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Abstract

In this paper the firm is analyzed and modeled as a set of different subcoalitions (agents)
each with their own objectives. It examines how the goals can be conflicting and in turn
how this influences the payoff structure of the subcoalitions given that they follow ‘simple’
decision rules, i.e. rules of thumb. This implies that the subcoalitions act in a boundedly
rational way. To see how these decision making procedures evolve we make use of an
(evolutionary) dynamic game theoretical framework. Consequently, the main aim is to
address the issue of modeling the dynamic and adaptive nature of the subcoalitions.

Key words: Dynamic game, theory of the firm, decision making.
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ẋ time derivative of x
f ′(x) first derivative of f(x)
f ′′(x) second derivative of f(x)
π profit
π̃ aspiration level of profits
r revenues
c̄ total production cost
c unit production cost
c̃ aspiration level of unit production cost
q number of production
ε price elasticity of demand
w level of sales
w̃ aspiration level of sales
zq index production slack
zw index sales slack
xq percentage contribution of production slack in total cost
xw level of sales promotion in terms of sales slack
θ fixed cost
η variable cost
u control variable
µ x−switching curve
ν p−switching curve
s aspiration level
P payoff function
b parameter
ξ parameter
γ parameter
φ parameter
λ parameter
α parameter
β parameter
δ parameter



– 1 –

The Behavioral Firm and its Internal Game:

Evolutionary Dynamics of Decision Making

Frans P. de Vries * (f.p.de.vries@rechten.rug.nl)

1 Introduction

The neoclassical theory of the firm analyses the decisions of the firm under a varying market
structure with a focus on output, price and profits. In the elementary neoclassical models
the firm is supposed to maximize a profit function subject to a number of constraints.
From the first order conditions, output, price and profits can be calculated.

The model is a simplified representation of the real world. In the neoclassical theory
of the firm the major simplifications are the following:

• The firm is supposed to have one center that fully coordinates all decisions. This
implies a holistic conception of the firm.

• The coordination center has perfect information on demand and cost conditions.

• The firm is at any moment fully X-efficient; there is no waste and no slack.

• The firm is a profit maximizer. It has the information and the capacity to identify
and attain the maximum position due to the three properties mentioned above.

• Because the firm is a maximizer and has perfect information it realizes its equilibrium
position immediately. In other words, the time dimension can be neglected. The
static analysis provides the equilibrium position.

The neoclassical theory of monopoly that will be presented in Section 2 clearly shows
all the five features. The theory has been criticized for going too far in its simplifications.
Very articulate in their criticism have been [Cyert, March 1963]. More important, next to
being critical they have been constructive by developing a behavioral theory of the firm.
The assumptions about the firm diverge on all points from the neoclassical ones:

• The modern large firm consists of a number of groups, e.g. departments like pro-
duction, sales and a central management, which have to cooperate in some way.
However, each group has its own objectives. They are not fully coordinated by the
central management. This implies a pluralistic conception of the firm.

• Information is imperfect and scattered among the participants in the firm.

*The author gratefully acknowledges Arkadii Kryazhimskii, Alexander Tarasiev en Andries Nentjes for
the many intensive stimulating discussions on the subject. The paper also benefited from comments and
suggestions of Geert Jan Olsder, Arik Melikyan and Charla Griffy-Brown. Moreover, the author wants to
thank his friends Noel Watson, Guoyi Han and Bing Zhu for being great company during the summer.
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• There exists slack. That is, the participants are each not fully X-efficient at any
moment of time. How large the amount of slack is depends on the pressure on the
group to improve performance.

• Due to above three properties of the firm, there cannot be maximization of one single
objective function of the management. Instead, each group within the firm has its
own aspiration level. Instead of maximizing behavior the firm shows satisficing
behavior. That is to say, efforts are made to satisfy the aspiration levels. In case of
conflicts between the various objectives and aspiration, reduction of slack may help
to solve the dilemma.

• The various groups interact with each other and so the decision of one group can
depend on the decision of another group. Decision making goes in a stepwise iterative
way. The groups more or less search to find their ‘local optimum’. The analysis is
dynamic.

Cyert and March [1963] have developed a framework for analyzing decision making
within the firm by using computer simulation. The main problem with using such a
technique is that is very difficult to make generalizations. In this paper an effort will be
made to develop an analytical framework in order to determine the long run behavior
of a system of departments within the firm based on the assumptions of the behavioral
theory. That is, decision making is boundedly rational and in a stepwise manner. A same
line of approach can be found in e.g. [Kryazhimskii, Tarasyev 1998] and [Kryazhimskii,
Nentjes, Shibayev, Tarasyev 1998]. The first research question is to determine whether
equilibria exist and given the existence of an equilibrium to analyze the properties of that
equilibrium compared to the equilibrium predicted by the neoclassical theory of the firm.
The second research question is how relevant variables like costs, price, sales and profits
evolve over time if the the firm is not in equilibrium. In this way it can also be assessed
to what extend the equilibria (if there are any) are stable or unstable. As a first step we
try to answer this question for a monopoly.

The paper is organized as follows. In section 2 the basic economic model of monopoly
will be described and will be functioning as a reference point for the analysis. Section 3
discusses the behavioral model of the firm. Then in section 4 the model will be transformed
into a continuous time setting. Subsequently, a mathematical analysis is applied in section
5. The paper concludes with conclusions and discussion in section 6.

2 The Monopoly Case

In this section the neoclassical theory of a monopoly firm will be presented. This will
function as a reference point for the model we will develop in section 2 and 3 in order
to determine whether there are actual differences between the final outcome of our model
and the monopoly equilibrium of neoclassical economic theory.

In a monopoly the firm basically takes decisions regarding the product price p and
the quantity of production q. Assume that the firm faces an inverse demand function p(q)
where p′(q) < 0. The revenues r(q) of the firm are p(q)q. The total cost function c(q)
is convex. It should be noted that in neoclassical theory c(q) is the efficient cost curve.
For every unit of output costs cannot be lower than defined by the cost function. The
inverse demand function p(q) defined the maximum price that can be fetched for any given
quantity. The firm wants to maximize profit π which equals:

π = r(q)− c(q) = p(q)q− c(q). (2.1)
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Figure 1: Profit maximizing monopoly firm.

The first order condition for this maximization problem is that marginal revenue dr/dq
equals marginal cost dc/dq :

dp

dq
q + p(q) =

dc

dq
. (2.2)

One can also find the solution by solving:

p(q)

(
1 +

1

ε(q)

)
=
dc

dq
, (2.3)

where the left-hand-side of (2.3) represents marginal revenue and

ε(q) =
p

q

dq

dp
< 0. (2.4)

is the price elasticity of demand. Solving this equality results in q∗. Then subsituting q∗

into the inverse demand function generates the equilibrium price p∗. Figure 1 shows the
situation for the monopoly firm graphically.

