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Abstract 

Technological choices largely determine the long-term characteristics or industrial society, including impacts on the natural 
em·ironmcnt. However. the treatment o[ technology in existing models that are used to project economic and environmental [utures 
remains highly stylized. Based on work over two decades at llASA. we present a use[ul typology for technology analysis and discuss 
methods that can be used to analyze the impact or technological changes on the global environment, especially global warming. Our 
[ocus is energy technologies. the main sou rce or many atmospheric environmental problems. We show that much improved treatment 
o[technology is possible with a combination o[historical analysis and new modeling techniques. In the historical record , we identify 
characteristic "learning rates" that allow simple quantified characterization or the improvement in cost and performance due to 
cumulati,·e experience and investments. We also identi[y patterns. processes and timescales that typi[y the diffusion of new 
technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require 
the longest time to diffuse and co-evolve with other technologies in the network ; such network effects yield high barriers to entry even 
[o r superior competitors. 

These simple observations a llow three improvements to modeling of technological change and its consequences for global 
environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the 
economy to yield progressively mo re energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 
"decarbonizcd" the global primary energy supply 0.3'Yo per year. In contrast. most baseline projections for emissions of carbon, the 
chief cause of global warming. ignore this robust historical trend and show little or no decarbonization . A second improvement is that 
by incorporating learning cun·es and uncertainty into micro scale models it is possible to e11do!Je11011sly generate patterns of 
technological choice that mirror the real world. Those include S-shaped diffusion patterns and timescales of technological dynamics 
that arc consistent with histo rical experience: they also include endogenous generation o["surprises" such as the appearance of radically new 
technologies. Third. it is possible to include learning phenomena stylistically in macro-scale models; we show that doing so can yield 
projections with lessened cm·ironmcntal impacts without necessa rily incurring negative effect on the economy. Arriving on that path by the 
year c JOO depends on intenening actions. such as incentives to promote greater diversity in technology and lower barriers to entry for new 
infrastructures that could accelerate historical trends or dccarbonization. [' 1999 Elsevier Science Ltd. All rights reserved. 

1'1·nrnnh: Endogenous technological change: Modeling: Global warming 

I. Introduction 

Changes in products, deYices, processes and practices 
- technology' - largely determine the development and 
consequences of industrial society. Technology has 
allo11·ed hunger to decline while the world population 
more than doubled since I 950 and cropland rose by only 

•corrcs r~mding author 
1 A broad lkfin ition of ··1echnology" is adopted here because it is 

di!licult to separate thc {economic and socia l) importance of physical 
artifacts from the social and institutional processes that put those 
artifacts into practice. Sec. eg. Freeman t 1982 '1989). 

one-third (Hayami and Ruttan, 1985). The appearance of 
radically new technologies has eliminated some environ­
mental problems while creating new ones - automobiles 
extinguished horses and manure stench from the road 
but now cause pervasive urban smog. Incremental ad­
justments to existing technologies have also improved 
environmental performance. Examples include the 
addition of catalytic converters to automobiles, which 
partially cut smog and forced fuel suppliers to get the 
poisonous lead out of gasoline. Even small technological 
changes have had radical effects when compounded over 
many years - thousands of hardware and managerial 
changes allow today's airlines to deliver a seat-kilometer 

0.'0I-4c15 99 S - sec front matter ( 1999 Elsc,·ier Science Ltd. All rights reserved. 
PIJ SOJO t -4215(98)00067-6 
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of service by burning less than half the fuel required three 
decades ago. 

Despite the centrality of technology, analytical tech­
niques that are useful for analyzing technological change 
and its impacts remain embryonic. We argue that it is 
possible to do better by simultaneously applying a multi­
tude of techniques developed and refined by colleagues 
and ourselves over two decades at the International 
Institute for Applied Systems Analysis (IIASA). Our fo­
cus is the impact of technology on "global change" - the 
local, regional and worldwide effects of industrial society 
on the environment. We show that typical rates and 
patterns of technological change can be identified in 
history, and new analytical techniques and increased 
computational power allow more appropriate ("endo­
genous") modeling of technological change. Long-term 
technological forecasting still remains elusive; however, 
historical analysis and improved numerical modeling, 
together, can sharply increase the ability to anticipate 
technological changes and their environmental impacts. 

