claims ∑
=

n

i
ix

1

 made against the insurance industry and functions; )(xyi , ni ,...,2,1=

satisfy the relations

                      ))(())(( 1
0
11

0 xyRukxyRu iiii −′=−′                                 (3.3)

where nkkk ,...,, 21  are positive arbitrary constants.

A rigorous statement of this proof is lengthy and rather tedious. The elementary proof

is derived from the following construction, which is used further. Any Pareto optimal

vector ))(),...,(()( 1 xyxyxy n=  is achieved by maximizing

∑
=

−
n

i
iiixi xyRuEv

1

0 ))((

with positive weights iv . Since )(xyi  is an arbitrary function of x , then

, :))((max

:))((max

1 11

0

1 11

0















 =−=

=






 =−

∑ ∑∑

∑ ∑∑

= ==

= ==

n

i

n

i
ii

n

i
iiiix

n

i

n

i
ii

n

i
iiixi

xyxyRuvE

xyxyRuEv

i.e. for each given ),...,,( 21 nxxxx =  a Pareto optimal redistribution )(xy  is an optimal

solution of the simple problem:

maximize ∑
=

−
n

i
iiii xyRUv

1

0 ))(( ,  subject to ∑∑
==

=
n

i
in

n

i
i xxxxy

1
21

1

),...,,( .
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Hence, a Pareto optimal solution )(xyi depends only on the ∑
=

n

i
ix

1

 and there exists a

constant λ  such that

λ=−′ ))(( 0 xyRuv iiii , ni ,...,2,1= ,

or

))(())(( 1
0
111

0 xyRuvxyRuv iiii −′=−′

for ni ,...,2,1= , which is equivalent (3.3) for ii vvk /1= , ni ,...,2,1= .

3.2. Measuring the Capacity of an Insurance Market

Cummins and Doherty [6] use Borch’s results for measuring the capacity of an

insurance market. Consider an insurance market with insurers ni ,...,2,1= . The risk

reserve of a company i  can be represented in a simple two-stage model as

{ }iiii xPRR −+= 0,0 max , where ix  is a total amount of claims, iP  is the premium

income from ix  and 0
iR  is the initial reserve or the fund. The industry's surplus after a

catastrophe ix  is defined as

{ }∑ ∑
= =

−+=
n

i

n

i
iiii xPRR

1 1

0,0 max .

The problem is to maximize the average industry surplus

                         { }∑
=

−+=
n

i
iii xyPRExF

1

0 )(,0 max)(                        (3.4)

subject to constraints

∑∑
==

=
n

i
in

n

i
i xxxxy

1
21

1

),...,,( .
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Let us note that (3.4) can be written in the form of (3.2) with a convex utility function

{ }iiii yPRyu −+= 0,0 max)( . Assuming that Borch’s results are valid and using the

assumption that ix  has a normal distribution, Cummins and Doherty analyze the case

when the optimal )(xyi  is necessarily proportional to the aggregated industry losses

∑
=

n

i
ix

1

.

These results crucially depend on the assumption (3.1), that different claims

associated with different companies are not distinguishable. It is assumed that

companies behave as a single company, i.e. claims ix  of all companies are mixed up

in one aggregated claim ∑
=

n

i
ix

1

. A key assumption of Borch’s model is also that the

aggregated claim ∑
=

n

i
ix

1

is redistributed between companies without redistributing the

initial fund 0
iR . Thus a company dealing with risky contracts and receiving high

premiums may have less risky new commitments with the same high incomes. The

following example illustrates the limitations of these assumptions in the case of more

realistic problems.

Assume that catastrophes may occur independently in locations 2,1=l  with

probabilities 21, pp . In the initial state company 1 covers 41 =x  units of property

from the location 1; company 2 covers 22 =x  units of property from location 2.

Premiums 2/11 =π , 3/12 =π  per unit of coverage; 40
1 =R , 40

2 =R . Assume also

that the catastrophes entirely damage the property at the locations. In this case the

aggregated claim

 

).1)(p-(1prob.h        wit          0

,prob.  with 6

),1(prob.ith          w2

),1(prob.ith          w4
2

1

21

2121

122

211

∑










−=
==+

−==
−==

=

p

ppxx

ppx

ppx

xi

If catastrophes occur in both locations then the industry’s surplus is

)()( 222
0
2111

0
1 xxRxxR −++−+ ππ ,
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and the aggregated claim 621 =+ xx . Since 21 ππ > , the optimal redistribution

),( 21 yyy = , 621 =+ yy , 01 ≥y , 02 ≥y  is achieved according to (3.3) for 61 =y

and 02 =y . This conclusion is not correct, since there is only 4 units of risk with

premium 1π . Thus claims 1x , 2x  cannot be aggregated, i.e. a constraint on the

aggregated claim 621 =+ yy  must be substituted by two constraints on available

amount of claims from each location:

2  ,4 22122111 =+=+ yyyy ,

where ijy  is the coverage of company i  in location j . In the next section we propose

this type of model to deal with the more general case.

4.  Spatial Dynamic Model of Stochastic Optimization

The models of sections 2, 3 have a rather simplified illustrative character. In

reality damages and claims depend on geographical patterns of catastrophes, clustering

of property values in the region, available mitigation measures and regulations, and

the spread of insurance coverages among different locations.  Catastrophes produce

highly correlated claims from different locations affected by the same event. For all

these reasons, the model should be geographically explicit (see [12]) for the

description of property values and insurance contracts in different parts of the region,

and for explicit modeling of catastrophes.