3 A Behavioral Firm Model

In this section we will develop a basic behavioral model of the firm based on the work of
Cyert and March. As noted before, they introduced a pluralistic conception of the firm; it
is a coalition of departments which cooperate, but each also pursuing its own objectives.
First, let’s discuss in a qualitative way how the different departments that constitute a
fictitious firm are related to each other.

Assume that a large production firm consists of three departments (subcoalitions), viz.
a production department (PRD), a sales department (SLD) and a central management
department (CMD). For notational reasons we define these departments as player 1, 2, and
3, respectively. Each department k has its own goal ˜̀

k and can make its own decisions up
to a certain autonomous level. Furthermore, in order to keep the model in first instance
tractable, we presume that each department aims at one goal and has one instrument
available to reach its goal.
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The CMD is aiming for a profit goal, PRD for a production cost goal and the SLD
for a sales goal. The goals of these departments reflect the aspiration level of the depart-
ment. The control variables determining the value of the goals are the decisions on price,
production cost and sales effort. Furthermore, we introduce the idea of slack. Slack is the
difference between the actual results and the result that is achieved if the department is
fully efficient. Slack, therefore, represents X-inefficiency. We define slack in the PRD as
the difference between the actual and minimum production cost given the level of output
and slack in the SLD as the difference between the actual level of sales and the maximum
level of sales that can be achieved at a given price level. Slack in the PRD and SLD means
that with the same inputs the departments might achieve a better result by, for example,
working harder, being more inventive etc.

Usually the aspiration levels of the PRD ans SLD include an amount of slack: produc-
tion cost are accepted that are higher than a level that could be achieved with optimal
planning, cost-accounting and monitoring. Sales are accepted that are lower than could
be realized with optimal distribution effort. Slacks only induce a reaction from the side
of the PRD and SLD if actual levels (of costs or sales) differ from the aspiration levels.
If actual results are worse than the aspiration levels the department is under pressure to
reduce its slack; if not under pressure slacks tend to increase.

In the long run the aspiration levels can change. If for a long period of time actual costs
have been higher/lower than the aspiration level this is going to be viewed as the ‘normal’
situation and subsequently the aspiration level of cost increases or decreases. This implies
that slacks included in the aspiration levels increase or decrease.

The CMD is supposed to coordinate the activities of the PRD, SLD and itself. However,
information on slack in the departments is incomplete. In the model proposed in this paper
the CMD can only affect profits directly by changing the price1 The impact of CMD on
PRD and SLD is only indirect by exercising pressure if actual cost and sales are below the
corresponding aspiration levels and by changing the departments goals in the long run.

This paper is a first effort that tries to generalize the behavioral theory of the firm by
translating it into a mathematical model. Several simplifications are necessary to make
this feasible, but without loss of the essential ideas enumerated in section 1. The major
simplifying assumptions are:

• Restriction to three departments (PRD, SLD, CMD) and later on to two departments
(PRD, CMD);

• One objective and one control variable for each department;

• Fixed aspiration levels.

For each department k = 1, . . . , K we will examine the decision making procedure that
it follows and hence how these decisions influence the associated payoffs. The modeling is
based upon an aspirations framework which will first be discussed in subsection 3.1. Then
the payoff functionals of the PRD, SLD and CMD will be outlined in the subsections 3.2,
3.3 and 3.4 respectively. Subsection 3.5 deals with the payoff functionals in relation to the
external environment. Finally, 3.6 gives the monopoly outcome when using these specific
functional forms of payoff functionals.

3.1 An Aspirations Framework

The modeling is based on a number of populations (departments) k = 1, . . . , K that
can apply a finite number of strategies or actions n = 1, . . . , N. The populations change

1But there is also imperfect information on how this will affect sales and total revenue.
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their actions based upon a threshold value of realized payoffs just as in Cyert and March
[1963]. That is, a strategy change is based upon aspirations and satisficing behavior.
Models of satisficing behavior in economics have been introduced by [Simon 1955, 1957,
1959]. Economic applications of satisficing behavior are [Winter 1971] and [Nelson, Winter
1982]. Other models incorporating aspirations and satisficing can be found in [Bendor,
Mookherjee, Ray 1994] and [Gilboa, Schmeidler, 1993, 1995, 1996].

Assume that each period t population k is aiming for an aspiration goal ˜̀
k(t). In the

evolutionary game literature that incorporates aspirations2 players change their action
when realized payoff is larger or less that the populations’ or agents’ aspiration level
(cf. [Börgers, Sarin 1995, 1997] [Erev, Roth 1996] [Karandikar, Mookherjee, Ray, Vega-
Redondo 1998]). In the firm model described below decision making is also in this line of
research.

Firstly, the departments check if `k(t) = ˜̀
k(t). In general there will be a strategy

switch if `k(t) 6= ˜̀
k(t). But as will see in the next section in the firm model, in specific

situations a player might also take the goals of other players into account in order to make
a justified ‘economic’ decision. Secondly, just as in the model of [Karandikar, Mookherjee,
Ray, Vega-Redondo 1998] at every period t the population updates their aspiration level
according to the convex function:

˜̀
k(t+ 1) = λk ˜̀k(t) + (1− λk)`k(t), (3.1)

where λk ∈ [0, 1].3 The economic interpretation of (2.1) is that the department will decrease
its aspiration level if it does not reach it. On the other hand, if the aspiration level is met
then it will be increased. [Cyert, March 1963] assume that the adjustment of aspiration
levels goes at a lower speed than compared to adjustment of control variables. This means
values of λk close to 1. In this paper we assume a constant aspiration level: λk = 1.

3.2 Payoff Functionals Production Department

Cyert and March argue that in the steady state the level of production q(t) is directly
related to the sales goal one period earlier w̃(t − 1). However, because a steady state
position does not often occur this might not be realistic to assume. Therefore, they argue
that production depends also on changes in inventory of the final product and a so-called
production-smoothing goal. However, in this paper we assume that the level of production
equals the level of sales and therefore we can exclude the goals of inventory and production-
smoothing.4 We concentrate on average production costs c̃ as the objective of the PRD.5

It is the responsibility of the PRD to prevent that production cost is too high or increases
too much. The PRD has an aspiration level with regard to its cost per unit of output. If
actual costs are below the aspiration level, costs tend to increase further due to an increase
of slack. The difference between the actual and aspired cost level is defined as production
slack zq.

Given the goal and control variable the decision procedure is now defined in the fol-
lowing way. Firstly, at time t = 1, 2, . . . the PRD checks whether c̃(t) = c(t). Given the
outcome of this comparison a strategy switch in terms of an adjustment of zq might occur.

