EIIASA

International Institute for Applied Systems Analysis e A-2361 Laxenburg e Austria
Tel: +43 2236 807 e Fax: +43 2236 71313 ¢ E-mail: info@iiasa.ac.at ¢ Web: www.iiasa.ac.at

INTERIM REPORT IR-97-54 | December

Analysis of a Russian Landscape Map and
Landscape Classification for Use in
Computer-aided Forestry Research

Victor Wagner (vitus@agropc.msk.su)

Approved by
Sten Nilsson (nilsson@iiasa.ac.at)
Leader, Forest Resources Project

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its
National Member Organizations, or other organizations supporting the work.

— 11—

Contents

1 Introduction
2 Description of the Landscape Map and the Classification
2.1 Level of details and properties of themap
2.2 Structure of the classification o000 oL
2.3 Description of landscape kinds.
2.4 Regionalization at the level of variant
3 Forest Succession Database Applied to Landscapes
4 Analysis of Non-formalized Text
4.1 Problem of freetext
4.2 Separation of parts using sentence structure L.
4.3 Word classification approach o 0 oo
4.3.1 Wordclasses
4.3.2 Grammatic forms of the words in the Russian language as guideline
for significance estimation
4.3.3 Multilevel structure of the description
4.4 Technology of word analysis as alternative to traditional databases
5 Results of Analysis
5.1 Distribution of tree species oo Lo
5.2 Derivation of forest types from the landscape description.
5.3 A regionalized approach of linking landscape descriptions with the State
Forest Account (SFA)
6 Conclusion
References

Appendix A: Landscape Classification by Gudilin

Appendix B: Software Used for the Analysis

12
12
12

16

16

17

18

27

—1ii—

Foreword

ITASA, the Russian Academy of Sciences, and the Russian Federal Forest Service, in
agreement with the Russian Ministry of the Environment and Natural Resources, signed
agreements in 1992 and 1994 to carry out a large-scale study on the Siberian forest sec-
tor. The overall objective of the study is to focus on policy options that would encourage
sustainable development of the sector. The goals are to assess Siberia’s forest resources,
forest industries, and infrastructure; to examine the forests’ economic, social, and bio-
spheric functions; with these functions in mind, to identify possible pathways for their
sustainable development; and to translate these pathways into policy options for Russian
and international agencies.

The first phase of the study concentrated on the generation of extensive and consistent
databases for the total forest sector of Siberia and Russia.

In its second phase, the study has encompassed assessment studies of the greenhouse
gas balances, forest resources and forest utilization, biodiversity and landscapes, non-
wood products and functions, environmental status, transportation infrastructure, forest
industry and markets, and socioeconomics.

This report, carried out by Dr. Victor Wagner of The Dokuchaev Soil Institute,
Moscow, under the supervision of Profs. A. Shvidenko and S. Nilsson during his stay
at ITASA in 1997, is a contribution to the analyses of the topic of mainly biodiversity.
This work has been financially supported by the Swedish Council for Planning and Coor-
dination of Research.

Analysis of a Russian Landscape Map and
Landscape Classification for Use in
Computer-aided Forestry Research

Victor Wagner

1 Introduction

The correct choice of territorial units is a very important question in all geographic and
ecologic research. The major part of environmental information on Russia is given by
administrative units, which sometimes occupies several natural zones.

Therefore utilization of existing physical-geographical data and concepts is critical for
many forestry applications, e.g., for development of vegetational models at regional and
global scale as well as evaluation of the main biogeochemical cycles.

Russian geography has accumulated a great experience in territorial unit classifications
and regionalization of various scales. One of the most general approaches is the landscape
approach. According to Berg[1], a geographical landscape is defined as “a total or a group
of objects and phenomena, with certain peculiarities concerning relief, climate, water,
soil and vegetative cover, and animal habitat, as well as human activities, repeated in a
harmonized way over a known land area”.

Therefore the concept of landscapes represents aggregated knowledge of all natural
conditions of a definite territory. A landscape is a relatively small territorial unit. Thus,
typological classifications of landscapes are usually used for regional and subglobal maps.

There are several landscape maps existing for the total Russian territory. The two
most recent maps are developed by Gudilin[2] and Isachenko[3].

The main problem with utilizing this information in computer-based analysis is that
these maps, as well as other sources of landscape information, were intended for human
reading, rather than GIS and database processing.

In this study we made an attempt to perform semiautomated analysis of the landscape
map by Gudilin, in order to extract information related to the boreal forests in Russia.

2 Description of the Landscape Map and the Classification

The Dokuchaev Soil Institute in Moscow has produced a digital version of the landscape
map developed by Gudilin (Rozhkov et al.[4]). This work was carried out in collaboration
with the authors of the original map, and the main goal of the work was to reproduce the
information from the original map as exactly as possible.

2.1 Level of details and properties of the map

The landscape map of Russia has the scale of 1:2,500,000 — a scale which allows to
represent the whole of Russia on one map. It contains more than 27,000 polygons, which

Figure 1: Fragment of the landscape map.

correspond to the most detailed level of landscape classification. Figure 1 shows a typical
part of the map and illustrates the level of details.
The thematic information on the map is represented in three different ways:

1. Tabular legend, printed on the map itself. It shows the landscape classification at the
genera level and the correspondence of the classification units with the cartographic
signs.

2. Short legend, a book of 343 pages with a one-paragraph description of each of the
landscapes. This legend is fully reproduced in electronic form. Landscapes listed in
this legend are referenced by index, and plotted in each polygon of the map.

3. Long legend, consisting of four volumes, which includes some additional properties,
not listed in the short legend (about half a page per landscape). Due to time and
financial constraints, this legend was not included in the electronic version.

The paper map contains some shortcomings, which are unimportant for manual anal-
ysis, but may cause problems at GIS processing. Most important of these shortcomings
are valley polygons.

Due to scale limitations, diversity of the river valleys could not always be represented
appropriately on the map of the scale of 1:2,500,000. Thus, some of these polygons were
originally left unclassified, with the remark that they belong to the same subtype of land-
scape as surrounding polygons.

—-3—

During the development of the electronic version, special efforts have been made to
overcome this uncertainty, and now these polygons have classification information attached
to them to the subtype level.

These efforts lead to an increased number of polygons, from 25,000 in the scanned image
to 27,000 in the final version, due to the fact that some valley polygons were subdivided
into different subtypes.

Nevertheless, these polygons were excluded from this study, because the study is mainly
based on information extracted from the so-called kind descriptions, rather than on the
upper levels of classification.

The digitizing and further processing of the electronic version was carried out with an
accuracy of 500 m (0.2 mm on the paper source). It is definitely higher than the accuracy
of the source map, which could be up to 2 mm (5 km) according to Russian thematic
cartographic standards.

The original map was plotted in Kavraysky conic equidistant projection, as most of
the maps covering total Russia. Most operations with the electronic version were carried
out by using Albers equal-area projection, due to the fact that it allows more accurate
area calculations. Technical details about this map can be found in the Dokuchaev Soil
Institute’s on-line map catalogue[5].

The landscape classification has been translated into English and classifiers for all
levels except kind, are available in both Russian and English (see Appendix A). However,
descriptions of landscape kinds were not translated due to the big value, and this study
was carried out using the Russian-language descriptions.

2.2 Structure of the classification

The map is based on a hierarchical landscape classification, which includes mainly cli-
matic, geomorphological and vegetational aspects, although there are two levels which are
distinguished via complex criteria — level of variant and level of kind (see Table 1).

The upper levels of the classification can be divided into two groups — geology/geo-
morphology and climate/biology levels. The levels of each group correlate with each other
(usually, value of lower layer within a group can occur only in one variant of higher level),
but groups themselves are almost orthogonal. The map design reflects this situation and
the legend of the map is represented as a matrix, where rows correspond to the combination
of climatic/vegetation levels and the column to the combination of geomorphology/geology
levels.

Table 1: Classification of landscape levels.

Area of Number
Level concern Main criteria of items
Division | Geology Tectonic conditions 2
Group Climate Climatic belts and sectors 18
Class Geology Megarelief 4
Type Vegetation Vegetation zones 35
Subtype | Vegetation Vegetation types 99
Genera | Geomorphology | Type and genesis of relief 63
Variant | Complex Large physical geographical regions 18
Kind Complex All factors, which do not match any other level 3446

| Kola-Karelian VII Novaya Zemlya—Uralian XIll Far East-Daurian

Il East European VIIl Severnaya Zemlya-Taymyrian XIV Carpatian

Il Middle Siberian IX Tjan-Shan—-Jungarian XV Crimea—Caucasian

IV Kazakhstanian X Altay-Sayanian XVI Kopet-Dagian

V Central Asian Xl Cisbaykalian—Transbaikalian XVII Pamirian

VI Middle Siberian XII North-Eastern XVIII Kamchatka—-Sakhalinian

Figure 2: Variants of landscapes.

2.3 Description of landscape kinds

The lowest level of landscape classification has long textual descriptions, instead of short
classification names. Typically, the description is one long sentence, which lists all prop-
erties of a given landscape, starting from relief type and ending with landcover and an-
thropogenic influence. Length of this description can vary from 44 to 475 characters.

One of the most important properties of the descriptions is that they consist of very
limited sets of words. The description contains 3,446 landscapes using about 2,000 different
Russian words and word forms for all properties of the landscape. Without a computer-
based analysis of the description quantitative analyses would be impossible.

2.4 Regionalization at the level of variant

Although kind descriptions are the most valuable source of information for analysis, the
second level of classification — wariant — is important too. There are some differences
between the large geographic regions of Russia, which are not reflected in kind descriptions.
For example, there are three main species of Lariz, which form the Siberian larch forests. In
the descriptions all of them are addressed as “larch”, but comparisons of the variant maps
(Figure 2) with areas of those species show that they could be almost clearly distinguished
on a variant basis.

Therefore a variant-based approach is important for linking of the landscape informa-
tion with other sources of information, as described in Section 5.3.