Although still limited in its use, catastrophic modeling (see [14]) is becoming

increasingly important to insurance companies for making decisions on the allocation

and values of contracts, premiums, reinsurance arrangements, and effects of mitigation

measures. For any given combination of an insurer’s decision variables it is possible to

simulate different patterns of catastrophes in a region as they may happen in reality

and analyze their impacts on the stability of the companies or the industry. Such

models compensate for the lack of historical data on the occurrence of catastrophes in

locations where the effects of catastrophes may have never been experienced in the

past. Different catastrophic scenarios lead to (in general) different "optimal" decision
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strategies. The important question is how we can find a decision strategy, which is the

"best" against all possible catastrophes. In paper [12] it was shown that the search of

"robust" optimal decisions can be done by incorporating stochastic optimization

techniques into catastrophic modeling. By using this approach it is possible to take

into account complex interdependencies between damages at different locations,

available decisions and resulting losses and claims. In this section the spatial two-stage

model [12] is extended to dynamic cases.

 4.1.  Flows and Stocks of Risk Reserves

Similar to [12] the study region is subdivided into subregions (compartments)

or locations mj ,...,2,1= . Locations may correspond to a collection of households, a

zone with similar seismic activity, to a watershed, etc. They may also be identified

with the collection of grid cells for meaningful representation of the simulated patterns

of events in space and time. We assume that for each location j  there exists an

estimation jW  of the property value or "wealth" of this location, that includes values

of houses, lands, factories, etc.

Suppose that n  insurance companies ni ,...,1=  have contracts in all locations

and partially cover their losses. Each company i  has initial funds or a risk reserve 0iR ,

which in general is characterized by a random variable dependent on catastrophic

events. Assume that time span consists of 1...,1,0 −= Tt  time intervals. In general the

risk reserve t
iR  of the company i  is calculated according to the following formula for

1,...,1,0 −= Tt :

            [ ] ∑∑
∈=

+ −−++=
)(1

1 )()()(
ttj

t
ijt

t
j

m

j

tt
ij

tt
ij

t
i

t
i

t
i qLqcqMRR

ωε
ωπ ,             (4.1)

where ni ,...,2,1= , t
iM  is the "normal" part of risk reserves (see section 2.3), 0

iR , 0
iM

are initial risk reserves,  { }mjniqq t
ij

t ,1,,1  , === , t
ijq  is the coverage of a company
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i  in location j  at time t , )( tt
ij qπ  is the premium from contracts characterized by

coverages { }tijq . Full coverages of losses correspond to 1=t
ijq . Assume that )( tt

ij qc  is

the transaction cost due to administrative or other expenses, )( t
t
jL ω  is the loss

(damage) at j  caused by the simulated catastrophic event tω  at time t . The index t

in t
ijπ , t

ijc , t
jL  reflects in particular discount rates. Random events ),...,( 10 −= Tωωω

may have random directions of propagation through the region, and they affect a

random number of locations nj ,...,2,1= . In general, a catastrophic event at time t is

modeled by a random subset )(ωε t  of locations j  and its strength in each j . The

value )( t
t
jL ω  depends on the event tω , mitigation measures, and type of properties in

j . The losses of each location may be covered partially by all companies, i.e.

variables t
ijq  satisfy constraints:

0  ,1
1

≥≤∑
=

t
ij

n

i

t
ij qq ,

where mj ,...2,1= , 1,...,1,0 −= Tt .

Variables t
ijq  allow us to characterize differences in risks from different

locations. It is assumed that all companies operate in the direct market with locations

and may cover different fractions of catastrophic losses from the same location. The

dependence of functions )( tt
ij qπ , )( tt

ij qc  on i  and tq  implicitly incorporate a

possibility for some companies (reinsurers) to transact with the insured parties only

through other companies (insurers) with additional administrative costs, premiums,

etc. Thus )( tt
ij qπ , )( tt

ij qc  reflect in a sense the best possibilities for i  to transact with

j . Variables t
ijq  interconnect processes tiR , ni ,...,2,1=  with each other. Inflows of

premiums push their trajectories up, whereas claims and transactions costs push them

down.
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The analytical structure of the probability distribution of the random vector

),...,( 1
t
n

tt RRR =  is intractable, although, it is possible in special cases to partially

evaluate its analytical parts. This information is used in the design of an adaptive

Monte Carlo procedure similar to that described in Subsection 2.3.

4.2. Simulation of Catastrophic Events

There are two possibilities to analyze dependent risk processes

),...,( 1
t
n

tt RRR = : either through analytical evaluation of their probability distributions

or directly through underlying stochastic processes, in particular by the Monte Carlo

method.

An essential issue for designing a fast adaptive Monte Carlo procedure is the

existence of a submodel for catastrophic events enabling fast simulation of losses for

any given combination of decision variables. As pointed out by Hammersley and

Handscomb [15] and Pugh [24], all Monte Carlo computations may be regarded as

estimating the value of an integral

                                           ∫ µfd ,                                                            (4.2)

where µ  is a measure on a Euclidean space and f  is some measurable (sample

performance) function. The measure µ  is often not known explicitly but only in terms

of other explicitly known measures. The function (2.3) is an example of such an

integral, where f  and the implicitly given measure µ  depend (in contrast to the

standard Monte Carlo method) on decision variables which must be sequentially

adjusted by sampling trajectories of tR  for different combinations of decision

variables.

