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Abstract

Ecological systems evolve in space and time. Until recently, however, research in
ecology separately has focused either on the spatial domain (patterns) or on the
temporal domain (processes). In this paper we describe novel approaches for pro-
gressing towards an integration of pattern and process, a goal long called for in
ecology. First, we present a sequence of alternative stochastic models of spatially
extended processes. Second, we advance two new methods for the estimation, or cal-
ibration, of model parameters from spatio-temporal processes observed in the field.
Third, we provide tools for reducing the complexity of spatially extended ecological
processes to manageable dynamical systems. Steps and techniques are illustrated in
the context of data from a montane grassland community from the Czech Republic.
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Spatio-Temporal Processes

in Plant Communities

Ulf Dieckmann
Tomàš Herben
Richard Law

1 Introduction

A spatio-temporal process is a spatial pattern of objects that develops over the course
of time. Such processes arise in a number of contexts from distributions of particles in
physics to distributions of organisms in the biosphere. They are of particular interest
to plant ecologists because spatial structure is an obvious feature of terrestrial plant
communities and is thought to play a central role in their dynamics. In fact, interest
in spatio-temporal processes in plant ecology goes back at least to the 1930s, when
A. S. Watt started to map the turnover of species in a grassland in the Breckland
of England, keeping track of the spatial structure of the community. This and
other work led him to suggest that the plant community might be understood as
a system of patches cycling through several states (pioneer, building, mature and
degenerate), the patches together forming a spatial mosaic (Watt 1947). These ideas
became established as a cornerstone of plant ecology under the banner of ‘pattern
and process’ (van der Maarel 1996).

Curiously, for a long time rather little was built on the foundations laid by Watt.
Plant ecologists became engrossed in the spatial aspects of plant communities, rather
than the link between spatial structure and temporal dynamics (e.g. Greig Smith
1957). Those plant ecologists who were interested in dynamical processes turned for
inspiration more to animal ecology (e.g. Harper 1977), and here the innate mobility
of many animals means that spatial structure plays a role secondary to that of
temporal processes. There are at least two reasons for the lack of interest of plant
ecologists in spatio-temporal processes. The first is the labour required to obtain the
data from natural communities, since regular censuses comprising detailed maps of
the spatial pattern are needed. Second, there was no obvious formal mathematical
structure within which such information could be analysed (Stone and Ezrati 1996);
in other words, ecologists would have found it difficult to know what to do with the
information once they had it.

But developments in mathematics, theoretical physics and computation are open-
ing up new opportunities for achieving a synthesis of spatial and temporal aspects
of plant ecology. These opportunities include modelling spatio-temporal processes
on discretized lattice-like spaces (e.g. Durrett and Levin 1994) and the investigation
of their dynamics by techniques that go beyond simulation (Matsuda et al. 1992,
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Harada and Iwasa 1994, Rand 1994, Hendry and McGlade 1995, Rand and Wilson
1995).

This report comes in three parts: construction of stochastic models of spatially
extended processes (Section 3), methods for estimation of model parameters from
spatio-temporal processes observed in the field (Section 4), and reduction of the
spatio-temporal process to a dynamical system in a relatively small number of di-
mensions (Section 5). To keep the research properly anchored in plant ecology, we
used data from a grassland community from the Czech Republic, and we start with
a description of this system (Section 2).

We ought to mention that, as well as the application to plant ecology, there are
at least two other reasons why it is important to develop understanding of spatio-
temporal processes. The first is that ecological theory has tended to proliferate
into large numbers of rather ad hoc models. At the base of many of these special
cases, we think there is a common formal framework, taking the form of individual-
based spatio-temporal stochastic processes. It would help to clarify the subject if it
could be shown how the major classes of models can be recovered as mathematical
limits of the underlying stochastic processes. Second, spatially-extended data are
becoming widely available from geographical information systems (GIS) technology
and remote sensing by satellites; new mathematical and statistical techniques are
going to be needed for the analysis of this information.

2 Data

Grassland communities are a good source of data on spatio- temporal processes.
These communities show fine-scale spatial patterns, and the patterns develop rapidly
through time (During and van Tooren 1988, van der Maarel and Sykes 1993). To a
major extent, this is due to the frequent occurrence of clonal growth among grassland
species, because daughters produced clonally tend to occur only in the close prox-
imity of their mother plants. Further, as in all other terrestrial plant communities,
interactions between plants are essentially short range; the growth and reproduc-
tion of a particular shoot responds not to an ‘average’ environment, but to that
in its immediate neighbourhood. These two features make grassland communities
particularly appropriate for treatment as spatio-temporal processes.

For our study, we used data from a mountain grassland in the Mts. Krkonoše
(Riesengebirge), in the northern part of the Czech Republic. The grasslands in this
area were created by clearing small patches in the original forests during the past
few hundred years. Traditionally they have been maintained for hay, with mowing
once or twice a year, grazing in late autumn and manuring once in several years.
The rather stable management over several centuries has produced grasslands with a
remarkably well differentiated species composition, ranging from rather species poor
(ca. 10 species m−2) to quite species rich (40 species m−2) depending on altitude,
water and nutrient regimes. Though artificial grasslands occur at all altitudes, true
montane grasslands are restricted to altitudes from 800 m up to the timberline at
about 1300–1400 m.

The particular data we used came from the Severka settlement (ca. 3 km NW
of Pec pod Snĕz̆kou, altitude 1100 m). The climate at the site is rather harsh,
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Figure 1: Four grass species used for analysis of spatio-temporal processes (drawn
by Sylvie Pechacková).

with cool summers and long winters with thick snow cover, usually lasting from
November until the end of April; only one mowing per year can be sustained by
the grassland. The plant community is rather species poor, and the four principal
species which form the basis of our analysis were: Anthoxanthum alpinum, À. Löve
et D. Löve, Deschampsia flexuosa (L.) Trin., Festuca rubra L., and Nardus stricta
L. These are all clonal grasses (Figure 1), though their horizontal growth rates,
branching frequencies and tussock morphologies differ. There are also other species
in the grassland, but all of them occur at much lower abundance and may be safely
assumed not to affect the dynamics of the four grasses substantially. Although the
system is rather species poor at the large scale, the species coexist at the fine scale,
the species density being 2–4 species / 10 cm2.

