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Abstract 

We use a coupled carbon-cycle and energy systems engineering model to analyze the future 
time path of carbon emissions under an illustrative C02 concentration stabilization limit of 
550 ppm. Our findings confirm the emission pattern as found by WRE: global emissions rise 
initially, pass through stabilization, in order to decline in the second half of the 21st century. 
We show that for a given C02 concentration target, emission trajectories within an 
intertemporal optimization framework depend mainly on two factors: the discount rate, and 
the representation of technological change as either static or dynamic. We obtain a similar 
near-term emission time path as WRE when using a model with static technology and a 
discount rate of 7%. We obtain a trajectory with lower emissions in the near-term when 
using a lower discount rate and/or treating technology dynamics endogenously in the 
model. We briefly outline a model that endogenizes technological change through learning 
curves. We then compare differences in emission trajectories between alternative model 
formulations of technological change. They are sufficiently small as to be of secondary 
importance when compared to treating C02 concentration stabilization as an inter-temporal 
optimization problem or not. Whereas our results confirm the computational results of 
WRE, we arrive nonetheless at different policy conclusions. If long-term emission reduction 
is the goal, we cannot follow 'business as usual' even in the short-term. Action needs to start 
now. Action does not necessarily mean aggressive short-term emission reductions but rather 
enhanced R & D and technology demonstration efforts that stimulate technological learning. 
These are the necessary preconditions that long-term reduction targets can be met with 
improved technology and at costs lower than today. We close by pointing out two further 
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critical issues: uncertainty, and the possible mismatch between the world of economic 
models and that of climate policy. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In an influential article Wigley, Richels and Edmonds (1996, WRE) have 
constructed alternative emission pathways for a range of C02 concentration 
stabilization targets. WRE argue that the emission paths derived from the IPCC 
WGI stabilization exercises (Schimmel et al., 1995) imply too drastic short-term 
emission reductions that may be either difficult to achieve, or be too costly as 
leading to premature retiring of existing capital. For instance, the IPCC WGI 
scenario stabilizing at 550 ppmv (by 2150) reaches a maximum emission level below 
9 GtC in 2060, while unconstrained 'business as usual' scenarios such as the IPCC 
IS92a scenario (Pepper et al., 1992) reach emission levels of more than 10 GtC 
already by 2020. WRE argue that drastic near- to medium-term reduction mea­
sures are not required. They demonstrate that emission trajectories with higher 
short-term trends (and corresponding lower long-term emissions) yield similar 
long-term C02 stabilization targets. Model analyses performed at IIASA confirm 
this view. However, we arrive at a different policy interpretation of these model 
results. This difference primarily stems from our different interpretation of techno­
logical change as an endogenous process. Rather than following as long as possible 
a 'business as usual' path (e.g. along the trajectory of the IS92a scenario), one 
needs early action to prepare the longer-term departure from 'business as usual'. 
This early action does not necessarily imply drastic emission reductions, but rather 
enhanced R & D and technology demonstration efforts to assure that long-term 
emission reductions can be achieved with improved technologies and with lower 
costs than today. 

2. Timing of mitigation measures 

We have replicated WRE's analysis using a coupled carbon cycle and energy 
systems engineering model for an illustrative C02 concentration stabilization 
scenario at 550 ppm (by 2150). Based on this analysis we discuss below that the 
timing of GHG mitigation measures depends on a variety of factors. The most 
salient ones include the following. 

1. The time horizon by which stabilization is to be achieved. Obviously, a longer 
horizon leaves more time for mitigation measures to be implemented. In an 
extreme case, consider for instance, pushing the stabilization date further out, 
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say from 2150 to the year 2300. This would allow to do without any mitigation 
efforts over the next couple of decades whilst still remaining within the overall 
goal of concentration stabilization some time in the future. Whilst recognizing 
the long time constants involved in anthropogenic alterations of the carbon 
cycle, we feel that arguing over an arbitrarily set date by which C02 concentra­
tions should be stabilized is of little use both for economic analysis and policy. 
Balancing near- versus long-term mitigation efforts inevitably entails an attempt 
of finding an intertemporal optimum, hence discounting (see discussion below). 
Extending the analysis hundreds of years out into the future is of little relevance 
for discussing policy choices for the next one or two decades. Such long time 
horizons also exceed current algorithmic and computational capabilities, i.e. 
with discounting it is basically impossible to discriminate between alternative 
long-term solutions when costs and benefits are expressed in present day 
values.1 

2. The discount rate used for intertemporal comparison. High discount rates tend 
to postpone mitigation measures by stronger emphasis of short-term over 
long-term costs. Apart from being of obvious influence, the choice of an 
appropriate discount rate remains open to debate. Hence, we perform calcula­
tions for a range of discount rates of 3, 5, and 7%, respectively. 