2In this kind of literature, models with aspirations are also referred to as ‘stimulus-response’ models.
3The equation is one of the simplest forms of a so-called ‘Mann’s process’. More extended and sophis-

ticated processes are also developed and can be found in e.g. Vasin and Ageev [1995].
4This is also due to the ‘one goal-one instrument’ setting. In a later version when we try to develop a

‘multiple goal-multiple instrument’ setting also inventory and production-smoothing might be included.
5Production costs are only a part of total costs c(t) =

∑K

k=1
ck(t). But for simplicity we assume that

costs of production are the only costs.
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The decision rule of the PRD follows is:

zq(t+ 1) =


(1 + ξzq )zq(t) if c(t) < c̃(t)
(1− ξzq )zq(t) if c(t) > c̃(t)

zq(t) otherwise.
(3.2)

where 0 < ξzq ≤ 1. The economic interpretation is as follows. If the actual costs of
production is below its aspiration level the PRD is not under pressure to improve its
performance which, in turn, implies an increase of slack. Subsequently, costs will increase.
If actual costs are higher than compared to its aspiration level, there is pressure to try to
reduce costs. The PRD will look for possibilities to improve the cost position and save
on inputs (given the level of production). In the behavioral theory adjustment of slack is
more a short run process. That is, it is faster than adjustment of aspirations.

Finally, assuming a variable aspiration level, c̃ will be adjusted according to:

c̃(t+ 1) = λ1c̃(t) + (1− λ1)c(t), (3.3)

where 0 ≤ λ1 ≤ 1. But in this paper we keep the aspiration level of profits fixed, i.e.
λ1 = 1. This concludes the decision procedure of the PRD.

3.3 Payoff Functionals Sales Department

Assume that the SLD is aiming for a sales goal w̃(t), and that the control variable is sales
slack zw. The basic decision the SLD takes is an adjustment of zw or not and is based on a
comparision between w̃(t) and the actual level of sales w(t). At this stage it is important to
realize that a potential conflict between the SLD and the CMD might exist. For example,
if the sales goal is not met the SLD might request the CMD for a price cut. However,
in turn, a price cut might worsen the position of the CMD in terms of the profit goal it
pursues.

Every period t sales is calculated and it is checked whether wt = w̃t. Given the outcome
the SLD applies one of the following three strategies:

zw(t+ 1) =


(1 + ξzw )zw(t) if w(t) > w̃(t)
(1− ξzw )zw(t) if w(t) < w̃(t)

zw(t) otherwise.
(3.4)

where 0 < ξzw ≤ 1. Equation (3.4) states that if actual sales are above the aspiration level
the selling efforts (e.g. sales promotion) and other inputs are lower or are less effective.
Such an increase of slack in the form of an increase of ‘on-the-job-leisure’ implies that
given the product price the volume of sales will decrease although there have not been
exogenous changes in demand.6

Finally, the aspiration level of sales is adjusted:

w̃(t+ 1) = λ2w̃(t) + (1− λ2)w(t). (3.5)

where 0 ≤ λ2 ≤ 1. Again we assume that λ2 = 1.

6An increase of slack implies a decrease of productivity. For the PRD it is specified in terms of higher
production cost for a given product; for the SLD as lower sales at a given level of sales cost. This implies
that sales cost are defined as a component of total fixed cost.
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3.4 Payoff Functionals Central Management

We assume that the price decision of the firm is taken by the CMD and is primarily de-
termined by profit π. In general also sales performance, manufacturing costs, past price
changes and the price behavior of competitors are important elements in the price deci-
sion making. But manufacturing costs and sales performance are already included in the
decision making procedure of the PRD and SLD respectively. In this paper we model the
decision making of the CMD of a firm that is a monopolist.

The CMD starts its decision tree every time period t by calculating manufacturing
costs and profit. Given the firm’s performance in terms of p(t), c(t) and w(t), the CMD
calculates the actual profit level:

π(t) = [p(t)− c(t)]w(t), (3.6)

where p(t) and c(t) represent the price and cost per unit of output. Then the CMD checks
if realized profits π(t) equal the aspiration level of profits π̃(t). Subsequently, it determines
p(t+ 1) :

p(t+ 1) =


(1 + ξp)p(t) if π(t) < π̃(t) ∧w(t) > w̃(t)
(1− ξp)p(t) if π(t) 6= π̃(t) ∧w(t) < w̃(t)

p(t) otherwise
(3.7)

where 0 < ξp ≤ 1. Equation (3.7) expresses a type of behavior of the CMD that, given
its implerfect information, seems plausible. According to the first strategy the price will
be increased if actual profits are below the aspiration level and a decrease is acceptable
since sales are presently above the aspiration level.7 Strategy 2 of decreasing price will
be applied in two situations. First if π(t) > π̃(t) and w(t) < w̃(t). The CMD gives in to
pressure from the SLD to take action to restore sales. It accepts the risk that lowering of
the profit margin might have a negative impact on profits since π(t) > π̃(t).8 Second, a
price decrease will also be accepted if presently π(t) > π̃(t) and w(t) < w̃(t). Decreasing
the price is expected to increase sales. The impact on profits is uncertain. Profits might
increase or might as well decrease. Strategy 3 - price is kept constant - will be followed if
π(t) ≥ π̃(t) and w(t) ≥ w̃(t) Since the aspiration levels are realized there is no pressure
from departments to experiment with the price.

Finally the CMD revises the aspiration level of profits:

π̃(t+ 1) = λ3π̃(t) + (1− λ3)π(t). (3.8)

where 0 ≤ λ3 ≤ 1. Here it is assumed that λ3 = 1.

3.5 Functional Form and the External Environment

In this section the aim is to show how some functions relate to the external environment
in which the firm operates. Moreover, the purpose is to describe the functions in more
detail.

The firm is linked to the external environment (market) by means of the demand
function. Assume that the demand function in case of a perfectly efficient SLD, i.e. slack
is zero, can be described as:

q(t) = w(t) = αp(t)β (α > 0, β < −1). (3.9)

7The strategy will be only succesful in raising profits if initially marginal revenue is below marginal
cost (MR < MC). Because of imperfect information the CMD does not know whether this condition is
fulfilled.

8Profits will increase if intially MR > MC.



– 8 –

Including slack, the demand function becomes:

w(t) = αp(t)βzw(t) (3.10)

Next specifying zw(t) we can rewrite (3.10):

w(t) = αp(t)β[1− xw(t)] (β < 0), (3.11)

where xw(t) can be interpreted as an indicator of slack in the sales department. The higher
xw the lower is the level of effort of the department. Given the price this will affect since
sales promotion is less effective.

Furthermore, assume that total cost c̄ at time t are the sum of fixed and variable cost:

c̄(t) = θ+ ηq(t) (θ, η > 0), (3.12)

where θ are the fixed cost and η represents variable cost. Equation (3.12) are the efficient
costs, i.e., the cost one necessarily needs to make in order to produce a certain amount of
output. That is, there is no slack component. Including slack results in

c̄(t) = [θ + ηq(t)]zq(t), (3.13)

Assuming zq = (1 + xq), where xq ∈ [0, 1] is the percentage contribution of slack to total
cost. Then rewriting (3.13) yields the final expression for the total cost function:

c̄(t) = [θ+ ηq(t)][1 + xq(t)]. (3.14)

Dividing by q gives the unit cost:

c(t) =

(
θ

q(t)
+ η

)
[1 + xq(t)] (3.15)

Now given the level of w(t), c(t) and p(t) we can calculate profit as given by (3.6).