In this grassland, four permanent plots of 50 × 50 cm were established in 1984–5,
and subdivided into grids of 15 × 15 cells for recording the plants. The number of
shoots of each species within each cell of each grid was counted each year in mid-July
and, after recording, the plots and their surroundings were clipped at the height of
1 cm to simulate traditional management. This procedure has continued up to the
present time, and provides detailed information on the spatio-temporal process of
the community. The information is illustrated for one of the permanent plots in
Figure 2. The species clearly differ a lot in overall abundance, with Deschampsia
being the most common; they also differ in spatial structure, and Nardus is especially
clumped. In addition, the spatial structure of Anthoxanthum and Deschampsia is
somewhat more labile through time.

Being discrete in space and time, the information from the permanent plots can
be no more than an approximation to the full process. But, to record the community
in continuous space, one would need the exact spatial location of each shoot, which
would not be feasible. Owing to the short growing season, discretization of time to
a single point each year is reasonable.
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Figure 2: Observed spatial patterns of four grass species in a single plot, from 1984
to 1994; patterns are shown for alternate years. The depth of shading of cells within
a large square indicates for one species and one census the number of shoots (white
indicates absence of the species). A column of large squares depicts the spatial
pattern of one species through time; a row shows the spatial pattern of all species
at a single time.
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3 Models of spatio-temporal dynamics

3.1 Individual-based stochastic model in continuous space
and time

The stochastic model starts with the notion of an individual represented as a point
x in the plane. The locations of all individuals in each species i are collected into
the set Li; i.e. there is an individual of species i at the point x if and only if x ∈ Li.
The contribution of an individual of species i at point x′ to the spatial density p(x)
of that species is given by the Dirac delta-function, a function which is peaked at
x = x′ and is 0 at all other points x. The spatial density (pattern) in species i is
obtained as the sum of all these individual contributions

pi(x) =
∑
x′∈Li

δx′(x) .

and the spatial pattern of individuals on all N species is then given by the vector of
these density functions:

p(x) = (p1(x), . . . , pN (x)) .

Clearly p(x) is but one of an infinite number of spatial patterns in which individ-
uals could be laid out at an instant in time. Moreover the spatial pattern changes
over the course of time, as random births, deaths and movements occur. It will
help to think of the probability P (p) that the community has the pattern p(x). One
can then envisage the changing pattern in space as a Markovian stochastic process,
writing the rate of change of the probability with respect to time as

d

dt
P (p) =

∫
Dp′ [w(p|p′) · P (p′)− w(p′|p) · P (p)] . (1)

This is a function-valued stochastic process describing the flux of probability to
and from the function p(x), being the probability per unit time of the shift from
function p′(x) to p(x); to cover all possible transitions in and out of p(x), one has
to integrate over all functions p′(x).

The primary events acting at the microscopic individual level are births, deaths
and movements. It is these that cause the shift from one spatial pattern to another,
and can be disaggregated into these events:

w (p′|p)=
N∑
i=1

∫
dx′ bi(x

′, p) · pi(x′) ·∆(p+ δx′ · ui − p′) (births)

+
N∑
i=1

∫
dx′ di(x

′, p) · pi(x′) ·∆ (p− δx′ · ui − p′) (deaths)

+
N∑
i=1

∫ ∫
dx′dx′′ mi (x

′, x′′, p) · pi(x′) ·∆ (p− δx′ · ui + δx′ · ui − p′) .

(movements)
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Here bi(x′, p) (respectively di (x′, p)) is the per capita probability per unit time for
a birth (respectively a death) in species i at the point x′ when the spatial pattern is
given by p(x). The term mi(x′, x′′, p) is the per capita probability per unit time for
a movement from the point x′ to x′′ in species i when the spatial pattern is given
by p(x). The functions ∆ are generalized delta functions that select the appropriate
event taking pattern p to p′, ui being an N-vector having value 1 for element i and
zero elsewhere. For example

∆ (p+ δx′ · ui − p′) = 0 if p′ 6= p + δx′ · ui ;

in other words, with a birth at point x′ to species i, ∆ allows an increment only
to the probability P (p + δx′ · ui) of spatial pattern p + δx′; the probability of all
other spatial patterns is unaltered. In formal terms, the generalized delta function
is defined by the relation

∫
Dp′F (p′) ·∆(p− p′) = F (p) for any functional F .

This completes the formalism needed to define the stochastic model. Once spe-
cific functions have been incorporated for the birth, death and movement events,
realizations can be generated, and one can then see how spatial patterns develop
through time. One can also investigate the dynamics of moments of the stochastic
model; this becomes important for dealing with questions of dimension reduction.

3.2 Individual-based stochastic model in discrete space and
continuous time

Although the dynamics should correctly be thought of in continuous space, informa-
tion from the field is rarely available in this form. It is more likely to be discretized
in some way, often as numbers of individuals within the cells of a 2-dimensional lat-
tice, as in the case of our Krkonoše community. Some transformation of the formal
stochastic framework is needed to deal with discrete space.

We write the number of individuals of species i in cell k of the lattice as n(k)
i with

i = 1, . . . , N and k = 1, . . . ,M . The spatial pattern of species i at some instant in
time is given by the matrix ni of the numbers in each cell, and that of the whole
community as the vector of matrices n = (n1, . . . , nN ). The changing pattern in
space can be seen as a stochastic process analogous to Equation (1)

d

dt
P (n) =

∑
n′

[w(n|n′) · P (n′)− w(n′|n) · P (n)] , (2)

but now describing the flux of probability to and from the vector of matrices n. The
abbreviation

∑
n′ =

∑
n′(1...M)

1...N
is used. As before, the probability per unit time of the

transition from n to n′ can be disaggregated into the births, deaths and movements:
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w(n′|n)=
∑
i,k

b
(k)
i · n

(k)
i ·

∏
j,l

δ
(
n′

(l)
j , n

(l)
j + δ(i, j) · δ(k, l)

)
(births)

+
∑
i,k

d
(k)
i · n

(k)
i ·

∏
j,l

δ
(
n′

(l)
j , n

(l)
j − δ(i, j) · δ(k, l)

)
(deaths)

+
∑
i,k,k′

m
(k,k′)
i (n) · n(k)

i ·
∏
j,l

δ
(
n′

(l)
j , n

(l)
j − δ(i, j) · δ(k, l) + δ(i, j) · δ(k′, l)

)
.