3. Rates of future technological change. Higher rates of technological change can 
improve the technical and economic performance of mitigation technologies 
such as energy conservation and of low- and zero-carbon options. In our analysis 
we first develop a base case scenario without any carbon constraint. We are able 
to replicate a typical 'business as usual' emission trajectory, under the assump­
tion of static technology, that limit accessibility of oil and gas resources beyond 
currently known recoverable quantities and with technology costs assumptions 
that do not improve over time. It goes without saying that we consider such a 
'business as usual' scenario highly improbable and at odds with historical 
experience (Griibler and Nakicenovic, 1996). 

4. The representation of technological change. An endogenous representation of 
technological change allows technology characteristics to be influenced by 
intervening actions. Technological change does not fall from heaven, but rather 
results from dedicated action: R & D, technology demonstration, and invest­
ments. Earlier action, i.e. R & D expenditures and investments, can enhance the 
future performance of mitigation technologies. Earlier action is also required 
considering the long lead-times between R & D, technology demonstration and 
pervasive diffusion of new energy technologies, that can span many decades. 
This constitutes the main difference in our qualitative interpretation of model 
results that quantitatively confirm the WRE calculations. In essence, we argue 
that WRE's conclusion to follow over the near-term a 'business as usual' 

1 Because of this we limit our analysis to the period 1990-2100. In order to assure comparability with 
the calculations of IPCC WGI and WRE we adopt a (conservative) C02 stabilization target of 530 ppm 
by the year 2100. This lower limit assures that a target of 550 ppm by 2150 can be met under a 
continuation of a declining emissions trend in the post 2100 period. 
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trajectory corresponds to a viewpoint of exogenous technological change. 'Au­
tonomous' technological change will lower future mitigation costs. Hence, it is 
sufficient to 'wait and see' and not to engage in costly investments in mitigation 
technologies in the short-term. We argue, that without short-term investments, 
long-term technology improvements will not materialize. 

5. Relationship to other pollutants. C02 abatement strategies depend also on 
whether their effects (i.e. secondary benefits) on other pollutant emissions are 
included in the analysis or not. Our results for instance indicate that C02 
emissions will be (slightly) lower in scenarios of active sulfur reduction policies 
in response to acidification concerns.2 Based on current understanding (IPCC, 
1995, 1996), sulfur reduction measures will however, enhance the global warming 
signal of a given GHG emissions trajectory because of the reduced cooling 
effect of sulfate aerosols (Rogner and Nakicenovic, 1995). 

3. Replicating WRE 

In order to replicate the emission trajectories of WRE we have used an existing 
model set available at IIASA. The modelling exercise uses the bottom-up dynamic 
linear programming energy sector model MESSAGE III (Messner and Strubegger, 
1995) with an integrated carbon cycle component, that has been developed on the 
basis of MAGICC (Wigley, 1991). 

We first create (two variants of) a reference scenario without any constraints on 
carbon emissions. We adopt a high demand scenario ('high growth' case A scenario 
of IIASA-WEC, 1995), coupled with a static (i.e. limited) resource base (from the 
coal intensive A2 scenario variant of the IIASA-WEC (1995) study) and static 
technologies, i.e. costs of fossil and non-fossil technologies do not change com­
pared to current Ievels.3 In such a scenario global energy sector carbon emissions 
would rise to some 22 Gt (giga, i.e. billion tons elemental) carbon by the year 2100. 
With increasing carbon emissions, also sulfur emissions would rise in the scenario: 
to some 200 million tons (elemental) sulfur by the year 2100. Considering the 
significant acidification impacts of such a scenario (cf. Amann et al., 1995; Posch et 
al., 1996), we have also investigated a scenario subvariant with drastic limits on 

2In an investigation of conflicts and synergies of C02 and S02 mitigation strategies, Messner (1997b) 
performs alternative model calculations of limits on global S02 emissions. Setting a stringent constraint 
on S02 emissions at 25% of the 1990 level, S02 abatement measures and fuel and technology switching 
are applied. By 2100, limiting S02 emissions results in 25 % lower C02 emissions than in the base case. 
Conversely, a limit on C02 concentrations to 550 ppmv (compared to 620 ppmv in the unconstrained 
case) implies a reduction in S02 emissions to less than half of the original value. This drastic reduction 
is achieved by reducing coal use and applying more efficient and environmentally more benign 
coal-based technologies, like IGCCs, where S02 removal is inherent to the (prior coal gasification) 
process. 
Cost parameters in the model are derived from a detailed statistical analysis of technology costs 

obtained from the IIASA technology inventory C02DB (cf. Strubegger and Reitgruber, 1995). 
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Table 1 
Two reference scenarios of unabated carbon emissions: IPCC IS92a (Pepper et al., 1992) and a static 
technology scenario based on the demands of the high growth case A scenario of the IIASA-WEC 
(1995) set of scenarios. The range of primary energy use and emissions for the static technology scenario 
correspond to two scenario subvariants, with and without control of sulfur emissions 