Economic theory, historical evidence, and (neoclassi­
cal) growth models confirm that advancing technological 
knO\\·Icdge is the most important single factor that con­
tributes to long-term productivity and economic 
growth. 2 Yet, in most models of long-term economic 
development and environmental change, technology 
continues to be treated as a quantity exogenous to the 
economy and society at large. Typically the only endo­
genous mechanism of technological change in existing 
models is progressive resource depletion, such as running 
out of oil , which results in increasing costs of resource 
extraction that favor more expensive, but resource-frugal 
technologies. (Often these are modeled as '" backstop" 
technologies. a term coined by Nordhaus (1973).) 
However, technological change triggered by resource 
constraints is some\\·hat inconsistent with historical 
experience. (See Barnett and Morse ( 1967) and, for a 
current review of hydrocarbon resources, see Rogner 
( 1997)) 

Although analysts agree that technological change is 
crucial. in practice most analysis proceeds as if most 

' For re\ irn s sec ~ktcalfc t 1987) and Freeman ( 1994). For empirical 
c\·idcncc from economic hi story sec Maddison (1991. 1995) and Mokyr 
11990). For a review of the treatment of technological change as 
.. rcsiduar· of Jong-run productivity growth see Griliches (1996). The 
two classical papers sihing out the impact of technological change on 
producti\·ity growth based on neoclassical production function models 
arc: Tinbcrgcn (194~1 and Solow (1957). For instance. in Solow's calcu­
lations ad,·ances in knowledge (technology) account for 85% of eco­
nomic growth pi:rcapita. and only 15% is accounted for by increases in 
capital. AltcrnatiYc approaches. particularly those within "new growth 
theory .. ha,·c extended the classical production function by adding an 
endogenous ··knowh:dge .. stock variable. measurement of which. how· 
C\'Cr. rc:mains dusi\·c (cf. Romer. 1990). As a rule, the factors entering 
a production functi on (capital. labor. knowledge, technology) are 
tn:atcd as independent of each other. This assumption is criticized by 
Abramo,·itz ( 1993). 

technological change cannot be anticipated and modeled. 
Some studies largely ignore technological change; thus, 
by design, they typically yield Malthusian projections of 
starvation and ecological catastrophes as populations 
and economies grow while not using finite resources 
more efficiently (Meadows et al, 1972, 1992). Many stud­
ies include only marginal and gradual technological cha­
nges, often through an aggregate trend parameter - such 
as the annual rate of efficiency improvement - that is 
(exogenously) tuned according to historical experience. 
That technique is compatible with the highly aggregated 
macroeconomic modeling tools that are commonly em­
ployed in global change studies. Such models do not 
represent the selection of particular technologies and 
thus are only able to include technological changes that 
are marginal extensions of the present. Yet the historical 
record is abundant with radical technological changes. 
Even models in the tradition of systems engineering 
- where detailed information on technological costs and 
performance is used to calculate least cost technological 
systems - have largely failed to address technological 
change. Some ignore changes in costs and performance 
(and thus implicitly assume that technologies are static). 
Most impose those changes exogenously but have no 
mechanism - other than the intuition of the modeler - to 
ensure that the assumptions imposed are plausible and 
internally consistent. Very few systems models have in­
cluded rudimentary endogenous mechanisms of techno­
logical change, such as learning curves. (For exceptions 
see Messner et al ( 1996), Fragniere and Haurie ( 1995) and 
Messner (1997); see also Nordhaus and van der Heyden 
(1993) and the discussion below.) Yet only rarely are 
those models linked with macroeconomic tools to allow 
systematic analysis of the technological aspects of global 
change problems. Here we present one of the first such 
applications of linked models. 

Treatment of technological change is especially diffi­
cult yet crucial for analysis of the impacts of industrial 
society over long time periods - decades and centuries. 
On those time scales, which are characteristic of the 
environmental issues that constitute global change, even 
small technological changes can compound into radically 
di!Terent technological systems and environmental ef­
fects. Because the timescales are long and the existing 
analytical techniques are imperfect, typically analysts 
bound a range of plausible futures and policy options 
with scenarios. Those scenarios are built with the same 
models that poorly represent technological change, and 
thus extant scenarios also typically ignore technological 
change or mechanically extrapolate past trends into the 
future. (For a recent review see Alcamo et al (1994).) 
Some scenario-builders adopt radical visions for tech­
nologies that will be invented and adopted (eg, Lazarus 
et al, 1993), which helps to define boundaries for possible 
futures but offers little insight into the costs and prob­
abilities of those utopic extremes. Indeed, extreme low 
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and high scenarios for em1ss10ns of carbon dioxide 
- which vary from about 2 GtC (gigatons, 1015 grams, 
of elemental carbon) to more than 30 GtC in the year 
2100 - differ mainly due to their underlying assump­
tions about technology. 