(movements)

Here b(k)
i (n) (respectively d(k)

i (n)) is the per capita probability per unit time for
a birth (respectively a death) in species i in cell k when the spatial pattern is given

by n. The term m
(k,k′)
i (n) is the per capita probability per unit time for a movement

from cell k to k′ in species i when the spatial pattern is given by n. The term
δ(i, j) · δ(k, l) is a product of Kronecker delta symbols, returning the value 1 when
j = i and l = k, and 0 otherwise. The product of the outer Kronecker delta symbols
then selects the appropriate event taking pattern n to n′.

3.3 Individual-based stochastic model in discrete space and
discrete time

Natural communities most often occur in seasonal environments, and it is important
to have a formalism that allows for the fluctuations in ecological processes that
result from this. To achieve this, the per capita transition probabilities per unit

time are made time dependent: b
(k)
i (n, t), d

(k)
i (n, t) and m

(k,k′)
i (n, t). Thus, if time

t is measured in years, the effects of seasonality can be reflected by assuming that
these functions possess a period of 1. The per capita probabilities of birth for each
time step are then obtained as

b
(k)
i (n) =

∫ 1

0

dt b
(k)
i (n, t)

and analogous equations hold for the processes of death and movement.
For ecological systems with this property, it is natural to transform the indivi-

dual-based stochastic model (2) from continuous time to discrete time. Equation
(2) is replaced by a recurrence relation describing the change in probability P (n)
from time t to t + 1:

Pt+1(n) =
∑
n′

[w(n|n′) · Pt(n′)− w(n′|n) · Pt(n)] .

For a discrete-time formalism to be adequate, microscopic events (births, deaths,
movements) that depend on n have to be sufficiently well separated in time. We
make this explicit in the following equation:

w(n′|n) =
∑
n′′,n′′′

wm(n′|n′′) · wd(n′′|n′′′) · wb(n′′′|n) .
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This is to be interpreted as a probabilitywb(n′′′|n) that births take the spatial pattern
to n′′′ given that it starts as n, times the probability wd(n′′|n′′′) that deaths take the
pattern to n′′ given that it starts as n′′′, times the probability that movements take
the pattern to n′ given that it starts as n′′. The summation allows for the different
paths possible between n and n′. This separation of the microscopic events is needed
because of their dependence on the current spatial pattern, and is not required for
those events which are independent of pattern.

The birth term is:

wb(n
′|n) =

∏
i,k

∑
β1...n

(k)
i

δ
(
n′

(k)
i , n

(k)
i +

∑
jβj

)
·
∏
j

P
(
b

(k)
i (n), βj

)
.

Here P
(
b

(k)
i (n), βj

)
is the probability that there are βj births to parent j of species

i in cell k, this being Poisson distributed with mean b
(k)
i (n); the product over j

then gives the joint probability of β1 births to parent 1, β2 to parent 2, and so on.
The Kronecker delta symbol returns 1 when n

(k)
i +

∑
j βj = n′

(k)
i , and 0 otherwise.

The term
∑

β
1...n

(k)
i

is to be understood as n(k)
i separate summations (one for each

parent), over 0, 1, 2, . . . offspring produced by the parent. The death term

wd(n
′|n) =

∏
i,k

B
(
d

(k)
i (n), n

(k)
i , n

(k)
i − n′

(k)
i

)
is based on the binomial distribution B, with d

(k)
i (n) the per capita probability of

death, n
(k)
i the number of individuals, and n

(k)
i − n′

(k)
i the number that die. The

movement term is:

wm(n′|n) =
∏
i

∑
µ(1...M ;1...M)

∏
k

δ
(
n′

(k)
i , n

(k)
i +

∑
k′(µ

(k′,k) − µ(k,k′))
)

·
∏
k′

B
(
m

(k,k′)
i (n), n(k)

i , µ(k,k′)
)

.

The element µ(k,k′) of the M ×M matrix µ gives the number of individuals that
move from cell k to k′. With per capita probability of movement from cell k to k′

given by m(k,k′)
i (n), and n

(k)
i individuals in cell k, the probability that µ(k,k′)

i move
to cell k′ is obtained from the binomial distribution B. The Kronecker delta symbol
returns the value 1 when the net change in numbers of species i in cell k obtains
n

(k)
i +

∑
k′

(
µ(k′,k) − µ(k,k′)

)
= n

′(k)
i , and 0 otherwise. The term

∑
µ(1...M ;1...M) is to be

understood as a sequence of M ×M separate summations, one for each pair (k, k′),
over 0, 1, 2, . . . individuals moving from cell k to k′.

This formalism defines a stochastic model in discrete space and discrete time
which matches the kind of information most often available from plant communities.
In particular, it provides an appropriate basis for a stochastic model of the Krkonoše
community below.
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4 Parameter estimation

Section 3 shows how to describe spatio-temporal processes in terms of individual-
based stochastic models, but there is still a major bridge to be built before such
models can be taken as a description of an observed spatio-temporal process. As in
all modelling, we need (1) to specify appropriate functions to describe the process,
in particular to determine rates for the occurrence of microscopic events, and (2)
to obtain estimates for the values of parameters in these functions. The choice of
functions rests on external knowledge about the system; in the case of births, deaths
and movements of the clonal grasses in our Krkonoše community, such understanding
is quite well developed, as described below (Section 4.1). But there is much less
understanding as to how to obtain parameter values that best fit the data; here we
suggest two techniques for doing this (Sections 4.2 and 4.3).

4.1 Functions to describe dynamics

We concentrate on a stochastic model in discrete space and time, as this matches
the structure of the data described in Section 2. Consider a cell k on the lattice, and
a set of neighbour cells S(k). The state of cell k is given by the number of shoots of

each of the four grass species it contains, written as n(k) = {n(k)
i |i ∈ {A,D, F,N}}

(A: Anthoxanthum; D: Deschampsia; F: Festuca; N: Nardus). The state of the
neighbourhood is written as N (k) =

{
n(l)|l ∈ S(k)

}
.