In the case of general processes tR  stochastic spatial patterns of catastrophic

event are simulated as a path dependent random field, with different probabilities of

moving to adjacent locations. Spatial random trajectories of wind storms are modeled

by random lines or as an asymmetric random walk, characterized by a random length,

random strength, and random decay at each step. After each simulation of an event,

we calculate damages in each location, thus after a sufficient number of simulations
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we are able (if needed) to obtain a histogram of damages for each location. The

histograms of claims depend on decisions and can also be computed for any given

combination of decision variables.

Initial property values of different parts of a region can be represented as a

"landscape" on Fig. 2.
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Figure 2. A ’landscape’ of initial properties
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Figure 3. A landscape of damaged property values
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A simulated pattern of an event causes damages and may modify the

’landscape’ in the way seen on Fig.3.

4.3.  General Description of the Model

Without insurance a location j  faces losses (damages) t
jL . Individuals from

this location receive compensation t
ij

t
j qL  from company j  when such a loss occurs. If

0
jW  is the initial wealth (property value), then locations j  initial wealth at time 1+t

is

                               ∑
=

+ −−+=
n

i

t
j

tt
ij

t
ij

t
j

t
j

t
j LqqLWW

1

1 ))(( π .                      (4.3)

Individuals maximize their wealth, which depend on

∑ ∑ ∑
−

= = =





 −=

1

0 1 1

)(
t

k

n

i

n

i

kk
ij

k
ij

k
j

t
j qqLv π .

Therefore assume that coverages t
ijq  are chosen from the maximization of the

expectation function

                                       [ ]},0min{ )( 1 jj

jjjj WEqF ττ γν += −                                 (4.4)

subject to

                             ∑
=

≤
n

i

t
ijq

1

1, ,,1 mj = 1...,1,0 −= Tt ,                              (4.5)

where jγ  is a substitution coefficient or risk coefficient between possible wealth and

the risk, jτ  is the time of ruin not exceeding T (stopping time) for location j :

{ }TtWt t
jj ≤≤= ,0: minτ .
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In general case (4.4) is substituted by an evaluation

)0,()( j
t
jjj tWEfqF τ≤≤=

for some function )(⋅jf .

Similarly, t
iR  describes the wealth (risk reserves) of insurer i  at time t . The

insurer maximizes (by choosing coverages t
ijq ) his expected wealth

[ ]∑ ∑ ∑
−

= = 







−−=
∈

1

0 1 )(

)()()(
t

t

m

j t

t
ijt

t
j

tk
ij

tk
ij

t
i

tj

qLqcqr
ωε

ωπ

taking into account the risk of insolvency ( 0<t
iR ). Coverages t

ijq  are chosen from

maximization of expectation function

                                   [ ]},0min{)( 1 ii
iiii RrEqG ϕϕ δ+= − ,                                       (4.6)

subject to (4.5), where iδ  is a substitution coefficient between profit and the risk of

insolvency, iϕ  is the stopping time

{ }TtRt t
ii ≤≤=  ,0: minϕ .

In general case it is possible again to use an evaluation

)0,()( i
t
iii tREgqG ϕ≤≤=

for some function )(⋅ig .

Note that the maximization of i
iErϕ is equivalent to the maximization of the expected

profit whereas the maximization },0min{ i
iRE ϕ eliminates the risk of insolvency of

company i .
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Remark 4.1.  It can be shown [13] that if the risk coefficients ij δγ  ,  become

large enough, then the maximization (4.4) and (4.5) is equivalent to the maximization

of expected wealth subject to the so-called stability constraints requiring that the

probability of insolvency for each insured and insurer does not exceed a given level of

“survival”.

The maximization of (4.4) and (4.6) generates the insurance-demand functions

)(πiD
ijq  and the insurance-supply functions )(πtS

ijq  depending on the premiums

{ }tijππ  = . The choice of premiums must reflect a certain balances between insurance

demand and supply, otherwise higher premiums may decrease profits. In this paper we

do not analyze the choice of premiums from this general perspective in contrast to

actuarial approaches outlined in Section 2. The main goal is to develop computational

approaches that enable the analysis of the choice of optimal coverages improving

public benefits, profits of insurers and their solvency for analytically intractable

problems. Using the same basic framework as outlined in Section 3 we analyze the

choice of insurance contracts for dependent risks subject to additional constraints on

the class of feasible contracts.

4.4. Pareto Optimal Coverages

A Pareto optimal improvement of the initial risk situation for insured and

insurers with respect to the goal function )(qF j , )(qGi ,

{ }1,0 ,1 ,,1 , −==== Tt,mjniqq t
ij  can be achieved by maximizing the function

                                 ∑∑
==

+=
n

i
ii

m

j
jj qGqFqW

11

)()()( βα                             (4.7)

subject to

                         1
1

≤∑
=

t

i

t
ijq , 0≥t

ijq , mj ,...,2,1= , Tt ,...,2,1= ,                   (4.8)
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where 0≥jα , 0≥iβ , 1
11

=+ ∑∑
==

n

i
i

m

j
j βα .

