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COMPLEXITY IN MODELLING AND ANALYTIC USE OF COMPUTERS

Wm. Orchard-Hays

Foreword

There exists today a wealth of concepts, methods, techniques
and tools -- including computerized systems -- which are suitable
or even intended for what we now call system analysis. It would
seem that virtually any complex planning or evaluation problem
could be attacked with some form or other of model and meaningful
results produced. This assumes, of course, that reasonably
reliable data can be obtained, which in practice is often a
severe bottleneck. But even ignoring the question of data, the
process of actually formulating, implementing and using a model
for the analysis of a complex real-world situation is enormously
difficult.

This difficulty is caused by complexity of several kinds.
The complexity of the real world cannot be defined away and,
indeed, it is the object of system analysis. But there are
further levels of complexity which are caused by the concepts,
methods and techniques themselves and, more particularly, how
they are handled in computerization. To a considerable degree
this is tied up with confusion and ambiguity induced by the
various representations which are used. Representations are
neither concepts nor reality, no matter how narrowly these are
construed, and yet, from the first touch of pencil to paper to
the reams of printed output from a computerized system, repre-
sentations are all we actually deal with.

Several computerized systems of enormous power are avail-
able to IIASA, often at almost no cost. Indeed, two or three,
at least, are here now waiting to be used. Yet no one is using
them. Nor is this situation unique to IIASA. This writer has
spent a quarter of a century in developing increasingly power-
ful and flexible systems, and has been assisted by numbers of
highly competent people at different times. Similar efforts by



numerous other individuals and groups could be cited. Increas-
ingly, in the last few years, these systems have tended to become
monuments to complexity and futility. Clearly something is wrong
and this is a matter of deep concern. Certainly we can (or may
have to) stop building systems. But such capability is sorely
needed in analyzing the enormous problems facing the world.
Only three possible explanations for this situation present
themselves:
(a) There are almost no analysts who are capable of formu-
lating models of sufficient power to utilize big systems.
(b) Computer technology has become so complicated that most
analysts cannot -- or refuse to devote the effort needed
to -- really understand it. Hence they are unaware of
what is available and what can be done.
(c) The systems are poorly designed with respect to the
kind of work analysts must undertake.
We must believe that (a) is false or else we may as well all
pack up. On the other hand, it is increasingly clear that there
is some truth in both (b) and (c). The following discussion is
aimed at clarifying both sides.
Those who are bored with discussions bordering on the philo-
sophical may wish to only skim over sections 1 and 2. Section 3
is similar in vein but short and it provides a necessary preface

to the sequel.

I. The Puzzle of Complexity

Complexity 1is characteristic of our time. This phenomenon
is not confined to any one sphere of activity, any one area of
intellectual pursuit, or any one cultural, political, or techno-
logical environment. It is, of course, more predominant in some
areas -- both physical and conceptual -- than in others, but,
nevertheless, complexity is an ever-encroaching cancer on human
experience in the twentieth century, and particularly since WWII.

Complexity, in the sense meant here, is not at all synonymous
with difficulty, sheer size, or extensive administrative details.

A few people have always been able to surmount incredible obstacles



and, in this sense, to solve difficult problems. History is full
of such stories in various fields. Massive enterprises and far-
flung but efficient administrative organizations have been known
since antiquity. But until recent modern times, simplicity and
uniformity were much more the results of achievement than com-
plexity.

In science, the early results in almost every field, beginning
with physics in the sixteenth century, were marked by simplicity,
elegance, and apparent generality. In technology, as late as the
1930s, it was claimed that all mechanisms depended on a small set
of basic devises or principles (some number in the teens as I
recall). In mathematics, some complexity is inherent but, ini-
tially, this was more in individual problems which were difficult
or unfamiliar rather than in a confusing maze. (Of course, there
‘'were holdovers of confusion from antiquity.)

As a succession of brilliant minds developed more and more
general mathematical methods -- largely motivated by problems in
the physical sciences or practical problems occuring in the conduct
of human affairs -- these were seen both as unifying concepts and
as a confirmation of Galileo's contention that the "Book of Nature
is written in mathematical characters”. The idea emerged that
mathematical statements represent a model of reality and not merely
a method of solving practical or theoretical problems. (This is
over and above the concepts and techniques of "pure" mathematics or
it foundations in logic.) This conviction is still very much a
basis of current work even though the increased use of methemafics
in the less exact sciences, such as economics, requires one to
hedge somewhat about the validity of a model. However, this is
not viewed as a weakness in the concept of mathematical represen-
tations but as a difficulty in formulating a model of a situation
for which experimental methods are impractical and precise laws
unknown. Hence one must rely on historical or indirect data and
opinions, both to formulate and validate theory.

It is true that conceptual difficulties have arisen in

physics, mathematics and logic which have, at least for a time,
had a disquieting or even shattering effect on scientists -- so-




called crises. But the idea that correct mathematical represen-
tations are inherently valid and consistent -- essentially as an
article of faith -- has been strong enough to survive all such
shocks. Indeed the practical applications have hardly been dis-
turbed at all. (Many scientists and mathematicians might deny
that science is grounded in essentially intuitive beliefs. Yet
to some of us at least, this conclusion seems inescapable when
observing the methods of science. This is not raised as an
objection in any sense.)

Nevertheless, new crises are forcing themselves on us, due
at least in part to past successes. First, the enormous growth
in human knowledge has, in itself, forced specialization, in some
cases extreme. It is not possible for a twentieth-century
Leonardo to emerge, or even a Gauss. No one person, even of the
greatest genius, can comprehend a broad spectrum of fields in
sufficient depth to make fundamental contributions to them all.
This increases the complexity of communication and cross-fertil-
ization of ideas. It is difficult even to know whether an appli-
cable theory or method for a problem at hand has already been
developed. Scientific competition also contributes to the diffi-
culty. ‘

Second, the growth of industrial technology, urban culture,
population, and other factors often noted, has created new kinds
of problems. These problems do not respond to the kinds of models
in classical physics, for example. Such models not only elucidated
but anticipated facts. Perhaps the first dramatic case of this
kind was the "discovery" of Neptune. A more precise case is the
bending of light around a large body as predicted by relativity
theory. For pure imaginative abstraction, it is hard to outdo
Dirac's famous equation from which results jump out like "rabbits
from a magician's hat", as it is described in prestigious works.
Thus "facts" may be based on perusal of mathematical formulae
rather than on observations. Of course this is one purpose of a
model, perhaps the main one. It depends, however, on knowledge
of fairly precise laws. When models are applied to areas where

such laws are lacking and where various uncertainties must be



taken into account, the situation is quite different. Both
observed facts and deduced facts may have low confidence levels
with respect to either explanatory or predictive value. This
greatly complicates analysis, obviously.

Another source of complexity is related to the development
~of computers and data processing technology. It is not the
complexity of the computers themselves to which we refer, but
the perplexing ambiguity in representations which they engender.
Since this is the central theme of the sequel, no attempt will
be made here to illustrate it in a few words.

Complexity is itself forcing a new crisis upon us. The
difficulty is essentially this: The world is faced with enormous
problems which, if not soon resolved, threaten the very contin-
uation of human life. All the complicated techniques of analysis
and decision sciences, which are now nominally available, are
needed to find solutions. The very complexity of these methods
and tools, however, inhibit their effective use, and they are
difficult to comprehend. At the same time, their potential power
seems to be precisely what is needed to resolve the problems

facing mankind. This is the puzzle of complexity.

2. On the Complexity of Human Interaction with Computers

In the past, complexity has often been dispelled by a fresh
approach, a new viewpoint or the recognition of a basic principle.
This is what is usually hoped for but, increasingly, it does not
work. This is almost characteristic of computer technology. (In
hardware technology, significant exceptions to the above state-
ment could be cited: e.g., the transistor and printed circuits.)
For well over a decade, in some cases two, the computer has been
performing tasks routinely which could not have been done other-
wise. But the true potential of the computer has not been even
approximately achieved except in a few special cases at enormous
effort and cost. (The U.S. space effort is perhaps the best
illustration of this.) A long series of terms and concepts
have been put forth and many implemented -- integrated data
bases, management information systems, artificial intelligence,



etc. -- but almost without exception they have fallen short of
expectations. This is not to say that computers are not worth
their cost -~ certainly they are justified for many purposes.
But they tend to constitute a separate technology of their own.
They have been most successful in repetitive data processing
applications and sheer computing tasks. While a considerable
degree of flexibility has been achieved from the computer spe-
cialist's viewpoint -- an incredible amount of those of us who
worked on the earliest machines -- this has not extended in
sufficient measure to an analyst-user.

As early as 1957 or 1958, the term "automatic programming"
was coined. It was hoped that the role of the programmer could
be virtually eliminated. Today programmers constitute one of
the larger labor classes in the U.S. (Most of them are using
the "autonatic programming" techniques.) A series of languages
have been developed to "make the computer more accessible to the
user". The most widely-used one is almost the oldest and cer-
tainly the least adequate -- FORTRAN. Even IBM who fathered it
has tried to disavow it =-- without success. This is unquestion-
ably due to a reaction against complexity by computer users.

The U.S. government insisted on the development of COBOL for all |
computers it purchased, to simplify and standardize programming
and documentation. Today there are entire floors of large
buildings full of COBOL programmers.

Examples could be cited ad nauseum. One case which is
very germane to system analysis is linear programming which has
been under intense development for almost 25 years. Projects
are being started right now to "make use of LP and mathematical
programming techniques more accessible to the user". This
writer only last year completed (almost) the latest version of
a long series of "gee-whiz" systems, this one for interactive
use. Yet almost no one is using it. It is now contended that
the data management approach, which was considered a significant
improvement itself, is at the wrong level of analysis. This may
be true but the level now proposed will either have to build on

or essentially duplicate the complex system already in existence.




This is typical of application systems and perhaps even more so
of basic software.

Certainly many talented people have devoted their efforts
to improving software, and computer science has already made
significant theoretical contributions in a number of areas. An
enormous body of literature exists on computers, computer based
applications, and algorithms of various kinds. Although of mixed
quality, much of it is in good scientific tradition. But all
this seems to help very little in data management.

Actually the physical capability for storing and processing
enormous amounts of information (or at least data) now exists
and is in use. One difficulty is that computerized data, at
least if it is to constitute information or be used to calculate
meaningful results, is in effect procreative -- and very prolific.
There is more data about data than about reality. Since the use
of data also involves concepts of some kind, the concepts them-
selves must have representations and these constitute more data.
Furthermore, the more comphrensive and powerful the concepts,
the more information is required to utilize them. A simple and
familiar example is a matrix. One can conceptualize problems in
terms of matrix algebra with relatively few symbols. But if the
concepts are to have practical application, actual arrays of
numbers must be provided and processed. These numbers come from
somewhere and must be identified. The results produced must be
related in some meaningful way to the problem, which means either
words or charts that people carn read.

One major reason for the resulting complexity is that almost
no simplifying or unifying concepts exist for the handling of
data itself. This writer chaired a committee that worked on this
problem for many months in the late 1950s. A recent perusal of
current literature on the subject revealed that almost no real
progress has been made since. If anything, it is more confused
than ever since a number of specialized terms have been introduced
which are only labels -- nothing follows from them. They are
much like Euclid's definitions but far less intuitive.