—5—

Forest successions

|| T

Climatic-geomorphologic Cenogenic Pyrogenic

——
Alluvial | |Denudational| | Volcanogenic

Pcfnt Without With Degressive

dispersion ECIES ECIES
Sp change change

Biogenic :
Anthropogenic
o~ pPog

Zoogenic Pathogenic ‘/ \‘\>

/’\ /’\ ‘ Harvesting Pollution Recreatlon ‘ Agriculture

Figure 3: Classification of forest successions.

3 Forest Succession Database Applied to Landscapes

Availability of highly detailed information on natural conditions, which could be obtained
from a landscape map, allows to develop spatial databases of forest types and possible
trend of forest development, suitable for simulation models of forest growth and carbon
balance. This information is also an important tool for biodiversity analyses.

Currently, information about the forest resources in Russia is available from the State
Forest Account (SFA). This account presents data per enterprise. However, the forest
enterprises can be large and occupy heterogeneous territory, especially in the less populated
regions of Siberia.

Therefore it is essential to link statistical data obtained from this account to lesser and
more homogeneous territorial units, i.e., landscape kinds.

Another source of forest specific information is the Forest Succession Database, de-
veloped by ITASA’s Boreal Forest Resources Project. This latter database has almost no
spatial references, but it is based on a forest succession classification, which is very close
to the landscape classification in some aspects.

The upper level of this classification on successions is based on the cause of forest
change, which can be either natural (e.g., climate change and geomorphological processes)
or anthropogenic (e.g., forest harvesting and atmospheric pollution). This level of classi-
fication is shown in Figure 3. Some information for these levels, especially for “natural”
(cenogenic and climate-geomorphologic) successions, can be easily obtained from the land-
scape kind description.

The next levels of succession classification present the type of development and tree
species, which change during succession. There are three types of development: dynamical
stability, progress, and degradation (Figure 4).

—6—

Development types and succession phases

Development types | Climax Progressive Degressive
(Stable)
Phases
1
2
3
4
5 >
kS
- Species 1 (Pine)
I species 2 (Birch)
8

Figure 4: Dynamic of two tree species ratio during phases of different types of development.

Succession is described as a set of development phases. A phase is defined as a specific
period of a succession process which has a definite morphological structure (e.g., secondary
birch forest after fire in spruce-fir forest). A phase could be divided into age stages (young,
middle-aged, immature, and mature). A complete succession may have a duration of up
to a thousand years, including all phases.

Information, which could be obtained from the landscape descriptions, i.e., geomor-
phological process, types of forests, distribution of different species, allow us to select few
succession types, which could be applicable to this kind of landscape from a long list of
succession types, possible in a given ecoregion.

4 Analysis of Non-formalized Text

4.1 Problem of free text

The landscape classification was designed for human reading, not for computerized pro-
cessing. Therefore most information is contained in descriptions, which are free-form text
and have no explicit structure. This makes database and GIS-processing very difficult, if
possible at all. The amount of information contained in the landscape kind description
is enormous. The information includes dominant and subdominant landcover type, main
vegetation associations, anthropogenic disturbances, relief type, parent material genesis
and granulometry and many more attributes.

Therefore it is essential to convert the plain text description into some formalized
tabular structure, which can be used for conventional database processing.

—7—

This conversion inevitably causes a loss of information, because information in human
readable text is contained not only in words themselves, but also in the order of words.
The amount of alternatives (for example, alternative tree species) is also important in
order to estimate the significance of these alternatives.

But there are also some aspects that will simplify the problem of text formalization,
and therefore make this work possible at all.

1. The various properties of the landscapes are listed in all descriptions in the same
order (relief type first, then other geology and geomorphology information, followed
by parent material genesis, then landcover and vegetation types from dominant to
least dominant).

2. The set of words used in the descriptions is highly standardized. There are only
2,767 distinct words, including the grammatic forms.

3. The grammatic form of the words normally have a well-established meaning. This
can be counted as benefit of the Russian language due to the fact that in Russian
information can often be derived from word suffixes.

Therefore, the following steps of analysis are used:

1. Separation of the description into parts concerning geological and biological compo-
nents of landscape.

2. Classification of words in each part and replacing words of written language in all
their various forms with a fixed set of terms.

3. Creation of a list of terms, which occurs in each description with their relative weight.
Sets of such lists conform some constraints which are usually applied to databases
and thus can be used in GIS processing, and other computer-based applications.

The achieved result differs from the original goal of converting textual descriptions
into a relational database, but have some advantages.

All the information of original description is retained, because all operations above are
applied to the original legend text.

Not only structured information, but also technology and a set of software tools are
provided, so if research with totally different goals is carried out, this approach could be
applied again.

4.2 Separation of parts using sentence structure

Separation of geological and biological parts of descriptions is an important preliminary
step for automated description analysis. It allows to put aside all information irrelevant to
landcover and decreases the amount of words, which should be considered in later stages
of analysis, by more than two times.

But the number of descriptions is too large to do this separation manually. At the
same time our knowledge of the description structure was too limited at this stage of the
analysis to define some algorithmic way to perform the separation.

Thus, a composite approach based on few heuristics with the following manual correc-
tions was chosen.

—8—

Punctuation rules of the Russian language require that description of different proper-
ties should be separated by commas. Therefore, if geomorphological and landcover parts
of the description are not separated by comma, it should be considered either as character
mistake or as typo in the original book. Thus, if such cases were encountered during the
manual checking of the separation results, corrections were made in the original text file.

With this assumption the problem of separation is reduced to the choice of the right
comma. It can be done using keyword analysis, but at this stage no keyword analysis
was performed. Thus, a simple table which estimates the number of commas separating
the parts in the geomorphology description from the total number of such parts in the
description was used.

These heuristics work in 86% of the cases and it is simplier to correct remaining cases
manually than to develop more complex heuristics, which probably would be highly specific
and not applicable to any text, other than the legend.

The results of this manual correction were stored separately from the legend text,
which allows to regenerate separate parts in the case of correcting typos in the original
legend.

A special user interface was developed for reviewing and correcting results of the sep-
aration (see Appendix B). In our opinion this approach — a close integration of manual
and computer-based work — is fruitful under these conditions. A rough estimation is that
this interface speeds up the process of reviewing the separation about ten times.

After this step of analysis we have two text files, one of them with geological and
geomorphological descriptions and the other containing the vegetation and landcover de-
scription. It is possible to apply the same approach to the geomorphological description
again, in order to separate relief data from parent material, but the landcover description
has a more complex structure.

4.3 Word classification approach

The description of vegetation and landcover usually consists of several descriptions of the
landcover types, which occur in the specific landscape kind. They can be separated not
only by commas, but also by the word “and”. Commas can also occur inside the individual
landcover type in constructs like “with ...”.

Therefore, a simplistic approach like the one described in Section 4.2 is impossible
in this case. Several attempts were made to construct a true grammatic parser for this
limited subset of written language, but they proved to be unnecessary complex.

Finally, we used an approach based on the semantic meaning of words. As a preliminary
step, word frequency analysis was carried out. It shows that there are about 1,040 distinct
words in the biological part of the descriptions.

Analysis of the frequencies of the word combinations shows that there are some word
combinations which should be treated as one term. After this preliminary stage real word
classification can be carried out.

4.3.1 Word classes

Word classes which were used for landcover analysis are listed in Table 2. Most important
for the goals of our study are classes like “types”, which indicate landcover types such
as forests, arable lands, etc., and “forests”, which indicate types of forest. There is also
the class “multivalue”, which indicates words having different meaning depending on the
context. Section 4.3.3 describes our approach in this situation. Initially this class was
created for the single word “mixed”, which can mean primary forest type, if it occurs in

—-9—

the forest description and by that has a meaning to use. It is totally irrelevant to our study,
in steppe or desert landscapes. Further investigations prove that there are other words
which could exhibit such behavior. Classification of words was carried out manually. A
special environment was developed for this purpose to provide as much information about
a given word as possible.

Table 2: Classes of words used for landcover information analysis.

Type Criteria

types Words indicating type of landcover

forest Words indicating major forest species (possible types of forest)

vegetation Vegetation species which can occur in more than one vegetation type

meaningless | Words which can be safely excluded from analysis

non-veget Non-vegetation land types (bare rock, sand, etc.)

modifier Words which affect relative weight of the following word (rare, often)

steppe Steppe and desert vegetation species

tundra Vegetation species and other information belonging to tundra land-
scapes and bogs

multivalue Words which can indicate primary forest types, but only in certain con-

disable-forest

zone
formation
derived-from

texts

Words indicating that this landcover type is not forest, regardless of the
presence of words of the class “forest” (“with sparse trees”)

Words indicating natural zones (in combinations like “Arctic tundra”)
Types of forest stands

Words indicating that the following words are applicable to the former,

rather than the present, state of the landscape

The following information was taken into account:

e Total frequency of words in the text.

e List of word combinations in which the word can occur.!
e Frequency of word combinations, absolute and relative to both words in the combi-
nation.

e In ambiguous cases, the original text of descriptions where this word occurs was also
consulted.

The environment where this classification was carried out also allows to declare multi-
word combinations as a single term and modify the list of used classes.

4.3.2 Grammatic forms of the words in the Russian language as guideline for
significance estimation

Each word could occur in the description in different forms. Moreover, sometimes syn-
onymous words were used by the authors of the descriptions. Therefore, during the word
classification stage, various forms of the words were replaced by a single term. Sometimes
one term was used for several synonymous words. These terms are referred to below as
“values” of words.

LConsideration of possible combinations with the other word in a pair was often required.

~10—

But word suffixes can sometimes contain useful information. For example, name of a
tree species can be used as adjective for the word “forests” and in constructs like “with
...7. This means that a given forest species has less relative weight than in the case where
it is used as an adjective.

Each of these cases could easily be distinguished by using word suffixes. Practically,
simple regular expressions were sufficient to correctly estimate the grammatic form in 90%
of the cases.

This information was retained during the word classification stage and stored as a
“subclass” of the word.

4.3.3 Multilevel structure of the description

From the analysis we want to obtain the following information as a first result. For each
kind of landscape we should have a list of forest species along with their relative weight
and total relative weight for all types of non-forest landcover.