4 Continuous Time Framework

In this section we analytically derive an optimal control model of the firm as described in
the previous section. The control variables, i.e., the instruments a department can apply
in order to reach or maintain its goal, are zq, zw and p. The decision rules that can be
adopted by the departments can evolve in three different directions. Allowing the control
variables to move more free in a continuous setting provides a framework in which the
model becomes more attractive in the sense of more flexibility. We will show how the
discrete decision rule applied by the PRD can be transformed into a continuous setting.

Starting point is (3.2). Subtraction results in:

zq(t+ 1)− zq(t) =


ξzqzq(t) if c1(t) < c̃1(t)
−ξzqzq(t) if c1(t) > c̃1(t)

zq(t) otherwise.
(4.1)

Rewriting gives:
zq(t+ 1)− zq(t) = ξzqzq(t)uq(t), (4.2)

where

uq(t) =


1 if c1(t) < c̃1(t)
−1 if c1(t) > c̃1(t)

0 otherwise.
(4.3)
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The first derivative of zq(t) with respect to time is now:

żq = lim
∆→0

zq(t+ ∆)− zq(t)
∆

= ξzqzq(t)uq(t), uq(t) ∈ [−1, 1]. (4.4)

The same routine can be applied to the control variables zw and p. The time derivative of
these two variables then are respectively:

żw = ξzwzw(t)uw(t)

ṗ = ξpp(t)up(t), (4.5)

where both uw(t) and up(t) ∈ [−1, 1]. For convenience we redefine:

zq = 1 + x1,

zw = 1− x2,

p = x3,

where x3 ≥ 0 and both x1, x2 ∈ [0, 1] represent the fraction of production slack and sales
slack. Now lets also redefine uq = u1, uw = u2, up = u3, ξzq = ξ1, ξzw = ξ2 and ξp = ξ3.

Moreover, define s1 = c̃, s2 = w̃, s3 = π̃.

ẏk = ξkykuk k = 1, 2, 3. (4.6)

In turn, we can rewrite this system into:

ẋk = ϕk(xk)uk k = 1, 2, 3. (4.7)

Equation (4.7) introduces a function ϕ(x) in order to allow any functional form depending
on x.

Now we have derived this control system we can also reconstruct a feedback system.
In order to derive this, first the goals of each department will be transformed into a
continuous time framework. The rule applied to (3.2) can also be used for the general
updating function (3.1). First, subtraction yields:

˜̀
k(t+ 1)− ˜̀(t) = (1− λk)[`k(t)− ˜̀

k(t)]. (4.8)

From this we generate:

˙̃
` = lim

∆→0

˜̀(t+ ∆)− ˜̀(t)

∆
= (1− λk)[`(t)− ˜̀(t)] (4.9)

This rule can be applied to the ‘updating’ function of each department. For the PRD,
SLD and CMD we get respectively:

˙̃c = (1− λ1)[c(t)− c̃(t)],
˙̃w = (1− λ2)[w(t)− w̃(t)],

˙̃π = (1− λ3)[π(t)− π̃(t)]. (4.10)

In general, uk can be defined as:

uk = sgn(`k − ˜̀
k) = sgn

∂Pk
∂xk

= arg max
|uk|≤1

uk(`k − ˜̀
k). (4.11)

Now we can write

(`k − ˜̀
k) =

∂Pk
∂xk

k = 1, 2, 3. (4.12)
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The right-hand-side of (4.12) is not the exact payoff but represents the marginal payoff.
Subsequently, the actual payoff function of department k is then determined by:

Pk =

∫
(`k − ˜̀

k) =

∫
∂Pk
∂xk

dxk. (4.13)

In the next section the payoff functions of the different departments will be calculated
explicitly.

5 Analysis

In this section we will apply the model presented in section 4 to analyze the ‘bhavioral firm’
and answer the research questions formulated in section 1. Since this is a first approach
we start with a simple 2-dimensional (2 departments) model instead of a 3-dimensional
(3 departments) model and assuming that aspiration levels are fixed. It is assumed that
a firm consists of a PRD and a CMD. As for the adjustment of slack and profits this has
the following consequences. Adjustment of slack in production cost remains as outlined
previously. Slack in the SLD is eliminated since the SLD does not exist in the 2-dimensional
model. However, a fixed aspiration level for sales is included.

In subsection 5.1 the model is described in detail. In subsection 5.2 the 3-dimensional
model is discussed.

5.1 2-Dimensional Firm Model

As stated in section 2 the PRD its aim is a certain fixed aspiration level of unit production
cost c̃ which is controlled by production slack x,9 The decision rule of the PRD is exactly
the same as stated in (3.2). The continuous time equivalent is (4.5). Originally, in the
3-dimensional model the decision rule of the CMD is given in (3.7). However, since we are
now dealing with a 2-dimensional model, i.e. excluding the sales department, w needs to
be explicitly written as a function of p. The demand function is like given in (3.9). Now
set δ = −β then the demand function becomes like:

w(p) =
α

pδ
(δ > 1). (5.1)

Given this, the discrete time decision rule for the CMD can now be written as follows:

p(t+ 1) =


(1 + ξp)p(t) if π(t) < π̃(t) ∧ α

pδ
> w̃(t)

(1− ξp)p(t) if π(t) 6= π̃(t) ∧ α
pδ
< w̃(t)

p(t) otherwise

(5.2)

where 0 < ξp ≤ 1. Thus, when profit is below the corresponding aspiration level and sales
are above the aspiration level then the price will be increased. When profit and sales are
too low, the price level will be decreased. The price will also decrease if profit is higher
than aspired but sales are too low. When both profit and sales are above the aspiration
level the price will not be changed.

Now substituting the demand function (5.1) into in the unit cost function (3.15) we
get:

c(p, x) =

(
θ

α
pδ + η

)
(1 + x)

= (η + bpδ)(1 + x) (b =
θ

α
). (5.3)

9Because the SLD is omitted in this model x instead of xq is used.
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Subsequently, substituting (5.1) and (5.3) into (3.6) yields the rewritten profit function:

π(p, x) =
α[p− (η + bpδ)(1 + x)]

pδ

= α[p1−δ − (1 + x)ηp−δ − (1 + x)b]. (5.4)

Before making the step to the dynamics of this system, we first calculate the static equi-
librium in the neoclassical sense.

5.1.1 Static Equilibrium

The aim of the neoclassical firm is to maximize profits π assuming slack x to be zero.
Given the functional forms as outlined above the first derivative of π with respect to p is:

∂π

∂p
= α(1− δ)p−δ + α(1 + x)δηp−δ−1

= αp−δ[(1− δ) + ηδ(1 + x)p−1]. (5.5)

Solving (5.4) for δπ/δp = 0 gives the optimal price:

p∗ =
ηδ(1 + x)

δ − 1
. (5.6)

Now
∂π

∂p
> 0 ⇐⇒ p ≤ p∗.