Computing and data processing, of course, cannot be blamed

for the complexity of modern life. It could even be argued




convincingly that, quite the contrary of being a cause of
complexity, this technology has arisen in response to it as a
means of handling the enormous computational, record-keeping and
information requirements of the modern world. Certainly there

is no intent here of faulting the computing industry and pro-
fession which, in one generation, have achieved more than probably
any other field in the history of mankind in a similar time span.
This foreshortening of traditional growth periods is itself a
major cause of complexity since there is simply not time to sort
everything out in an orderly fashion. However, this is not unique
to the computing field. The automotive, aeronautical and radio-
television technologies, for example, developed in comparable time
spans and introduced qualitatively different aspects into human
life. But none of these require the user or consumer to interact
with the technology itself in an intimate or complicated way --
regardless of how the techndlogy may have altered life-styles.
This is true also of the commercial applications of data pro-
cessing. The case with scientific or analytical use of computers,
however, is different. It is this area to which we will now

confine our attention.

3. Concepts vs Reality

If an intelligent but philosophically unsophisticated (un-
complicated) person were asked the difference between concepts
and reality, he would probably feel that a clear distinction
could be made. On some further reflection, he might concede
that the distinction is not, after all, absolutely clear. If I
look out the window at the landscape and the town, I feel I am
viewing reality. If now I turn back to the mathematical or pro-
gramming problem on my desk, I have an equally strong feeling of
reality about the abstract domain under contemplation. This is
a familiar experience to those of us who spend our time at mental
rather than physical tasks -- and we are now in the majority in
many areas of the world. While we certainly feel a difference
in the experience of studying and that of walking in the woods,
both are somehow real. 1In fact, since we probably spend more

time at a desk than in the outdoors, the latter may seem less



real to us than the former. A common feeling two or three days
after returning from an exciting trip is that it was just a
dream.

The world of the computer has added new dimensions to this
ambiguity. Suppose a scientist needs to make certain calculations
using some well-known mathematical method -- a set of formulae or
an algorithm, say. It is perfectly clear to him that the situa-
tion he is modelling (whether he calls it that or not) is only
abstractly and imperfectly represented by his model -- that is,
the model is a concept representing-cettadin-aspects of reality.
It is also clear that the method is a concept but a more "real"
one since its validity depends on well-established proofs and
not on any particular application or interpretation. He also
knows that the method can be (or has been) programmed and that
the computer can calculate numerical results for a number of cases
which he wants to examine. The whole set of ideas (another con-
cept) may occur to him in a flash, without any conscious separa-
tion into the above steps.

In order for this conceptual plan to become "reality", the
investigator must first reduce a number of things to writing. .
(This use of "reduce" always seems inappropriate. "Expand" is
closer to what happens.) The exact order will depend on style
but let us suppose he first writes down the general formulae.

It is most likely that he will do this in standard mathematical
notation which, however familiar, is highly abstract and con-
densed. Seeing that the method is indeed appropriate to his
conceptual model (of course, this whole scenario is grossly
oversimplified), he next writes "where:", followed by a string

of argument, set, and parameter definitions. It is at this point

that implementation difficulties begin to appear.

4. Representations

For the present, let us assume that our user's method has
indeed been programmed for the computer and that the mathematical
formulae are effectively built into the routines, and hence

require no explicit specification. Later, we must consider the



-10-

more important case where this assumption is not completely true.

With the above assumption, then, our user need not do any
actual computer programming. However, the full assumption only
makes sense in the event that the method is quite general and
the expense of developing a general application system ("package")
could be justified on the basis of a large number of expected
users. Thus we are not considering the case where standard sub-
routines for trig functions, or Bessel functions, or something
similar, are available. In such a case the user would still have
to do computer programming. The assumption implies that, at the
most, the user might have to write a simple and stereotyped
control program to define array sizes and source files.

Now it is clear that any method will require input data and
must produce some form of output. Let us further assume that
output is standardized and requires at most some simple input
parameter to specify frequency of output or perhaps one or more
of several predefined formats. Then we can concentrate on in-
put data.

The first question our user encounters is what "language"
he should use in specifying sets, arguments, parameters and,
perhaps, source data. This may be further complicated if
"identifiers" for variables are required, which may be necessary
to identify output, for example, or simply due to system con-
ventions. In any event, some sort of translation and trans-
cription from the user's natural mode of definition to the
system's conventions will be required. The designer of the
system, no matter how competent and familiar with the application
area, had to establish conventions; these were probably adapted
from the notation of some leading authority in the field, modified
for limitations inherent in machine-readable character sets.

If one writes

n . .
j£1 aj 4%y < b, ied{1,...,m} , (1)
anyone with modest mathematical training will understand what it

signifies, assuming the context has been made clear. This writer,



-11-

on seeing the above notation, would assume it had something to
do with a linear programming model, which might not be so. But
assume it is. With only minor variations, it could represent
the constraints in any LP model. It is nothing but the classi-
cal statement of LP constraints according to one school of
writers. As a representation, the most it represents is a part
of a methodological concept, an abstract notation of an abstract
idea. Outside of a mathematical text or statement of method, it
represents nothing at all, even if transliterated to "computerese".
To further clarify this important point, consider actual
numerical data. We will ignore problems of format; it is suf-
ficient, for example, to assume that everyone knows and accepts
FORTRAN conventions. Suppose one has an array of numbers,. for

example:

2.13 1.00 -1.25
-0.15 0.85 1.01 (2)

What do they mean? We can "read" them, of course, and so, in
essence, can the computer. Before that is really possible,
though, a convention must be established as to whether they are
presented by row or column, and what the index limits are, since
the computer really gets them in a linear string. Assuming all
this has been conventionalized and specified, the above array

is still just six numbers. We feel that there is a "reality"

to actual numbers but, in fact, (2) is no more meaningful than
(1). The array (2) could be an instance of any 2 x 3 table or
matrix.

- Thus the meaninglessness of representations is inherent
whether it occurs for very general, abstract concepts, or very
specific, "real" values. There is a gulf between a representation
and what it signifies which cannot be bridged in a mechanical or
automatic way. The nearest approach to such a connection is a
widely accepted convention and perhaps a procedure. Thus, (1)
is given meaning by mathematical training and made "real" by a
system of computational routines; (2) is given structural




-12-

meaning by a set of conventions and input routines, and given

specific meaning by what a user construes the values to mean.

5. Some Definitions

Even the above more-or-less obvious comments do not indicate
the full degree of ambiguity in representations or the complexity
it creates. In order to discuss this further in a meaningful way,
a few precise definitions are required. They are, to some extent,
arbitrary but, since universally accepted definitions do not
exist, hopefully no harm is done by using common words as labels
for specific meanings included in their general senses.

Concept A mathematical or mathematical-like mental formu-
lation of considerable generality but specific
enough to be articulated in a way readily under-
stood by a knowledgeable group of people.

Example: "We can treat this class of models as
mathematical programming problems with a quadratic
functional and linear constraints.”

Theory A carefully formulated and formally proved set of
mathematical or logical concepts which can be
applied to any problem which meets or can be con-
strued to meet the stated formulation, assumptions
and conditions. Essentially a set of theorems and
hypotheses. Examples: "The Theory of Groups",
"Standard Statistical Methods,"”, "Integer Program-
ming"”; also applied to the specific theory --
possibly hybrid -- on which a method or set of
related methods is based. Not to be construed so
broadly as, for example, the Theory of Electro-
dynamics.

Method A procedure widely known, at least in its basic

form, for a particular type of problem, usually
one which is commonly programmed for computers.
Examples: "The method of Least Squares”, "The
Simplex Method", also applied to concepts of

computer science, e.g., "the method of inverted
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files," "compilation methods".

Algorithm A method which is either inherently iterative and
terminates by convergence, such as one employing
some variant of Newton's method, or which is commonly
implemented by a proceduré involving (even theo-
retically) a finite or fixed number of steps which,
however, cannot be prespecified in detail.

Application System An elaborate and coordinated set of

computer programs which carry out a method or a

set of related methods of a theory, plus providing
some degree of data management, control, and report
writing capability, sometimes extensive.

Package Similar to an application system but more loosely
connected. Essentially a related set of individual
programs which may require some additional program-
ming in order to utilize them in a particular
situation.

Interactive System Either a basic hardware/software system

designed for interactive use from terminals (then

better called an interactive environment), or an

application system implemented in such an environ-
merit. In contradistinction to batch processing
or applications implemented for batch processing.

(Mathematical) Model Here restricted to mean a specific
application of a theory for which a computer-
implemented method or related set of methods
exists, or can be created using known technology.
See further in next section.

Reality That part of a real-world situation which is
abstracted for study using a model.

Further definitions must be postponed until certain notions

already introduced are clarified.

6. Regarding Mathematical Models

The term model, even when restricted to mathematical models,

is commonly applied in different senses which, though related,
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involve different viewpoints and techniques. One cause of
confusion and complexity is that these different senses cannot

be put into either a strict hierarchical classification or a
fully ordered time sequence. This has almost nothing to do
with the nature of the reality under study but is characteristic
of the modelling techniques themselves. Since the purpose of a
model is almost always to study complicated reality, it is essen-
tial to bring as much order and clarity as possible into the
modelling methodology. Otherwise, complexity is compounded and
the resulting confusion tends to nullify the effectiveness of
the whole effort.

Even though modelling methodology cannot be put into a neat
hierarchical tree or time ordered sequence, some broad aspects
can be quickly recognized and certain precedence relations are
obvious. We will begin by cutting away those parts which have
only peripheral relevance to the present discussion.

First, an important and comprehensive project of system
analysis would very likely require more than one form of model,
even though one might be central to the overall approach. We
will assume that distinctly different types of models can be
and have been segregated in the initial project planning. This
is not to deny that overall integration into a system of models
may be desirable or necessary at a later stage. However, the
ease and effectiveness of this will depend in large part on the
quality and operability of the separate models, and how well they
can be interfaced. This last consideration is best served by
standardizing implementation techniques and data conventions as
much as possible, rather than by attempting to combine two dis-
parate methods or theories from the outset. Clearly, mature
judgement will have to be applied to this matter in individual
cases but, at least for the present, it is assumed that the
modelling scheme is manageable in a practical sense within a
fairly well defined and proven theory, which may have to be
extended somewhat in the modelling process itself.

In connection with the preceding paragraph, those who must
explain the methodology used to the client or other important
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outsiders, sometimes refer to the entire project as "use of a
mathematical model". This gross oversimplification is apparently
deemed necessary to remain meaningful in "high-level discussions”.
Whatever virtue it may have for presentation purposes, this grand
view is only a hindrance in trying to analyse complexity and the
difficulties of applying modelling technigues. We will have no
occasion in the sequel to construe a model in so gross a sense.

Second, those concerned with developing theory, methods, and
even application systems, tend to speak of the model. By this
they really mean the theory with its abstract formulation and
mathematical notation. This viewpoint is, of course, highly use-
ful in conceptualizing but only of value as reference material
in an actual application.