Year IS92a 

GWP (1012 $) 2050 92 
2100 243 

Primary energy (EJ) 2050 934 
2100 1457 

Energy sector emissions GtC 2050 13 
2100 20 

MtS 2050 132 
2100 123 

Cumulative carbon emissions 1990-2100 (all sources) 1658 

•nemands based on high growth case A of the IIASA-WEC (1995) scenarios. 
bRange corresponds to uncontrolled and controlled sulfur emissions, respectively. 
c Non-energy sector emissions from IS92a. 

Static technology• 

100 
300 

1064-1073b 
1660-1731b 

14-15b 
19-22b 
29-123b 
14-198b 

1567-1772c 

sulfur emissions. As a 'byproduct' of the sulfur reduction efforts also carbon 
emissions decline slightly (to some 19 GtC by 2100) due to interfuel substitution 
effects, e.g. coal being replaced by nuclear power in electricity generation. 

Both scenario variants bracket reasonably well the emission profile of the 
'business as usual' scenario IS92a, as shown in Table 1 and Fig. 1. We have used a 
discount rate of 5% in our calculations. Apart from the fact, that a typical 'business 
as usual' emissions scenario, in terms of our model assumptions translates into a 
combination of high economic growth combined with static technologies (which we 
feel both improbable and inconsistent with growth theory), our two base case 
scenarios serve as a useful and comparable starting point to calculate the impacts 
of C02 emission constraints. 

The reader is alerted to differences in base year (1990) emissions between our 
calculations and those of WRE and IPCC WGL Our base year emissions of 7.5 
GtC (compared to 6.9 in WRE and IPCC WGI) comprise 6 GtC from burning of 
fossil fuels (and flaring of natural gas), 0.2 GtC from manufacturing of cement, and 
an estimated 1.3 GtC from land use changes (imposed exogenously on our model), 
consistent with the IPCC second assessment report (IPCC, 1995) and also in good 
agreement with the 7.4 GtC global 1990 emissions of the IS92a scenario (Pepper et 
al., 1992). 

We now impose limits on C02 emissions in a similar way as done by WRE and 
the IPCC WGI stabilization exercises.4 We chose an illustrative mid-level stabiliza­
tion target of 550 ppm by 2150. As our model calculations extend only to the year 
2100, we have lowered the stabilization target to 530 ppmv by the year 2100. This 

4 We assume full intertemporal and spatial flexibility of emission reductions. i.e. the model is free to 
choose emission reductions when and where these are cheapest. 
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A-s 
3 

2060 2080 

WGIS550 -- VllRE550a 
4 5 

2 A_u (this study: unronstraint base case, demands from llASA-WEC Scenario A) 

2100 

3 A_s (this study: base case A_u with suttur emission ronstraint, demands from llASA-WEC Scenario A) 
4 WGI S550 (IPCC WGI stabilization at 550 ppm) 
5 WRE 55oa (WRE stabilization at 550 ppm) 

Fig. 1. Carbon emissions (all sources) IS92a, and two high growth scenarios with static technology with 
and without sulfur emission controls (in GtC). For comparison also two scenarios WRE (Wigley et al., 
1996) and IPCC WGI (Schimmel et al., 1995) leading to stabilization of C02 concentrations at 550 ppm 
by 2150 are shown. 

assures that with a continuation of our declining emission trajectories after 2100 
the scenarios remain below 550 ppm by 2150, and hence comparable to the WRE 
and IPCC WGI calculations. (This shorter time horizon also explains why our 
emission trajectories are somewhat lower than WRE after 2060.) As our model 
includes only energy sector emissions, we have used the IS92a scenario's non-en­
ergy C02 emission scenario as additional exogenous input to our calculations.5 

This C02 concentration limit translates into a need to drastically lower cumula­
tive carbon emissions in the 1990 to 2100 period. Our scenarios yield cumulative 
C02 emissions (all sources) between 943 to 988 GtC across all carbon constraint 

5For instance, C02 emissions related to land-use changes in IS92a decrease from 1.3 GtC in 1990 to 
zero by 2080 as tropical forests become progressively depleted. For our calculations we have assumed a 
zero emission flow beyond 2080, i.e. as a conservative assumption we have not retained the negative 
carbon emission flux from land-use changes of the original IS92a scenario. 
6Because of our shorter simulation horizon and the conservative cap of 530 ppm by 2100 our cumulative 
emissions are slightly (between 3 and 15%) lower compared to the WRE and IPCC WGI scenarios. The 
difference illustrates the influence of choosing alternative dates by which stabilization is to be achieved: 
2150 in WRE and IPCC WGI versus 2100 in our case. 
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cases analyzed, compared to 995 to 1103 GtC in the IPCC WGI and WRE 550 ppm 
stabilization scenarios over the same time period.6 In the unconstrained cases 
cumulative emissions between 1990 and 2100 are between 1567 to 1772 GtC in our 
static technology scenarios compared to 1658 GtC in IS92a (see Table 1). 