We argue that technological futures are neither 
opaque nor unbounded. Because global change problems 
are numerous, we focus on the main source of many 
environmental problems: the combustion of fossil fuels. 
Because technological changes can be most dramatic 
over the long term, we focus on greenhouse warming, 
which is principally caused by the accumulation of car­
bon dioxide released during the combustion of fossil fuels 
over many decades. With the use of comprehensive his­
torical statistics compiled at IIASA, we argue that three 
robust attributes of energy technologies and their green­
house impacts are evident in the historical record. (I) 
Typical improvements in cost and performance of new 
technologies due to "learning" can be identified. (2) Dy­
namic competition between technologies to provide en­
ergy services. such as mobility. yields predictable patterns 
for the entry and exit of technologies in competitive 
markets. (3) Network effects and technological interde­
pendence such as between petroleum refineries, pipelines, 

Table I 
Stylized stages of technological dcYelopment and typical characteristics. 

Stage ~fcchanisms Cost 

gas stations, and gasoline-powered automobiles result in 
characteristic patterns of technological co-evolution. We 
argue that these three attributes make possible the devel­
opment of models with realistic and endogenous treat­
ment of technological change, which we demonstrate 
rigorously at the micro scale and stylistically for the 
world's entire energy system. In sum, technological as­
sessment is still imperfect; some aspects of technological 
futures, especially related to the timing and character of 
radical technological inventions, are still shrouded in 
mystery. But better analysis and modeling of the stages of 
technological change that follow invention is possible. 
Before we argue how, we present a consistent typology 
that helps to classify the processes at work. 

2. A typology for technology analysis 

Technological change is a complex process. A simple 
typology helps to identify the key mechanisms, concepts 
and measures. We distinguish six stages (Table 1) in the 
life-cycle of a technology. Following Shumpeter (1934) 
and Freeman (1982/ 1989) we distinguish between i11re11-
rio11, which is the creation of an idea, and i1111ornrio11. 

Commercial 
Market share 

Learning Rate 

lnn:ntio n Seeking and stumbling upon new 
ideas: breakthroughs: basic research 

High. bu! dillicult 10 

altribute to a particular 
idea or product 

0% Unable to express in 
conn~ntional karning 
curve 

lnn o \· ~uio n Arrlied research. dc\·elopmcnt and 
demonstration 1RD&Di projects 

~ichc mark et Identification of special niche 
commt:rciali7ation applications; investments in field 

projects; "learning by doing .. ; close 
relationships between suppliers 
and users 

Pcn·asi,·c difTusion Standardization and mass production; 
economics of scale: building of 
network elfocts. 

Saturation Exhaustion of impro,·ement potentials 
and scale economics: arrival of more 
ellicicnt competitors into market; 
redefinition of performance 
requirements 

St:ncsccncc Domination by superior competitors: 
inability to compete because of 
exhausted improvement potentials 

High. increasingly focused 
on particular promi sing 
ideas and products 

High. bu! declining 
with standardization of 
production 

Rapidly declining 

Low, sometimes declining 

Low. sometimes declining 

0% 

0-5% 

Rapidly rising 
(5-50%) 

Maximum 
(up to !00%) 

Declining 

Unable to express in 
com·entional learning 
curve: high {perhaps 
> 50%) in learning 

curves modified to 
include RD&D (sec texl ) 
20-40% 

10-30% 

Oo/o (sometimes positive 
due to severe 
competition) 

0% (sometimes 
positive due to severe 
competition) 

Sore: Also shown. in the right column. are three terms often used when classifying technologies that are marked by substantially different relative 
paformancl! at a given moment in time. Much of technological analysis for purposes of assessing environmental effects is aimed at examining 
which new (radical and incremental) technologies will achieve what speed and level of penetration in commercial markets. 
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which is marked by the first practical application of an 
invention. Many inventions are the product of funda­
mental and applied research. Often innovation takes the 
fo rm of development and demonstration projects in an 
industrial laboratory. This definition of innovation is 
na rrow, although often the label is a pplied broadly to the 
entire process of commercialization that follows the first 
practical application. 