Thirdly, a model is regarded as an abstract, i.e. symbolic,
formulation of reality (already an abstraction). At this point,
we must regard the use of the word as legitimate, even though
this form of a model is a far step from actual realization of
results. This process of formulation has value in itself in
clarifying the scope, resolution (resolving power) and relevance
of the approach; in determining what classes of data are required;
and in indicating the range of cases or parameter studies which
the overall goals demand (e.g., for options and confidence levels).
Hence, this abstract formulation is in a real sense a model.

The confusion begins in moving to the next stage. Formu-
lation is a task involving discussion, study, and paper and
pencil -- in short, strictly human functions. The symbology thus
evolved could, it is true, be transcribed into machine readable
form and treated as an abstract definition of the model for the
computer, i.e. the application system. This has not been the
approach in past technology but is now being considered. Before
attempting to assess whether this has any meaning, let us complete
the list of requirements for the model as a whole.

The next stage may be termed implementation of the model.

At the moment, we are concerned with data but the same term will
also be used in a similar sense with regard to method, meaning

creation of usable computer routines or an application systenm,
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when this is called for. (There are, in fact, several aspects
to the implementation of a model and it is here that confusion
can easily arise.) The following tasks must be performed in
one way or another, just for data, assuming the method has been
implemented.
(1) Source data must be collected or located and identified.
This may require auxiliary projects of several possible kinds.
We will assume here that basic source data has been brought to
the stage of computer readable format with both numerical or
symbolic values and all required identifying labels, indices or
whatever. There is no intent to minimize the possible difficulty
of this part of the project -- which may in fact be the hardest --
but data collection is a separate methodology in its own right.
If the pertinent data already exists in an accessible data bank,
then, of course, data processing techniques can be applied to
obtain it. It should be pointed out, however, that in many cases,
at least,some data must be available before the process of formu-
lation can be completed. Thus there may be an iterative nature
even to data collection.
(2) Source data must be checked and validated in most cases.
When "clean" source files are at hand, it will probably be neces-
sary to further process them into forms suitable for the main
model. This may require reformatting, aggregating, various kinds
of computing, or even implementing preliminary models. Only after
all this is done can it be claimed that data for the model is
available. Note that the final form depends on existing or plan-
ned conventions for input formats to the application system to be
used. Hence there may be another time dependency between data
preparation and method implementation.
(3) The data must be "input to the model", possibly specialized
by case. Here we encounter a confusion not merely of terminology
but of concept. Wwhat is the "model"?

The question above brings us to the heart of the subject.
under discussion. Actually, there are two parts to it. We as-
sumed that the method had been implemented, or would be as a

project task. In fact, both data and method may involve several
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cases so that there is a control problem as well. This requires
human interaction and hence an interactive system seems most
suitable for modelling activities. (An exception would occur
when the main computations involve a series of long runs with
clearly specified parameters. However, this would seem to be
less and less likely as the realities modelled become more
complex, especially with the tremendous speed of current large

computers.)

7. What is a Model?

After eliminating peripheral senses and assuming away the
difficulties of data collection and preparation, we are still
left with considerable ambiguity as to what constitutes a model.
We will illustrate this with a series of questions which, admit-
tedly, are straw men.

(a) If the initial formulation of the reality under study is
the model, then what is its representation, where does it
exist, and how shall we regard the data prepared for it?

(b) If the methods specialized to the formulation constitute
the model, where do these definitions reside, and how are
they given meaning? Or must each model have its own ap-
plication system or package?

(c) If a model can be considered implemented only after usable
data is available, then is its representation and structure
a part of the model; if the data exists in separate files,
how shall we regard other uses of the same data?

(d) If the model can only be regarded as a dynamic entity re-
gquiring human interaction and monitoring, then is it any-
thing more than a set of machinery which humans operate?

If so, then is each instance of use a separate model?

(e) If the modelling scheme is itself a kind of grand iterative
process, then does the model ever have a distinct existence?

(f) If any of the viewpoints implied by (a) to (e) are adopted,
does it make any sense to talk about the reusability or
transferability of the model?

Even though these questions are loaded, they do bring out the

necessity for clarity in ideas and unambiguous definitions.
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To this end, we begin with the following.

Conceptual Model The initial written formulation which defines

the abstract reality to be studied, the form of model to
be used (in terms of theory and method), and the notation
which will be used to relate the components of reality to
the theory and method. This conceptual model is then the
primary reference document with respect to implementation
of method. The notation used (after preliminary explana-
tions) should be suitable for computerized referents.
However, the conceptual model is strictly a product of
human analysis and intended for human use. Any computer-
ization would only be in the nature of a librarying
service.

Source Directory A written document which defines the source,

nature, and preprocessing if any, of the data implied by
the conceptual model, together with the notation which
refers to the final form. This notation must be either
identical to or a consistent expansion of that used in the
conceptual model. Otherwise, a source directory can have
the most varied forms, as required, and may even imply,
specify, or reference auxiliary or related projects which
furnish data. The source directory is then the primary
reference document with respect to implementation of (or
possibly merely accessing) data files. It is not itself
computerized (except perhaps in the sense of librarying)
but defines most of the notation for data in actual
computerization.

Model Vehicle The computer system to be used (or the relevant

part), including hardware, basic software, and, when appro-
priate, an existing application system. (Conceivably more
than one application system might be used. Usually, however,
this will lead to interfacing problems.) If an application
system must be created or extended, this is also part of the
vehicle. However, special files, control programs, etc.
created for the project using an existing system are not
part of the vehicle. Network facilities might be included.
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Structural Model A second conceptualization, completely divorced

from reality, and referring explicitly to computerization.
It is defined by a written document, which in turn prescribes
the vehicle, and in which symbolic charts, diagrams and
tables are used freely. The methods and notations defined
by the conceptual model, the data to be made available as
described in the source directory, and the known or defined
characteristics of the vehicle, are taken to be reality.
The (definition of the) structural model is essentially the
overall design of the operational model (defined below).

In the event that new methods must be implemented, this
should be spelled out here too, or else reference made to
detailed specifications for the necessary programs.

Note: Software has long existed for computer-produced
charts and explanatory text such as might be used in defin-
ing the structural model. However, this is only a special-
ized form of librarying and not actual computerization.
Similar but much more elaborate software for such uses as
architectural and engineering design also exists and, in
this context, is actual computerization.‘ We will assume
that the structural model document is written or drawn by
people but it is quite possible that output from standard
software may be included in the final veréion, if only for

illustration.

Operational Model The fleshed-out, computerized realization of

the schema implied by the structural model, checked out and
ready for use, and supported by detailed user documentation.

It is clear that there is a large gap between the definitions
of structural and operational models, but at least we now know,
where to concentrate our attention. Also, we need not ask any
more silly questions about what a model is. However the opera-
tional model is used, it presumably produces results meaningful
to the original formulator of the conceptual model. Whether or

not "the model" is reusable or transferrable is a moot question.
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(This writer's opinion is that usually it is not but substantial
parts may be).

Note that all the above definitions are perfectly general
and could apply to any modelling project for which computer
methods are to be used. 1In effect, they constitute part of a
general management plan. The gap is filled by construction of
the operational model and here it is much harder to be general.

We discuss this in the next section.

8. Construction of the Operational Model.

Assuming the expected competence in formulating the concep-
tual model, in defining the source directory and carrying out
its tasks, and in obtaining necessary results from the operational
model and making valid judgements about them, then the construction
phase is the keystone to the whole modelling process. This actually
begins with definition of the structural model but this should not
be done in too great detail. One needs to get a comprehensible
overview of just how the whole operational model will work in
principle, what facilities will be required, and what time and
cost factors can be expected. This clearly requires the effort
of a system analyst with close coordination with the formulator
and the data specialists. The role of the system analyst here is
comparable to that of an architect working with the client. Once
the outline is drawn, however, the detailed design should be left
to the expertise of the system analyst.

Now it is just here that the evolution of general-purpose
application systems has run into difficulty. The designer of such
a system does not have a client, or at best he has a very few at
the time, but is trying to design for any of a large number of
hoped~for users. A method of considerable difficulty creates
plenty of design problems with respect to computational organi-
zation and efficiency, handling of a number of possibly large
files, staying within the physical or administratively-dictated
limits of the operating system, etc. etc. It is enough to handle
all this within the extent of one theory and its method or methods.

Hence these systems are inherently somewhat specialized.
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Consequently, it is not surprising that systems for different
theories, or even different systems for the same general area,
are not alike and largely incompatible.

Furthermore, it is only after considerable experience with
a system -- after other users with different viewpoints have
tried to use it -- that flaws in the design begin to be manifest.
This is especially true with respect to the degree of human inter-
action desired and the depth to which this must go. In the early
stages of evolution of a type of system, users are glad to get
anything that does a complicated job with reasonable efficiency.
Once people are accustomed to a capability, however, they then
begin to think more generally and may need additional flexibility
which is completely incompatible with the original design and of
which the designer was never aware (in fact, neither was the
early user).

The very considerable capabilities available today would not
exist if designers had not made arbitrary decisions. (This holds
also for basic software produced by the manufacturers but it
doesn't seem to bother people so much any more. "That's just the
way computers work." However, individual attempts at replacing
basic software are not too successful either and create even
greater problems of noncompatibility.) Moreover, the operational
control mechanisms that have evolved or been superimposed on
systems are actually quite usable today and not a major cause of
complaint. The case with data definitions and management, and
with algorithm implementation structures, is different. Arbirtary
representations and implied meanings have caused confusion and
consternation to many users. '

Nothing much can be done about all this with respect to
existing systems. One must simply evaluate the advantages and
disadvantages of using them. If they provide highly-developed
and thoroughly proven computational subsystems, this advantage
cannot be lightly ignored. The cost of bringing an important
application system to such a state is incredibly high. (The
money spent on current LP systems, for example, has run into
many millions of dollars.) Nor are they easily separated, modi-

fied, or extended. (Work is underway now on an LP system which
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it is hoped will have this sort of flexibility, but it must
still be regarded as experimental.) Packages exist for a
number of methods but these provide mostly the basic computa-
tional subroutines. Other systems display characteristics
similar to the LP systems.

Another important consideration to be taken into account
in the detailed design of the operational model is efficiency.
In the past, many people have pooh-poohed the question of
efficiency, claiming that people-time is more valuable than
machine time. This is simply not true. Again, LP provides a
good illustration. After the first few years, a fairly reason-
able scheme of referents evolved and was generally adopted
(LP/90, ca 1960) and then expanded in MPS/360 (ca 1964) which
is the basic standard today. However, this form of input is
very tedious and is not generalizable. Various data management
schemes have been added, none of which have been fully satis-
factory or generally accepted. Some of these are quite general
in nature but, almost without exception, they are complicated.
Efficiency varies; considerable inefficiency can, in fact, be
tolerated to gain generality but there are fairly small factors
beyond which people are unwilling to pay the cost in processing
time. A factor of 4 is probably the maximum, no matter how good
the language is. A general language can easily require ten times
as much processing time as a simple, stereotyped, linear input
stream. Hence, system designers have become wary of generaliza-
tions, at least if their product must sell.