The following procedure was used to compute the relative weight:

It was assumed that the landcover types are listed in the description in order of their
importance. The same is applicable to the list of adjectives, describing forest species and
list of parts of complex adjectives.?

For each of these three levels relative weights were estimated by counting the parts in
the description and a sequential number of given parts by using Table 3. The final weight
of the term was estimated as a product of relative weights at all three levels.

Table 3: Relative weights of parts of the landscape description.

Number of parts | Relative weights %

100
60 40
50 30 20

50 20 20 10

40 20 20 10 10

40 15 15 10 10 10

30 15 15 10 10 10 10
30 15 10 10 10 10 10 5

0O UL W

The types of landcover can easily be distinguished in this step of the analysis, because
their description is ended by words of the class “types”. But a simple extraction of all
forest types would not give a proper list of all land cover types with respect to their
importance. There could be, for example, two distinct types of forests separated by the
word “and”, which has only one word “forest” describing them.

Thus, first all words were divided into parts, endings by word type were identified
and separated into forest types and non-forest types. The parts of the description which
contained the terms “forest” and “sparse forest” were counted as forests as well as parts
which contained at least one word of the class “forest” and did not contain words of the
class “disable-forest” and “derived-from”.

2This is not evident, because the tradition in Russian earth sciences require that the most important
part of a complex adjective should come at the end. But expert evaluation proves that this rule is not
followed in the legend of this map.

—11—

Assignment of relative weights to forest species
in the landscape description

Pine- birch with oak rare
25=50x50 15=30x50 10=20x50
. 50% 30% + 20% =50%

Legend: Result of analysis.
: _ Pine 25%
Pine - Forest species Birch 15%
- Land cover types Oak 10%
with - Modifiers (ignored) Non-forest 20%

50% - Partial weight
25% - Final weight

- Individual land cover type
description

Figure 5: Description of the parsing scheme.

Parts containing words of the class “derived-from” were discarded in this step in order
to avoid influences on the relative weight of the present vegetation cover types.

Then the forest types were analyzed by using the word subtypes (i.e., grammatic form
of the words) to separate individual forest types.

In this step we counted the number of landcover types and the number of forest species
(classes “forest” and “mixed”) in each part.

Thus, two of three levels of the description structure were effectively joined together
and we computed relative weight as product of two factors, weight of the forest type in the

total list of landcover types, and weight of forest species in the complex adjective, which
could look like:

Pine-birch forests, with spruce and, seldom, cedar

This example contains one word of type “types”, four words of type “forest”, two words
of class “modifier” and one word of class “meaningless”.

In the present system of analysis “modifiers” were treated just like “meaningless”
words, but in the future it is possible to use them for refining the relative weights.

Figure 5 shows the scheme for description of the parsing and the relative weight as-
signment.

This stage of analysis produces a list of forest species for each kind of landscapes.
This list can be used in GIS processing immediately, although it does not conform to the
constraints of a relational database model.

The relative weights computed in this step do not represent the real area extent of forest
species or wood reserves. They only indicate the importance of the species according to
the original classification by the authors.

But these weights provide knowledge which allow us to distribute the SFA information
over several landscape kinds inside all forest enterprises, taking into account the natural
conditions of these landscapes as well as their area extent.

—12—

Unfortunately, there was no possibility to create a user interface for this step of the
analysis, which would allow to construct a variety of queries. All scripts which currently
exist are non-interactive and oriented toward a particular type of queries.

4.4 Technology of word analysis as alternative to traditional databases

Finally, we have developed a technology for computer-based analysis of certain types of
written texts. This technology is not limited to this particular map legend. Although it
is oriented to highly specialized forms of text — physical geography descriptions — it can
be used to process large amounts of data, including field observations, collected during
the pre-computerized age.

This technology has some benefits (described in the following) over converting such
data into relational databases.

First, original text of description is preserved through the entire analysis. It means
that no information loss occurs until we decide which information we want to process and
which is irrelevant.

Second, any corrections (corrections of typographical errors) made to the original text
are automatically propagated to the final results.

Third, if new data are acquired, they can easily be integrated into the existing database.
If the new data follow the same outline as existing data, very few modifications are required
for the word classification tables.

Although this technology is new and incomplete it can be recommended for use in
other areas.

5 Results of Analysis

5.1 Distribution of tree species

The first information which can be derived from the landscape description is the distribu-
tion of individual forest species. This is a good test of the technology, because it can be
easily compared with existing geobotanical maps. Figure 6 shows the distribution of larch
forests in Russia.

The intensity of the green color shows the relative weight of larch species in a given
point. As expected, larch forests are mainly located in Siberia.

5.2 Derivation of forest types from the landscape description

The second kind of information which can be extracted is the type of forests. In Figure 7
the type of forests is indicated by prevalent tree species, regardless of the relative weight
of the same.

At a first glance, few inconsistencies can be found on this map, as well as on the map
illustrating the forest cover (Figure 8). For example, in the Kola Peninsula the forests are
extended almost to the coastline. Usually, the border between tundra and sparse forests
is drawn further south. But Gudilin’s map is based on a large amount of remote sensing
information (aerial and satellite photos as well as aerovisual observations), so it could
be even more accurate than other maps. These latter maps are usually based, especially

~13—

uouNqUISIP YareT]

Ojul ON
00T-08
08-09
09-01
ov-0¢
0¢-0

Figure 6: Distribution of larch forests.

— 14—

mojm[_] snoisjuoo sep[]

1s810j—uou[__] eyore[|
payissejoun Il teidod[]
paxiw[] aidew]
mom] Arepuooss[]
san-nny [sepre[]
ST | sanswi]
eyyseisyill sissioikeeA]
sonosayiuoo [l yong-suois[]
ooqureq [yosaq]
rebm[_] weaquioy[]
sol0ads aaJ) ure

uadse[]
[
tepaos[]
sonopiosp]
sreo[]
panes|peosq |
sonids[_]
yona]
suld[_]
yorel[]

ies.

Map of prevalent forest spec

Figure 7

—15—

T

abeianod 1sai104

Ojul ON
00T-08
08-09
09-01
ov-0¢
0¢-0

f forest lands.

0on o

ibut

Figure 8: Distr

—16—

in less populated polar regions, on old published works and general physical-geographic
concepts.

The unusually large extent of non-forest patches in Western Siberia should be noticed.
The explanation is that bog landscapes with some forest species, for example spruce bogs
and pine on ridges, are classified as non-forest landscapes with our approach, although
they can be classified as sparse forests using aerial photos or results of field investigations.

5.3 A regionalized approach of linking landscape descriptions with the
State Forest Account (SFA)

Obviously, the next step of analysis would be to link the landscape information with SFA
information and the succession database to replace relative weights with real figures of
forest resources. This imposes several problems.

First, forest species names are used in the SFA, while landscape descriptions usually
use less specific genera names. But it is possible to choose particular species within genera,
using information for landscape variant.

Second, the real area extent as given in FSA databases are not necessary proportional
to our relative weight, computed from the text description. Thus, the distribution of
the forest resources information over landscapes should probably be carried out as an
optimization problem. Due to the fact that the area of a landscape is usually larger than
the borders of a given forest enterprise — particular enterprises cover several kinds of
landscapes — this optimization should be performed by some larger territorial units. This
would allow to impose additional constraints, such as that distribution of forests in a
particular kind of landscape should be the same in all forest enterprises. There are two
possible choices of territorial units for this optimization, namely the landscape variants
and ecoregions.

While the landscape wvariant boundaries never cross boundaries of landscape kind,
ecoregion boundaries never cross boundaries of the forest enterprises, so there are no
geometric preferences in this choice. Landscape variants are sufficiently larger than ecore-
gions, so if it were possible to use the former, it would significantly decrease the amount of
work. But it is possible that future investigations will prove that smaller territorial units
are better for this kind of optimization. In this case ecoregions should be used.

6 Conclusion

Results of this study show that the landscape map of the USSR developed by Gudilin[2]
can be used for GIS-based research. It is a valuable source of information because it
contains the most detailed division of total Russia into homogeneous natural units, based
on uniform classifications and concepts.

Its legend contains a large amount of information, relevant for forest research. In
conjunction with other sources of information, such as the State Forest Account and the
ITASA succession database, it can even be used as base for small-scaled forest mapping
and forest simulation models.

The developed technology allows to extract information from text descriptions of land-
scapes and use it for mapping by GIS-systems and for joint analysis with other databases.

—17—

References

1]

2]

Berg, L.S., 1930, Landscape-geographical Zones of USSR, Institute of Plant Growth,
Leningrad, 2nd edition, pp. 369 [in Russian].

Gudilin, L.S., 1987, Ezplanatory Text to the Landscape Map of the USSR at the Scale
of 1:2.5 Million, Gidrospecgeologia, Moscow, pp. 102 [in Russian].

Isachenko A.G., ed., 1988, Landscape Map of USSR (for higher schools), GUGK,
Moscow [in Russian].

Rozhkov, V., Efremov, D., Nilsson, S. Sedych, V., Shvidenko, A., Sokolov, V., and
Wagner, V., 1996, Siberian Landscape Classification and a Digitized Map of Siberian
Landscapes, WP-96-111, International Institute for Applied Systems Analysis, Lax-
enburg, Austria.