Following development and demonstration, the useful 
se rvices of a new technology are typically first employed 
in niche markets, where a novel technology has substan­
tial performance advantages over existing technologies. 
The first commercialization in niche markets allows sup­
pliers and users to "lea rn by doing" and "learn by using" 
which leads to further improvements in performance and 
cost. Use in a wider array of markets, or perrasire diffusion , 
fo llows. When those markets are exhausted saturation is the 
resu lt. Se11esce11ce follo\\·s when a better (new) competitor 
takes market share or redefines performance requirements. 

Of all the aspec ts of technological development, the 
process o f invention is least well understood , and even 
less well predicted. The inventor's mind, which must 
deviate from pred ictable conventio ns to discover novelty, 
is intrinsically difficult to model and anticipate. Even 
rewa rds from invention may play only a small role, 
especially in the generation of radically new concepts and 
devices. As the popular book o n John Harrison 's inven­
tion of the accurate ma rine chronometer demo nst rates, 
high hurdles face the person who defies convention and 
then seeks recognitio n and returns fro m radical inventio n 
(Sobel. 1995). 

The supply o f inventions is a lso difficult to model 
because it is loosely related to the background state of 
knO\\·ledge - what some ha\·e called .. knowledge stock" 
(Romer. 1986, 1990). But quantitative measures of useful 
knowledge. and their exact relationship to inventio n, are 
murky. Similarly important but poorl y understood is the 
contributi on of basic research . 

For the other stages of techno logical change - from 
inno,·ation th ro ugh senescence - it is increasingly pos­
sible to make systematic obsen·ations and to model the 
processes at \\·ork. which arc the tasks for the rest of this 
essay. lm·cstmcnts needed to yield innovations a nd vi­
able commercial products from an invention are princi­
pally go,·crncd by market competition. Commercializ­
ation of a technology often requires large organizations 
and uniformit y. which further increases the capacity 
o f analysts to model relationships between inputs a nd 
o utputs. 

Like bacteria vying for scarce food , the evolution of 
technology is a competitive process. In many fields the 
cost o f stumbling and searching fo r new ideas is relatively 
low and thus the supply of inventions is abundant; 
thoughts and talk are cheap. But the Darwinian selection 
mechan isms arc stringent and few ideas ever take form 
o utside the labora tory in commercial markets . 

Inves tments needed to sustain a technology in its early, 
pre-competitive stages are made because there is hope of 
later returns. Once competitive, relative performance and 
costs govern success, which can be measured by market 
share. Indeed, these three indicators - performance, costs 
and market share - are useful measures of a technology's 
stage of development. Fig. l shows investment cost 
data for ten types of electricity generation technologies, 
drawn from IIASA's comprehensive energy technology 
database (C02DB) (Messner, 1996; Schafer et al, 1992; 
Messner and Strubegger, 1991). Technologies that are 
already in pervasive diffusion and saturation (eg, conven­
tiona l fossil fuel electricity generating pla nts) a re, as ex­
pected, less costly than those found only in niche markets 
(eg, pho tovoltaic cells). 

The variance in investment cos t for all technologies in 
Fig. 1 is high because capital requirements and perfor­
mance depend on many local factors . Installing the least 
costly coal-fired electricity plants at ideal sites without 
pollution control equipment costs about US$500 per 
kilowatt of generating capacity (kW(e)); typical costs for 
such plants are double that value, and modern plants 
with sulfur- and nitrogen-removal are typically twice 
again as expensive (US$2000 / kW(e)). (For a more de­
tailed assessment of power plant cost distributions see 
Strubegger and Reitgruber (1995).) Niche markets are 
born in the long tail s and when performa nce require­
ments change. Often new technologies provide a new 
service or function tha t is not possible or cost-effective 
with the old technologies. Examples include the precision 
of digital clocks compared with their analog counter­
parts, the speed and range of jet airplanes over piston­
powered models, and the affordability of solar photovol­
taic power in remote mountain huts and road signs 
where wire connections to the conventional electric grid 
would be much costlier. Fea r of global warming could 
redefine the performance requirements for electricity gen­
eration and thus create niche markets for low carbon 
electricity production. Removing and disposing of C0 2 

from flue gases would double or triple the cost of conven­
tional fossil fuel-fired electricity plants, but so lar, nuclear, 
and zero-carbon biomass could be largely unaffected and 
thus beco me more competitive. 