Consequently, the detailed design and construction of the
operational model for an elaborate modelling project requires,
‘in itself, exercise of expert judgement and making of difficult
decisions. If at all feasible and reasonable, cost should not
be allowed to be the dominant factor here. The effort and money
expended on the other parts of the project are substantial. An
operational model which inhibits full investigation of the
reality under study, due to inflexibility, unreliability or in-
efficiency, is much more costly in the long run than additional

effort in design and construction.
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These things are much easier to say than to do. There is
evidently no substitute for an experienced team who have worked
together over a considerable period and have developed their
own jargon, techniques and system componentry. To the extent’
that this is incompatible with IIASA's structure and goals,
serious thought must be given to what constitutes a meaningful
substitute. No amount of theory, documentation, or external
collaboration can quite take the place of experienced teamwork.

The benefits to be realized from truly effective, flexible
and easily controlled operational models would surely merit a
substantial effort to achieve them. The important complexities
of reality could then be studied effectively which is what system

analysis is all about.



APPENDICES

The following pages starting with 1-3 are reproduced from

parts of the following document:

SESAME MATHEMATICAL PROGRAMMING SYSTEM
DATAMAT REFERENCE MANUAL (Third Edition)

Computer Research Center for Economics and Management Science
National Bureau of Economic Research, Inc. D0087 July 1975.
(This document is copyrighted 1975 by NBER.)

This writer developed both the SESAME system, with collab-
oration by William D. Northup and Michael J. Harrison, and its
DATAMAT extension, at NBER. The main SESAME system is fully
operational and thoroughly tested. The DATAMAT extension is
still experimental and not quite complete (particularly the
report-writing facility). The system is available to IIASA at
the CNUCE center in Pisa, Italy, and we have an account there
which can be accessed via remote terminal.

Pages 1-3 to 1-18 are taken from Part I of the document,
prepared by Robert Fourer who has been in charge of documentation
and testing. It shows how two LP models are handled with DATAMAT.

The "Appendix Overview", pages A-1 to A-26 (out of 34) was
written by the present writer towards the end of 1974. It gives
additional viewpoints on the problem of representations and
discusses most of the "verbs" available in DATAMAT. The report-
writing verbs (not complete) and several utility verbs are not
included in the part reproduced.

The discussions in these pages further amplify the complexity
of practical applications of modelling techniques. Although
DATAMAT is certainly not the only approach (or even the most
common one) to data management, it is the outgrewth of several
development efforts which started as early as 1958-60 and is a
direct descendent of elaborate systems developed from about
1965-6. Much of its design was dictated by a large commercial
user who studied the problems in depth over a period of some



years. Hence it warrants more than a cursory appraisal.
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EXAMPLE 1. A SIMPLE ASSIGHMENT PROBLEM

Ten waren each rate ten men on a scale fran 0 to 10. They are to
be paired into ten couples in the best possibly way - that is, to maxi-
mize the sum of the ratings associated with the pairings. iore formally,
let a;; be -the rating given by woman ¢ to man j, and let variable ‘rij be
1 if 7 is paired with J, and zero otherwise. An optimal pairing is then
determined by the following linear program: ‘

maximize 2 Z i 9; =7'x1«.7

subject to . x.,
1 TLg

1l Jg=1, ..., 10

| ZJ.:ciJ.=1 1=1, ..., 10

The first set of constraints specifies that each wamen Is paired with only

one man, the second that each man is paired with only one woman. The simple

structure of the problen enswres that in any basic solution every variable
g3 will have the value 0 cr 1.

Figure 1 shows a SESAME/DATAMAT session in which this problem is forru-
lated and solved. Input typed at the terminzl is printed in lower case
letters, while output from the system appears in capitals. Greater-than
signs (>) on input lires are prompts from DAT/MAT.

After SESAME is invcked and DATAMAT is called, a TABLE verb (1) is
used to create a table that holds the matrix [aij] of ratings. Each row
is labelled with a woman's name, each column with a man's. Subsequently,
an ENFILE verb (2) stores the table cn a peruanent files (from which it can
be recalled if it is needed again), and a DISPLAY verb prints the table's
contents for inspection.

Generaticn of an LP mcdel for the problam begins with the verb NER{CDEL
(4). The rows of the model are defined with three RCW commands (5-~7), which
also implicitly define the columns. The objective row (5) is named C2J; the
rows that limit each woman to ocne man (6) are named with ths wemen's names;
and the rows that ccnisirain the men (7) are given the men's nemes. The

£ - - - - PO —mdemyem A% P b mm e o
columns for the varichlzs ST naimed by concatinating ths first fovo Jediters

of the wraien's nemes with e Sirst four levters of tie men's

functicn HASK and the concatenation cperstir & are vs2d for this purpace.s
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The special expressions !1 and !2 create implicit lcops through all rows
or colums of the table. Expressions of the form

G:RATINGS(!n,0)

loop through all women's names in the tablej; ones of the form
G:RATINGS(0,!n)

loop through all men's names; and the expression in (5):
G:RATINGS(!1,1!2) |

loops through all the numerical elements of the table, !1 creating an
outer loop over the rows and !2 creating an inner loop over the colums.

A right-hand side vector, named RHS, is next defined by use of an
RHS verb (8), and the model is complete. It is stored on a permanent
model file with the ENFILE verb (9), and the QUIT verb (10) returns
conirol to the main SESAME envircnment.

It is now a straightforward task to set *he model up (11), solve
it (12), and display the active variables (13). From the variables'
names the actual pairings are easily deduced.

EXAMPLE 2. A GENERAL INPUT-OUTPUT MODEL

(a) The problem
An econcmy comprises a variety of industries, each manufacturing a
particular product. Production is to be modeled over a number of time
periods, subject to the follewing constraints:
There is an initial stock of each preduct. Stocks may
be built up or run down in subsequert periods.

Each industry requires certain fixed amounts of various
inputs for each unit of its product manufactursd. The
inputs are of two sorts: endogencus inputs which are
pr'odut.ts of indus-cnles in the economy, and exogencus
inputs vhose sup-ies are postulated (lator, for instance).

Each erLs‘:r“.' 1*”' an initial cepacity, Capzcities may he

inerenod (s o deorlasd) dnotny Teritd, e ?‘.d-::c—.d

capacity may rot Iﬁ used until the follors ~aod.

Am]r"-'f'u.-. 1y to prod .vtl’)"l, each industy weguires cortalin
15

1T
ard encgznous -

fired mmoomts of warious J:\IJJLC* - endegeniu
for ¢azch 'mit of increzse in capacity.
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There is an initiz1l supply of each exogenous input; the
supply increases by a fixed percentage in each subsequent

period.
Each industry must satisfy an exogenous cemand for its
product in each period. There is an initial exogenous
demand for each product, ard this demand increases by a
fixed percentage in each subsequent pericd.
The objective is to maximize the total production of one particular activity
over all periods.

To express the problem as a linear program, it must first be converted
to a mere precise notation. lLet T be the number of periods, n the number
of industries, and n the number of exogenous inputs. The variables may
then be specified as:

ei(t) stocJ' of product <

1’ seey n,

at beginning of periocd t;
1, ..., 41

:ci(t) quantity of product ¢ manufactured in period t;
14"1’ ® ooy n,t"l, .QI’T

r. () increase in capacity of irdustry © in period t;
i=l’ .I.’ n;t: 1, .“,T

The parameters of the problem can be specified as four matrices and six

véctors, whose elements are:

A;+ nurbzr of units of product ¢ required to produce
J 1 unit of product j5 2 =1, .oy #3 F =1, cuaym
ii muber cf units of exogenous input < reaulred to
J pr-oducelmitofpmductu,z-l,..., Ay 4 =1,

seeg N

D; 3 ' nunber of units of product 7 required to increase

the capacity of industry 7 by 1 unit; £ = 1, ...,

ny J =1, ..oy n

i1 nurber of units of exogenous irput 7 required to
J m':reaqa the capec1 of industry j by 1 unit;
l, cs sy n, J = l, . .3 n

>

e, initial stock of preduct 25 7 = 1, ..., n

e; initial capacity of industry 23 € =1, ..., n

51: ©initiel suprly of exogancus Irput w3 LoF ), L.l A

Y., fractional increase in supnly »f etgencus input
- T ver pericd (1/100 of percenvage increase);

L, L., 1




b, initial exogencus demand for product Z; 7 = 1,
.ll,n )
B, fracticnal increase in excgencus demand for product

2 per pericd; £ =1, ...y n

The objective is rcw to maximize the total production, zrxz(r), cf a chosen
industry z. The constraints may be expressed in five classes. First are

the tnitial stoeck constraints

ai(l) = e, 151, ceuy m

Second are the produciion constraints, which spec¢ify that the quantity of a
product manufactired in a period equals (i) the quantity required by all
industries for procuction in the period, plus (ii) the quantity required
by all industries for expansion of capacity in the pericd, plus (iii) the

~ exogenous demand in the periocd, plus (iv) the net change in stocks:

) £-1 .
xi(t) = Ej Aijxj(t) + Ej Dijrj(t) + 8, bi + si(t-l) - si(t)

21y eeag 3t =1, eouy T

Third, eapacity corstraints cdictate that production must not exceed an
industry's capacity, which is its initial capacity plus the sum of all
increased in prior periods:
t-1
xi(t)'i_ci + rzl ri(r) 221, veegny t=1, oo.,iP

Fourth, supply constraints ensure that the quantitv of exogenous inputs

consumed does not exceed the availably supplies:

A - t_l ~ R ~
> » + A L4 o o 3 o » = o8 e H = LN T
Zj Azjmb(t) LJ DLer(t) <Y e, =1, s ny t =1, | s

Finally, all variables must be non-negative.
Moving variables to the left-hand side, the -entire LP problem is formu-
lated thus (I representing the n-by-n identity matrix):

(1) 8i(1) =e; ' £=1, eieyn
=43 - -z < + = t-1
. = Ay . 3 :‘, t = lu 3 T
. t=1
(3) .‘L‘i(t) - : I"ﬂr(T) iai 7-. = 1, e o 9y 71; t = 1, LIL AN ] T

=1 “
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B) £, A,z (£) + . 0. .r.(8) <.t
) 5 Az J() 3 er,y(t)—Yt e

=1, veayny3 t =1, eoe, T

.
"
=

~»

(5) si(t)z_o ceay My =1, L., TH]

(6) & (£) > 0

o
1
(]

..., n;t:l, C..’T

ﬂ.
"
o]

“w

cesg Ny t

1"
[

(1) r,(2) >0 ey T

(b) Data Tables

A configuration cf tables for the problen data is now decided upon,:
and these tables are represented as a deck on a card-image file which will
be read by DATAMAT.* DATAMAT tables are Basical-ly two-dimensional arrays
of numerical or character values; a table thus serves to hcld one matrix
or one or more vectors. Fach table also contains an extra column of stubs >
which are names that identify the rows of the table, and an extra row of
heads which name the cclurms of the table. Proper choice of stubs and
heads is essential to problem generation, since they are concatenated in
forming model terminclegy {(see below). .