The Pareto optimality is achieved with respect to the set of goal functions jF , iG ,

where 0>jα  and 0>iβ . If we introduce the function

                     ∑ ∑
= =

+=
m

j

n

i
ij qgqfqW i

i
j

j
1 1

),(),(),( ωβωαω ϕτ
,                      (4.9)

where

                                         },0min{),( t
jj

t
j

t
j Wqf γνω += ,

                                                                                                                              (4.10)

                                         },0min{),( t
ii

t
i

t
i Rrqg δω += ,

then  )(qW  can be written as

                                        ),()( ωqEWqW =                                             (4.11)

We may call )(qW  a performance or welfare function and ),( ωqW  a sample

performance or sample welfare function. Functions )(qW , ),( ωqW  have a complex

analytical structure and nonsmooth character. The complexity stems from the

complexity of underlying stochastic spatial processes (random fields) defined by

simulated patterns of catastrophes. Consistent evaluation of )(qF j , )(qGi  for any

feasible strategy q  may be time consuming. Since the number of feasible

combinations of q  is infinite, then the straightforward "trial-and-error" approach to

the choice of desirable coverages q  is impossible. The nonsmooth character of the

functions )(qF j , )(qGi  is also a methodological challenge. It is due to the presence of

operations min, max, and stopping times jτ , iϕ  in the definition of ),( ωqW .

The above model can be modified for analyzing the capacity of the insurance

“industry” as well as for making decisions by individual companies and pools of

companies. In the model described below the emphasis is on the most damaging
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(extreme) catastrophic events consistent with the existing knowledge of their spatial

patterns and occurrence.  This stochastic maximin model is a tradeoff between a

conservative worst-case approach (all catastrophes are clustered at once in the most

“valuable” locations) and the above model. All uncertainties with sufficient historical

data are characterized by random variables and other uncertainties are considered from

the worst case perspective. For example, the occurrence of events in the region and

their magnitudes can be characterized by a given probability distribution (Poisson,

Pareto), whereas geographical location and their patterns can be chosen from the worst

case.

Let us denote by ),...,,( 121 −= Tωωωω  random uncertain variables. For any

particular realization of tω  there exists a set )( tt ωε  of other uncertain variables, say

patterns of catastrophes at time t . Then the guaranteed stochastic risk reserves are

               [ ] ∑∑
∈∈=

+ −−+=
ej

t
ijt

t
j

e

m

j

t
ij

t
ij

t
ij

t
ij

t
i

t
i qLqcqRR

tt

)(max)()(
)(1

1 ωπ
ωε

,           (4.12)

where ni ,...,2,1= , 1,...,1,0 −= Tt . By using t
iR  as (4.12) we can again define

functions )(qF j , )(qGi  as (4.4), (4.6), and formulate the problem (4.7)-(4.8).

In the problem (4.7)-(4.8) the risk indicators t
jv , t

ir  are chosen to guarantee the

concavity of the expectations t
jEv , t

jEr . The use of stopping time arguments destroys

the concavity of expectation )(qW , despite the concavity of involved components.

Therefore, let us consider a different model with concave )(qW . This model reflects

the nature of catastrophes as an extreme event challenging the stability of the whole

system once it occurs. Hence the dynamics of the system is modeled until the

occurrence of a catastrophic event. Suppose that at each time 1,...,1,0 −= Tt  there

may occur a random number of catastrophic events with different magnitudes and

geographical patterns. In general it can be represented by two sets of parameters

),( tt UΩ , where tΩ∈ω  characterize their random features and tUu ∈  characterize
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other uncertainties. Define τ  as the first moment 1,...,1,0 −= Tt  when a catastrophe

occurs. Sample functions W , t
jf , t

ig  defined by (4.9), (4.10) depend now on the triple

of variables ),,( uq ω .

Let

           







+== ∑ ∑

= =∈∈

m

j

n

i
iijj uqguqfqW

UuUu
1 1

),,(),,(minmin),( ωβωαω ττ

ττ
,       (4.13)

i.e. the extreme (worst case) catastrophe is considered with respect to uncertainties

τUu ∈  consistent with other random uncertainties  τω Ω∈ . Instead of ),,( uqW ω  we

can consider a more conservative approach where the worst case situation is defined

with respect to the risk reserves of each insurer mi ,1=  according to (4.12). It is

important that the expectation )(qW in these cases is a concave function. A special

case occurs when 0=τU , i.e. catastrophes are characterized completely by random

patterns. This type of two-period model was considered in [12].

There is a flexibility in choosing the weights jα , iβ , jγ , jδ  in (4.4), (4.6),

(4.7). These weights can be adjusted to satisfy additional constraints, for example, on

fairness or equity. It can be proven (see [13]), that if weights jδ  become large enough,

then the effect of the risk function defined by t
ir  is equivalent to the so-called stability

constraints [21] requiring that the probability of solvency for each insurer must not

drop below a given level of "survival". The performance function (4.7) is composed of

different goal functions depending on the choice of weights jα , iβ . For example if

mjj ,...,2,1 ,0 ==α , contracts will take into account only the interests of insurers,

with weights jδ  controlling probability of insolvency. The choice 0>jα  emphasizes

the interests of the insured, and it can be used to define the levels of premiums

depending on the frequency of events, their severity, thus minimizing the losses of

insured. Changing jγ , jδ  it is possible to find contracts satisfying different

restrictions on insurance demand and supply, the level of survival for insures and

insurers. In Section 6 we describe the results of simulations with different risk

weights.
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This type of analysis in a sense corresponds to a welfare analysis of the

insurance industry as the whole. But the same analysis can be used for a single insurer

or a pool of insurers.