Dokuchaev Soil Institute On-line Map catalogue, 1997,
http://www.grida.no/prog/polar/ecoreg/dsi/english.html

— 18—

Appendix A: Landscape Classification by Gudilin (1987)

A.1 Biology related levels of classification

Group ‘ Type ‘ Subtype

Arctic

Arctic (polar) deserts

‘ No differentiation

Mountain arctic (polar) deserts

‘ Arctic desert low mountains

Arctic tundra

‘ No differentiation

Mountain arctic tundra

Arctic desert low mountains

Arctic tundra low mountains

Subarctic moderate continental and continental

Subarctic tundra

Northern tundra

Southern tundra

Forest tundra

‘ No differentiation

Mountain tundra

Tundra low mountains

Tundra and sparse forest low mountains

Desert-tundra middle mountains

Mountain sparse forests

Tundra and sparse forest low mountains

Sparse forest low mountains

Subarctic severe continental

Subarctic tundra

Northern tundra

Southern tundra

Forest tundra

‘ No differentiation

Mountain tundra

Tundra and sparse forest-tundra middle mountains

Bare top uplands

Tundra low mountains

Tundra and sparse forest low mountains

Tundra-bare top middle mountains

Mountain sparse forests

‘ Sparse forest and tundra-sparse forest low mountains

Boreal suboceanic(atlantic)

Taiga forests

‘ Subtaiga (with mixed broadleaved and coniferous forests)

Boreal moderate continental

Mountain meadows

‘ Meadow and tundra-meadow middle mountains

—19—

Group

Type

‘ Subtype

Taiga

forests

Northern taiga

Middle taiga

Southern taiga

Subtaiga (with mixed deciduous, broadleaved, and coniferous forests)

Mountain taiga forests

Sparse taiga low mountains

Taiga low mountains

Forested low mountains (with mixed broadleaved and coniferous and
deciduous forests)

Boreal continental

Mountain meadows

Meadow middle mountains

Meadow uplands

Mountain tundra and subtundra sparse forests

Meadow-tundra middle mountains

Tundra and bare top-tundra uplands

Taiga

forests

Northern taiga

Middle taiga

Southern taiga

Subtaiga (with mixed deciduous and coniferous forests and coniferous
forests)

Mountain taiga forests

Sparse taiga low mountains

Taiga low mountains

Sparse taiga middle mountains

Taiga middle mountains

Low mountains with exposition-dependent forests

Boreal severe continental

Mountain tundra and subtundra sparse forests

Bare top uplands

Tundra-sparse forest middle mountains

Tundra uplands

Taiga

forests

Northern taiga

Middle and southern taiga

Mountain taiga forests

Sparse taiga low mountains

Taiga low mountains

Sparse taiga middle mountains

Taiga middle mountains

Low mountains with exposition-dependent forests

Subboreal suboceanic (atlantic)

Broadleaved forests

‘ No differentiation

—920—

Group

Type ‘ Subtype

Mountain forests (mixed coniferous and broadleaved)

Meadow-forested low mountains (with coniferous and broadleaved
forests)

Forested middle mountains (with coniferous and mixed broadleaved

and coniferous forests)

Mountain meadows (subalpine)

‘ Meadow middle mountains

Subboreal moderate continental

Broadleaved forests

‘ No differentiation

Forest-steppe

‘ No differentiation

Steppe

Typical (true) steppes

Dry steppes

Mountain meadows

‘ Meadow uplands

Mountain forest-steppes

‘ Forest steppe low mountains

Mountain forests (broadleaved and mixed)

Forested low mountains (with broadleaved forests)

Forested middle and low mountains (with broadleaved and
broadleaved and coniferous forests)

Subnival landscapes

‘ Stony subnival uplands (intermediate mountainous landscape)

Subboreal continental

Forest-steppe

‘ No differentiation

Steppe

Typical (true) steppes

Dry steppes

Semideserts

‘ No differentiation

Deserts

Northern desert

Southern desert

Mountain steppes and deserts

Desert-steppe low mountains

Steppe low mountains

Meadow-forest and forest-meadow-steppe low mountains (with conif-
erous, deciduous and broadleaved forests)

Steppe and desert-steppe middle mountains

Mountain meadowsteppes and exposition-dependent forests

Meadow-forest and forest-meadow-steppe low mountains (with conif-
erous, deciduous and broadleaved forests)

Meadow-forest and forest-meadow-steppe middle mountains (with
coniferous, deciduous and broadleaved forests)

—921—

Group

Type ‘ Subtype

Subnival landscapes

‘ Stony subnival uplands (intermediate mountainous landscape)

Mountain meadowsteppes (subalpine and alpine)

‘ Meadow and meadow-steppe uplands

Mountain forests (broadleaved)

‘ Forested low and middle mountains(with broadleaved forests)

Subarct

ic suboceanic and oceanic (pacific)

Mountain sparse forests and elvinwood

Elfin wood and tundra-elfin wood low mountains

Elfin wood and sparse forest low mountains

Subarctic tundra

Northern tundra

Southern tundra

Forest tundra

Suppressed and deformed forests and elfin wood

Subtundra sparse forests

Mountain tundra

Sparse forests and tundra-elfin wood low mountains

Elfin wood-tundra middle mountains

Tundra low mountains

Tundra-bare top middle mountains

Boreal suboceanic (pacific)

Mountain tundra and subtundra sparse forests

Sparse forests and tundra-elfin wood middle mountains

Tundra-bare top uplands

Taiga forests

Northern taiga

Middle taiga

Southern taiga

Subtaiga (with mixed deciduous and coniferous forests)

Mountain taiga forests

Taiga low mountains

Elfin wood and sparse taiga low mountains

Taiga and sparse taiga middle mountains

Forested low mountains (with mixed broadleaved and coniferous
forests)

Boreal oceanic (pacific)

Deciduous forests and meadows

‘ No differentiation

Mountain deciduous forests and elvinwoods

Elfin wood low mountains

Low mountains with deciduous forests

Mountain tundra and elvinwood

Elfin wood-tundra middle mountains

Meadow-tundra middle mountains

Tundra-bare top uplands

—929_

Group

Type ‘ Subtype

Taiga forests

Subtaiga (with mixed broadleaved and coniferous forests)

Southern taiga

Mountain taiga forests

Taiga low mountains

Forested low mountains (with mixed broadleaved and coniferous
forests)

Subboreal severe continental

Steppe

‘ Dry steppes

Semideserts

‘ No differentiation

Subnival landscapes

‘ Stony subnival uplands (intermediate mountainous landscape)

Mountain meadowsteppes (subalpine and alpine)

‘ Meadow-steppe and steppe uplands

Mountain steppes

Desert-steppe low mountains

Desert-steppe middle mountains

Mountain tundra and steppe

‘ Tundra-steppe and steppe uplands

Mountain cold deserts

‘ Desert uplands

Subboreal suboceanic (pacific)

Broadleaved forests

‘ No differentiation

Mountain forests (broadleaved)

‘ Forested low mountains (with broadleaved forests)

Subtropical suboceanic (atlantic)

Mountain meadows (subalpine)

‘ Meadow uplands

Mountain forests (broadleaved and mixed)

Forested low mountains (with broadleaved forests with evergreen un-
derstory)

Forested middle mountains (with mixed broadleaved and coniferous
forests)

Broadleaved liana forests

‘ No differentiation

Subtropical moderate continental

Forest-steppe

‘ No differentiation

Mountain meadows

‘ Meadow uplands

Mountain forest-steppes

‘ ”Shiblyak” low mountains

Mountain forests (broadleaved and mixed)

Forested middle and low mountains (with broadleaved and
broadleaved and coniferous forests)

—923—

Group

Type | Subtype

Forested low mountains (with Mediterranean forests)

Subtropical continental

Semideserts

‘ No differentiation

Mountain meadowsteppes and exposition-dependent forests

Meadow-forest and forest-meadow-steppe middle mountains and up-
lands (with broadleaved forests)

Subnival landscapes

‘ Stony subnival uplands (intermediate mountainous landscape)

Mountain meadowsteppes (subalpine and alpine)

‘ Meadow-steppe uplands

Mountain deserts, steppe and xerophytic sparse forests

Desert-steppe low mountains

Steppe and desert-steppe middle mountains

Steppe (semi-savanna) low mountains

Desert-steppe uplands

Xerophytic bushes and sparse forests of middle and high mountains

—24—

A.2 Geomorphology related levels

Division ‘ Class ‘ Genera

Landscapes of plains(platforms)

Plains

Accumulative-denudational sea deposits

Bog accumulative-denudational

Delta accumulative

Deluvial-proluvial accumulative

Deluvial-proluvial accumulative-denudational

Denudational carst plains

Denudational plains with hard rock basement

Denudational stratum plains

Denudational trappes

Denudational volcanogenic

Alluvial accumulative

Denudational-erosion structural

Denudational-erosion plains with hard rock basement

Denudational-erosion stratum plains

Denudational-erosion structural

Denudational-erosion trappes

Denudational-erosion volcanogenic

Alluvial accumulative-denudational

Denudational-structural

Eol accumulative deposits

Eol accumulative-denudational

Alluvial-proluvial accumulative

Volcanic matter plains with hard rock basement

Fluvioglacial accumulative

Fluvioglacial accumulative-denudational

Glacial accumulative

Glacial accumulative-denudational

Glacial and fluvioglacial accumulative

Glacial and fluvioglacial accumulative-denudational

Alluvial-proluvial accumulative-denudational

Lake accumulative deposits

Lake accumulative-denudational

Lake-alluvial accumulative

Lake-alluvial accumulative-denudational

Loess accumulative

Loess accumulative-denudational

Mixed origin accumulative

Mixed origin accumulative-denudational

Sea accumulative deposits

Sea-glacial accumulative

Sea-glacial accumulative-denudational

Solontchak accumulative

Solontchak accumulative-denudational

95

Division

Class | Genera

Bog accumulative

Mountains inside platform

Denudational-erosion block-flexure

Denudational-erosional flexure regions

Blocked denudational-erosion

Blocked volcanic matter

Landscap

es of mountain belts

Foothill and intermountain plains

Accumulative-denudational sea deposits

Bog accumulative-denudational

Deluvial-proluvial accumulative

Deluvial-proluvial accumulative-denudational

Denudational plains with hard rock basement

Denudational stratum plains

Denudational volcanogenic

Alluvial accumulative

Denudational-erosion structural

Denudational-erosion block-flexure

Denudational-erosion stratum plains

Denudational-erosion volcanogenic

Alluvial accumulative-denudational

Denudational-structural

Eol accumulative deposits

Eol accumulative-denudational

Volcanic matter block-flexure

Alluvial-proluvial accumulative

Volcanic matter

Fluvioglacial accumulative

Fluvioglacial accumulative-denudational

Glacial accumulative

Glacial accumulative-denudational

Glacial and fluvioglacial accumulative

Glacial and fluvioglacial

Alluvial-proluvial accumulative-denudational

Lake accumulative deposits

Lake accumulative-denudational

Lake-alluvial accumulative

Lake-alluvial accumulative-denudational

Loess accumulative

Loess accumulative-denudational

Mixed origin accumulative

Mixed origin accumulative-denudational

Sea accumulative deposits

Denudational-erosion plains with hard rock basement

Volcanic matter plains with hard rock basement

Glacial and fluvioglacial accumulative-denudational

— 26—

Division

Class

Genera

Blocked denudational

Blocked denudational-erosion

Blocked volcanic matter

Bog accumulative

Mountains

Denudational flexure

Denudational-erosion and volcanic matter (plains with hard
rock basement)