The stochastic model should update the state of each cell on the basis of random
births, deaths and movements of shoots. In keeping with the available evidence from
grasslands (Jònsdòttir 1991, Duralia and Reader 1993), we assume that interactions
occur through sensitivity of births to the presence of shoots in the immediate vicinity.
The number of daughters born to a shoot of species i in cell k following census t is
taken to be a Poisson-distributed random variable, with a mean given by

b
(k)
i = ci · exp

 ∑
j∈{A,D,F,N}

aij · n(k)
j

 .

The interactions are species-specific, the parameter aij describing the effect of species
j on i; it is this that leads to a coupling of the dynamics of species in the model.
The other parameter ci is the mean of the Poisson distribution in the absence of any
other shoots. Deaths of individuals are assumed to be independent of the presence of
other shoots, the probability that a shoot of species i survives from census t to t+ 1
being si. To deal with movement of shoots, one needs to allow changes in position
from one cell to another. Movements are small (Herben et al. unpublished results),
and a four-cell neighbourhood (the ‘north’, ‘east’, ‘south’ and ‘west’ neighbours of
cell k) is large enough to capture most that occur. We write the probability that a
shoot of species i in cell k at census t moves to either one of these neighbour cells
by the next census as mi. These movements induce a local coupling of the cells, and
allow spatial structures to develop.

The stochastic model is now specified to the level of seven parameters (si, aiA,
aiD, aiF , aiN , ci, mi) of species i. The si’s have been estimated independently by
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field measurements, and can therefore be taken as known; the values sA = 0.2,
sD = 0.7, sF = 0.3 and sN = 0.7 are used below. The remaining six parameters of
each species, denoted by the vector vi = (aiA, aiD, aiF , aiN , ci,mi) for species i, have
to be estimated from the observed spatio-temporal process.

4.2 Model fitting from single-cell processes

One way to estimate the parameters vi is to consider each cell as a separate item
(Law et al. 1997). The number of shoots of species i in cell k at census time t + 1
can be thought of as a random variable which depends on the number of shoots of
each species in cell k and the neighbouring cells at census time t (n(k), N (k)), and
the model parameters can be estimated by a regression of the values observed at
t + 1, n′(k)

i , against the expected values ñ′(k)
i predicted by the model based on vi.

With the model described above, ñ′(k)
i is given by:

ñ
′(k)
i = si ·

(
(1−mi) · n(k)

i ·
(

1 + b
(k)
i

)
+
mi

4
·
∑
l∈Sk

n
(l)
i ·
(

1 + b
(l)
i

))
.

Notice that estimation can proceed separately for each species, because species other
than i only enter into this equation through their numbers at census t.

Potentially there is a lot of information in the observed spatio- temporal process
on which to base the estimation, there being 15 × 15 × 11 values of n′

(k)
i for each

plot. But the number of cells that can be used needs to be restricted in several
ways. First, boundary cells should be excluded because their neighbourhoods are
incomplete. Second, there is little purpose served in including cell k if there are no
shoots of species i in this cell or its neighbourhood or both at time t. Third, one may
expect spatial and temporal correlations to be present that violate the statistical
assumption of independence. Some subsampling of the cells is needed; we worked
with one fifth of the cells, cycling through them in such a way that a five year period
elapsed before returning to the same cell, as shown in Figure 3.

Estimation of the parameters vi requires iterative adjustment of vi by non-linear
regression until the function

di =
∑
k

(
F
(
n
′(k)
i

)
− F

(
ñ
′(k)
i

))2

reaches a local minimum. The function F is used to correct for a dependence of the
standard deviation on the mean. Prior analysis indicated a power relationship σ =
a · µb between the mean m and standard deviation σ of the dependent variable, and
the transformation F (x) = x(1−b)/(a · (1− b)) was used to remove this relationship.
The parameters a and b were obtained from the relationship between the mean and
standard deviation using a regression analysis on the untransformed data. As there
might be concern as to the reliability of the technique, we tested the method on
time series of data artificially generated with known parameter values, and found
that the method recovers the parameter values with reasonable accuracy (Herben
et al. 1997, Law et al. 1997).

The results from parameter estimation confirm that the community is essentially
competitive, as the interaction coefficients are predominantly negative (Table 1).
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Figure 3: Tiling used for non-linear regression; cells chosen for analysis are shown as
black. The starting position was displaced one cell to the right in successive years,
so that each cell was revisited for sampling only after five years.

Table 1: Parameter estimates obtained from non-linear regression analysis. In cases
where the 95% confidence limits of the estimate span zero, the estimate is shown in
brackets.

Species (i) aiA aiD aiF aiN ci mi

Anthoxanthum -0.031 -0.033 (-0.015) -0.019 4.889 0.156

Deschampsia -0.134 -0.037 -0.243 -0.178 0.983 0.358

Festuca (-0.008) (0.000) -0.023 -0.135 2.481 0.066

Nardus -0.151 (0.014) 0.068 -0.036 0.950 0.035

To the plant ecologist, the matrix of interaction terms has the interesting feature
that it lacks diagonal dominance; in other words, intraspecific coefficients on the
diagonal are not noticeably larger than the off-diagonal ones describing interspecific
competition. The matrix also has the property of strong asymmetries in pairwise
interactions; one can see this for instance in the comparison aAD = −0.033 and
aDA = −0.134. Another distinctive feature is the lack of intransitivities that would
allow cyclic replacement of one species by another; Watt’s (1947) notion of the
mosaic cycle does not seem appropriate for this commmunity.

Interaction coefficients form the basic building blocks of community ecology, as
they make community dynamics more than the sum of the independent dynamics
of the species present. Yet they are particularly difficult to estimate, and ecologists
have had to devise elaborate experimental schemes involving the manipulation of
densities of plants to determine their values (Goldberg and Barton 1992). Non-linear
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regression on spatio-temporal processes as described above opens up a new approach
which holds some promise for achieving greater understanding of plant community
dynamics. It has the important feature of being non-invasive; the interactions can
be estimated without any external interference to the community.