Fig. 1 labels the ten technologies with useful common­
sense terms that reflect the differences in cost, market 
share, a nd stage of technological development. " Ma ture" 
technologies have reached pervasive diffusion and have 
well-known characteristics; often they can change or im­
prove under competitive pressure, but in general perfor­
mance and costs are stable. "Incremental" technologies 
are found in niche markets - they are more costly but 
offer some performance advantages and the potential for 
significant cost reduction with continued investment. 
The rates and direction of such performance and cost 
improvements in incremental technologies can be 
anticipated. Commercial enterprises can envision the 
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uncertain. and thus so arc estimates of their costs. 

So11r('c: Strubcggcr and Rcitgrubcr (1995). 

possibilities and modalities for better performance of 
a technology that is compatible with and incremental to 
existing technological systems, especially as market con­
ditions change. "Radical" technologies are more uncer­
tain, both in their potentials for improvement and in 
whether they will arrive on commercial markets at all. 
But the radical technology can also yield radical im­
provements in performance and cost - often by a factor 
of JO or more. By definition, the radical technology is not 
widely employed, and thus only a small slice of its (poten­
tial) difTusion history can be observed. 

The stages of technological development are distin­
guished by the mechanism at work, not time. For a 
completely new technology it is possible to identify a 
beginning or particular stage change, such as the birth of 
an idea or the first commercial sale. But mature, existing 
technologies can be the host for all stages of technolo­
gical change simultaneously. Automobiles today, for 
example, are the site for the incorporation of basic re­
search on modeling of complex systems into the inven­
tion of intelligent transportation systems that could, if 

the technology is successful, optimize road traffic flows, 
akin to air traffic control but without human intermedia­
ries. Innovations in automobile technology include 
long-distance electric-powered vehicles. On-board navi­
gation systems - with local maps updated by global 
positioning system, and limited capacity to optimize and 
direct trips - already exist in commercial niche markets, 
such as high-end rental cars designed for customers with 
poor local knowledge or strong desire to demonstrate 
technical prowess. The road data system (RDS), which 
transmits limited textual information and traffic updates, 
is in pervasive diffusion in Western Europe - virtually all 
new car radios are equipped, and all FM stations broad­
cast the necessary signals. The car radio itself is an 
example of saturation - practically 100% of new cars 
have one installed either by the factory or in the immedi­
ate after market. 

In short, even as a technological system enters into and 
diffuses throughout a market, there is pervasive change 
within the system. The basic innovation that creates 
a new radical technology is followed by incremental 
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changes that accrete around the basic innovation, which 
leads to improved performance and reduced costs. Like 
the development of science itself, portrayed by Lakatos 
( 1970), the core defines the basic functions of the techno­
logy - it attracts compatible incremental changes and 
deters radical incompatible change. New technologies 
arise from within the economic system, but truly radical 
changes rarely come from the existing core. The process 
of innovation requires investments in innovations well 
before a new technology becomes really competitive and 
profitable. It also requires continued investments to fur­
ther a technology's performance and to lower its costs to 
sustain successful diffusion. The process, if modeled in its 
details, is enormously complicated. Thus the approach in 
this paper is first to identify some basic patterns in the 
historical record that help to guide modeling and scen­
ario building. 

We use the term "technology" broadly. It denotes not 
only physical devices but also production knowledge and 
processes, which typically combine physical equipment, 
ideas and even social institutions (eg. the Ford method of 
production via standardization and assembly line). The 
term "technology" is also used to denote a system of 
related hardware or production processes (eg. the "auto­
mobile"). Like a fractal , new layers of activity become 
visible as one looks closely at a technological system, but 
basic patterns and processes remain similar. Even the 
mundane windshield wiper, which is part of the automo­
bile's technological system, is the technological amalgam 
of rubber blades. airfoils that hold the blades in place at 
high airspeed, windshield-washing mechanisms, heating 
and delay timers, and microprocessor controls. Each 
component has been the site of change, and thus the 
technologica l system as a whole has also changed. 