Denudational-erosion and volcanic matter

Denudational-erosion block-flexure

Denudational-erosion volcanic

Denudational-erosion volcanos (plains with hard rock base-
ment)

Denudational-erosional flexure regions

Erosion block-flexure

Erosion flexure

Erosional block-flexure

Erosional blocked

Volcanic matter block-flexure

Blocked denudational

Blocked denudational-erosion

Blocked volcanic matter

A.3 Variants of landscapes

Code | Variant

I Kola-Karelian

II East European

II1 Middle Siberian

v Kazakhstanian

\% Central Asian

VI Middle Siberian

VII Novaya Zemlya-Uralian
VIII Severnaya Zemlya-Taymyrian
IX Tjan-Shan-Jungarian

X Altay-Sayanian

XI Cisbaikalian-Transbaikalian
XII North-Eastern

XIII Far East-Daurian

X1V Carpatian

XV Crimea-Caucasian

XVI Kopet-Dagian

XVII | Pamirian

XVIII | Kamchatka-Sakhalinian

97

Appendix B: Software Used for the Analysis

B.1 General choice of tools

The requirements of this study are far beyond the capabilities of usual end-user software
(spreadsheets, databases), thus scripting language was a logical choice.

We need both processing power and flexibility of string processing and highly cus-
tomized user interface. There are several freely available programs which offer such func-
tionality, namely Tcl, Perl, and Python.

Tcl have several advantages:

e There is a larger amount of tools and extensions available for Tcl than for Python.
e Tcl is fully transportable. There are versions for Unix, Windows, and Macintosh.

e Tcl scripts can be modified during execution. This was essential for debugging word-
analysis scripts, because it takes considerable time to collect statistical information
about words in the legend.

e We have a GIS extension which allows us to visualize and print maps directly from
Tcl script.

Thus, Tcl/Tk was chosen as base language for this study. TkTable extension was also
used to provide easy tabular interface for the word-classification programs.

All these tools are freely available and can be downloaded from the internet.

Tcl core is located at http://www.sunscript.com.

TkTable extension is at http://www.cs.uoregon.edu/research/tcl/capp/.

B.2 User guide

All scripts are designed to simplify debugging and modification. Usually they are organized
in two parts, namely startup script and procedure library. The startup script usually
contains few lines to load procedure library and desired data files. Procedure library is
responsible for all other work. Most of the scripts allow to reload procedure library without
loosing already processed data.

B.2.1 table script

table script performs the part separation (see Section 4.2). It loads the original legend
which is kept in the text file with fields separated by the “|” character, strips out higher
classification levels, and presents results of separation in a tabular form.

The geomorphological part is plotted by black text and the biological part by blue
text. By default, the boundary between two parts is in the middle of the screen, although
the table can be scrolled in both directions.

Each cell in the table represents a comma-separated part of the description. This part
can be moved from one side to another by double-clicking the left mouse button. If you
click on the left of the boundary, all cells between the one you click and the boundary will
be moved to the right side and vice versa.

This manual correction does not affect the basic heuristics. They are stored in a
separate file named minmax.idx. This file contains entries only for manually modified
rows. It is saved automatically at exit, and can also be saved manually using the “Save”
button. At startup this file is read and all stored corrections are applied.

The “Reload” button allows to reread the data file in case of correction of typos.

—928—

The “Generate files” button writes the results of the separation into two files bio.txt
and geo.txt, which are used for subsequential word analysis.

There is also the “Goto” entry which allows to enter the number of landscape kinds
without manual scrolling of the table. It proved to be useful when errors in the separation
step were discovered during the word analysis.

There is a non-interactive version of this script, regen-bio-geo, which recreates
bio.txt and geo.txt from legend and existing minmax.idx. It is intended for correcting
typos in the original legend during the word analysis. A common procedure library for
these scripts is kept in the file table.tcl.

B.2.2 Word analysis scripts

There are actually two scripts which share the common data handling library readdata.tcl.
wordanalysis computes statistical information and allows to analyze and assign classes
to words. The procedure library for this script is stored in the file wordanal.tcl.

classify presents words on a per-class basis and allows to assign values and subclasses
(procedure library classclass.tcl).

First it computes the statistical information and presents the word table. At the time
a row of this table is selected, a small table of word combinations appears in the upper-left
corner of the window.

A double-click on the word combination allows to find other words from this combi-
nation. The combination can be converted to a term by pressing the appropriate button.
Statistics are not recalculated automatically when a new term is defined, due to the con-
siderable time required. The “Recalc” button should be pressed for recalculations.

A middle-button click on the word with original texts of the descriptions where this
word can occur pops up in the window.

By clicking the right button on the “class” column of the table a menu of already
defined classes pops up and allows to assign one of them to a word. New classes can be
defined from the same menu.

You should distinguish between “Reload” and “Reread” buttons. The former reloads
the procedure library and the latter reloads data files.

The results of this program are kept in files with the same prefix as the source file.
For example, if the data file is bio.txt, list of classes is kept in bio.class, and classes
assigned to words in the bio.txt.class. The latter has the form of a Tcl script and is
sourced by script on startup and data rereading.

The name of the data file is hardcoded into the startup script. Nothing prevents you
from creating several startup scripts for different data files. After all, the startup script is
six lines long.

The classify script presents classes one at a time and allows to assign values to words.
It is mostly done by using standard tkTable key and the mouse function. However, a third
column of a table can contain regular expressions. If you enter a value into the second
column and a regular expression into the third, and then double-click on value, all words
that match this regular expression are given below.

A double click on the word in the first column copies it into both value and regular
expression fields, although you probably want to edit both of them before applying.

When you finish entering a value into the second column, you should press the Return
key or double-click on this cell, otherwise the value can be lost if you change the word
type immediately.

By pressing the right button on the first column a menu of classes pops up and allows
to send this word into other class.

—929_

Subclasses are usually assigned automatically, by using a predefined set of regular
expressions in the file bio. subclass. However, it is possible to change subclasses manually
by using the pop-up menu.

There are buttons for saving results, reloading data and program, and exiting from
the program. The button “Classify” does nothing.

Note: classify and wordanalysis should not run simultaneously. They modify the
same files and each of them can overwrite changes made by the other.

B.2.3 Relative weight assignment

This script (weights.tcl) is not interactive. It simply reads data from files prepared by
previous scripts and produces the forlist.txt.
This file has the following structure:

e Each line is a correct Tl list.
e The first element of the list is a landscape kind number.

e All other elements are two-element lists, with species name (or some reserved word
like “non-forest” or “unclassified”) as first element and relative weight of this species
as second element.

This script also produces a list of used species names and keywords to stdout.

There are several small scripts — forest.tcl, larch.tcl and specie.tcl, which
extract information from forlist.txt to produce maps. They are all straightforward,
so only forest.tcl is included here as an example. They produce files with the same
names as the script, and extension .tab which contains the tcl list of number pairs. The
first number in each pair is the landscape number, and the second is the number of legend
entry to assign to this polygon.

B.3 Program texts
B.3.1 Part separation
TABLE

#!/usr/local/bin/wish4.2

source table.tcl

layout

proc message {msgl} {
.menu.progress config -text $msg
update

%

read_all

REGEN_BIO_GEO

#!/usr/local/bin/tclsh7.6
proc message {msgl} {
puts $msg

¥

—-30—-

source table.tcl
read_all
write_files

TABLE.TCL

#! /usr/local/bin/wish4.2
if {"$tcl_platform(platform)"=="unix"} {
source $env(HOME)/.wishrc
set font 6x10
} else {
set font {}
}
package require Tktable
#median - number of boundary column
set median 14
table event handling
proc go_to {} {
set line [.menu.goto get]
.f.t yview [expr $line - 2]
}
proc toggle_bio {index} {
global tab median max min changed new_changes
set row [.f.t index $index row]
set col [.f.t index $index col]
#puts "th($row) was $th($row)."
if {$col<$median} {
set shift [expr $median-$col]
for {set i $max($row)} {$i>=$min($row)} {incr i -1} {
set tab($row, [expr $i+$shift]) $tab($row,$i)
unset tab($row,$i)
}
incr max($row) $shift
incr min($row) $shift
} else {
set shift [expr $median-$col-1]
for {set i $min($row)} {$i<=$max($row)} {incr i} {
set tab($row, [expr $i+$shift]) $tab($row,$i)
unset tab($row,$i)
}
incr max($row) $shift
incr min($row) $shift
}
set changed($row) 1
set new_changes 1
}
proc save_results {} {
global changed min new_changes
if !$new_changes return
set f [open minmax.idx w]

~31—

foreach i [lsort -integer [array names changed]] {
puts $f "$i $min($i)"

}
close $f
set new_changes 0

}

proc save_and_quit {} {

pack forget .f .hs .menu

label .wait -text "Wait please while I’m saving results" -wraplength 160
pack .wait

update

save_results

destroy .

b

proc unquote {text} {

regsub {, *$} $text {} text

set debug 0O

#if [regexp "\}" $text] {set debug 1;puts "----—-—--—---—- "}

if $debug {puts $text}

regsub -all "\} \{" $text {, } text
if $debug {puts $text}

regsub -all "\{\{" $text {(} text
if $debug {puts $text}

regsub -all "\}\}" $text {)} text
if $debug {puts $text}

return $text

}

proc write_files {} {
global tab min median max 1lndid
message "Writing files..."
update
save_results
set bio [open bio.txt w]
set geo [open geo.txt w]
for {set row 1} {$row<=3446} {incr row} {
set geotext {}
for {set j $min($row)} {$j<$median} {incr j} {
append geotext "$tab($row,$j), "
}
puts $geo "$1ndid($row) | [unquote $geotext]"
in real script there is handling of special case of bog landscapes
it is omitted because it is highly specific and contain Cyrillic
regular expressions
set biotext ""