4.3 Model fitting from spatio-temporal moments

The non-linear regression method (Section 4.2), by focusing on changes in single cells
over single time steps, ignores the larger-scale spatial and temporal structure of the
data. Such structure includes aggregations of shoots within species and the spatial
distribution of one species relative to another (two aspects of spatial correlations); it
also includes the location of clumps over the course of time (temporal correlations).
As one can see from Figure 2, such patterns readily come about, and techniques of
parameter estimation based on these larger-scale features would be using important
information unavailable to the regression method above.

But to make use of such large-scale features, one needs to step outside the tra-
ditional statistical framework of regression analysis. There is no unique function
which could be said to capture all the essential features of a spatio-temporal pro-
cess; the mean number of shoots per cell, for instance, is not enough, as it lacks all
information on the spatial structure. Consequently there is no unique measure of
the goodness-of-fit between two spatio-temporal processes, such as one observed in
the field and one given by a stochastic model. Novel approaches are needed, both
to define measures of goodness-of-fit and to move down gradients in the parameter
space until the difference between the patterns is minimized.

Here we describe a new method based on a gradient descent on a function of
the first and second order moments of the spatio-temporal process. These moments
capture a substantial amount of information about the larger-scale spatial and tem-
poral structure of the data. The first moment of species i for year t is simply the
mean number of shoots per cell, given by

ni(t) =
1

K
·
∑
k

n
(k)
i (t) ,

where K is the number of cells. The second moment describes the spatio-temporal
correlation at a distance r between species i at year t and species j at year t + τ
and is given by:

cij(t, τ, r) =
1

ni(t) · nj(t+ τ )
· 1

|Sr|
·
∑

(k1,k2)∈Sr

n
(k1)
i (t) · n(k2)

j (t+ τ ) ,

where Sr = {(k1, k2)|dist (k1, k2) = r}; the term |Sr| is the number of elements in
Sr, and corrects for the finite grid size. The term ni(t) · nj(t + τ ) normalizes the
correlation such that cij(t, τ, r) > 1 (respectively< 1) implies a positive (respectively
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Figure 4: Spatial correlations cij(t, τ, r) of Deschampsia and Nardus for the grid
data shown in Figure 2, with t = 1984, and time delay τ = 0.

negative) correlation at a distance r between species i at year t and species j at year
t + τ . Figure 4 shows that cij(t, τ, r) captures important features of the spatial
structure of the data in Figure 2 in 1985. The strong tendency for Nardus to
form aggregations appears as a large auto-correlation at small distances, whereas
Deschampsia, which is much less clumped, has a weak auto-correlation. It can also
be seen that the tendency for Deschampsia to be at low density in the vicinity of
clumps of Nardus is reflected in a cross-correlation between the species which is less
than 1.

The moments ni(t) and cij(t, τ, r) can be computed for an observed spatio-
temporal process, and also for one generated using the functions in Section 4.1,
ñi(t) and c̃ij(t, τ, r), for some given parameters vi. We use them to construct a
function for each species i, the pattern-deviation function di, based on a weighted
average of the difference between the moments of the observed process and those
of the model. The smaller the value of this function, the better the parameters de-
scribe the observed spatio-temporal process. At the start of the simulated process,
the stochastic model is set to the same spatial pattern as the data. As in Section
4.2, we do not attempt to estimate the parameters of all species simultaneously;
the spatial patterns of species other than i are held at their field values when the
stochastic model is run for species i.

The function di is defined as

di = wn · dni + (1−wn) · dci
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where

dni =
∑
t

wt (Ni(t))
2 ,

dci =
∑
j,t,τ,r

wij · wtτ ·wr · (Cij(t, τ, r))2 ,

Ni(t) =
ni(t)− ñi(t)

(ni(t) + ñi(t)) /2
,

Cij(t, τ, r) =
cij(t, τ, r)− c̃ij(t, τ, r)

(cij(t, τ, r) + c̃ij(t, τ, r)) /2
.

The w’s are weights given to the various moments and need to be chosen externally.
We found it necessary to give the second-order moments a greater weight than the
first-order one in order to get an improvement in the pattern; wn = 0.25 was used.
Moments later in the spatio-temporal process were given more weight corresponding
to the greater opportunity for the stochastic model to diverge from the field spatial
pattern the longer it runs. Auto-correlations (i = j) and cross-correlations (i 6= j)
were given the same weight wij = 0.25. Correlations at large radii are likely to be
affected by the finite size of the grid and were given a lower weight, using a negative
exponential function of radius.

A particular value of the pattern-deviation function determines a manifold in a
six-dimensional space of the parameters (i.e. di = f(vi)). It is therefore possible
to adjust the values of the model parameters iteratively in such a way that di goes
to a local minimum. For this purpose, we developed a technique based on Powell’s
quadratically convergent method (Brent 1973). This algorithm takes sections across
the surface in a window around the current parameter values, finds the minimum
within the window on each section in turn, and updates the parameter values and
the directions of the sections until no further reduction in di is possible. We could
do no more than sample certain points along each section, because at each point the
stochastic model has to be run and the moments computed. Some random variation
is to be expected in the course of sampling the section, and we therefore used a least
squares fit of the values of di to a cubic polynomial to find the local minimum along
each section.

Checks on the pattern deviation function suggested that it could be rather
rugged, and it is therefore important for the parameter values to be fairly close
to the minimum when starting a gradient descent. For this reason, we set the pa-
rameters at the start to the values from non-linear regression (Table 1). Reductions
in the pattern-deviation function were still obtained during the course of optimiza-
tion for each species, and this indicates that some improvement in fit to the overall
spatio-temporal process could still be achieved after non-linear regression.

Table 2 gives parameter values obtained from the gradient- descent method. The
estimated values differ from those in Table 1 in that the ci’s tend to be larger, and
intraspecific interactions appear stronger in Anthoxanthum and Nardus. Probabil-
ities of movement between cells mi’s are also somewhat increased. Figure 5 gives
a realization of the stochastic model using these parameter values. The realization
was started in 1984 using the spatial pattern of shoots in the field as shown in
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Figure 5: A realization of the stochastic model for community dynamics, based on
the parameters in Table 2, estimated from gradient descent on the pattern-deviation
function. Layout as described in Figure 2.