3.1. Varying discount rates 

We now vary the range of discount rates 3, 5, and 7% to simulate the effect of 
different time preferences. All C02 emission trajectories show a persistent ten­
dency to initially follow the original (unconstrained) trajectory, pass through a 
maximum, in order to decline thereafter as shown in Fig. 2. 

Thus, our calculations confirm the findings of WRE. Calculating the intertem­
poral optimum of emission reduction with the help of a detailed 'bottom-up' 
energy model with static technology and a discount rate of 7%, we obtain 
practically an identical short-term (1990-2030) emission path as WRE. Lowering 
the discount rate for intertemporal choice somewhat lowers short-term emission 

12 

10 

8 

(.) 

(5 6 

4 

2 
' 8 

0 
1980 2000 2020 2040 2060 2080 2100 

--··· 'M31 S550 __ v.RE550a ....... s-3 ••••••• s-5 s-7 - - d-5 
4 5 6 7 8 10 

Scenarios: 

4 WGI S550 (IPCC WGI stabilization at 550 ppm) 
5 WRE 55Qa (WRE stabilization at 550 ppm) 
6 s_3 (this study: static technology, 3% d.r., stablllzatlon at 550 ppm) 
7 s_5 (this study: static technology, 5% d.r., stabilization at 550 ppm) 
8 s_7 (this study: static technology, 7% d.r., stabHization at 550 ppm) 
10 d_5 (this study: dynamic technology, 5% d.r., stabilization at 550 ppm) 

Fig. 2. Carbon emissions (all sources) for alternative scenarios reaching stabilization at 550 ppm by 
2150. IPCC WGI, WRE, and our calculations with a static technology and 3, 5 (base case), and 7% 
discount rate (in GtC). Note in particular, the similarity of our time path to the WRE scenario and the 
difference of both scenarios to that of IPCC WGL For comparison, also a model run with endogenized 
technology dynamic and a 5% discount rate is shown (see discussion below). 
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paths, i.e. more emission reductions relative to the baseline scenario happen in the 
near-term. However, the basic pattern of emissions, and especially the striking 
contrast to the IPCC WGI emission trajectory (the gist of the WRE argument) 
remains basically unchanged. Over the next couple of decades emissions in a C02 
concentration stabilization scenario depart only gradually and slowly from the 
unconstraint reference scenario. This is both a result of the intertemporal op­
timization criterion adopted, as well as of the detailed capital vintage structure 
represented in our model. Because of the long lifetimes of energy technologies and 
infrastructures, capital stock turnover rates are slow. Long-term emissions con­
straints only translate slowly into departures from unconstraint emission scenarios. 

The above findings are reassuring from a technical modeling and reproducibility 
viewpoint, but they offer little insight for the policy debate. We argue that such 
insight can only be gained once the most restricting assumption of our model 
reproducing WRE's quantitative findings is relaxed: the view of a static technology, 
or of technological change being exogenous to the economy. 

4. Endogenizing technological change 

4.1. Technological learning 

The performance and productivity of technologies typically increase substantially 
as organizations and individuals gain experience with them. Long-studied in human 
psychology, technological learning phenomena were first described for the aircraft 
industry by Wright (1936), who reported that unit labor costs in air-frame manufac­
turing declined significantly with accumulated experience measured by cumulative 
production (output).7 Technological learning has since been analyzed empirically 
for numerous manufacturing and service activities including aircraft, ships, refined 
petroleum products, petrochemicals, steam and gas turbines, even broiler chickens. 
Learning processes have also been documented for a wide variety of human 
activities ranging from success rates of new surgical procedures to productivity in 
kibbutz farming and nuclear plant operation reliability (Argote and Epple, 1990). 
In economics, 'learning by doing' and ' learning by using' have been highlighted 
since the early 1960s (see e.g. Arrow, 1962; Rosenberg, 1982). Detailed studies 
track the many different sources and mechanisms of technological learning (for a 
succinct discussion of 'who learns what?' see Cantley and Sahal, 1980).8 

Leaming phenomena are generally described in the form of 'learning' or 

7The aircraft industry however also provides examples that technological learning should not be taken 
for granted. The other side of ' learning by doing' is ' forgetting by not doing'. An example of 'negative' 
technological learning is provided by the Lockheed L-1011 Tristar aircraft (Argote and Epple, 1990). 
Production started in 1972 and reached 41 units in 1974. It subsequently dropped to six units in 1977, 
and then increased again thereafter. The drastic reduction in output led to large scale layoffs and the 
initially gained experience was lost with the staff turnover. As a result, the planes built in the early 
1980s were in real terms (after inflation) more expensive than those built in the early 1970s. 
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Fig. 3. Photovoltaic costs (1985 Yen per Watt installed) as a function of cumulative installed capacity 
(in MW), Japan 1976-1995. Data source: Watanabe (1995, 1997). 