~39-

for {set j $median} {$j<=$max($row)} {incr j} {
append biotext "$tab($row,$j), "
}
puts $bio "$1ndid($row) | [unquote $biotext]"
}
close $bio
close $geo
message "Files written"

}

proc read_all {} {
global 1ndid lineno tab median changed min max new_changes 1nd_id index
message "Loading..."
#Reading already saved changes
if [file exists minmax.idx] {
set f [open minmax.idx]
while {![eof $£f]1} {
set 11 [gets $f]
if [llength $11]<2 continue
set min([lindex $11 0]) [lindex $11 1]
set changed([lindex $11 0]) 1

}

set new_changes 0
#reading legend
array set threshold { 2 23 344546575}

set £ [open ../legend]

set lineno O
while {![eof $£]1} {

set line "\{[gets $£I\}"

incr lineno

regsub -all {\|} $line "\} \{" line

set 1ndid($lineno) [lindex $line 0]

if {$1ndid($lineno)>3499} break

Do not bother ourselves with unclassified river valleys.

set line "\{[lindex $line 11]\}"

legend has 12 fields

regsub -all {\(} $line "\{\{" line

regsub -all {\)} $line "\}\}" line

regsub -all {, *} $line "\} \{" line

if [catch {set count [llength $line]}] {puts "$lineno:$line"}
if ![info exists table($count)] {
set table($count) 1

} else {

incr table($count)

}
set colno O
set tab($lineno,0) $1ndid($lineno)
set s 1

—-33-

if [array exists index] {unset index}
foreach i $line {
Following regular expression uses Cyrillic "S", not latin "C"
Semantically, it means "“with .x*"
if [regexp "“c .*" $i] {
incr s
set index($s) $colno
}
incr colno
}
if [info exists threshold($s)] {set t $index($threshold($s))} else {
set t $colno}
if {$median<=$t} {set t [expr $median -1]}
if ![info exists min($lineno)] {
set min($lineno) [expr $median - $t]
}
set i $min($lineno)
foreach s $line {
set tab($lineno,$i) $s
incr i
}

set max($lineno) [expr $i -1]

b

close $f

message "Loading complete"

catch {

#This commands work only in graphic environment
.f.t configure -rows $lineno

}

}

proc layout {} {

global median font

frame .menu

button .menu.reload -text "Reload" -command read_all

button .menu.save -text "Save" -command save_results

button .menu.write -text "Generate files" —-command write_files
button .menu.quit -text "Exit" -command save_and_quit

pack .menu.reload .menu.save .menu.write -padx 10 -side left
label .menu.goto_label -text Goto:

entry .menu.goto -width 6

pack .menu.goto_label .menu.goto -side left

bind .menu.goto <Key-Return> go_to

label .menu.progress -text ""

pack .menu.progress —side left

pack .menu.quit -padx 30 -side right

pack .menu -expand y -fill x

frame .f

—34—

table .f.t -colwidth 45 -font $font -roworigin O -cols [expr 2*$median]\

-rows 1000 -titlecols 1 -yscrollcommand ".f.s set"\

-xscrollcommand ".hs set" -variable tab -anchor w -titlerows 1

for {set i 1} {$i<2*$median} {incr i} {set tab(0,$i) $i}

.f.t width 0 6

scrollbar .f.s -orient vert -command ".f.t yview"

scrollbar .hs -orient horiz -command ".f.t xview"

.f.t tag configure bio -foreground blue -font $font

.f.t tag configure both -foreground red -font $font

.f.t tag configure title -anchor c

.f.t xview [expr $median -3]

for {set i O;set j $median} {$i<$median} {incr i;incr j} {
.f.t tag col bio $j

b

pack .f.t -side left -fill both -expand y

pack .f -fill both -expand y

pack .f.s -expand y -fill y -side left

pack .hs -expand y -fill x

bind .f.t <Double-1> "toggle_bio @%x,%y;break"

wm protocol . WM_DELETE_WINDOW save_and_quit

b

Frequency analysis
WORDANALYSIS

#!/usr/local/bin/wish4.2
source wordanal.tcl
readfile bio.txt

layout

update

fill_tables

WORDANAL.TCL

#!/usr/local/bin/wish4.2

if {"$tcl_platform(platform)"=="unix"} {

if [file exists ~/.wishrc] {source ~/.wishrc}

set font 8x13

set MyEvent <Button-2>

} else {

set dir $tcl_pkgPath

if [file exists $dir/pkgIndex.tcl] {source $dir/pkgIndex.tcl}
set font {-*-ROL:K0I8/Courier-medium-r-normal--12-*—k—*—k—x—*-x}
set MyEvent <Double-3>

}

package require Tktable

source readdata.tcl

proc process_array {} {

- 35—

global descr wordcount statustext wordtab table badwords
set t O
catch {unset table}
catch {unset wordtab}
foreach i [array names descr] {
set text $descr($i)
set count [llength $text]
set p O
for {set i O;set j 1} {$j<$count} {incr i;incr j} {
set wl [lindex $text $i]
set w2 [lindex $text $j]
if [info exists badwords($wl)] continue
if [info exists wordtab($w1)] {
incr wordtab($wl)
} else {
set wordtab($wl) 1
}
if {[info exists badwords($w2)]1} {
set index $wi
} else {
set index "$wl $w2"
}
incr p
if [info exists table($index)] {
incr table($index)
} else {
set table($index) 1

}
incr t $p
update
}
set wordcount [llength [array names wordtab]]
set statustext "Total pairs scanned:$t
Different words found:[llength [array names table]]
words analysed $wordcount"
.u.menu.stat config -height 3 -text $statustext
.u.t config -rows [expr $wordcount+1]
}
proc save_classes {} {
global class workfile wordtab
set £ [open $workfile.class w]
foreach {i j} [array get class] {
if [info exists wordtab([lindex [split $i ","] 11)] {
puts $f [list set class($i) $j]
} else { unset class($i) }
}
close $f
}

—36—

proc save_and_exit {} {
save_classes
exit

}

proc fill_tables {} {
global font class table wordtab tab
toplevel .process
wm geometry .process +300+300
label .process.l -text "Working..." -font $font
pack .process.l

label .process.stage -text "Counting words..." -font $font
pack .process.stage
update

process_array
.process.stage config -text "Sorting words"

update
#sort out words
set list {}

foreach {word count} [array get wordtab] {
lappend list [list [format "%05d" $count] $word]

}

set j O

foreach 1 [lsort -ascii -dec $list] {
incr j
.process.stage config -text "Filling table row $j"
update

set word [lindex $1 1]
regsub {"0*} [lindex $1 0] {} count
set tab($j,0) $word
set tab($j,1) $count
set tab($j,list) [concat [array names table "* $word"]\
[array names table "$word *"]]
set tab($j,2) [llength $tab($j,list)]
for {set i 5} "\$i<[.t.t cget -cols]" {incr i} {
catch {unset tab($j,$i)}
}
foreach cls [array names class "x,$word"] {
set 1 [split $cls ","]
set tab($j,[lindex $1 0]) $class($cls)
}
if 1$tab($j,2) {
catch {unset tab($j,3)}
catch {unset tab($j,4)}
continue
}
set ¢ O
foreach pair $tab($j,list) {
if $table($pair)>$c {

— 37—

set ¢ $table($pair)
set p $pair

}
}
set tab($j,3) $p
set tab($j,4) [format "%6.2f" [expr $c*100.0/$count]]
}
destroy .process
}

proc show_pairs {index} {
global pairtab tab table wordtab
set row [.t.t index $index row]
set count $tab($row,1)
set list {}
foreach pair $tab($row,list) {
lappend list [list [format "%05d" $table($pair)] $pair]
}
set j 1
foreach tt [lsort -dec $list] {
regsub {"0*} [lindex $tt 0] {} ¢
set pair [lindex $tt 1]
set pairtab($j,0) $pair
set pairtab($j,1) $c
set pairtab($j,2) [format "%6.2f" \
[expr 100.0*$c/$wordtab([lindex $pair 0])]1]
if [llength $pair]>1 {
set pairtab($j,3) [format "%6.2f" \
[expr 100.0*$c/$wordtab([lindex $pair 11)]]
} else {catch {unset pairtab($j,3)}}

incr j
}
.u.t config -rows $j
}
set list {}

reloads program without destroying global data structures
proc reload {} {
foreach w [pack slaves .] {
destroy $w
}
set result [catch {uplevel source wordanal.tcl} msg]
set savedInfo errorInfo
uplevel layout
if $result {error $msg $savedInfo}

b
interface design

proc layout {} {

— 38—

global MyEvent font tab pairtab wordcount statustext
if ![info exists wordcount] {set wordcount 1000}
if ![info exists statustext] {set statustext ""}
set tab(0,0) "Word"

set tab(0,1) "Count"

set tab(0,2) "Combinations"

set tab(0,3) "Most frequent"

set tab(0,4) "%"

set tab(0,5) "Class"

set tab(0,6) "Value"

set tab(0,7) "Subclass"

frame .u

frame .u.menu

label .u.menu.stat -width 40 -height 4 -text $statustext
pack .u.menu.stat

frame .u.menu.b

button .u.menu.b.term -text "Term" -command make_term -font $font
button .u.menu.b.repl -text "Replace" -command add_replacement -font $font
button .u.menu.b.calc -text "Recalc" -command fill_tables -font $font
button .u.menu.b.read -text "Reread" -command "re_read; fill_tables"\
-font $font
pack .u.menu.b.term .u.menu.b.repl .u.menu.b.calc .u.menu.b.read\
-side left

pack .u.menu.b

pack .u.menu.b -fill x -expand y

frame .u.menu.bl

button .u.menu.bl.save -text "Save" -command save_classes -font $font

button .u.menu.bl.reload -text Reload -command reload -font $font

button .u.menu.bl.find -text "Find" -command find_word -font $font

button .u.menu.bl.exit -text "Exit" -command save_and_exit -font $font

pack .u.menu.bl.save .u.menu.bl.find .u.menu.bl.reload .u.menu.bl.exit\
-side left

pack .u.menu.bl -fill x -expand y

pack .u.menu -expand y -fill both -side left
table .u.t -variable pairtab -cols 4 -colwidth 6 -titlerows 1 -height 8\
-yscrollcommand ".u.s set" -anchor e -font $font
.u.t width 0 30

bind .u.t <Double-1> "find_other_word @%x,%y"

set pairtab(0,0) "Word combination"

set pairtab(0,1) "Count

set pairtab(0,2) "% 1st"

set pairtab(0,3) "% 2nd"