4.5.  The Role of the Insurance Industry in Managing Catastrophic

Risks

 The standard analysis of the demand for insurance assumes that an insurance

contract is the only available asset for hedging risk (see Mayers and Smith [20]).

Catastrophes are characterized by significant interdependencies of claims across

different assets of an individual’s portfolio, where insurance contracts are not a

separable decisions of a general portfolio hedging activity. The demand for insurance

exists since not all assets are marketable, i.e. capital markets are not perfect.

The demand for insurance in the presence of other assets can be modeled

similar to Mayers and Smith [20]. Instead of eq.(4.3) we define beginning-of-period

1+t  wealth as

[ ]∑ ∑
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+ −−−+−+=
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t
j drLqqLphxWW

1 1

1 )()()()( ωπω ,

where t
jkx   is the fraction of a firms's shares held by individuals from location j  at

time t ,  t
kh   is the total monetary value of firm j - th shares, 

t
kp  is the current total

market value of firm j -th shares, 
t
jr    is the riskless rate of return, and 

t
jd  is the net

debt of location j .

The goal function (4.4) for the individuals (from location j ) depends now on

the decision variables }{ t
jkxx = . The maximization of this function ),( xqF j  subject

to (4.5) and additional constraints on t
jkx , 10 ≤≤ t

jkx , provides a demand function for

each type of insurance policy and for risky marketable assets.
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The capacity of the insurance industry for managing catastrophic risks depends

also on the implemented and available mitigation measures. Assume that for each j

there exists a set 
t
jM  of available mitigation measures at time t . Mitigation measures

can be taken by individuals and governments for reducing losses 
t
jL . Some of these

measures can be enforced by insurers through premiums. From a formal point of view

it is equivalent to the assumption that the probability distribution of losses 
t
jL  and

premium functions depend on a new decision variables 
t
j

t
j My ∈ , i.e. ),( t

t
t
j ywL ,

),( ttt
ij yqπ , where { }mjyy t

j
t ,...,2,1 ,  == . The wealth accumulation processes (4.3)

in this case include also additional costs associated with decisions 
t
jy .

5.  Adaptive Monte Carlo Method

As it was mentioned in Section 4 all Monte Carlo computations may be

regarded as estimating the value of an integral (4.2). The performance function (4.7)

or (4.11) can be written in the same form

                )(),(),()(
1 1

ωµωβωα dqgqfqW
m

j

n

i
iijj∫ ∑ ∑

Ω








+=

= =
,                  (5.1)

where the probability measure µ  is defined on the set Ω  of catastrophic events

),...,,( 110 −= Tωωωω , and 
jj

jjjj Wf
ττ γν += , ii

iiii Rrg
ϕϕ δ+=  (see also eqs. (4.4),

(4.6). The measureµ  is not explicitly known and the analytical evaluation of )(qW  is

practically impossible. Let us begin by fixing decision q . Standard Monte Carlo

techniques can be viewed as sampling procedures providing an unbiased estimate of

)(qW . The smaller the variance of the estimate for a given sample size, the better. By

"adaptive Monte Carlo" it is usually meant [24] a technique which makes on-line use

of sampling information to sequentially improve the efficiency of the sampling
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procedure itself. We use "adaptive Monte Carlo" in a rather broad sense when the

efficiency of the sampling procedure is considered as a part of more general

improvements with respect to different decisions and goals, for example, towards

certain equilibriums. It is also possible to use the notion of Monte Carlo optimization

but this notion emphasizes only a part of possible adjustments. It can be understood in

a narrow sense by those "practitioners" who do not know that the search of

equilibriums and solutions of equations can also be viewed as a special optimization

problem. The function )(qW  depends on unknown decision variables q , and the

problem concerns estimating an optimal value )(qW  by sampling values of functions

),( wqf j , ),( wqgi  for possibly different q . It is also desirable to combine this with

sequential variance minimizing sampling.

In this section we develop the necessary adaptive Monte Carlo procedures by

using general ideas of stochastic optimization (see, for example, [10]), which seems to

be quite natural for these problems. Let us denote 
*W  the maximal value of )(qW ,

and rewrite )(qW as

                                 ∫=
Ω

)(),()( ωµω dqWqW  ,                                       (5.2)

where

∑ ∑
= =
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iijj qgqfqW

1 1

),(),(),( ωβωαω .

The main question is to find a sequence { } 1  ,  ≥kqk
, such that

                              { } 1),(lim 
1

*1 =∑ =
=

−

∞→

k

s

kk

k
WqWkP ω .                           (5.3)

The main complexity in maximizing )(qW  concerns the lack of exact

information on )(qW . Each sample (simulation) provides only a random value
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),( wqW  of )(qW , which should be used in the search of desirable (optimal) decisions

q . There is a number of possibilities to meet this challenge.

5.1.  Hypotheses Testing, Response Surface Method

The simplest possibility is to restrict attention to a finite number of feasible

coverages  
Kqqq ,...,, 21

. The search of the best 
*kq  among given K alternatives such

that

KkqWEqWqW kkk ,...,2,1 ),,(:)()(
*

==≥ ωω ,

by using sample functions (for different ω ) ),( ωkqW is equivalent to a hypothesis

testing.

Such an approach is possible only with a good intuition about the structure of

optimal decisions. It may be difficult to have such an intuition in the case of structural

changes, new policies, complex dependencies and significant effects of low

probability events. In these cases we have to take into account something that may be

unlike anything we have experienced in the past.