'experience' curves, where unit costs of production decline at a decreasing rate as 
experience is gained. Because learning depends on the actual accumulation of 
experience and not just on the passage of time, learning curves are generally 
measured as a function of cumulative output. Frequently, the resulting exponential 
decay function is plotted with logarithmically scaled axes so that it becomes a 
straight line (see Fig. 3). Because each successive doubling takes longer, such 
straight line plots should not be misunderstood to mean 'linear' progress that can 
be maintained indefinitely. Over time, cost reductions become smaller and smaller 
as each doubling requires more production volume. The potential for cost reduc­
tions becomes increasingly exhausted as the technology matures. 

Technological learning is a classical example of 'increasing returns', i.e. the more 
experience is accumulated, the better the performance, the lower the costs of a 
technology, etc. However, because accumulation of experience takes ever longer 

8A stylized taxonomy of technological learning mechanisms includes inter alia: learning by upscaling 
(e.g. steam turbines or generators), learning through mass production (e.g. the classical Model T Ford), 
and learning through both increasing scale and mass production, referred to here as 'continuous 
operation', i.e. the mass production of standardized commodities in plants of increasing size (e.g. 
transistors, or base chemicals like ethylene or PVC, where cost reductions through learning have been 
particularly spectacular, cf. Clair, 1983). This simple taxonomy is confirmed by a statistical analysis of 
learning rates across many technologies and products (Christiansson, 1995). Leaming rates are typically 
twice as high for 'continuous operation' as for either upscaling or mass production learning processes 
alone. 
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(cf. the increasingly 'packed' spacing of observations towards the 1990s in Fig. 3) 
and is more difficult to achieve, learning itself shows decreasing marginal returns. 

Fig. 3 plots the costs of photovoltaic cells per (peak) kW capacity as a function of 
total cumulative installed capacity for Japan. Starting off from extremely high costs 
of some 30 000 Yen (in 1985 prices) in the early 1970s, costs fell dramatically: from 
16 300 Yen in 1976 to 1200 Yen in 1985 (i.e. a factor close to 14 in less than 10 
years), and then further to 640 Yen in 1995 (another factor 2 within the next 10 
years). The resulting learning rate of over 30% reduction in costs per doubling of 
cumulative installed capacity is at the higher end of the range of learning rates 
observed in the empirical literature (cf. Argote and Epple, 1990; Christiansson, 
1995). This high learning rate however is less surprising considering the infancy of 
the technology and the significant progress through R & D 9 that should, in fact, 
not be separated from 'learning by doing' via investments. 

4.2. Modeling technological change 

Technological change can thus be expressed by a so-called progress ratio, i.e. the 
cost reduction achieved with a doubling of experience gained with a technology. 
The mathematical formulation is based on an exponential cost reduction: 

C(x) =a X x-b 

where C(x) is the specific cost of the technology with x cumulative installations, a 
is the cost of the first unit, and b is a so-called learning index. According to this 
formulation, a doubling of experience from 1 to 2 will yield specific costs of 
a x 2-b the progress ratio being z-b. 

Despite overwhelming empirical evidence and solid theoretical underpinnings, 
learning phenomena have been explicitly introduced only into few models of 
intertemporal choice. The most likely explanation for this paucity of model 
applications is the difficulties of dealing algorithmically with the resulting non-con­
vexities of the problem solution. A first detailed model formulation was suggested 
by Nordhaus and Van der Heyden (1983) to assess the potential benefits of 
enhanced R & D efforts in new energy technologies such as the fast breeder 
reactor. A first full scale operational optimization model incorporating systematic 
technological learning was developed by Messner (1995) (see also Nakicenovic, 
1996, 1997; Messner, 1997). In a mixed-integer formulation, learning rates for a 
number of advanced electricity generating technologies were introduced into a 
linear programming model of the global energy system. These learning rates were 
assumed to be known ex ante. Hence, future technology costs depend solely on the 
amount of intervening investments that lead to increased installed capacity (experi­
ence), that, in turn, stimulates learning and subsequent cost reductions. 