– 16 –

Table 2: Parameter estimates obtained from gradient descent on the pattern-
deviation function. The numbers are arithmetic means of the values obtained from
iteration 41 to 50 of the gradient descent.

Species (i) aiA aiD aiF aiN ci mi

Anthoxanthum -0.137 -0.026 -0.018 -0.016 9.900 0.520

Deschampsia -0.085 -0.044 -0.292 -0.288 1.285 0.503

Festuca -0.011 -0.000 -0.031 -0.109 3.627 0.101

Nardus -0.090 0.010 0.039 -0.112 2.408 0.053

Figure 2; this allows a direct comparison of the observed and simulated patterns
in Figures 2 and 5. As one would expect from a stochastic realization, the exact
patterns become different as time progresses; yet the major spatial features of the
simulated and observed processes remain broadly comparable. There is still room for
improving the match between the results of the model and patterns in the field, but
this may require structural alterations to the model rather than improved methods
of parameter estimation.

5 Dimension reduction

5.1 A fundamental dilemma

Sections 3 and 4 have dealt with the formal structure of models describing spatio-
temporal processes in plant ecology, and how to estimate the parameters of these
models. We now turn to questions of model analysis and interpretation, and here
one is faced with a dilemma.

On the one hand, there are established analytical methods for investigating mean-
field dynamics. But such mean-field models only reflect temporal change in the
ecological system, and do not take into account any aspect of its spatial structure.
This is why predictions from mean-field models can go widely astray as soon as
the underlying ecological system is spatially heterogeneous. Nevertheless, mean-
field models are convenient and tractable. The number of dynamical dimensions
in such models equals the number of interacting populations within the ecological
community, which may be as low as one; in the case of the Krkonoše community it
would be four.

On the other hand, there are models for spatially heterogeneous communities
such as those introduced in Section 3, as well as others like partial differential equa-
tions or cellular automata. These paradigms for modelling ecological systems in
space all have one property in common: to describe the state of the system at any
particular point in time a very large number of dynamical variables (in the order
of hundreds, thousands or ten-thousands) has to be specified. Such numbers reflect
the huge amount of information potentially present in a spatial pattern and are the
reason why we refer to such models as high-dimensional. Dynamical models of this
complexity entail poor efficiencies in numerical simulations and preclude utilizing
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the rich tool-box of analytical methods devised, for instance, in bifurcation theory.
Even worse, the interpretation, prediction and understanding of complex spatial
models can be close to impossible since it may be far from obvious on which quanti-
ties or abstract entities a mechanistic explanation of dynamical phenomena observed
eventually should be based. Powerful predictions from ecological models are based
either (i) on analytical methods – which for high- dimensional spatial models are
always difficult and very often not feasible, or (ii) on heuristically establishing causal
relations with qualitative conditionals and conclusions – a goal which is notoriously
hard to achieve for the more complex spatially explicit models.

In summary, researchers investigating spatial dynamics in ecology are confronted
with a decision either to use complex models that have a tendency to be incompre-
hensible, or to use models that are tractable but dangerously over-simplified.

5.2 The potential for dimension reduction

In this situation one might hope to find some middle ground comprising dynami-
cal models of low dimensionality that capture essential features of spatial hetero-
geneity. Such models would combine the virtues of both extremes, simultaneously
achieving sufficient accuracy and retaining tractability, whilst avoiding both over-
simplification and excessive complexity. This is not an idle hope. Rand and Wilson
(1995) have demonstrated that the spatio- temporal population dynamics of a par-
ticular three-species community can be reduced to a four-dimensional dynamical
system. Evidently the introduction of a single extra dimension was sufficient to
reflect the effects of spatial patterns within the community. Rand and Wilson em-
ployed a numerical (or top-down) approach and, as a consequence, an ecological
interpretation of the fourth dynamical variable was not made. A constructive (or
bottom-up) approach on the other hand would ensure that the dynamical variables
introduced are readily interpretable, and also would give deeper insights into those
aspects of spatio-temporal dynamics that are essential for shaping ecological change
observed.

Why should techniques of dimension reduction conceivably work for spatio-
temporal processes in ecology? Many ecological communities are characterized by
two general features. First, the interactions between individuals in such systems
operate at a local scale. In other words, the spatial distance over which one in-
dividual affects another is small relative to the spatial extension of the system as
a whole. For example, in the Krkonoe community the interaction of tillers decays
rapidly with spatial distance: interactions at 5 cm are already weak, and interac-
tions over distances greater than 20 cm are negligible. Second, there are several
sources of stochastic fluctuation in the population dynamics, including demographic
stochasticity and environmental noise; these introduce perturbations that counter-
act the deterministic changes resulting from ecological interactions. Together these
two features mean that deterministic effects predominate only at short spatial scales;
deterministic influences over larger distances become drowned in the stochastic fluc-
tuations. In consequence, spatial patterns which imply a high degree of spatial
correlation between distant locations in space are very unlikely to be realized in
such systems.

From this argument we can infer further that, of all the patterns possible, only
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those from a certain subset, characterized by the absence of long-range correlations,
are at all likely to occur. The dynamics of such ecosystems thus effectively reduce
to the set R of sufficiently likely patterns. The variables that distinguish patterns
in the set R from patterns in the set R′ (which are not in R) do not correspond
to essential dynamical degrees of freedom and are dispensable. By removing them
from the dynamical description of the full spatio-temporal model, the number of
variables remaining and hence the dimensionality of the model is reduced.

5.3 Which statistics should be chosen?

When we refer to variables for describing spatio-temporal processes in a low-dimen-
sional dynamical system, we are talking about various kinds of spatial statistics. At
each time step of the spatial dynamics a particular pattern is realized. For example,
in a discrete-space model, the pattern can be specified by simultaneously describing
the state of each cell. Alternatively, a partial description of the pattern is given
by counting the number of individuals in each species. Or one might specify the
number of patches exceeding a certain size for each species. Or one could work
from the frequency distribution of patch sizes, or employ specific indices, character-
izing degrees of clumping or clump shapes, as is occasionally done in plant ecology.
The set of spatial statistics we could consider for any given pattern appears to be
inexhaustable. If aspects of spatial heterogeneity are to be included as dynamical
variables, the choice of an appropriate set of spatial statistics has to be made. What
should this be?