Another approach is to derive an explicit deterministic approximation for

)(qW  and to use well known deterministic optimization techniques. A family of such

procedures is known as the Response Surface Methods.

An initial approximate solution 
0q  is usually a very conservative guess.

Samples ),( ωkqW  are used to estimate the optimal (k+1)-step decision 
1+kq . For this

purpose )(qW  at 
kqq =  is approximated by a quadratic regression function and 

1+kq

is constructed by maximizing this function in the feasible set. Such a procedure

requires the estimation of a large number of coefficients of the quadratic function at

each step ,...1,0=k , which may be time consuming and restricts its applicability.
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5.2. Sample Mean Approximation

In the Response Surface Methods )(qW  is approximated locally at each

current approximate solution 
kq . Another alternative is to use an explicit

approximation for )(qW  in the whole feasible set [16]. An important approach is to

use the sample mean approximation

                             ∑
=

−=
N

s

sN qWNqW
1

1 ),()( ω                                          (5.4)

defined by N simulated histories of catastrophes ),...,,( 110
s
T

sss
−= ωωωω . The use of

this approach is restricted to cases when the sample functions ),( ω⋅W  have well

defined analytical structures. Unfortunately for important applications )(qWN
 may

have a large number of local optima in addition to the local optima of )(qW  (see [9]),

which may even happen in the case of concave )(qW . A more critical case is when

),( ω⋅W  is not known explicitly as a function of q . This situation occurs in problems

defined by (5.1) since jf , iq  depend on stopping times jτ , iϕ , which are implicit

functions of current decisions. Therefore at each step ,...2,1=k  a deterministic

maximization procedure would require new samples of ),( ωqW  at different

,..., 21 qqq = .  In addition approximation (5.4) may lead to a significant increase of the

dimensionality (see [12]) in contrast to the original problem defined by eqs. (4.7),

(4.8).

5.3. Stochastic Quasi-Gradient Methods

These methods can be used in cases with unknown sample performance

functions ),( ωqW . A sequence of approximate solutions ,..., 10 qq  is generated

directly by using statistical estimates (stochastic quasi-gradients) of ),( ωqgradW

without approximating )(qW  by an explicit function. The adaptive search procedure
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is defined as follows. Let 
0q  be an initial guess, and 

kq  is the approximate solution

after k steps. Then

                              ,...1,0 , )(Pr1 =+=+ kqjq k
k

kk ξρ ,                         (5.5)

where 0≥kρ  is ),...,( 10 kqqq – measurable random variable (“step-size” multiplier

depending on ),...,( 10 kqqq )), 
kξ is ),...,( 10 kqqq - measurable random vector such

that

[ ] ∞→→− kqgradWqqqE kkk  ,0)(,...,| 10ξ .

The symbol )(Pr yj  defines the projection of y  onto a feasible set Q  defined

by (4.8), i.e. it is the point from Q  minimizing the distance to y





 ∈−= Qzyzyj :

2
minarg)(Pr .

The projection of 
k

k
kq ξρ+  (calculation of 

1+kq ) is a very fast operation

when it starts from 
kq .

Stochastic quasi-gradients 
kξ are often defined at each step ,...1,0=k by using

only one independent sample 
kω . Below we show how it can be applied to problem

(4.7), (4.8) and give conditions that ensure the convergence of the nonstationary

random process ),( kkqW ω  in the sense of (5.3).

The sample function ),( ωqW  in (5.2) is defined by min  and min− operations.

Such functions [11] belong to the so-called generalized differentiable functions that

guarantee the convergence of (5.5) to a local optimal solution with probability 1. The

class of generalized differentiable functions is closed under operations min  and
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min)( max − and smooth transformations. Continuously differentiable functions

belong to this class.

A stochastic quasigradient 
kξ of function (4.7) is calculated similar to formula

given without proof in Ermoliev and Norkin [11] for a simple problem. Assume that

{ } 00),(Pr  ==ωtt
j qob W ,  { } 00),(Pr  ==ωtt

j qRob

for all Ttqk ≤≤0 ,  and j . We can always achieve this by adding some independent

random noise with density to 
k
jR . Then it can be proven that with probability 1,

functions ),( ω⋅W , )(qW are generalized differentiable with stochastic quasi-gradients

kξ computed as follows. Let after k  steps of adjustments we have a set

{ }1,...,1,0 ,,1 ,,1 , −===== Ttmjniqqq k
ij

k
.

 Simulate ( )110 ,...,, −= Tωωωω  and compute i
iii RRR
ϕ

,...,, 10
, 

j

jjj WWW
τ

,...,, 10
for all

ji , . The vector 
kξ consists of components { }1,...,1,0 ,,1 ,,1),( −=== Ttmjnitk

ijξ ,

where )(tt
ijξ  is the sum of four terms )( ),( ),( ),( 4321 tttt k

ij
k
ij

k
ij

k
ij ξξξ ξ :
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Thus there are simple formulas for computing a stochastic quasigradient

{ })( tk
ij

k ξξ =  )()()()()( 4321 ttttt k
ij

k
ij

k
ij

k
ij

k
ij ξξξξξ +++=  after each simulation

kωω = and ,...1,0 , == kqq k
. The current approximate decision variables }{ kt

ij
k qq =

are adaptively adjusted according to feedback (5.5). Since function )(qW is not

concave even for convex )(⋅t
ijπ , )(⋅t

ijc , then random sequence 
kq  generated according

to (5.5) may not converge to a global solution. The choice of step-size-multipliers tρ

in (5.5) satisfies conditions

∞<∞=≥ ∑∑
∞

=

∞

= 0

2

0

 , ,0
t

t
t

tt ρρρ .