So, p∗ is the unique maximizer to π. Substituting this into (5.1) yields production q∗:

q∗ = α

(
ηδ(1 + x)

δ − 1

)−δ
. (5.7)

For x = 0, i.e. slack is zero, the neoclassical equilibrium p∗x=0 is obtained which equals:

p∗x=0 =
ηδ

δ − 1

In order to have positive profits in the neoclassical sense we must have:

π(p∗x=0, 0) > 0 ⇐⇒
[(

αδ

δ − 1

)1−δ
− η

(
αδ

δ − 1

)−δ
− b
]
> 0 (5.8)

Then from this condition:

b <

[(
αδ

δ − 1

)1−δ
− η

(
αδ

δ − 1

)−δ]
. (5.9)

5.1.2 Dynamics

Recall that aspiration levels c̃ and π̃ are fixed. As argued, the dynamics can be repre-
sented by (4.7). Applying this to slack x and price p the dynamics of these variables are
respectively:

ẋ = ϕ(x)sgn[c̃− c(p, x)],
ṗ = ψ(p)g(p, x), (5.10)
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where ϕ(x), ψ(p) > 0 and are differentiable. Moreover, ϕ(0) = 0, ψ(0) = 0. The function
g(p, x) is:

g(p, x) =


1 if π(p, x)< π̃ ∧ p < p̄

−1 if π(p, x) 6= π̃ ∧ p > p̄

0 otherwise
(5.11)

where p̄ =
( α
w̃

) 1
δ . Now assume that x0 = x(0) > 0 and p0 = p(0) > 0 then x(t), p(t) > 0

for all t ≥ 0. The solution to (5.10) is understood in the Filippov’s sense due to the
discontinuous right-hand-side [Fillipov 1988].

To analyze the system of differential equations we make use of vector fields. To do
so, so-called switching curves need to be derived. Switching curves are the curves where
one of the coordinates (variables) changes its direction. In our case we thus derive two
switching curves: one that determines the direction of x and one the direction of p.

Firstly, we analyze the dynamics of x. We have:

ẋ > 0 ⇐⇒ c(p, x)< c̃

⇐⇒ (η + bpδ)(1 + x) < c̃.

From this the x−switching curve µ(p) can be derived:

µ(p) =
c̃

η + bpδ
− 1, (5.12)

where µ(p) > 0. and limp→∞ µ(p) = −1. The switching curve shows in which direction
production slack x moves depending on the inital point it is relative to the curve. Above
this curve ẋ < 0, below the curve ẋ > 0. The economic intuition behind this is that when
actual production cost are above the aspiration level (above the x−switching curve), slack
is reduced and hence actual production cost gradually declines. The reverse situation
applies to a point under the x−switching curve. Next determine:

dµ(p)

dp
= c̃

(
− 1

(η + bpδ)2
bδpδ−1

)
> 0. (5.13)

and

d2µ(p)

dp2
= c̃

(
2(bδpδ−1)2

(η + bpδ)3
− bδ(δ − 1)pδ−2

(η + bpδ)2

)

=
c̃bδpδ−2

(η + bpδ)2

(
δ + 1− 2ηδ

η + bpδ

)
. (5.14)

From (5.10) the point where x = 0 can be determined which equals:10

px0 =

(
c̃− η
b

) 1
δ

. (5.15)

Secondly, the dynamics of p. From (5.11) we see that:

ṗ > 0 ⇐⇒ π(p, x)< π̃ ∧ p < p̄

⇐⇒ p1−δ − (1 + x)ηp−δ − (1 + x)b <
π̃

α
∧ p < p̄.

10The point where the function µ(p) becomes convex can also be determined. This is where µ′′(p) > 0.

This is the case if and only if η + bpδ > 2
δ+1
⇔ pδ > η

b

(
2δ
δ+1
− 1
)
⇔ p >

[
η
b

(
δ−1
δ+1

)] 1
δ .
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Rewriting gives:

p1−δ − π

α
< (1 + x)(ηp−δ + b) ∧ p < p̄ ⇐⇒

1
pδ−1 − π

α
η
p−δ

+ b
− 1 > x ∧ p < p̄

Finally, the p−switching curve in the domain p < p̄ is:

ν(p) =
p(α− π̃pδ−1)

α(η + bpδ)
− 1. (5.16)

where ν(p) > 0. Above this curve ṗ > 0 and below the curve ṗ = 0. That is, above the
curve actual profit is below the aspiration level. So, in order to raise profits the price level
is increased. Recall that this is the case when p < p̄, i.e. the sales goal is met. On the
other hand, price is unchanged if one is in a situation below the curve; both the profit and
sales goal is reached.

Furthermore,
ṗ < 0 ⇐⇒ p > p̄, (5.17)

which implies that the price decreases if and only if p > p̄, i.e. actual sales are below the
aspiration level. In this case sales are stimulated by means of a price cut. In this domain
p > p̄ the curve ν(p) does not play any role. Per definition:

π(p, x) = [p− c(p, x)]w(p)< π̃

⇔ [p− c(p, 0)(1 + x)]w(p) < π̃

⇔ [p− c(p, 0)]w(p)︸ ︷︷ ︸
π(p,0)

−c(p, 0)x < π̃

⇔ x >
π(p, 0)− π̃
c(p, 0)

= ν(p). (5.18)

But we can write (5.14) also as:

ν(p) =
p+ ηπ̃

αb

η + bpδ
− π̃

αb
− 1. (5.19)

Now the dynamics of x and p are explicitly determined, a set of equilibria can be derived.
To derive this final set, first some subsets for each kind of dynamic of both x and p will be
given. Regarding the dynamics of p the sets for ṗ > 0, ṗ = 0 and ṗ < 0 are respectively:

P+ = {(x, p) : 0 < p ≤ p̄, x > ν(p), x ≥ 0}
P 0 = {(x, p) : 0 < p ≤ p̄, 0 ≤ x ≤ ν(p)}
P− = {(x, p) : p > p̄, x ≥ 0} (5.20)

For the dynamics of x we get for ẋ > 0, ẋ = 0 and ẋ < 0 respectively:

X+ = {(x, p) : p > 0, 0 ≤ x < µ(p)}
X0 = {(x, p) : p > 0, x ≥ 0, x > µ(p)}
X− = {(x, p) : x ≥ 0, x = µ(p)} (5.21)

Then the set of equilibria, i.e. the attraction curve is:

A0 = P 0 ∩X0. (5.22)
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In the next subsection, the focus is on stationary points. In this subsection also some
graphical illustrations of the dynamics of x and p for different values of p̄ are given.

As an exercise we can calculate that ν(0) = −1 and limp→∞ ν(p) = − π̃
αb − 1. Subse-

quently, the first derivative of µ with respect to p is:

dν(p)

dp
=

η + bpδ −
(
p+ ηπ̃

αb

)
bδpδ−1

(η + bpδ)2

=
η + bpδ − bδpδ − ηπ̃bδpδ−1

αb

(η + bpδ)2

=

λ(p)︷ ︸︸ ︷
η + b(1− δ)pδ − ηπ̃δpδ−1

α
(η + bpδ)2

. (5.23)

And we see that ν′(p) > 0 if and only if λ(p) > 0. Moreover,

λ(0) = a

dλ(p)

dp
= bδ(1− δ)pδ−1 − ηπ̃δ(δ − 1)pδ−2

α
< 0.