.u.t tag configure txt -anchor w

.u.t tag col txt O

scrollbar .u.s -orient vert -command ".u.t yview"
pack .u.t .u.s -side left -fill y -expand y

pack .u

-39 -

frame .t

table .t.t -variable tab -cols 8 -rows [expr $wordcount+1] -height 35\
-titlerows 1 -yscrollcommand ".t.s set" -anchor w -maxwidth 1024\
-font $font

{[winfo screenheight .t.t]<768} {.t.t configure -maxheight 400}

tag configure num -anchor e

tag col num 1 2 4

width 0 20

width 1 10

width 2 10

width 3 30

width 4 10

width 5 10

width 6 10

width 7 10

.t.t <Button-1> "show_pairs @x,%y"

bind .t.t $MyEvent "show_occurences @%x,%y"

bind .t.t <Button-3> "assign_class @)x,%y %X %Y"

scrollbar .t.s -orient vert -command ".t.t yview"

pack .t.t -side left -expand y -fill both

pack .t.s -side left -expand y -fill y

pack .t -fill both -expand y

load_classes .classmenu 5 bio.class

load_classes .subclassmenu 7 bio.subclass

load_classes .valuemenu 6 bio.values

}

-
h

ct ct & o & F o
t o & F F & F & ot
O O WN - O

o -
B o
=
Q

proc list_numbers {word} {
global descr
foreach {i j} [array get descr] {
if [lsearch -exact $j $word]!=-1 {lappend list $i}
}
if [info exists list] {
return $list
} else { return "No occurences of ’$word’ found"
}
}

proc show_occurences {index } {

global font tab descr

set word $tab([.t.t index $index row],0)

foreach i [list_numbers $word] {

append text "$i $descr($i)" "\n"

}

if ![winfo exists .show_descr] {

toplevel .show_descr

frame .show_descr.f

text .show_descr.f.t -width 80 -height 14 -xscrollcommand\
".show_descr.s set" -yscrollcommand ".show_descr.f.s set"\

—40—

-font $font
scrollbar .show_descr.f.s -orient vert -command ".show_descr.f.t yview"
pack .show_descr.f.t -side left
pack .show_descr.f.s -side left -expand y -fill y
pack .show_descr.f
scrollbar .show_descr.s -orient horiz -command ".show_descr.f.t xview"
pack .show_descr.s -expand y -fill x
button .show_descr.close -text Dismiss -command {destroy .show_descr}
pack .show_descr.close
} else {
if {"[wm state .show_descr]"!="normal"} {wm deiconify .show_descr}
.show_descr.f.t delete 0.0 end
raise .show_descr
b

.show_descr.f.t insert 0.0 $text

}

proc find_other_word {index} {
global tab pairtab
set row [.u.t index $index row]
set pair $pairtab($row,0)
set thisword $tab([.t.t index active row],O0)
regsub " *$thisword *" $pair {} word
if [llength $word]==2 {error "Pair list doesn’t match active word"}
for {set i 1} "\$i<[.t.t cget -rows]" {incr i} {
if {"$word"=="$tab($i,00"} {
.t.t see $1i,0
.t.t activate $i,0
break
}
}
}
puts find_other_word
proc make_term {} {
global descr pairtab workfile terms
set row [.u.t index active row]
set pair $pairtab($row,0)
regsub -all " " $pair "_" term
foreach i [array names descr] {
regsub -all $pair $descr($i) $term descr($i)
}
set terms($pair) $term
set f [open $workfile.subst a+]
puts $f $pair
close $f
}

puts make_term

proc find_word {} {

—41—

global find_regex font

toplevel .find

wm title .find "Find"

entry .find.e -width 40 -textvariable "find_regex" -font $font
pack .find.e

focus .find.e

bind .find.e <Key-Return> {do_find; destroy .find}

%

puts find_word

proc do_find {} {
global find_regex tab
if [catch {.t.t index active row} row] {set row 1}
set end [.t.t cget -rows]
incr row
while {$row<$end&&! [regexp $find_regex $tab($row,0)]1} {incr row}
if {$row<$end} {
.t.t activate $row,0
.t.t see $row,0
} else {bell}
}
puts do_find

proc assign_class {index rootx rooty} {
global tab classified_word class_row class_level column_menus
set row [.t.t index $index row]
set class_row $row
set classified_word $tab($row,0)
set col [.t.t index $index coll
if [info exists column_menus($col)] {
$column_menus($col) post $rootx $rooty
}
}

puts assign_class

proc put_class {column name} {

global tab classified_word class class_row
set tab($class_row,$column) $name

set class($column,$tab($class_row,0)) $name

}

puts put_class

proc load_classes {menu column filenamel} {

global column_menus font

catch {destroy $menu}

menu $menu -font $font

$menu add command -label "Cancel" -command {}

$menu add command -label "New class" —-command \
"create_class $menu $column $filename"

—42—

$menu add separator
if ![catch {open $filename} f] {
while {![eof $£f]1} {
set line [gets $f]
if ![string length $line] continue
$menu add command -label $line -command [list put_class\
$column $line]

}

close $f
}
set column_menus($column) $menu
}

puts load_classes

proc create_class {menu column filename} {
global font
toplevel .new_class
wm title .new_class "Define new class"
entry .new_class.e -width 40 -font $font
bind .new_class.e <Key-Return> ".new_class.button.ok invoke"
bind .new_class.e <Key-Escape> ".new_class.button.cancel invoke"
frame .new_class.button
button .new_class.button.ok -text "Ok" -command "define_class\
$menu $column $filename \[.new_class.e get\]; destroy .new_class"\
-font $font
button .new_class.button.cancel -text Cancel -command\
{destroy .new_class} -font $font
pack .new_class.button.ok .new_class.button.cancel -side left
pack .new_class.e .new_class.button
}

puts create_class

proc define_class {menu column filename name} {

$menu add command -label $name -command [list put_class $column $name]
set f [open $filename "a+"]

puts $f $name

close $f

put_class $column $name

}

puts define_class

READDATA.TCL

read the description and transform it into word list
should be sourced at global level

Constant words to skip are leaved out in this listing, because

— 43—

they all Cyrillic
array set badwords {

}
proc readfile {filename} {
global terms workfile class
catch {unset terms}
global workfile
set workfile $filename
if ![catch {set f [open $filename.subst]}] {
while {![eof $£f1} {
set pair [gets $f]
if ![string length $pair] continue
regsub " " $pair "_" terms($pair)
}
close $f
}
if [file exists $workfile.class] {source $workfile.class}
re_read
}
proc re_read {} {
global workfile descr terms
set £ [open $workfilel
set t O
while {![eof $£]1} {
set list [split [gets $£] |]
if [llength $1ist]<2 continue
regsub -all {([~ DD ([,;.OD} [lindex $list 1] {\1 \2} text
regsub -all {([,;.O-D([" D} $text {\1 \2} text
foreach t [array names terms] {
regsub -all $t $text $terms($t) text
}
set descr([lindex $list 0]) $text
}
close $f
}

CLASSIFY

#!/usr/local/bin/wish4.2
source classclass.tcl
readdata

layout

CLASSCLASS.TCL

source ~/.wishrc
package require Tktable
proc reload {} {
global errorInfo

—44 —

foreach w [pack slaves .] {
destroy $w
}
rename layout layout_old
set result [catch {uplevel source classclass.tcl} msg]
set savedInfo $errorInfo
if [catch {uplevel layout} msgl] {
set Infol $errorInfo
rename layout_old layout
foreach w [pack slaves .] {
destroy $w
}
uplevel layout
error $msgl $Infol
}
rename layout_old {}
if $result {error $msg $savedInfo}

}

proc save_and_exit {} {
save

destroy .