For example tCtt /=ρ , where ∞<≤≤≤ ttt CCC0  ensures the

convergence  of { })(  kqW  to a local maximum value with probability 1 in all

practically important cases. If we define the set of local maximum values of )(qW  as

*W  then instead of (5.3) it is possible to show that

                            1*),(lim
1

1 =∈






 ∑

=

−

∞→

K

s

kk

k
WqWkP ω .                         (5.6)

The random adjustment mechanism (5.5) has the ability to by-pass local solutions.

Global convergence can be achieved by introducing “shocks” when the sequence 
kq

shows a steady-state tendency.

The important feature of the functions (4.13) is that for convex )( tt
ij qπ ,

)( tt
ij qc   this function is concave despite the very complex character of the implicitly

given function ),( ωqW . This was achieved by a special choice of risk indicators 
t
jv ,

t
ir  in the definition of functions jf , ig . Note that slightly different indicators as in
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(3.4) lead to a nonconcave generalized differentiable function )(qW . The concavity of

)(qW simply follows from the concavity of functions ),( ω⋅t
jv , ),( ω⋅t

ir , ),( ω⋅t
jW ,

),( ω⋅t
iR  and general properties of the expectation operator. In this case the

convergence is global and  (5.3) holds.

The numerical experiments (see section 6) so far have been done only for

performance indicator (4.13).

5.4.  Adaptive Importance Sampling

The fast simulation of rare events and the variance reduction of estimates

,...1,0 ),( =kqW k
 can be achieved in particular by the method of importance sampling.

The general idea of adaptive gradient type improvement of sampling procedure was

introduced by Pugh [24]. Unfortunately this itself requires the additional estimation of

some involved integrals. Stochastic optimization procedure (5.5) allow us to

incorporate sequential variance reduction processes without additional major

computations.

Consider a probability measure ν  on the domain of µ  such that whenever ν

is zero µ  is zero. Then the derivative νµ dd /  exists and

∫ ′=∫=∫= )(),(:)(),()(),()( ωνωων
ν
µ

ωωµω dqWd
d

d
qWdqWqW

with variance

)(),(),( 2
2

2 qWd
d

d
qWqWVar −∫=′ 





 ν

ν
µ

ωω .

The aim is to find a ν  that minimizes

                     ν
ν
µ

ων
ωµ

ωω ∫= 












d
d

d
W

d

d
qWE

2
2

2

2

)(

)(
),( .                         (5.7)
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Let the family of distributions ν  be indexed by the vector parameter

),...,,( 21 kyyyy = . Thus (5.7) is a function )(yΨ  of y and the direction of steepest

decent of this function at y  (assuming regularity conditions) is

         ν
ν
µ

ν
µ

µ
ν
µν

ν
µ

d
d

d

d

d
Wd

d

d
Wd

d

d
Wy

lll
yyy

l ∫−=∫−=∫−=∂Ψ∂− 
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2
2/   (5.8)

Together with procedure (5.5) consider a sequence of measures kν  defined by

a sequence of vectors }{ ky . Assuming that kν  is known we seek the 1+kν  which

decreases  (5.7) for current kνν = , i.e. we choose 
1+ky  defined by

             












=

+

∂

∂
−=

ν
µ

ν
µ

ωσ
d

d

d

d

y
qWyy

kyyl

kk
k

kk ),(21
,                     (5.9)

where 
kω  is a sample from kν , and 0>kσ  is a positive ),,...,,,,( 1100 kk yqyqyq

measurable random variable satisfying some natural joint requirements with kρ . The

procedure (5.9) requires exact values

kyyl d

d

dy

d

=







ν
µ

, 
kyyd

d

=







ν
µ

,

which are not known explicitly because  µ  is also not explicitly given. These values

can be substituted by statistical estimates, which is discussed in a forthcoming paper

for some  important special cases. Section 2.3 illustrates in a  sense such a  possibility.

The convergence of the resulting processes easily follows because  )(qW  does  not

depend on y .
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6. Numerical Experiments

We consider a fictitious region subdivided into 1010×  grids. An example of a

geographical representation of the property values in a "landscape" is shown in Fig.2.

The time span is 1000=T . The occurrence of catastrophes in the region is modeled

according to a given distribution of interoccurrence times. We also assumed that at

each time interval 1,...,1,0 −= Tt  only one catastrophe may occur. Numerical

experiments so far have been done with concave version (4.13) of the dynamic model.

Catastrophes are assumed to be random events, i.e. 0=tU .

A catastrophic event starts at random from a grid and propagates through the

region in the form of a random walk having a random magnitude and rate of decay.

The transition probability to an adjacent grid depends on some characteristics of the

grid. In particular sample trajectories may have the form of random lines starting at

random grids and having random direction and random length. An example of the

damage caused by catastrophic events is shown in Fig.3. The initial geographical

diversification of contracts for three companies is shown in Fig.4.

Figure 4. Initial allocations of contracts
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Figure 5. Histogram of the risk reserve (insurer 1) at initial contracts

Figure 6. Histogram of the risk reserve (insurer 1) at improved contracts

After simulating a sufficient number of events it is possible (if needed) to obtain

histograms of risk reserves for the initial contracts as shown in  Fig.3.
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In this case the insolvency of the insurer within the time span happens rather often.