An extension of the above learning model to include both R & D as well as 

9 Note in particular the substantial cost decreases between 1973 and 1976 prior to any installation of 
demonstration units. 
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uncertainty explicitly in a model of technology choice was carried out by Griibler 
and Gritsevskii (1997). There, technological learning is not only influenced by 
market shares and cumulative experience gained with a technology, but also by 
R & D efforts. A distinguishing feature of the model is that both R & D as well as 
learning by doing (e.g. via investments) are treated as interrelated, i.e. without 
prior R & D and subsequent investments technology improvements cannot materi­
alize. Another distinguishing characteristic of the model is that uncertainty is dealt 
with explicitly. Technological change in the model arises from diversification 
strategies vis a vis the uncertainties concerning potential improvement rates of 
technologies, energy demand, or even possible emergence of environmental limits 
(e.g. C02 taxes). 

4.3. Simulating technology dynamics 

Approaches to include technological change into energy models usually concen­
trate on the use of static (i.e. time-constant) or exogenously given dynamic (i.e. 
improving over time) technology characteristics. The static approach completely 
ignores future improvements in technology cost or performance. Such model 
formulations inevitably lead to high emission futures, as illustrated by our base 
case simulations above. 

Models of technology characteristics with exogenous dynamics predefine tech­
nology performance as exogenous to the model. With (often not explicitly identi­
fied) assumptions concerning possible (maximum) market penetration, time trajec­
tories of economic and technical technology parameters are imposed exogenously 
on the model. This approach does not guarantee consistency between basic 
assumptions, which include cumulative installations of a technology to derive the 
changes in technology characteristics, and the results of the model, which also 
include new installations and consequently cumulative experience. 

A typical result of models with exogenous dynamics and intertemporal choice is 
the deferral of investment decisions until the point in time when the technology is 
cheap enough to be competitive. Such results ignore the necessity to invest in 
expensive technology in its early phases, where niche markets or policy support 
need to be exploited to successfully introduce new technologies. 

With endogenized technology dynamics, an intertemporal optimization model 
does not have the option to circumvent the early and expensive phases of 
technological development. If the decision to implement a new technology is taken 
later, technological learning also starts later. The technology matures later and the 
positive effects of learning materialize later. Consequently, in intertemporal op­
timization endogenizing technological change usually results in earlier, upfront 
investments into new technologies. The global optimum is reached when new and 
cheap technologies are developed at the earliest possible stage. 

Fig. 4 shows an example of such results. Using a model with static technologies, 
neither advanced nuclear reactors nor solar PV cells are applied, since present 
costs and efficiencies of these technologies are not competitive at present nor 
become so in future. When exogenous technology dynamics, based on a slow 
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Fig. 4. Diffusion of new energy technologies in the global electricity sector using three models of 
technology dynamics: static, exogenous, and endogenous. Model calculations are for a typical high 
growth demand scenario (case A from IIASA-WEC, 1995). 

market penetration of these technologies up to 2030, are introduced, the optimal 
choice for the model is to wait until the new technologies would become competi­
tive around 2020-2030 and only then begin investments. This is a classical case of 
technological change falling 'from heaven'. Conversely, with endogenized techno­
logical change, the model can influence future technology improvements by inter­
vening investments. For both systems displayed in Fig. 4 market penetration starts 
earlier and market shares by 2050 are higher than in the case with exogenous 
technology dynamics, not to mention the static technology case. 

5. Implications for the timing of mitigation measures 

The model of technology dynamics chosen for the analysis influences the timing 
and levels of investment into new technologies. This also holds for measures to 
mitigate global change. Dynamic technology characteristics allow for more freedom 
in intertemporal allocation of resources and emission reduction efforts. Cheaper 
and more efficient technologies allow for a faster reduction of C02 emissions in 
the shorter term, leaving more freedom for higher emission levels in the longer 
run. Obviously, also costs of meeting particular emission limits depend critically on 
technology dynamics. 

Fig. 5 shows the results of alternative model runs with the same stabilization 
target as in our previous analysis. Here we show the short-term (to 2035) implica­
tions on emission paths of alternative models to represent technological change: 
static versus endogenous dynamics. Again we have performed calculations with 
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Fig. 5. Alternative scenarios for stabilization at 550 ppmv C02: static technology with 3, 5 and 7% 
discount rate and dynamic technology with 3, 5 and 7% discount rate compared to IS92a, WRE and 
IPCC WGI scenarios. Note that only emission trends to 2035 are shown to highlight differences in 
short-term emission trajectories. 

discount rates varied between 3, 5, and 7% and compare our results with the IS92a 
and WRE and IPCC WGI scenarios. 