For the present rroblen, four tables are required to hold the four

‘matrices of parameters: |

Matrix Table name

A G:A
A G:AX
D G:D
D G:DX

The stubs of these tebles represent inputs - endcgencus (G:A, G:D) or
exogenous (G:AX, C:DX) - while the heads alwzys represent endogenous products.
(The "G!" at the teginning of each table name indicates that its elements are
numerical values.) Four tables are also used for the six vectors cf para-

meters:

Ny .

.. . . . & ~
2 -~ L o m Thas B e R | el K L . . T I £ R [
RSP = 5 Tas e sl A . P T S . R NN S
; o S ana Fo D KSRt Yt e e Ry N = oo
LLLE5 aitl v Q2007 DNSaNTT AN IGTL S AN T d LT g 20 LR il LOnNidid

e
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Vector(s) Table name
e G:E
c G:C
é, Y G:CX
b, 8 G:B

b

The stubs again represent either products (G:E, G:C, G:B) or exogenous
inputs (G:CX); the heads identify the particular vectors.

Two additional tables, M:EN and M:EX, serve as indexes to the heads
and stubs. The stubs of M:EN are the ocnes that identify endogenous products,
and the stubs of M:EX are the ones that correspond to exogenous inputs. The
body of each table is a single vector of character strings each of which
identifies the corresponding stub in a bit more detail. (The prefix "M:"
indicates tables whose elements are strings of up to 8 characters. )

Figure 2. A data-table deck for a three-industry instance of the input-
output model (Exarmple 2).

NAME GRONTABS

TABLE GiA = Al, EL, ME
Al = 0, O, 0
EL = 3, Q.l, 0,09
ME = 2, 0.4, Osl

TABLE GsAX = AI, EL, VE
LA = 500, 25 0.2

TABLE G'D = Al, EL, ME
Al =0, 0, O
EL = 2, 3, 0.5
ME = 5, 1, 2
TABLE GIDX = AI, EL, ME
LA = I' 24 0.5
. TABLE GIE = E
Al = 0
EL = 100
ME = 5000
TAél..E GiC = C
Al = 10D
EL = 13500
ME = 1E>
[ E NN N ]
TABLE GiCX = CX, PCT
LA = 1ES, 1.1
TABLE Gi8 = B,  PCl
Al =0, O
EL = 3000, 1.1
ME = GEA, 1,03
TABLE MtEN = £
Al = ATAFLANE
El. = EL5C
ME = METALS
TABLE MIEX = EX
LA = LAdOR

ENDATA



1-11

A typical deck for an econamy with three industries and one exogenous
input is shown in Figire 2. The endogenous product stubs (and heads) are
AT (airplanes), EL (electronics), and ME (metals). The exogenous input
stub is 1A (labor). Airplanes are intended as the product whose producticn
is to be maximized: note that they are the only output that does not

serve as an input to other industries.

(¢) Model terminology

I’I‘he model's rows (constraints) and colums (variables) must all be
assigned names in same consistent way. These names are formed by concatena-
tion of table stubs and other identifiers.

Colunn names for the present problem are concatenations of three ele-
| ments. They are of the forms:

SnnTt
XnnTt
RmnTt

where the first character indicates the type of variable - stock (8), quantity
of prwodﬁction (X), or increase in capacity (R) - nn is the stub representing
same endogenous product, and ¢ is a period nurber. Usir‘xg the tables from
Figure 2, for instance, variable SATT? is the stock of airplanes at the
beginning of period 2; XMET5 is the quantity of metals produced in period 5.

Row names are handled similarly. Letting nn end xx be the stubs for
endogenous and exogenous gocds, respectively, and letting t be a period
nunber, the forms are: '

‘Constraint Form of row name

Production (2) PRanTt

Capacity (3) CAnnTt

Supply (4) SUxx Tt
Again using Figure 2, rouw PRELT4 specifies the prcduction constraint on
electronics in peried 4; SULAT3 gives the constraint imposed by the supply
of labor in paricd 3. (The initial stock constraints (1) and the non-negativity

constraints (5-7) are nct modeled expiicitly as rcus:  sze belcw,)
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The objective row is also given a name, of the form VAXzz where zz
is the stub representing the activity that is to be maximized. 1In the
example, airplane production is the cbjective, so the objective row name
is MAXAT.

(d) A macro for ths prehlem

Shown in Figurs 3 is a DATAMAT program -~ called a mzero - that can
generate a model for any specific instance of the problem we have spaci~
fied. The industries and excgenous input to be modeled are determined
entirely by the construction of the data tables. Other information is taken
from parameters tc the macro: the first perameter is a short identifier
used to form the name of the model when it is enfiled, the second gives the
nunber of periods, and the third is the stub abbreviation for the industry
whose production is to be maximized.

Macros are stored as decks on a special card-image file called a maelib.
Each macro begins with a NAME card that gives the name by which it is invoked -
GROWIH in the present case. The last card, ENDATA, indicates the end of the
macro. Intervening cards comprise a sequence of DATAMAT commands, or verbs,
which are executed cach time vou call the macro. _

For clarity, the macro has been divided into functicral secticns, each
identified by a heading marked with an asterisk (*) in column 1; all lines
so marked are intergreted as comnents and are thus rot processed as DATAMAT
verbs. The commands within each section are also acccarpanied by comnents:
DATAMAT reads only the first 72 charactcrs of each macre line, so these
camnents are begun in colum 73. Further comentary cn each section follows:

(numbers in parentheses are comment line nurbers):

Process parameters.

The pararsters to the mazro are autgratically given the specizl names
%1, %2, and %2. The latter *+wo, whose values are used in several places,
are here assigned to local variables (I:PERIODS and N:0BJ, respectively)

vhose names have scr2 mnencmic significance.

Create irdes: table oo 1enic is,

Bere a FORM verh er:itec a tabla consisting only of siubs, of the Tarm
Tt where ¢ rarges fron 1 to the number of pericds. This table is used bto




regulate two loops in the macro, and the stubs are empioved in forming

row and colurnn names.

Create tzble equal to (I - 1),

A table G:IMINUSA, identical in form to G:A, is created to hold the
matrix (I - 4) emloyed in the production constriznts.

Note here the implicit use of loop indices !1 and !'2. These auto-
matically create crie-statement loops through all stubs or heads of the
tables G:IMINUSA and G:A. Where both !1 and !2 appear (3), the focrmer
creates an outer loop and the latter an inner one.

Move initial excgenous supplies and demands to vork areas.

The macro must increase the values for exogenous supplies and demands
by a fixed percentage in each time period. A table G:CURCX is created to
hold the current ewvogencus supplies (1) and its elements are set to the
initial exogenous supply values specified in G:CX (2). Similarly, G:CURB
is created and initialized fcr the exogenous demands values (3-4).

Specify cbiective rcw.

The NEW/ODEL verb (1) indicates that generaticn of a new model is to
begin. The RCW verb follewing (2) cefines the cbjective row, and specifies its
coefficients in various colizms. Cclums are defined automatically when
they are first referred to (although a COL statement is svailable to define
columns explicitly when necessary).

Note the use of an ampersand (€) as a concatenation operator to form

row and coluan names.

Specify tounds on initisl stock variables.

A bound set, INITS, is defined. It specifies the initjal stock constraints
" by fixing the value of every first-pericd stock variable to the quantity of

~ initial stocks specified in table G:E. (All other variables, which are not
ekplicitly bounded or fixed, are assumed by SESAME to be non-negative.)

[
Main loop.
b e de = oy . et e Saalle, ] - 1 B L TP, B N . I PO 1y - - =
A LLOP =ztaisrznd canges The :ndax Y1 o le o CRIUSO AL ICILY LT LAl O

the stubs of G:T. Sinea G:T was created with 2 stub T for each paricd ¢,

loop defines constraint rows for one period.

S\

Cd
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Specify exogenous supbly constraints.

ROW verbs (3-4) define and specify coefficients on the supply con-
straint rows for the current period. A right-hand-side vector named RHS
is defined and specified with the RHS verb (5). The RHS verb is also
used here to specify the row constraint type, LETYPE, which indicates
that the row sum must be less than or equal to the right-hand side value.
(Row type can also be specified with a ROW verb. Rows not assigned a
type - such as the objective row - are assumed unconstrainred.)

Note the occurrence here of nested loops: an inner LOOP statement
varies the index 12, and that lcop in turn contains implicit loops (3-4)
that vary !3.

Specify capacity constraints.

Again ROW (3, 5) and RHS (7) verbs define constraints, this time for
capacity. Here LOOP statements are nested to a depth of 3; but the innér-
most loop is specified so that !3 is set only to stubs of G:T that corres-
pond to periods prior to the current one.

Specify production constraints.

This is similar to the generaticn of the other constraints. Note use
of the function BUMF (6) to create the name of the stock variable for the

period after the current one.

Update exogenous supplies and demards.

If the main locp has yet to reach the final period,.exogenous supplies
and demands (stored in G:CURCX and G:CURB, respectively) are increased by
the specified ratios (3-4). A ccmbinaticn of an IF staterent (1) and a |
GOTO statement (2) is used to skip the updating in the final period. The
expression //SKIP is a label ‘o which control is transferred by the GOTO.

" End of main lcop.

The index !1 is stepped, and the loop is repeated for the following time
period. When all poriods ars accounted for, the locp is finishad and control

passes to the follouig svatenant.
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Enfile model.

The SHIFT and MASK functions are used (1) to create a name for the
mocdel of the form mmrminn, where rmmm is thé identifier given as +he first
parameter, ¢ is the number of periods, and nn is the stub abbreviation
of the industrv whese production is to be maximized. An ENFILE vert (2)
then places the completed model on a model file uncier the given name.

(e) Generating & model

Figure 4 shows the beginning of a typical SESAME/DATAMAT session in
vhich a mocel is generated by use of the macro of Figure 3. The problem
is tc be mcdeled for ten periods, with three industries and one exogenous
input as specified in the date tables of Figure 2. lines typed from the
terminal are shcwn in lower case letters, while responses from the system
are in capitals; greater-than signs on input lines are prompting characters

also typed by the system.

Figure 4. A DATAMAT seesion that gensrates the imput-output model from the
tables of Fiaure 2, usirg the macro of Figure 3,

sesame
SESAME V2,2
SESAME COMMALD: >call catamat
ALL FILES ALREADY CLOSED
CORE nAS NOT SET Up
> set maclib = qrowth

> readtab mrtabs, urowtabs yrowtaps
> displey mstabs

M3 TABS =TYPE
A =GN
AX =Gl
D =0
DX =Gh
E =GN
c © =CH
CX =GN
B =0
EN =MN
EX =MN

> growth exam 10 ai
EXAMIOAI REPLACES SXISTING MUDEL "IN FILE

ROWS CQLUMNS RHS RANGES BOULDS  GuUb-S STR COEFSICANSTTY  INCTRECT
T 73 H w } . o 459 206430455 &

TERMINATING DATAMAT. RETURN T 3ESA4E

QUIT

SESAME COMMANDS call setup max Smodel=examl0aj Srhs=rhs scb)emaxal Sbound=inite

SESAHE CONMAND
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The session begins with the invocation of SESAME and the calling of
DATAMAT. The first DATAMAT ccmmand, SET MACLIB, declares the name of the
maclib file on which the macro cof Figure 3 resides. There follows a
READTAB verb that reads into working storage, frem a file GROWIABS and
a deck of the same name, the tables of Figure 2. KEADTAB also creates
a table M:TABS whose stubs are the names of the tables r_eald; the following
vérb, DISPLAY, prints the contents of M:TABS at the terminal.