}

proc save {} {

puts Saving

global class

set £ [open bio.txt.class w]

foreach {i j} [array get class] {
puts $f [list set class($i) $j]

}

close $f

}

proc read_subclass {} {

global subclass

set f [open bio.subclass]

catch {destroy .subclassmenu}

menu .subclassmenu

foreach i [split [read -nonewline $f] "\n"] {
set subclass([lindex $i 0]) [lindex $i 1]
.subclassmenu add command -label [lindex $i O] -command\
"set_subclass [lindex $i 0]"

}

proc set_subclass {subclname} {
global tab class curword currow
set tab($currow,3) $subclname

—45—

set class(7,$curword) $subclname

}

proc post_value_menu {x y row } {
global curclass

}

Reads definition of value from active row and applies
given regexp to all rows in the table

proc classify {} {

global class tab

set row [.t.t index active row]

set word $tab($row,0)

set value $tab($row,1)

set class(6,$word) $value

.t.t tag cell green $row,1

if [catch {set regexp $tab($row,2)}] return

for {set i [expr $row+1]} "\$i<[.t.t cget -rows]" {incr i} {

set word $tab($i,0)

.t.t tag cell {} $i,1

if [info exists class(6,$word)] {

.t.t tag cell green $i,1

continue

}

if [regexp "“$regexp\$" $word] {

set class(6,$word) [set tab($i,1) $value]
.t.t tag cell green $i,1

}

}

}

proc readdata {} {

global class lists subclass

read_subclass

puts "Reading data"

catch {unset class}

source bio.txt.class

recalc_classes

foreach k [array names class 5,*] {
set word [lindex [split $k ","] 1]
if ![info exists class(7,$word)] {

foreach {i j} [array get subclass] {
if [regexp $j $word] {

set class(7,$word) $i
}

}

— 46—

}

}

proc recalc_classes {} {

global class lists

puts "Recalculating classes"

catch {unset lists}

foreach i [array names class 5,*] {
set word [lindex [split $i ,] 1]
lappend lists($class($i)) $word

}

foreach i [array names lists] {

set lists($i) [lsort $lists($i)]

}

}

proc reclass_to {new_class} {

global curword tab class oldclass

set word $tab($curword,0)

puts "Reclassing word $word"

puts "Old class $class(5,$word)"

set class(5,$word) $new_class

puts "New class $class(5,$word)"
recalc_classes

set oldclass {}

change_class {} {} w

}

set oldclass {}

proc change_class {name index access} {
global curclass tab lists class oldclass
puts "Changing class to $curclass"

if {"$oldclass"=="$curclass"} {return}

set oldclass $curclass
catch {unset tab}
set j 1
set tab(0,0) ""
set tab(0,1) " "
set tab(0,2) "regexp"
set tab(0,3) ""
foreach i $lists($curclass) {
set tab($j,0) $i
if [info exists class(6,$i)] { set tab($j,1) $class(6,$i)
.t.t tag cell green $j,1
} else {.t.t tag cell {} $j,1}
if [info exists class(7,$i)] { set tab($j,3) $class(7,$i) }
incr j
}

.t.t config -rows $j

47—

}

proc menu man {x y X Y} {

global curclass tab curword currow

set row [.t.t index @$x,$y row];

set col [.t.t index @$x,$y col]

switch $col {

0 {set curword $row;.classmenu post $X $Y}

1 {post_value_menu $X $Y $row}

2 {return}

3 {set curword $tab($row,0);set currow $row;.subclassmenu post $X $Y}
default return

}

}

Copies word into columns two and three to make final value and
regular expression from it

proc propagate {index} {

global tab

set row [.t.t index $index row]

set tab($row,2) [set tab($row,1) $tab($row,0)]

}

proc copy {} {

global clipboard

set clipboard [.t.t curvaluel
.top.copy configure -state normal

}

proc paste {} {

global clipboard tab

if ![info exists clipboard] return

foreach index [.t.t curselection] {

set tab($index) $clipboard

set list [split $index ","]

set row [lindex $list 0]

set col [lindex $list 1]

if {$col==1} {set class(6,$tab($row,0)) $clipboard

} elseif {$col==3} {set class(7,$tab($row,0)) $clipboard
}

proc double_man {index} {

switch [.t.t index $index col] {
0 {propagate $index}

1 {classify}

2 {classify}

— 48—

#button release in table
proc £ill_block {} {
global tab
set cells [.t.t cursel]
.t.t flush
if [llength $cells]<=1 return
set value [.t.t get [lindex $cells 0]]
foreach i $cells {
set tab($i) $value
set list [split $i ","]
set col [lindex $list 1]
if {$col==1} {
set word $tab([lindex $list 0],0)
set class(6,$word) $value
b
b
b
proc checkcell {row col} {
if {$col==0} {return O}
if {$col==1} {.t.t flush}
return 1
b
proc layout {} {
global curclass tab
frame .top
button .top.reread -text "Reread data" -command readdata
button .top.reload -text "Reload program" -command reload
button .top.save -text "Save" -command save
button .top.classify -text "Classify" -command fill_block
frame .t
table .t.t -anchor w -rows 50 -cols 6 -colwidth 20 -yscrollcommand\
".t.s set" -var tab -titlerows 1 -selectmode extended\
-validate y -validatecommand "checkcell %r %c"
.t.t tag configure green -background green
scrollbar .t.s -orient vert -command ".t.t yview"
label .top.l -text "Current class"
set f [open bio.class]
set classlist [split [read $£f] "\n"l]
close $f
trace var curclass w change_class
eval tk_optionMenu .top.classes curclass $classlist
catch {destroy .classmenu}
menu .classmenu
foreach i $classlist {
.classmenu add command -label $i -command "reclass_to $i"

}

— 49—

bind .t.t <Button-3> "menu_man %x %y %X AY"
bind .t.t <Double-1> "double_man @%x,%y"
button .top.exit -text Exit -command save_and_exit

wm protocol

. WM_DELETE_WINDOW save_and_exit

.top.reread .top.reload .top.save .top.classify .top.1l\
.classes -side left

pack

.top

pack .top.
pack .top
pack .t.t
pack .t.s
pack .t

b

exit

-side right

-fill x -expand y
-side left
-side left -fill y -expand y

WEIGHTS.TCL

#!/usr/local/bin/tclsh7.6
first, reading of data
source readdata.tcl

set
set
set
set
set
set
set
set
set

#

tab(1)
tab(2)
tab(3)
tab(4)
tab(5)
tab(6)
tab(7)
tab(8)

max_level 8

100
{60
{50
{50
{40
{40
{30
{30

40}

30 20}

20 20 10}

20 20 10 10}

15 15 10 10 10}

15 15 10 10 10 10}
15 10 10 10 10 10 5%}

If set to nonzero, script would generate error if forest vegetation
type found without forest species in its description.

With zero value it would be processed as

#

‘‘unclassified’’

set suspisious 0O

set skip(meaningless) 1
for a while
set skip(modifier) 1

Classes which ARE used in forest description
set goodclasses(forest) 1
set goodclasses(multivalue) 1

proc end_level term {
global level
add_list $term

incr level

}

proc add_list term {
global 1list level value_list

- 50—

lappend list($level) $term
if [info exists value_list($term)] {
incr value_list($term)
} else {
set value_list($term) 1
}
}
proc subdivide part {
global suspisious class level list goodclasses
set flag O
set counter 0O
foreach word $part {
if ![info exists goodclasses($class(5,$word))] continue
switch -exact $class(7,$word) {
dominant { if $flag {incr level}
set flag 1
}
subdominant {
if $flag {incr level}

set flag O

}

default {}
}

add_list $class(6,$word)
incr counter
}
if !$counter {
if $suspisious {
return -code error -errorcode PARSE\
"Something wrong with landcover type: $part"
} else {
add_list unclassified
}
}
}
proc process_descr {descr {trace 0}} {
global level list badwords class skip weight tab max_level errorCode
set level O
catch {unset list}
set 1list(0) {}
set part {}
set isforest O
foreach word $descr {
if [info exists badwords($word)] continue
if [info exists skip($class(5,$word))] continue
lappend part $word
if {$class(5,$word)=="forest"} {
set isforest 1
} elseif {$class(5,$word)=="types"} {

—51—

if {[lsearch -exact {...}\
$class(6,$word)] !=-1} {
set isforest 1

if $isforest {
if {[catch {subdivide $part} msgl} {
return -code error -errorcode $errorCode $msg
}
incr level
} else {
end_level "non-forest"
}
set part {}
set isforest O
}
}
if {$level==0} {return [list [list non-forest 100.00]]}
if {$level>$max_level} {
return -code error -errorcode PARSE "Description too complex: $level"
}
catch {unset res}
for {set i 0} {$i<$level} {incr i} {
if [1length $list($i)]>$max_level {
return -code error -errorcode PARSE\
"Description too complex: [llength $1list($i)]"
}
set j O
set w [lindex $tab($level) $il
set tt $tab([llength $list($i)])
foreach k $list($i) {
set ww [expr [lindex $tt $j]*$w]
if [info exists res($k)] {
set res($k) [expr $res($k)+$ww]

} else {
set res($k) $ww
}
incr j
}
}
set r ""

foreach k [array names res] {
if {$k!="non-forest"} {
lappend r [list [format "%8.2f" [expr $res($k)/100.0]]1 $k]
}
}
set result {}
foreach w [lsort -decr $r] {
lappend result [list [lindex $w 1] [string trim [lindex $w 0]]]

—59—

}
if [info exists res(non-forest)] {
lappend result [list non-forest [format "¥%.2f" \
[expr $res(non-forest)/100.0]]1]
}
if ![1length $result] {
set result [list [list non-forest 100.00]]
}
return $result
}
proc scan_all {} {
global value_list errorInfo descr errorCode
catch {unset value_list}
set £ [open "forlist.txt" w]
puts stderr "Processing descrtiptions"
set errors {}
foreach i [lsort -integer [array names descr]] {
#if {$i%100==0} { puts -nonewline stderr "\rProcessing $i";flush stderr}
if [catch {process_descr $descr($i)} res] {
if {$errorCode=="PARSE"} {
puts stderr "$i:$res"
lappend errors $i
} else {
puts stderr $res
puts stderr $errorInfo

exit
}
} else {
puts $f [concat $i $res]
}
}
close $f
parray value_list
}

puts stderr "Reading data"
readfile bio.txt
scan_all

FOREST.TCL

#!/usr/local/bin/tclsh7.6

set £ [open forlist.txt]

proc incrcount {index} {

global count

if [info exists count($index)] {
incr count($index)

} else {
set count($index) 1

}

}

—53—

set species non-forest
while {![eof $£f]1} {

}

set list [gets $f]
if [eof $f] continue
if [set index [lsearch -glob $list "$species *"]]!=-1 {
set weight [lindex [lindex $list $index] 1]
if {$weight==100} {set class 1
incrcount 100
} else { set class [expr int(floor ((100-$weight)/20))+2]
incrcount $weight
}
} else {
set class 6
incrcount 120

}

incrcount $class
lappend table [list [lindex $list 0] $class]

close $f

for {set i 3500} {$i<3998} {incr i} {lappend table [list $i 7]}
lappend table {3998 253} {3999 254}

set £ [open forest.tab w]

puts $f [list set foresttab $tablel

close $f

foreach i [lsort -real [array names count]] {

}

puts [format "%6.2f %6d" $i $count($i)]

set sum O
foreach i {1 2 3 4 5 6} {

}

incr sum $count ($i)

puts $sum