Overall, we find that the influence of the representation of technological change 
on near-term emission paths is as important as the influence of the discount rate. 
Typically, the endogenous technology dynamics scenarios have lower short-term 
emissions resulting from the gradual introduction of low- and zero-carbon tech­
nologies that need to be experimented with in order to prepare their massive 
application in the post-2050 period. The short-term emission path of the en­
dogenous technology dynamics (with 5% discount rate) shows in fact a similar 
pattern as the simulation with static technology and a discount rate of 3%. 
However, the causes of this similar effect are entirely different: a lower discount 
rate just reduces the tendency to postpone costly measures into the far future; this 
far future has a larger impact on the overall result. Incorporating technological 
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dynamics in the model allows, through additional investments in new technologies 
and consequently improving the performance of these technologies, to realize 
economic returns on upfront investments, in the form of the availability of cheap 
and efficient technologies with lower carbon emissions. This effect becomes trans­
parent when looking at the computed shadow price of the carbon constraint of our 
scenarios. In the static technology cases shadow prices increase continuously, from 
10 $/tC in the year 2000 to some 1200 $/tC towards the end of the 21st century. 
In the endogenous dynamics case shadow prices of the carbon constraint are much 
lower, leveling off at 500$ per ton of carbon.1° Consequently, by initial higher 
investments in new technologies and the resulting technological learning these 
stimulate, massive longer-term benefits accrue. Both lower emission reduction 
costs and lower C02 emissions can be realized compared to the static technology 
case. 

We emphasize the results of the endogenous technology dynamics model simula­
tions because of its importance for the policy implications discussion of the WRE 
analysis, replicated by us for this paper. 

However, we once again confer with the basic quantitative results of the WRE 
analysis. Independent of the issue of discount rate, or of static versus endogenous 
technology dynamics, the largest divide in short-term emission trajectories remains 
between the IPCC results (based on a carbon cycle model intercomparison) and 
those from models that additionally embrace an intertemporal optimization per­
spective, while still arriving at comparable long-term C02 concentration stabiliza­
tion targets. What matters most for near-term emissions profiles (and hence the 
necessity to adopt mitigation measures) is whether cost effectiveness criteria are 
considered or not. Thus, the ultimate divide may be a disciplinary one. Between 
natural sciences on one hand and economics on the other. 

6. Conclusion: policy implications 

We used a coupled carbon-cycle and energy systems engineering model to 
analyze the future time path of carbon emissions under an illustrative C02 
concentration stabilization limit of 550 ppm. Our findings confirm the basic 

10 Evidently, levels and profiles of shadow prices are sensitive to variations in the discount rate. Above 
numbers correspond to calculations with a 5% discount rate. As a robust analytical result we find that 
under full temporal and spatial flexibility carbon shadow prices (imputed tax levels) start off from low 
values in the range of 1-10 $ /tC and increase continuously over time, roughly at the rate of the 
discount rate. This means that, with a higher discount rate, near-term carbon shadow prices are ceteris 
paribus lower, but long-term shadow prices are higher. Note that our short-term carbon shadow prices 
correspond well with the short-term values obtained by Nordhaus (1994). Our long-term (2100) carbon 
shadow prices above 1000 $/tC of course are in stark contrast to values of 20 $/tC suggested by 
Nordhaus (1994). The reason is that we use a fixed, exogenously given C02 concentration limit for our 
calculations, whereas Nordhaus estimates an intertemporal optimum weighting mitigation costs against 
a particular climate damage function that does not lead to any C02 concentration stabilization. 
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em1ss1on pattern as found by WRE: global emissions rise initially, pass through 
stabilization, in order to decline in the second half of the 21st century. We show 
that for a given C02 concentration stabilization target, emission trajectories under 
inter-temporal optimization depend mainly on two factors: the discount rate, and 
the representation of technological change as either static or endogenously dy­
namic. We obtain a similar near-term emission time path as WRE when using a 
model with static technology and a discount rate of 7%. We obtain a trajectory 
with lower emissions in the near-term when using a lower discount rate and/ or 
treating technology dynamics endogenously in the model. Differences between 
alternative model formulations are sufficiently small as to be of secondary impor­
tance when compared to treating C02 concentration stabilization as an inter-tem­
poral optimization problem or not. Whereas our results thus confirm the computa­
tional results of WRE, we arrive nonetheless at different policy conclusions. 

6.1. Act now or later? 

Over the short-term em1ss1ons consistent with long-term C02 concentration 
stabilization do not differ markedly from those typical of 'business as usual' or 'do 
nothing' scenarios. Initially they are only slightly lower and differences widen only 
in the longer-term. Typically, for a stabilization target of 550 ppm global carbon 
emissions can rise to some 11 GtC around 2030, need to stabilize thereafter, and 
start to decline significantly only after 2050. Does this mean that over the 
short-term we can follow 'business as usual' policies? According to our understand­
ing of technological change as an endogenous process we cannot. If long-term 
emission reduction is the goal, we cannot follow 'business as usual' even in the 
short-term. Action needs to start now. Action does not necessarily mean aggressive 
short-term emission reductions but rather enhanced R & D 11 and technology 
demonstration efforts that stimulate technological learning. These are the neces­
sary preconditions that long-term reduction targets can be met with improved 
technology and at costs lower than today or lower than in the case where 
technologies remain unchanged. 