The macro GROWIH is now invoked. Its parameters are EXAM, the
identifier used to form the model name; 10, the number of periods; and -
AT, the abbreviation for the airplane industry, whose production is to be
maximized. The full name of the generated model is thus IXAMIOAI. A
‘message indicates that an 0ld model by this name previously resided on the
model file, but was deleted in favor of the new model. Component counts
for the enfiled mocel are then printed, and the macro concludes.

QUIT next returns execution to the SESAME environment, where the
new model is set up by use of the SEIUP procedure. It is now ready to
be solved by calling ITERATE (not shown). -



APPENDIX. OVERVIEW

DATAMAT is a data management system specialized to mathematical pro-
graming. It is implemented as a SESAME precedure, and is thus invoked
(in the manner of other procedures) by typing CALL DATAMAT followed
optionally by arguments. DATAMAT is conceptually independent of the other
SESAME procedures, however, and employs an extensive ccmmand language of
approximately 55 verbs. It is thus best regarded as a system in itself,
but one which - through camrmon use of the communication region and internal
model, map, and result files - is compatible with and dependent on SESAME.

DATAMAT provides a number of major capabilities but chould not
be regarded as equivalent to any. one or all of them. Among these
capabilities are:

Generaticn and maintenance of basic data
Model generation

Model revisicn

Report generation

Grand cycle calculaticns and control

Ad hoc calculations
Inspection and display of various quantities

Before starting on a description of DATAMAT and an exarsle
o -

of its use, an orientation section will be presented.

1. Conceptual Crientation

One learns in high school algebra to abstract numerical attributes
of real things or situations arid to represent them with letters., This

LI, : - ~e= s T TS YR r = oy b s e .
technigue is progressively =l:borated to include subsoriots, vector



notation, matrices, superscripts, and so forth. By the time one is

discussing LP algorithms, a mere notation such as

;-:aij X5 by, i,...sm

or even

AXs<b

is deemed sufficient to denote a possibly very large array with various
special conditions. We often neglect to even mention X 2 0, it being
assumed this is a standard condition.
If one is formulzting an actual LP model, then he is inclined

to elaborate the notation symbolically, such as

LCON(i,t): -1.%LUN(i,t) + © LTAB( i,j,t) * X(3,t) = l1A(i,t)

jeS3

It is silly to try to explain, in general, what such notation means.
It is dependent on pages of disbussion about a particular problem and
incorporates the writer's own mnemonics. It is certainly rnot silly to
use such notation but one should remain aware that it is a mixture of
mathematical notation and abbreviated symbology. Such expression are
not "proper" in any classical sense since they involve both numerical
representations and inplied idzntifiers. The identifiers are supposed
to Le concatenated in various combinations to account for all activities

and constraints in the model.
An IF model is largely ccmbinatioral- in nature. Typically, there are

classes of constraint rowz and classes of LP variables wiich intersect only

w

wvell-known sparsensss of LP model

)

selectively. This is thne cause of ths



matrices, on which both solution algorithms and associated data management
procedures depend heavily. The actual LP coefficients, i.e., matrix elements

. are frequently obtained from basic data tables. which are themselves dense,

and relatively small. The amount of information contained in an LP model is
only secondarily derived from actual numerical data; the larger part is in

the identification of the varicus ways in which these cdata are related. It

is posgible and even usual to formulate an LP modei before the exact dimen-
sioﬁs and numerical valués of the basic data tables are known. OCne must, of
course, know the classes of information and the overall logic of the situation
Being mcdeled.

The above considerations indicate the importance of LP identifiers, i.e.,
row and colum names. The creation of a complete large LP model is a tedious
process and virtually impossible to do by hand without error. Tailor-made
matrix generators are frequently pmgra:med-—often in FORTRAN--for a particular
set of models. However, this requires the services of a computer programmer
and neither FORTRAN ncr any other widely-available language is well suited to
the task.

What is needed is a reasonably general language and ,.Drocessor which
can deal with numerical values and symbology in a coordinated fashion.

This is one of the main features and purposes of DATAMAT. However, even
when restricted to the field of mathematical programming models - even
further to LP models with various extensions - a language requires |
considerable generality. This results in some amount of specialized syntax

and DATAMAT reflects this. Fowever provisicns are made for saving intricata

substitutabtle arguments. Such carned strings of zeneralized statemsnts

are called macros and they constitute an important capzbility in the languase.
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To use a language such as DATAMAT, one must pay a great deal of attention
to organization of basic data and its identifiers. Once this has been done,
it is easy to create combinatcrial LP identifiers by concé‘tena‘cing basic
data identifiers. Very little attention need be paid to numerical values
in the planning stage - they are readily altered as required. chevei", a
serious error in basic terminology may lead to considerablé rework of basic
tables. Although DATAMAT includes statement forms to manipulate, rei?licate
and modify basic data structures, the implications of such alterations may

require study and rechecking.

The term data tables has already been used and, as might be supposed,
they are at the heart of the use of DATAMAT. A table, as used here,
is a rectangular array of values whose rows énd colums have symbolic
identifiers. Elements in a table may be either numeric or symbolic,
and may be referenced either by numerical indices or by identifiers
or a mixture. Tfurthermore, specia’l'index flags allow one to run over
all elements in a row or a cclum, or over all identifiers which match
those of another tabie, regardless of crder and in a direct or transpose
fashion. | These flags are represented by special characters and may give scme
statements a rather bizarre appeirance. Cnce one becomes familiar with this

shorthand notation, however, they seem perfectly naiural -- and save

considerable typing.




Tables are of three kinds, called G-tables, M-tables and H-tables.
The elements of G-tables are REAL#*8, the elements of M-tables are ALPHA*S.
H-table elements are also AIFHA#8 but are regarded as strings of characters
in multiples of 8.

All table row names (stubs) and column names (heads) are ALPHA*8
and may be used in symbolic manipulations. Normally, however, only one
to four nonblank characters are used for the stubs and heads of most tables.
Since mzny tables are used to generate LP submatrices -- by various types of
expansion -- it is usually necessary to concatenate the stub and head symbols
with other identifier-parts to create meaningful and unique LP identifiers.

LP identifiers, and to a lesser extent table stubs and heads, should rot
be true mnemonics or acronyms in most cases. Rather, they should be
regarded as encodings. These encodings can, if necessary, be further
associated with true mnemonics and even short readeble text through the
- use of coordinated M- and H-tables. The identifiers for an LP problem with,
say, 1000 rows and 2000 colums have a highly ccmbinatcrial nature and it is
impossible to condense concatenated rnemcnics of any valve into 8 characters.
Indeed, in many applicaticns, LP identifiers are of no real interest anyway,
unless it becames necessary to cebug the medel. The use of DATAMAT
helps to bypzss the necessity for interpreting cryptic LP identifiers
and this should be taken advantzge of.

DATAMAT deals with 26 kincs of entities, including tables, plus
SESAME CR cells. Several different kinds of entities may be referenced in one
statement, i.e., with one verb. To keep these sorted out and to awvoid the
problems of ambiguity, each kind of art;:, ig ifsrified with a single-leatter
prefisx atteched to the referent with a full colen. Tne full colen is

precnpted in DATAMAT for this purpoce.




The 26 kinds of entities may be grouped in 8 classes:

Local variables E:y I:, N:y Oz, Q:
Tables G:y H:y M:

Model compenents A:, B:

LP results C:y, D:y P:, R: thru Z:
FORTRAN (or other) functions F

Built-in functions K:

FORTRAN-style arrays L:

SESAME general maps J:

The choice of letters faver LP models and results (the latter being by
far the most extensive class) and the remaining letters were assigned
in the best way possible.

References to CR cells are recognized by the leading dollar sign as
in SESAME. The single quote (') is absolutely preempted tc enclose non-
standard character strings, except in FORMAT statements where single
quotes are treated as in FORTRAN.

There are only three flags: the exclamation point (!) for autcmatic
table indexing; the double quote (") for table heacd and stub name-matching;
and the percent sign (%) for substitutable macro argurents. The only
remaining unusual characters are the semi-colon (;) which cenotes end of
useful information (so a commerit can follow), and the left and right angie
brackets (<, >), which are used to enclose relational and boolean operators

and for certain special purposes in defining LP model compcnents.
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The four standard aritrmetic operators and the equal sign aré used in

normal fashion, i.e.,

= right to left replacement

+ addition

- subtracticn or leading minus sign
* multiplication

/ division

The vertical bar is also recognized for absolute value. Exponentiation
is provided through built-in K:functions.

This symbology and notation is used to form expressions and phrases®.

For example, the phrase

E:ANS = T:ARG®3.0

denotes multiplication of an integer variable (I:ARG) by the literal
number 3.0 with the result *o became the value of the real variable
E:ANS.

Such expressicns and phrases are never used alons but must be
preceded by an appropriate verb, in the above case CALC. Hence the
full statement would be

CALC E:ANS = I:ARG*3.0

- .
A phrase is a construction of the form "result = expressicn".




Any local variable appearing for the first time on the left will
be automatically defined. This is not true for tablés and arrays which
must be first created with verbs provided for that purpose. Note that
mixed-mode arithmetic is accepted. Integers are expanded to real, or
real truncated to integers, automaticaily, as required, Also note that
division of one integer by a larger cne always gives a zefo result.
However, if “either rumerator or denominator is real, real rather than
integer division will be uszd. Thus

1/3 gives 0

1/3.0 gives .33332333

1.0/3 gives .33333335
The magnitude of an integer is limited to 32,767. A larger integer result
is autcmatically converted to real or declared improper, depending on its
intended disposition.

Expressions involving tables may use automatic indexing (also
applicable to arrays) cr name matching. This is done with the flags
mentioned above. This rictation really is a shorthand for DO-lcops
and should nct be confused with matrix notaticn. Generelized matrix arithmetic
can be readily programmed in DATAMAT but matrix operatcrs are not provided
in the language. (They are readily added by use of ﬁacros.) Suppose,
for example, that G:A stands for a table with m rows -and n columns and
G:B for a table with n rows and p columns. Suppose G:C is an empty (i.e.,

all zero) table with m rows and p columns. Then the statement

CALC  Z:C(11,12)= S:A(11,12) #C:R(11,12)



multiplies individual elements of G:A and G:B and puts the results in
G:C. The range of the sutomatic indices will be as follcws:

11=1, ..., min(m,n)

12=1, ..., mintn,p)
Pictorially, this can be visualized as follcl;ws:

P n

<
N\

m{ £:C [ «| . G:A

G:B

where the slanting lines represent unused elements. If one really

~

wished to do matrix rultiplication, the proper statement is:

CALC  G:C(!1,!2) = G:C(!1,!2) + G:A(!1,!3) * G:B(!3,!2)

Here,

n

1=1, ..., m

12

l, «..5 P
'13=1, ..., n

With name matching, the tzbles rieed not be conformable. This would be
accomplished by writing "X, "2, "3 for !1, 12, !3 in the above. Of °
course, the tables could be usea in other arrangements, for example, the
factors could be multipli=d row by row instead of row by ccolumn.