The simple answer is that no unique solution exists. But we can at least give
some conditions that the statistics should meet. As a trivial first condition, these
statistics are required to measure spatial heterogeneities. Second, they should pos-
sess a meaningful ecological interpretation. Third, they should be accessible to
measurements in the field and, as far as possible, they should correspond to com-
mon practice in ecological field work. Eventually, and this is the strongest condition,
a convenient set of spatial statistics can be subdivided into subsets S and S ′ such
that:

C1. the statistics from S and S ′ together unambiguously characterize each of the
spatial patterns possible,

C2. the statistics in S differentiate sufficiently well between spatial structures in
R,

C3. statistics from S ′ assume constant values in R.

A slightly less demanding alternative to condition C3 is given by assuming that
in R the values of statistics from S ′ can be inferred from the values of statistics
from S. However, in this case redefining the statistics in S ′ by subtracting their
predicted values obtained from S suffices to fulfill condition C3 again.

In addition to those sketched above, there is a further important condition for
choosing statistics. The next section is concerned with this.
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5.4 Relaxation projections

Initial configurations of a spatial ecological process can be taken from the set of all
possible patterns, i.e. the union of the sets R and R′ denoted by R∪R′. In contrast,
the set of patterns likely to be found after the process has run for a while is just R.
So what happens in between?

In Section 5.2 we have seen that the mapping R∪R′ results from the destruction
of global correlations. For distances larger than the interaction range, the rate
for this transition is proportional to the sum of demographic and environmental
noise. In consequence, the decay of long-range order often is very fast relative to
the dynamics of short-range correlations. This separation of time scales guarantees
that, even when starting the spatio-temporal process from an arbitrary pattern in
R∪R′, after a short time τ a reduced dynamic, operating merely in R, obtains with
good accuracy.

For ecological systems in the field that have been left sufficiently undisturbed in
the past, the period τ will have already passed. Consequently, the entire dynamics
p(t) starting from a current pattern p(0) will lie within R. Spatial statistics obeying
C1 to C3 then provide the basis of a dimensionally reduced dynamical description.
On the other hand, for ecological systems starting from an arbitrary initial pattern,
the reduced dynamics have to apply to initial patterns in R′ as well as R, and a
further condition for the spatial statistics is helpful.

C4. At time t, the dynamics of any pattern starting from p(0) in R∪R′ with spatial
statistics R∪R′ and S ′(p(0)) are well approximated by S(p(τ )) = S(p(0)) and
S ′(p(τ )) = S ′, where S ′∞ is the set of constant values that the S ′ statistics take
in R.

Mathematically the mappings R∪R′ → R and S∪S ′ → S∪S ′∞ are projections.
They project the full space of possible patterns onto the subspace of those patterns
likely to be realized after the fast degrees of freedom (i.e. the long-range correlations)
have relaxed. Such mappings that mimic the relaxation process we therefore call re-
laxation projections. Any spatial statistics obeying conditions C1 to C4 define such
relaxation projections. In general, projections are non-invertible mappings. Objects
projected consequently carry a diminished amount of information. In particular, re-
laxation projections remove the dynamically non-essential information from a spatial
pattern.

5.5 Correlation dynamics

Here we illustrate the general principles proposed in Sections 5.1 to 5.4, focusing on
a single species, and using a model continuous in space and time as introduced in
Section 3.1. To do this, we take a simple choice for the ecological rates,

d(x, p) = D ,

m(x, x′, p) = M(x′ − x) ,

b(x, p) = B (n(x, p)) .
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This means that the per capita death rate is a positive constant D, and that the
per capita probability of movement from x to x′ per unit time is a non-negative
function of the distance between the points x and x′. The per capita birth rate is a
non-negative function of the local abundance of individuals in the pattern p around
location x, defined by

n(x, p) =

∫
dx′W (x′ − x) · p(x′)

where W (x′−x) is a weighting for locations x′ at distance x′ with x′. This illustrative
ecological model thus incorporates birth rates which are locally density-dependent,
while processes of death and movement occur independent of densities.

A particular set of spatial statistics fulfilling conditions C1 to C4 is given by
correlation functions. For a pattern p of area A, spatial correlation functions of
order n are defined by

Cn(ξ1, ..., ξn−1, p) =
1

A
·
∫
dx1 . . .

∫
dxn

n−1∏
k=1

δ (xk+1 − xk − ξk) ·
n∏
l=1

p(xl) .

Thus, the first-order correlation function

C1(p) =
1

A
·
∫
dx1 p(x1)

is just the global density of individuals within the spatial pattern p, whereas the
second-order correlation function

C2(ξ1, p) =
1

A
·
∫
dx1

∫
dx2 δ(x2 − x1 − ξ1) · p(x1) · p(x2)

measures the density of pairs of individuals at distance ξ1. Each higher-order corre-
lation introduces a further distance ξ2, ξ3 , . . . , as individuals are taken in triples,
quadruples, and so on.

In the space of all patterns, expected values C1, C2(ξ1), C3(ξ1, ξ2) , . . . of the
correlation functions are obtained as

Cn(ξ1, ..., ξn−1) =

∫
Dp P (p) · Cn(ξ1, ..., ξn−1, p) .

We use this to translate from a stochastic process d/dt P (p) in the space of patterns
p to a deterministic ynamic in the space of statistics Cn. As a first step, the dynamics
of the first-order correlation-function C1 are

d

dt
C1 =

1

A
·
∫
Dp

d

dt
P (p) ·

∫
dx1 p(x1)

and, after some algebra, this yields

d

dt
C1 =

1

A
·
∫
Dp P (p)

∫
dx1

[
B

(∫
dx2 W (x2 − x1) · p(x2)

)
−D

]
· p(x1) .
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As we want to transform the right hand side of this equation to the form of corre-
lation functions, we make the simplifying assumption that the function B is linear,
B(n) = B0 + B1 · n. The ecological implication of this assumption is that the per
capita birth rate is linear in local abundance, i.e. it is of logistic or Lotka-Volterra
type. From this we obtain

d

dt
C1 = (B0 −D) · C1 + B1 ·

∫
dξ1 W (ξ1) · C2(ξ1) .