We arrive at this conclusion considering technological change as an endogenous 
process, and after substantial methodological advances in the treatment of non­
convexities and stochasticity have been achieved in models of technology choice. 
R & D and technological learning in niche markets and via gradually expanding 
investments (as opposed to mission oriented crash programs)12 yield substantial 
long-term returns. But they also require dedicated efforts and a long time (and 
acceptance of possible failures) to bear fruits. This introduces an additional time 

11 The importance of R & D in preparing for climate change response strategies was also emphasized by 
Wigley et al. (1996). Note that we argue for R & D and technological learning as strategies for preparing 
for long-term technological change rather as opposed to spend money exclusively on short-term 
emission reduction efforts. This should make additional R & D resources available and reduce thus 
possible 'crowding out' phenomena in R & D resource allocation due to climate policy intervention (for 
a discussion of the latter see Goulder and Schneider, 1996). 
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constraint for changes in the technological landscape beyond that of the longevity 
of the capital stock of the energy sector and of infrastructures (Griibler, 1996) and 
of 'technological inertia' (Grubb et al., 1994) in general. 

6.2. Two final caveats 

We close by pointing out two further critical issues: uncertainty, and the possible 
mismatch between the world of economic models and that of climate policy. 

6. 2.1. Uncertainty 
The numerical precision of our (and any similar) model calculations should not 

distract from the basic fact that uncertainty abounds. First, like WRE we have 
performed our calculations with a 'best guess' parametrization carbon cycle model. 
But evidently both our understanding and our models of the carbon cycle are 
uncertain. For any given level and date of C02 concentration stabilization (that 
science continues to be unable to suggest) the timing of emission reductions debate 
is dwarfed by the spread in allowable emission profiles resulting from carbon cycle 
uncertainties.13 We do not know the future evolution of energy demand, we are 
uncertain about potentials and timing of technological progress, we remain uncer­
tain about which discount rate to use, uncertain how to balance mitigation costs 
with the benefits of a reduced warming signal, etc. etc. 

The real issue therefore is not to debate optimal timing, but rather how to 
prepare best for future contingencies should drastic emission reduction indeed 
become required. Analyses in the domain of energy technologies have shown that 
optimal contingency polices vis a vis uncertainty all entail diversification and 
'prepare early for possible action later' strategies. These findings emerge from the 
treatment of technology characteristics as inherently uncertain (as done for in­
stance in the stochastic programming exercises reported in Golodnikov et al. 
(1995), Messner et al. (1996), and Griibler and Messner (1996)). And they emerge 
also from models that treat technological dynamics (learning) as well as other 
salient influencing variables as inherently uncertain (cf. Griibler and Gritsevskii, 
1997). The optimal technology 'hedging' 14 strategy in all cases is to stimulate 
R & D, experimentation, niche markets, i.e. technological learning. And like all 
learning, technological learning cannot start early enough. Choosing the most 
appropriate policy instruments to achieve this remains open to further research 
and debate. 

12 As evidenced by past failures, e.g. fast feeder reactor or synfuel development programs, gradual 
technology development via experimentation and learning under decentralized decision making might 
be both economically and socially superior to large-scale, centralized (and government sponsored) 
mission oriented energy technology programs. However, experimentation and learning require long-time 
horizons for both planning and implementation, which is frequently beyond the time frame of 
short-term market decisions or of policy. 
13Schimmel et al. (1995), reporting a comparison of various models, illustrate this uncertainty margin. 
1'See also Manne and Richels (1995) on hedging strategies, particularly in the domain of reduction of 
climate uncertainties. 
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6.2.2. Decision paradigms: political versus economic 
Throughout our calculations we have assumed full intertemporal and spatial 

flexibility in emission reduction; i.e. the model runs presuppose that emissions are 
reduced when and where it is cheapest to do so in order to remain within the 
long-term global C02 concentration stabilization target. This economic concept of 
cost effectiveness in emission abatement may, however, be politically naive as most 
of the current negotiations within the FCCC focus on short-term quantified 
emission reduction limits and less on mechanisms and instruments and how these 
could be achieved most cost effectively, e.g. through joint implementation, tradable 
permits, etc. (cf. Victor and MacDonald, 1997). This mismatch between the world 
of economic calculus and that of political negotiations may well turn out to be 
more important for assessing the economic impacts of C02 emission reductions, 
than the issue of optimal timing of emission abatement. 
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