Figure 7. Dynamics of improvements for performance function

Optimal geographical diversification of coverages improves the insolvency of insures

(Fig.6), although different levels of insolvency may still occur with some probabilities.

It can be changed by choosing different weights iδ . The dynamics of improvements

for the performance function (4.13) is shown in Fig.7. It shows slow improvements of

the performance function with considerable elimination of ruins by choosing better

coverages.

The performance function is stabilized rather fast, but variances exist and even

last simulations eliminate influences of rare events. The difference between initial and

final histograms (Fig.5, 6, 9) is remarkable.
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The new allocations of contracts, shown in the Fig.8, are diversified over the

territory with respect to simulated events. More deep analysis shows that insurers tend

to deal with locations where damages are almost mutually exclusive. Perhaps, insurers

allocate contracts in ’safe’ regions, where events may occur with possibly minimal

probabilities.

Figure 8. Improved allocations of contracts

All three insurers shown in Fig.4 differ in their initial allocations and their restrictions

on the possibility of new contracts. The first insurer may obtain new contracts only in

the most risky upper left corner. The second can deal with "safer" clients. The third

insurer may have less "safe" new clients than the second, but from locations where

catastrophes can be regarded as almost mutually exclusive.

From the final spread of optimal contracts we can see that insurer 1 improves

her situation getting more additional risks from locations where she can operate.

Therefore, this insurer does not become "afraid" of catastrophes, keeps operating in

the region, and therefore provides support to the population. The "safest" insurer 2,

preserving small contracts with "risky" regions, makes business mainly with remote

clients where catastrophes are very rare. He makes his business as profitable as

possible and protects himself from the risk of insolvency as much as possible. The
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third insurer may be regarded as the most socially oriented one providing additional

help to the suffering in catastrophic locations. For protection against insolvency it

takes new contracts in locations where catastrophes are often almost mutually

exclusive.

Figure 9. Histograms of the risk reserve (insurer 2) at initial contracts and

improved contracts with risk weight 100

Varying risk weights in the performance function it is possible to satisfy

different conditions on the companies solvency. Computational results show that

increasing the risk weights may decrease the risk of insolvency of different companies

to some predefined levels. Thus Fig.9 shows histograms of risk reserve at initial

contracts for insurer 2 and its improved contracts for the risk weight equal to 100. All

risk constants equal to 1000 lead to optimal contracts providing for the absolutely safe

business of insurers. This case eliminates coverages in locations where catastrophes

are rather often and can not be perfectly diversified. For insurer 2 the histogram of risk

reserve at the improved contracts with risk weight 1000 are shown in Fig.10.
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Figure 10. Histogram of the risk reserve (insurer 2) at improved contracts with

risk weight 1000.

7. Concluding Remarks

In this paper I have presented computational approaches for designing

optimal insurance strategies in the presence of the dependent catastrophic risks. The

developed spatial dynamic model of stochastic optimization can be used either by a

single insurer (n=1), a pool of insurers (n>1) or regulatory authorities. The model can

also be used for analyzing the capacity of the "insurance industry” in dealing with

catastrophes. In this case the model requires a detailed representation of other types

of hedging decisions, which have been outlined in the paper.

The model tracks the dependencies of catastrophic claims by explicit

representation of the special characteristics of the property values and the spatial

patterns of possible catastrophic events. It enables one to bypass some serious

limitations of Borch’s model concerning the substitutability of risks. For this
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purpose, constraints on risks from each location instead of the single constraint on

the “total” risk have been imposed. The model also allows one to introduce

transactions costs for dealing with different locations (remote clients). Explicit

incorporation of simulation models for catastrophic events opens up a way for

analyzing the interplay between changes in frequencies, magnitudes, patterns of

catastrophes and insurance strategies.

I took several different approaches to modeling catastrophic events. In one

approach the insurance processes are simulated within the time interval [0,T]. In this

case the terminal state of a company is associated with its bankruptcy ("stopping

time"). In a second approach insurance processes are simulated until the first

occurrence of the catastrophic event. In this case extreme events are associated with

the worst case values of uncertain nonstochastic variables. It leads to the so-called

stochastic maximin problems.

The adaptive Monte Carlo method is used for adjusting the feasible decision

variables towards desirable outcomes. This method is based on stochastic

optimization techniques.

The necessary proofs are only outlined since they are lengthy. For example,

the convergence properties (5.3), (5.6) of the search procedures are equivalent to

laws of large numbers for path-dependent nonstationary processes. Rigorous proofs

of these assertions are beyond the scope of this paper. The analysis of generalized

differentiability of the performance function and its generalized gradients with

stopping times is rather lengthy. By using these gradients it is possible to formulate

optimality conditions generalizing Borch's results.

Special attention has been given to the analysis of iterative importance

sampling imbedded in stochastic optimization procedures as well as other specific

variance reduction techniques. These ideas have been analyzed by using a number of

special practical cases.

I have presented numerical experiments with fictitious data to illustrate the

feasibility of the developed approaches. These experiments also demonstrate the

capability of the stochastic quasi-gradient procedure for designing optimal insurance

decisions in the presence of dependent catastrophic risks. The advantage of these
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methods stems from the lack of a tractable analytical structure of the sample

performance function, which often excludes any alternative approach. The

experiments show that the computer time required for the search of the optimal value

of the performance function has the same order of magnitude as the time, required

for estimating its value at a given initial point.
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