For spatially homogeneous systems the relation C2(ξ1) = C1 · C1 holds and the
dynamics of C1 in this case simply reduce to the mean-field result

d

dt
C1 = (B0 −D) · C1 + B1 · C2

1 .

For spatially heterogeneous systems, however, the mean-field result is incorrect and
the dynamics of the first-order correlation function C1 are contingent on those of
the second-order correlation function C2(ξ1). Therefore we need to work out the
dynamics of C2, and these are given by the equation

1

2
· d
dt
C2(ξ1) = (B0 −D − |M |) · C2(ξ1) + B1 ·

∫
dξ2 W (ξ2) · C3(ξ1, ξ2)

+

∫
dξ2 M(ξ2) · C2(ξ1 + ξ2)

+ δ(ξ1) · C1 ·
(
B0 +B1 ·

∫
dξ2 W (ξ2) · C2(ξ1) · C−1

1

)
with

∫
dξ1M(ξ1) = |M |. We are omitting the delta peak at distance ξ1 = 0, resulting

from self-pairing. Notice on the right hand side of this equation that the dynamics
of C2 depend on that of C3.

This observation can be generalized: independent of the order n we consider, the
dynamics of Cn are contingent upon Cn+1. The sequence of equations that results
is referred to as a moment hierarchy, and it prohibits the use of the dynamical
equation for C2, unless we simultaneously consider the dynamics of C3 etc. We face
a problem of moment closure which can only be resolved by truncating moment
hierarchies using appropriate approximations. For instance, we already have seen
that, with the relation C2(ξ1) = C1 · C1, we could remove the C2 dependence from
the C1 dynamics, and obtain the mean-field equation.

We now can improve on the simple mean-field approximation by truncating the
hierarchy of spatial correlation functions at order 2 instead of 1. This is achieved
by the relation C3(ξ1, ξ2) = C2(ξ1) ·C2(ξ2) · C−1

1 , from which the following equation
for the dynamics of C2 is obtained:

1

2
· d
dt
C2(ξ1) =

(
B0 −D − |M |+ B1 ·

∫
dξ2 W (ξ2) · C2(ξ2) · C−1

1

)
· C2(ξ1)

+

∫
dξ2 M(ξ2) ·C2(ξ1 + ξ2)

+ δ(ξ1) · C1 ·
(
B0 +B1 ·

∫
dξ2 W (ξ2) · C2(ξ1) · C−1

1

)
.
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As a result, the set of equations for the dynamics of C1 and C2 now is closed. The
two equations provide a natural escape from the over-simplified mean-field models.
By utilizing the second-order correlation function C2, these dynamics are well suited
to deal with the spatial heterogeneities that occur in many ecological systems.

These results are first steps towards more general techniques for reducing the
complexity of spatial ecological models. A number of promising extensions can be
considered.

First, the assumption of linearity made for the dependence of per capita rates
(like e.g. B) on local abundances should be removed. This is important for two
reasons. (i) The response of individuals to changes in their environment is often
non-linear. (ii) Owing to stochastic fluctuations caused by the finite sizes of interac-
tion ranges, local environments are bound to differ across individuals. Consequently
the mean response of a population to a distribution of environments can differ from
the response predicted for the distribution mean. To compensate for this effect
fluctuation corrections are required; these act in addition to the correlation correc-
tions derived above. This results in a two-fold moment hierarchy, that deals with
departures from homogeneity originating either from spatial correlations or from
stochastic fluctuations.

Second, as long-range order is often absent in ecological systems, correlation
functions carry essential information only for short distances. For this reason a
short-range expansion of the equation for C2 can provide a good approximation
to its functional version. The dynamics of the correlation function might then
be approximated by the dynamics of (i) its intensity at distance zero and (ii) its
exponential range of increase or decay. This would achieve the goal of reducing the
dynamical dimension of spatio-temporal models, making the dimension as low as
three or even two in the case of single-species systems.

Third, some of the structural assumptions underlying the modeling approach
presented could be relaxed. Individuals may be given internal degrees of freedom
as well as spatial extension, environmental heterogeneities could be introduced, and
the premise of pairwise interactions, presently pervading most research on spatial
ecological systems, could be challenged.

Fourth, correlation functions are not the only choice of spatial statistics for di-
mension reduction. There are several advantages of these functions: (i) truncating
their moment hierarchy at correlation order 2 yields a natural extension of mean-
field models, (ii) correlation functions are measurable and ecologically meaningful,
and (iii) these functions are closely related to our understanding of correlation de-
struction and therefore are expected to define reliable relaxation projections. For
particular systems, however, other projections might be more appropriate. Eventu-
ally a suite of successful projections and statistics should become available to help
ecologists reduce complex spatio-temporal models to manageable low-dimensional
representations.

6 Concluding comments

We have defined three different classes of individual-based stochastic models to pro-
vide formal descriptions of spatio-temporal processes in ecology. With these models
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transitions between continuous and discrete representations both in the spatial and
in the temporal domain are supported. This amounts to a first step in establish-
ing a network of formal links between different classes of spatially explicit models
in ecology. We also have devised two quite different techniques for estimating pa-
rameters of spatio-temporal models. These methods have the potential to uncover
some of plant ecology’s better guarded secrets, such as the strength of interactions
between species. However, in particular the methods for fitting parameters based on
spatio-temporal moments of observed and simulated processes are novel and require
further exploration.

Systematic methods for the dimension reduction of spatio-temporal processes in
ecology are just becoming available. Current results are promising, yet the strengths
and shortcomings of these innovative techniques have to be delineated in more detail.
Many of the questions of interest to a plant ecologist depend on developments in this
area. For instance, how appropriate are the mean-field approximations widely used
in plant ecology? Can self-maintaining spatial patterns develop under reasonable
assumptions about parameter values; in other words, is Watt’s (1947) paradigm of
pattern and process supported by formal analysis? What conditions are needed for
plant communities to generate their own spatial structure? Do alternative spatial or
spatio-temporal structures (i.e. alternative attractors) develop when starting from
different initial patterns? Low-dimensional dynamical systems that provide us with
approximations to the full dynamics of spatio-temporal processes would be of great
help in ecology in answering questions such as these.
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