Hence, either:

(i) ν′(p) ≥ 0 for all p, or
(ii) ν′(p) > 0 for p < p− (ν grows) and
(iii) ν′(p) < 0 for p > p− (ν declines).

But since limp→∞ ν(p) < −1 = ν(0), (i) is not possible. Hence, we can derive the following
proposition.

Proposition 5.1 If ν(p) > 0 for some p > 0, there is the single p− > 0 and single
p+ > p− such that:

ν(p−) = ν(p+) = 0
ν(p) < 0 for p < p−

ν(p) < 0 for p > p+

ν(p) > 0 for p− < p < p+.

Moreover, ν′(p−) > 0 and ν′(p+) < 0.

Note that proposition 5.1 holds if and only if ν(p̂) > 0, where p̂ is the maximum of ν
determined by ν(p̂) = 0 or λ(p̂) = 0.

In order to determine the point where the function switches from concave to convex,
determine:

d2ν(p)

dp2
=

1

(η + bpδ)2

(
λ′(p)− 2λ(p)δbpδ−1

η + bpδ

)

=
1

η + bpδ

−
h1︷ ︸︸ ︷

(ηbδ(δ− 1) + 2ηbδ)pδ−1 −

h2︷ ︸︸ ︷
η2 π̃δ(δ − 1)

α
pδ−2+

h3︷ ︸︸ ︷
b2δ(δ − 1) p2δ−1 +

h4︷ ︸︸ ︷
ηπ̃bδ[2δ − (δ − 1)]

α
p2δ−2


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=
pδ−2

η + bpδ

(
−h1p− h2 + h3p

δ+1 + h4p
δ
)
. (5.24)

Next, define
d(p) = −h1p− h2 + h3p

δ+1 + h4p
δ.

Now there exists a p̄ such that:

(i) d(p̄) = 0
(ii) d(p̄) < 0⇔ ν′′(p) < 0 (p < p̄)
(iii) d(p̄) > 0⇔ ν′′(p) > 0 (p > p̄),

where (ii) shows the concave part of the trajectory of ν and (iii) the convex part. From
(5.15) it follows that:

dν(p)

dπ̃
=

1

αb

(
η

η + bpδ
− 1

)
< 0. (5.25)

Thus, as π̃ grows, ν(p) goes down. Hence, proposition 5.1 holds for relatively small π̃ and
is violated as π̃ is too high.

Lemma 5.1 Let π⊗ be the maximum value for π(p, 0), i.e. π⊗ = π(p∗⊗, 0). By (5.14)
ν(p) ≤ 0 for all p if π̃ ≥ π⊗ (proposition 5.1 is violated) and holds if π̃ < π⊗. Moreover,
ν(p) > 0 if and only if π(p, 0) > π̃. Hence the interval (p−, p+) where ν(p) > 0 is contained
in (p−⊗, p

+
⊗) where π(p, 0)> 0.

Proof. Follows directly from (5.15).
2

5.1.3 Stationary points

Recall the dynamics ẋ, ṗ as given in (5.9) and expressions of µ(p) and ν(p). Now: The
stationary points can be found from:

1. µ(p) = x and (ν(p) = x or ψ(p) = 0)

2. ν(p) = x and (µ(p) = x or ϕ(x) = 0)

Assume the x−switching curve µ(p) and p−switching curve ν(p) intersect above the
p−axis. Every intersection point is found from:

µ(p) = ν(p) (5.26)

We assumed that (5.21) has at least one solution p > 0 such that x = µ(p) = ν(p) > 0.
Equation (5.21) is an algebraic equation whose equivalent form is:

c̃ =
p(α− π̃pδ−1)

α
. (5.27)

Rewriting yields the polynomial of degree δ :

− π̃
α
pδ + p− c̃ = 0. (5.28)

If δ is rational, δ = n/m (n > m), then setting y = p
1
m , (5.23) becomes:

− π̃
α
yn + ym − c̃ = 0. (5.29)
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This equation may have n roots. Hence, (5.24) may, generally, have n roots p1, . . . , pn > 0
such that:

xi = µ(pi) = ν(pi) > 0 (i = 1, . . . , n).

If δ is irrational, the number of roots might be larger. But we will assume that δ is
rational and that there are n roots. We will determine the rest points for the case where
µ′(pi) 6= ν′(pi)(i = 1, . . . , n), which is obviously the general situation. The analysis will be
carried out assuming that n = 2 and m = 1. A polynomial of degree 2 is obtained then.
Moreover, it is assumed 0 = ν(pn) > µ(pn). This simply implies that at this point the
function ν(p) lies above µ(p). Furthermore, as argued before p− < p1 < · · ·< pn < p+.

One of the stationary points is the point where ν(p) = x and ϕ(x) = 0. To see whether
this point coincides with the neoclassical equilibrium price assume that the maximum
aspiration level of profit cannot be larger than the maximum profit achieved according
to the neoclassical theory. In the neoclassical theory the equilibrium price equals 2η.
Substituting this into the profit function shows that the maximum profit is:

π∗ =
α

4η
− θ. (5.30)

Assume that this is also the maximum aspiration level of profits. Subsequently: 0 ≤ π̃ ≤
π̃∗. Substituting π̃∗ into ν(p) (5.14) yields:

ν(p) =
p
(
α −

(
α
4η − θ

)
p
)

α
(
η + θ

αp
2
) − 1.

=
−αp2 + 4αηp− 4αη2

4η(αη+ θp2)

= p2 − 4ηp+ 4η. (5.31)

Solving ν(p) = 0 gives p∗ = 2η which equals the neoclassical equilibrium price as depicted
in (5.7). The following statement summarizes this result:

Proposition 5.2 For π̃ = π̃∗ and given the functional form of w(p) and c(q, x) as given
in (3.9) and (3.15) respectively, the intersection point coincides with the neoclassical equi-
librium price and equals 2η.

Proof. See above.
2

For general π̃ the function ν(p) becomes:

ν(p) =

(
θ + π̃

α

)
p2 − p+ η (5.32)

Solving the function ν(p) = 0 yields equilibrium prices:

p∗ =
1±

√
1− 4η

(
θ+π̃
α

)
2
(
θ+π̃
α

) . (5.33)

Because it is assumed that:

0 < π̃ ≤ π̃∗ ⇐⇒ 0 < π̃ ≤ α

4η
− θ

⇐⇒ 0 <
θ + π̃

α
≤ 1

4η
. (5.34)
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Defining ζ = θ+π̃
α (5.27) is now:

ν(p) = ζp2 − p+ η. (5.35)

In (5.29) we derived that 0 < ζ ≤ 1
4η . Rewriting gives 0 < γ ≤ 1, where γ = 4ζη. Thus:

π̃ ≤ π̃∗ ⇔ γ ≤ 1.