This generalization cf matrix operators for -tables is rot as useful
in practice as it is instructive. It discloses thé implicit assumptions
1n standard matrix operations end displays, in the most abbreviated form
possible, what is really invélved. More virtuosity with the use of DATAMAT

is achisved by thinking in terisz of Indexing ard name-matching sets rather

M L3 - 3 .
than in terms of matrix cperations.

.
N, 15 01
R
LD

|y
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2. local Va_fiables

Five types of local variables are used in DATAMAT. With one
exception, these are autcmatically defined by their first appearance
on the left side of a phrase. These types are as follows.
1. E-Variables. REAL*8 (D-format)
2. I-Variables. INTEGER*2 (H-format)
3r N-Variables. ALPHA*8 (C-format)
4, Q-Variables. Value 1s T or F. A maximum
of seven may be defined and their names
are limited to seven characters.
5. O-Switches. Value is 0 or 1. There are 26
of these predefined as 0:A, 0:B,..., 0:Z.
Their initial value is 1. They rray be used
as either arithmetic or logic variables.
If a local variable (except O-switches) appears for the first on the
left of a phrasé and alsoc on the right, the value taken on the right is
as follows:
E-variables 0.0
I-variables O
N-variables 8 blanks
Q-variables F
The values of local variables carnot be saved from one DATAMAT session to another.
When exit is made frum DATAMAT, they vanish. This is also true of all
other quantities created by DATAMAT ewxcept tables and models which may be
' ehfiled.
Calculations are performed by the verbs CALC (for numerical values), MANIP
(symbolic values), and LOGIC (legical values). However the distinction
between CALC and MANIP, and to & lesser extant between these and LOGIC, is rot

sharply defined. For ths most port, the value of an expression is converted to
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the proper format for the result. The Q-variables are an exception and their
use 1is not general. The O-switches may be used in both CALC and LOGIC state-
ments. The set of symbclic manipulative functions is not valid in CAIC but
they are generally valid wherever else they would be useful.
If a result is a C-format quantity and the value of the expression
is numeric, the integer part of the value is converted to‘thharacter
EBCDIC code with no zero suppression. A value not less than 108 results
in an eror. A negative number is represented in l0s-complement form.
Thus  25.326 gives
C'00000025"
and =25 gives
C'99993375"
If the result is an O-switch, the binary units positon of the
value of the expression is used. Thus

25.326 gives 1

-25 gives 1
22 gives 0
=22 gives 0

3. Structuring 2asic Data Tablas

The use of DATAMAT centers around tables which contain numerical
or symbolic values. However, it is the symbolic stubs and heads, with
their implied indexing, which are the building blocks for a data

management applicaticn.

— - -

)
%See also Port I, ieruple 2.
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Suppose cne is concernzd with a model involing threas plants, two
raw material sources, six market regions and four time periods. One
does not want to deal with basic tables each containing infermation about
all 144 combinations. Rather, one wants some tables containing information
about plants, some about materials, and others about markets. Time periods
will be represented in a model mainly by replicaticns with variations, such
as level of demands and avc.ailability of materials.

Consider tables for representing plants. Although all plants may
not be identical, a unified modelling scheme should underlie them all.
Thus, although different plants may use some or all different materials,
carry out different processes, and produce different market items, the
scheme for representing these things should be universal. For example,
a standard scheme is to use rows for representing input, processing and
output streams, and columns for representing processes. For a complex plant
even this may be tco aggregrited and one may want a table for each process,
with columns, say, represen‘-:;rg va_rious raw material types, rcws representing
output streams, and the elements representing yields. One may even have
to represent different modes of cpereticn for the process, either with
different tables or different sets of columns. Already we are beginning
to imply a sizeable number of designators which it is clear rust be coded
in some fashion.

.- To keep a systom with a large nunmber of interrelated ccncepts

operable, a certain disciplire is demanded. In this connection certain

special tables and rules of svmbcl formation can be extromely helpful.
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Two such table types may bz called dictionaries and catalczues.

They are based on the assurptions of master codes and position significance

for symbol parts.*

One begins by dividing all entities of interest into clacses, for
example ¢! raw materials, products, time periods, production processes.
Each entity class has an associated dictionary.- For this purpose, H-tables
are ideal. The stub consists of, say, 2-character codes for all possitle
entities in the class. The first column of the table has a 6- or B;Character
mnemonic which is meaningful to a specialist. The next three or four columns
are batched together to form 24- or 32-character text which is unambiguous
to anyone in the field. The mmemonics can be used for reference purposes
by analysts and the text used in preparing management or formal reports.

An abbreviated evample follows:

H:PLANT.DY | Al B3
- - 3 T
P1 NYEAST | LONG ISLAND PLANE
: '
P2 NYWEST | BUFFALO FLANT
P3 GULF.. | HOUSTCH prauT !
2 WOUAST | LOS ANGELES PLAIT

i'See Palmer, K.H., An Integrated Svstem for Handling Data Maragement,
Matrix Gensration, Scluticn Straterv and Report Writing for Large-
Scale Linear Procram:ing brebleas in S Optimization Methods",

R.W. Cottle and J. rraawup, eds., Jdniv. of London Press, 1874,
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Note that the table nzme has been padded to 8 characters with a pericd
and ends in DY. The convention here (only one of many pcssibilities)
is that a table name with DY in positions 7 and 8 is a dictiopary.
Note also that the stub names are 6nly 2 chgracters, with no mnemonic
significance. (You mizht ?refer LI, BU, HO, LA_insteéd.)

An important rule is that aﬁy data tabtle have all stub names taken
from one and only one dictionary stub, and likewise for head names.
This leads to the concept of a catalogue table. One catalogue will
be the catalogue of all data tables. Let us suppose that a catalogue's
name is identified by CT in positions 7 and 8. A catalogue is an
M-table with two columns which can have head names, say, STUB and HEAD.
The stub of the catalogue is a list of all tables in the set. Suppose MI
in positions 7 and 8 denotes an M-table of symbolic values and GT
denotes a G-table of rumeric values. Then the catalcgue might appear

as follows:

M:DATABSCT STUB HEAD
MARKT1CT PRODCTDY CUST1.DY
PRICE.GT PRODCTDY RFECICHDY

MARKTIMT WHSE. DY CUST1.DY
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(Ideally, the stubs should be alphabetized.) The meaning of a

catalogue is as fcllows, using the first row of the example for

specificityé )
A G-TABLE exists called MARKTIGT (market 1 demands, say).
All stub entries in tiils table are found in the stub of
dlctlonary PRIDCILY (procucts) and 211 head entries are
found in the stub of dictionary CUST1.DY (custamers).

One major purpose of such a catalogue is to be able to check whethér changes

to a tablé-are legitimafe. Such checking is readily progremed in

DATAMAT statements. (Refer to the Palmer paper for further elaboraticn.)

Clearly, the concepts suggested above can be exterded in many ways.

It is extremely important that careful planning be done at the outset

in laying out a system of tables. Attention must alsc be paid to how

these will b2 used in matrix generation end rﬂport generation statements,

as well as intermediate or ad hec calculations.

4, Forming, Maintsining and Using Tables

DRIAAAL provides seven varks explicitly for table formation and filiné
and three other verbe have cpticns relatirg to table filing. A number
of verbs may utilize table references, only on2 of which is specific
to tables.

a. Table Ccristructiorn: Verks

(1) The simplest verb for constructing a .tazble ic called
TABLE. The head is entered explic lJ follcwad by each row
beginning with its stub nams. This method is very useful
for small work tables (see Part I, Exarple 1) but tedious
for larger ones. (See READTAB belcow.)

ll

(ii) A stub-caly tabl n be oonstructed with the verb STUB.
I+ = re b o Ttesd of snother +3ble, with
syr}‘l:c T 'r;:tiui. ets.),
to form the v The

stub of an existisg

N ek




(iii)

(iv)

(v)
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A null (empty) table can be constructed with the verb

FCRM. Eithsr heads or stubs of existing tables can be
conbined with boclean set functions to form either the

head or stub of the new table. Also, stylized heads

and stubs can be created using a symbol concatenated with a
running index.

The vert REACTAB reacds a card-image file containing TABLE-
verb statements and/or updating information. The file is
more easily created with CMS EDIT facilities than with
direct typing into DATAMAT. The updating facilities of
READTAB are unique.

The vert REFCRM creates a null table whose stub consists
of LP identifiers from the curently-cefined model.

Either a mask or a bit man mav be used for selection, or
either all row or all column identifiers may be specified.

b. Table Filing end Deleting Verbs

(i)

(ii)

(iii)

(iv)

v)

The verb ENFILE (2lso used for models) has options for
enfiling either one table, all tables, or all matching a
mask. They may te listed by name and size at the same
time. They are enfiled in the currently—i=fi1=l TATLAT
file (522 U p2lod, Thae i a0 off~ 0 on tehlas i
woiiin s siirage. If an enfiled table replaces oniz on file,
a note is typed. ' ‘

The verb RECALL recalls one table or all tables with a

list option. Ancther opticn merely lists all tables on file
without zectually bringing them in to werking storage.

Both EFILE and RECALL for one table have a renaming option.
If a table of the same name (or alias) exists in working
storage, it is first deleted.

The verh ERASE erases cne table in the file. It has no
other function. (It must not be confused with DELETE.)

The general verb DELETE has options for deleting one table
or a list of them from worklng storage, This has no effect
on any enfiled tahles. .

The general verb SET has an cption for sztting the file name
for tables. The default is TABLES.
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¢, Table Calculation Verbs

A large number of verbs utilize tables. However, for calculations
on tables, as such, the following are used.

(i) The verb DIMEN will return the integer index of any stub
or head name or the number of rows or colums. If a name
does not exist, the answer is 0. :

(ii) The general verb CAIC allows G-table elements for both results
and expressions. An elaborate variety of indexing is provided.
(iii) The generai verb MANIP allows M-table elements for results.
Any table, including stubs and heads, may be used in the
expression. :

(iv) The gen-ral verb LOGIC allows table references in exﬁr‘essions;
*  This also applies to the IF verb. However, multiple indexing
is meaningless «x. [+ in a LOOF verb. (LOOP is a conditional

DO-loop initiator.)

(v) The verb CALC also moves values between a G-table and an
array. A DATAMAT array is a FORTR"M-:i,le array used

with function and <ilimvaibivz «~17-. Autamatic indexing
may be used but not name matching since arrays have no stubs
or heads.

5. Model Generation and Revision

DATAMAT provides complete facilities for SESAME model generation,
in other words, it may be used as what is usually termed a "matrix generator'.
In the SESAME environment, as with most large MP syste_ms; one should properly
make a distinction between an LP mcdel and an LP matrix. A model is a complete
representation stored in the user's data base; the matrix (there is only
one at a time) is a particular specialization of a model reéiding on a
work file for immediate use. In this sense, DAL‘\iAT has nothing at all

to do with the LP matrix.