Given this, the roots of ν(p) are:

p∗ =
2η
(
1±
√

1− γ
)

γ
. (5.36)

Let’s try to understand the dynamics of p in terms of a changing π̃. We see that d
is linear with respect to π̃. The function ν(p) = 0 yields two roots. First two functions
f+(γ) and f−(γ) extracted from (5.31) will be introduced :

f+(γ) =
1 +
√

1− γ
γ

f−(γ) =
1−
√

1− γ
γ

. (5.37)

Differentiating generates:

df+(γ)

dγ
= − 1

2γ
√

1− γ −
1 +
√

1− γ
γ2

< 0

df−(γ)

dγ
=

1

2γ
√

1− γ −
1−
√

1− γ
γ2

> 0. (5.38)

In the first case (f ′+(γ) < 0), the price level decreases if π̃ increases, whereas in the second
case (f ′−(γ) < 0) an increase of π̃ is positively related to p.

Recall that equation (5.31) shows the roots, i.e. the price levels for ν(p) = 0. Compared
with the neoclassical equilibrium the following proposition can be made.

Proposition 5.3 Equation (5.31) yields the prices p∗− and p∗+. The price p∗− < p∗ < p∗+
if and only if 0 < γ < 1. The equilibrium prices coincide with the neoclassical equilibrium
price, i.e. p∗− = p∗ = p∗+ if and only if γ = 1.

Proof. Per definition 0 < γ ≤ 1. If γ = 1 then fk(γ) = 1 for k = −,+. Subsequently, the
equilibrium price derived from (5.31) is:

p∗ =
2η
(
1±
√

1− γ
)

γ
= 2ηfk(γ) = 2η. (k = −,+).

If 0 < γ < 1 then f+(γ) > 1 and f−(γ) < 1. This implies that p∗− < p∗ < p∗+.
2

The other stationary points can be determined by µ(p) = ν(p). That is, solving (5.24)
for m = 1, n = 2. The roots of this polynomial of degree 2 equal:

y = p∗ =
1±
√

1− 4φc̃

2φ
(φ =

π̃

α
). (5.39)

Figure 2 illustrates graphically the possible equilibria. Curve A shows the function

p̃ = c̃+
π̃

q
, (5.40)
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Figure 2: Equilibrium with fixed aspiration levels.

where π̃/q is the aspired mark-up. The efficient average cost is represented by B. Fur-
thermore, C, D and E are the efficient marginal cost, demand,11 and efficient marginal
revenue. Economic consistency requires that c̃ ≥ c and π̃ ≤ π∗. Equation (5.40) then can
be interpreted as the aspired price. The graph suggests that there can be two price levels
where aspirations are satisfied: p1, p2. In the model the actual price p is on the demand
curve q = q(p). The interval p2 < p < p1 represents therefore the situations where actual
cost c and/or actual profits π are higher than their corresponding aspiration levels. For
p > p1 and p < p2 the opposite is true.

Finally, some graphical illustrations of the model described in this section are given.
Three cases are distinguished based on different a varying sales goal. Figure 3 shows the
switching curves and the vector fields when the sales goal is relatively low, i.e. p1 < p2 < p̄

(p̄ is far to the right). In this case a set of equilibria A0 exist. Moreover, there is the
equilibrium point B.

In the second case the sales goal is somewhat higher than in the first case, i.e. p1 <

p̄ < p2. In this case again a set of equilibria exist. Figure 4 shows this set again denoted
by A0.

Finally, if p̄ < p1 <2 the system converges to the unique stable equilibrium B as shown
in figure 5.

11Here it is assumed that demand is linear.
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Figure 3: Switching curves and vector field dynamics for relatively low w̃.
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Figure 4: Switching curves and vector field dynamics for relatively normal w̃.
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Figure 5: Switching curves and vector field dynamics for relatively high w̃.

5.2 3-Dimensional Firm Model

5.2.1 Outcome of the Modified Monopoly Case

In this section the final outcome of the monopoly is calculated given the functional forms
previously stated. The difference with the equilibrium presented in section 1 is that there
the equilibrium of a monopolist which is perfectly efficient (slack is zero) was analyzed.
In this section the firm is X-inefficient. For simplicity we take a case where we start from
given (fixed) levels of xq and xw. To formulate a reference case we first assume that the
CMD maximizes profits accepting a certain aspiration level of slack on both production
(x̃q) and sales (x̃w). First, the inverse demand curve is the inverse of (3.11):

p(t) =

(
q(t)

α(1− x̃w)

) 1
β

. (5.41)

Revenue r equals the price of the product times the quantity produced:

r(t) = p(t)q(t) =
q(t)

1
β

+1

[α(1− x̃w)]
1
β

(5.42)

Differentiation of r with respect to q yields:

dr

dq
=

(
1

β
+ 1

)(
q(t)

α(1− x̃w)

) 1
β

. (5.43)

Equation (2.3) states that β should be equal to the price elasticity of demand ε(q).

Corollary 5.1 Suppose the demand function is of the form as in (3.9). Then ε(q) equals
β.

Proof.

ε(q) =
p

q

dq

dp
=

p

αpβ
αβpβ−1 =

pαβpβ−1

αpβ
= pβp−1 = β.
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2

The cost function of the monopolist is given by (3.15). Differentiation of this function
with respect to q gives the marginal cost function:

dc

dq
= ηzq = η(1 + x̃q). (5.44)

Solving dr/dq = dc/dq gives q∗ and subsequently substituting q∗ into (5.24) yields p∗:

q∗(t) = α(1− x̃w)

(
η(1 + x̃q)β

1 + β

)β
,

p∗(t) =

(
η(1 + x̃q)β

1 + β

) 1
β

. (5.45)

The point (p∗, q∗) reflects the point where profit is at the maximum level.

5.2.2 Joint Payoff

In this section it is analyzed whether a so-called potential or joint payoff function can
be constructed for the 3-dimensional case. Potential games have been introduced by
[Monderer, Shapley 1996]. Learning in potential games can be found in [Ermoliev, Fl̊am
1997]. Before we can determine the existence of a potential, first the payoff functions of
the three departments needs to be calculated as in (4.13).