7
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DATAMAT deals with models in three distinct ways which must not
be confused:

(a) It can access any coefficient of an existing model for use in
calculations. This is done with the referent prefixes A: and B:
appearing in an expres:icr, Here the existing model is '
treated as a source of data, just as a SESAME result file might
be, and it has nothing in particular to do with model generation
or revision.

(b) DATAMAT can recall an entire existing model (REVISE verb) for
revision. Once this has been done, the coefficients of the
recalled model are not accessible directly as operands (though
the original enfiled version is). There are three variants
of REVISE:

(1) The argument DUMMY with REVISE causes only the list of
INDIRECT names to be recalled end formed into a table.
This is useful for revising the indirect vector used by
SESAME procedures.

(ii) The verb SUBMCTR, recalls <viv the row definitions of a
model and changes their types in preparation for creating
a decomposition submodel.

(iii) The verb MERGE recalls and merges an entire model with one
previously recalled or initiated.

(¢) DATAMAT can create new model camponents or change existing
ones. This is done with the model generation and revision
verbs. Befcre these verbs are legal to use, one of the verbs
REVISE, SURMODEL or NEWMODEL must have been executed. The
latter is used when one is starting a new model from scratch.

The model in working étorage - revised or created as described above -
must be enfiled (ENFILE verb) if it is to be retained. Since there is no
other purpose for having a model in working storage, it must always be
enfiled unless some gross error has been made in its construction and

it is desired to start over. Although the general verb DELETE has an

option for deleting the model in wof'k{ng sterage, this is unnecessary.
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The model ir working storage is automatically deleted by any of the
following: ‘
- ENFILE (of model)

REVISE, SURMODEL or NEWMODEL

EXIT (from DATAMAT) .

" Although a series of MERGE statements may be used after REVISE or

NEWMODEL, note that the .sequence

REVISE cr NEVMODEL
MERGE
ENFILE
MERGE
ENFIL}.

is illegal. Enfiling a model is a destructive process to the model J.n working
storage. This model 1s similar to but not identical with an enfiled model
in structure. In pa_r*ticula,r, the enfiling' process re-sorts the working model
into the same order which is created by the SESAME procedure CONVERT and is \
essential to otler procedures, particularly SETUP.

| The verbs mentioned above deal with two different. model designations
on separately designated files. REVISE, SURMODEL and MERGE always access
the file designated as DDOLDMD and REVISE and SUBMODEL recall the model
designated as OLDMOD. (MERGE requires an argunent naming the model to be
" merged.) The verb ENFILE; on ‘the other hand, writes to the file designated
DIMODEL (except when the argument SUEM(.)DEL is used in which case it |
.wr'ites to the DDOLDMD file and also modifies the OLDMOD model). INFILE
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requires an argument to name the new model. Of course, this can be the
same as the OLDMOD designation, if desired, and the DDOLDMD and DDMODEL
files may also be the same. These designations are controlled by options
with the general verh SFT. (See write-up of SET verb for corvespondence
with SESAME CR cells. However, it is always safer to use the SET verb
. when in DATAMAT rather than to rely on prior CR settings in SESAME.)
Many of the model generation verbs are simply LP camponent names,
viz:

ROW defines one or more LP row identifiers and types'
and may define one or more columns and also the
coefficients in the implied substructure.

COL - defines one or more LP colum identifiers and
types and may define one or more rows and also the
coefficients in the implied substructure.

RHS defines one or more LP RHS identifiers and may
define one or more rows and also the elements m

the implied PHS columns.

GUB defines one GUB seét header (identifier) and type,
and optlone_.lly the GUB value.

PRSET defines one pricing set header (identifier).
MARKER defines one marker column (identifier).

RANGE defines one or more range sets and their
elements, and may define 1«w row identifiers.

BOUND defines ¢ or rr.ve bound sets und the Lound
values for «a? sct. Thes referenced columns
must be deflned elsewhere,
Wherever a new definition may be made in-the above, an old one is first
checked for. If an old definition exists and the statement makes a
nontrivial change ir: any typé or value, a note is output. Changing a
free row or a standard column ws scie other type is regarded as non-

exceptional., If new coefficients, elamcrte s vali=: ure created (where

no old cne existed), no note is output.
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The general verb DELETE has options for all the above component
types and deletes the named component from the model in working storage.
DELETE always applies to entire camponents; individual eleme.nté may be
deleted by redefining them as zero. In the case of ranges aﬁd bounds, it is
J;Hrbossible to delete individual values since a zero value has a definite
meaning. However, a range value for a deleted row or a bound value for
a deleted colum will be excised when ENFILE is executed.

Three additional verbs deal with sets of vectors and are primarily
for revision of an old model:

INSERT  This verb defines the point at which new rows, colums

ar RHS-s are to be inserted in the final sequencing . %

ENDINS terminates all existing INSERTS.*

COMBINE This verb creates a linear cambination of two rows,

two colums or two RHS-s in the for-mvl-l-v2 ¥ p
where V, and V2 are vectors aﬁd P is a scalar.
Its principle use is to combine base and
change vectors from the parametric algorithms. -
The result vgctof can be new or the same as eJ;.ther
v, or ¥, which may also be the same. Thus COMBINE
can also be used for scaling. For example,'

by 1.5 |

’ - &~ » -
Vl = Vl + Vl .5 multiplies 'Vl

#The verbs INSERT and EMDINS should be used sparingly as they can greatly- |
increase processing time. It is almost never necessary to control order

except for GUZ2 and FPSET sets.

i,
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See the Palimer reference (section 3 above) for useful suggestions on
structuring LP identifiers. The same kind of planning used for table stubs
and heads should be carried over into LP nomenclature. .

The final verb in this set is quite different frem the others since
it deals with a special category of model components, namely indirect ‘
values. There is a rather intricate interplay among modei_ construction,
model revision, matrix se‘ghp and matrix modification with respect to
indirect values. The DATAMAT verb INDIRECT facilitates working with
them. Although it partly duplicates the functions of_ the SESAME procedure
VALUES, it is indispensible for models created by DATAMAT.

Indirect namés must be defined before other par'ts of a model are
created. In the SESAME procedure CONVERT, this is é.nspred By requiring the
INDIRECT section to be first in the input file. Such anhabsol’ute requirement
is not appropriate with the gruater flewihility of DATM’AT but nevertheless
a similar requirement must be enforced. There is the further difficulty
of specifying the indirect names: to simply require one to type them in
‘as a list would insulate them fran other useful facilities.

The situation is handled as follows. The list of indirect names
is specified as the head of a G-table and the values, if defined, are in
some Tow of this table (which may have more rows cr not). If one is
creating a new model or irsta;l’..’.rg indirect names for the first time in

" an old model, the verh IMDIRECT with option PUT is executed, naming the
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| table defining the indirects. This must be done before any generation
verbs referring to indirects are executed. Any associated values are
not recorded in the "model but may be put into the indirect vector in
either of t;»JO ways:

(1) If the SESAME procedure VALUES has been previously

executed, the verb CALC with a special result operand
convention may be used. The same operand convention

for the expression with CALC may be used to
retr*%eve values from the indirect vector, say to
put into the appropriate row of the G-table.

(2) The SESAME procedure VALUES may subsequently be

used in standard fashion after the model has
been enfiled by DATAMAT.

When REVISE or SUEMODEL is executed and the recalled model has |
ah indirect branch, a G-table with one row is automatically created
with an internally generated name. (The situation is more cmpﬁmted
with MERGE. See MERGE write-up.) The row is set 1¢ zeroces. Execution
of the verb INDIRECT with option G.E'i‘ and specifying a G-table name,
merely causes the generated table to be renamed. (If another table
by that name exists, it is deleted.)

One may subsequently execute INDIRECT with option PUT naming another
table. The indirect indexes will be translated and any old names not
appearing in the new tahle head will be deleted. (This happens when
ENFILE is executed.) Any remaining elements referring to these names
(via the old index) will be treated as zero. .

INDIRECT GET and INDIRECT PUT may each be executed at most once

and, if both, GET must be first.
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6. Calculations with Model ard Result File Quantities

It has already been mentioned that elements of an enfiled model
(the one currently designated MODEL) may be. mferenéed with thé prefixes
A (for structural coefficients) and .B: (for RHS elefﬁents). Twelve
other prefixes are used for references to a result file. (Another
prefix is used to refer to a SESAME'gener'al map.. Thus 15 of the 26 prefixes
refer to enfiled quantities.) '

The reason so mény prefixes are used for result files is that
these files contain such varied information. The file referenced is
the one currently designated DDRESLT and the main branch used is for
the model currently .designated MODEL. Below this, however, there are
still several paths. The prefix autamatically determines whether the’
. reference is to a solution or to a tableau. There are two ways to specify
the case nzme: either with an option of the verb SET, or by specifying ‘
case directly in the referent. The latter overrides the former without
nullifying it. The subsets of the prefixes are as follows: .

(a) Solution ROW section.
Dual activity (w)
Logical activity (slack or surplus)

Row sum (I aijXj) .
Row lower limit, upper limit, or status

ESSUV
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(b) Solution COLUMN section

Input cost (possibly composite)

Reduced cost, or dual slack activity (d.)

GUB set value (implied RHS for GUB row)’
Structural activity (LP X-variable)

Lower limit, upper limit, or status for X-variable

SRnER

(¢) Solution CR section

Z: One of a subset of CR valueg recorded
with a solution cAase.

(d) Tableau Branch
_S:. Same as Z: but for a tableau case.
T: Tableau value, designated by stub, head.
These referents may occur in practically any expression where they
make éense.

There is one varh (DOT) and a sumration convention for CAIC for
calculations expecially appropriate 1;0 enfiled models and results..
These are as follows.

a. The DOT verb computes inner products for the following

combinations of prefixes (DOT expressions are specialj

see DOT writeup):

P: by A: 12': s aij for fixed j.
P: by B: i LA bik for fixed k.
A: by X: :Zl: ainj for fixed i.
C: by X: z c5 X:| (cj = composite OBJ row)

nd C:. The iwo cases in the

,
C“
1

‘Cases are specified for P, ¥:

’\r
oA
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“last form need not be the same. .The range of sumation may

be restricted with either a mask or a bit map (J: referent).

The result may became the value of an E: variable or a G:

table element. Multiple J.ndexn.ng may not be used directly

but may be effected by use of LOOP.

2. A mask or a bit map may be nsed will. any of the following

referent prefixes in a CAILC expression to denote summation:

A:, B:

Py Usy Vi, W
C:, D:y, R:, X:y ¥
T:

Sum over all model coefficients whose
identifiers match the mask(s) or have
their bit on in the map. Double
summation is possible.

Sum over all results values whose
identifiers match the mask or have
their bit on in the map. Only
single summation is possible.

(For W: and Y: only the LL or UL
options are meaningful.) )

Sum over all tableau values whose stub

or head names match the mask(s).

Double summation is possible. A bit

map may not be used since tableau o |
stubs and heads are not related to ‘ -
bit maps. ' : |

Note: Two maps may not be used simultaneously. If this o ‘
is attempted, the second one named (from left to ' ‘
right) will be used and no error is flagged. The’
same map may be used for both LP rows and LP
columns with prefix A:. TFor prefix B:, a bit
map is legal only for LP rows, not LP RHS-s.

“A. S. A
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