First, the PRD. The target variable is production cost as derived in (3.15). Substituting
(3.15) into (4.13) we get:

P1 =
∫

(s1 − c)dx1 =
∫ (

s1 −
(

θ

αxβ3 (1− x2)
+ η

)
(1 + x1)

)
dx1

= s1x1 −
(

θ

αxβ3 (1− x2)
+ η

)(
x1 +

x2
1

2

)
+ s1x1 + F1(x2, x3, s1, s2, s3). (5.46)

Second, for the SLD the level of sales as given in (3.11) is important. Substituting this
function into (4.13) yields:

P2 =
∫

(w− s2)dx2 =
∫ (

αxβ3 (1− x2)− s2

)
dx2

= αx
β
3 (x2 −

x2
2

2
)− s2x2 + F2(x1, x3, s1, s2, s3). (5.47)

Finally, substituting (3.6) into (4.13) we derive the payoff function of the CMD:

P3 =
∫

(π − s3)dx3 =
∫

(p− c)w− s3dx3

=

∫ (
x3 −

(
θ

αx3(1− x2)
+ η

)
αx3(1− x2)− s3

)
dx3

=
αxβ+2

3 (1− x2)

β + 2
+
αηxβ+1

3 (x1x2 − x1 + x2 − 1)

β + 1
−

x3(θ(1 + x1) + s3) + F3(x1, x2, s1, s2, s3). (5.48)

This leads to the following proposition.
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Proposition 5.4 Given the structure of P1,P2 and P3 there exists no potential P for this
game such that P = P1 = P2 = P3.

Proof. If a potential P = P1 = P2 = P3 exists, then ∂2P
∂xi∂xj

= ∂2P
∂xj∂xi

for all k and i 6= j.

Relating this to our firm model the first condition that needs to be satisfied is:

∂2P
∂x1∂x2

=
∂2P

∂x2∂x1
.

Assume there is a function P = P1 = P2 = P3. Then:

S1 =
∂P
∂x1

=
∂P1

∂x1
= −

(
θ

αxβ3 (1− x2)
+ η

)
(1 + x1) + s1,

Now take the second partial derivative with respect to x2 :

∂2P
∂x1∂x2

=
∂2P1

∂x1∂x2
=
∂S1

∂x2
= − θ(1 + x1)

αx
β
3 (1− x2)2

.

Furthermore,

S2 =
∂P
∂x2

=
∂P2

∂x2
= αxβ3 (1− x2)− s2.

The second derivative of this function with respect to x1 is:

∂2P
∂x2∂x1

=
∂2P2

∂x2∂x1
=
∂S2

∂x1
= 0,

and we see that ∂S1
∂x2
6= ∂S2

∂x1
. This already concludes the proof.

2

For the sake of completeness all second-order partial derivatives are calculated. The second
equality that needs to hold is

∂2P
∂x1∂x3

=
∂2P

∂x3∂x1
.

The first partial derivative we need is the same as (4.3). Now differentiating with respect
to x3 gives:

∂2P
∂x1∂x3

=
∂2P1

∂x1∂x3
=
∂S1

∂x3
=

θβ(1 + x1)

αxβ+1
3 (1− x2)

Next determine

S3 =
∂P
∂x3

=
∂P3

∂x3
= αηxβ3(x2 + x1x2 − x1 − 1) + αxβ+1

3 (1− x2)− θ(1 + 2x1)− s3.

Consequently,
∂2P

∂x3∂x1
=

∂2P3

∂x3∂x1
=
∂S3

∂x1
= αηxβ3(x2 − 1)− θ.

So, also in this case we see that ∂S1
∂x3
6= ∂S3

∂x1
. The final condition that needs to hold in our

firm model is:
∂2P

∂x2∂x3
=

∂2P
∂x3∂x2

.
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First, calculate ∂P
∂x2

= ∂P2
∂x2

. This is already shown in (4.5). Second,

∂2P
∂x2∂x3

=
∂2P2

∂x2∂x3
=
∂S2

∂x3
= αβxβ−1

3 (1− x2).

The next condition we need is ∂P
∂x3

= ∂P3
∂x3

which is given by (4.9). Finally it is easy to see
that

∂2P
∂x3∂x2

=
∂2P3

∂x3∂x2
=
∂S3

∂x2
= αηxβ3(1 + x1)− αxβ+1

3 .

and so we see that ∂S2
∂x3
6= ∂S3

∂x2
. The calculations show that condition (4.1) does not hold.

This implies that the game cannot be described by a general payoff function P and cannot
serve as a a so-called ‘potential’ for this game. The missing of such a potential means that
there are some differences in interest among the players. But this result is consistent with
one of the assumptions of the behavioral theory of the firm which states that the firm
is a set of subcoalitions that pursue their own ‘local’ interests. That is, in first instance
they want to be locally optimal. We showed analytically that this assumption holds in
our model. Furthermore, this implies that the constant term Fk(·) in the payoff functions
Pk can be assumed to be zero.

6 Conclusions and Discussion

6.1 Conclusions

In this paper we developed a dynamical game theoretical model of a monopoly firm based
on behavioral assumptions, i.e. satisficing behavior instead of maximizing behavior. A
2-dimensional (two departments) and 3-dimensional (three departments) model is distin-
guished. In the 2-dimensional model the firm consists of a production department and a
central managament department. In the 3-dimensional model also a sales department is
included. The PRD, SLD and CMD have a production cost goal, a sales goal and profit
goal respectively. The PRD its instrument variable is slack on production, the SLD its
instrument is slack on sales and the CMD its instrument variable is the price.

In the 2-dimensional case the sales goal is taken into account implicitly, whereas in
the 3-dimensional case the sales goal is explicitly modeled. In the 2-dimensional model we
distinguish three different cases:

1. Relatively low sales goal;

2. Relatively ‘normal’ sales goal;

3. Relatively high sales goal.

In all the three cases equilibria exist. In the first case, a set of equilibria exist and one
other equilibrium point exist. In the second case only a set of equilibria exist. In the third
case a unique stable equilibrium exist.

Furthermore, a comparison is made with the equilibrium outcome of the neoclassical
monopoly. It is shown that the same outcome can be achieved if the profit goal equals the
maximum profit level in neoclassical sense. However, for varying aspiration levels different
equilibria might exist.

In the 3-dimensional model a sales department is explicitly modeled. It is analytically
shown that in this case no joint payoff function, i.e. potential exists. This implies that
interests differ among players (departments). This result is in line with assumption of the
behavioral theory of the firm that the firm is a set of different players each pursuing their
own goal.
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6.2 Discussion

The modified monopoly model can be extended in several ways. First, the model might
become more realistic to assume variable aspirations. One could start with a varying sales
goal. Subsequently, aspiration levels of production cost and profit might be modeled as
variables instead constants.

Second, one can try to include more than two or three departments. However, a
drawback of this is that the mathematical analysis becomes much more difficult than in
the two-dimensional (2 departments) case. That is, the system will consist of more than 2
differential equations which makes it harder to find an analytical solution. As a first step
one could try to extend the 2-dimensional model by including a sales department.

Third, given the number of departments of the firm the model might be extended in
terms of allowing competition. This implies modeling more than one firm in the market.
It might be appropriate first to analyze a market with two firms. Moreover, one can model
the firms assuming the same structure but with different parameters. Another extension
might be to allow differences in structure between the firms. For example, one firm consists
of two departments and the other of three departments.

Finally, we assumed that each department has one goal and one control variable at its
disposal to reach their goal. It might be appropriate to analyze a model where certain
departments are aiming for more than one goal and/or with the availability of more than
one control variable.
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