In this essay we examine both components and techno­
logical systems. When analyzing the environmental 
efTccts of technology it is usually crucial to examine 
particular technologies or processes, which ultimately 
determine environmental impacts. For example, the tech­
nological components of today's automobile are unlike 
those of the 1930s. and the environment is much better 
for the change. Emissions of carbon monoxide, nitrogen 
oxides and hydrocarbons totaled some 100 g per ve­
hicle-km in the 1920s; today they have declined to only 
:?. g (Grublcr, 1998). Part of the change reflects the collec­
tive efTect of many technological changes to yield more 
complete combustion and higher efficiency. Automobile 
engine efficiencies in the 1920s were typically around 
10%, a value that has doubled today, thus halving energy 
use per km driven. Lower pollution is also a consequence 
of specific pollution control technologies, such as cata­
lytic converters. Although environmental impacts are 
determined by particular technologies, we show that 
the selection of technologies is partially governed by 
attributes of the system. such as the availability of neces­
sary infrastructures and other technological interdepen-

dencies. For example, hydrogen fuel cell vehicles could 
allow practically zero emissions of air pollution, includ­
ing carbon dioxide, but such technologies will not be 
viable without complementary hydrogen production and 
distribution technologies and infrastructures. 

3. Historical \·iew of technological change 

The systematic definition of stages and mechanisms of 
technological change helps to identify fundamental at­
tributes of technological change in the historical record 
and thus improve technological analysis and scenario 
building. For two decades, scientists at IIASA have com­
piled historical data on all major energy technologies for 
particular ma rkets, nations, regions and the globe 
(Marchetti and Nakicenovic, 1979; Nakicenovic, 1984; 
Marchetti, 1988; Ausubel et al, 1988; Grubler, 1990; 
Grlibler and Nakicenovic, 1991; Nakicenovic, 1994; 
Grubler, 1996). Those data help identify three robust 
attributes of technological change: (1) reductions in cost 
and improvements in performance through learning; (2) 
regular patterns of dynamic competition between tech­
nologies; and (3) the co-evolution of long-lived infrastruc­
tures and technological clusters due to "network effects" 
- the externalities and synergisms that make it costly for 
any single component to be incompatible with the whole. 

3.1. Leaming 

The performance and productivity of individual tech­
nologies and technological systems typically increases as 
organizations and individuals gain experience with them. 
Long-studied in human psychology, technological learn­
ing phenomena were first described for the aircraft indus­
try by Wright (1936), who reported that unit labor costs 
in air-frame manufacturing declined significantly with 
accumulated "experience", measured as cumulative pro­
duction (output). Technological learning has since been 
analyzed empirically for numerous manufacturing and 
service activities (eg, ship building, petrochemicals, steam 
and gas turbines, farming of broiler chickens). Learning 
concepts have also been applied in a wide range of 
human activities, such as the success rates of new surgical 
procedures, productivity in kibbutz farming, and reliabil­
ity of nuclear plant operation (Argote and Epple, 1990). 
In economics, "learning by doing" and "learning by us­
ing" have been highlighted since the early 1960s (Arrow, 
1962; Rosenberg, 1982). 

Learning phenomena are generally described in form 
of "learning" or "experience" curves, which typically 
show the decline in unit costs of production as experience 
is gained. Because learning depends on accumulation of 
actual experience and not just on the passage of time, 
learning curves generally take the form of a power func­
tion where unit costs decrease exponentially as a function 
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of cumulative output. Other measures include cumulat­
ive in\'estments. installed hardware, or other proxies for 
.. experience". The resulting curve is often plotted on 
logarithmically scaled axes so that it becomes a straight 
line. The learning rate - the slope of the line - is the 
percentage decline in costs per doubling or accumulated 
experience. Because each successive doubling requires 
more production volume. such straight-line plots should 
no t be misunderstood to imply that ''linear" progress can 
be maintained indefinitely. The potential for cost reduc­
tions becomes increasingly exhausted as the technology 
ma lures. 

The mechanisms for learning by doing are numerous. 
These include experience gained by individuals in per­
forming routine tasks. improvement in the functioning or 
organizations (eg, plant management, logistics, market­
ing). and economies or scale (Cantley and Saha!, 1980). 
The causal mechanisms are well established, but learning 
is not the only means or reducing costs. Other factors 
that are external to learning by doing. such as improve­
ments in upstream technologies, can also lower costs and 
are correlated with growing experience - thus the analyst 
must be careful when using learning curves that the 
mechanisms of learning apply to the situation at hand. At 
minimum. it appears that learning by doing requires 
continuous experience. not merely the accumulation of 
output regardless or its time path. Unit costs of the 
Lockheed L-1011 "Tristar" aircraft rose in the late 1970s 

when production resumed after a drastic reduction that 
included large-scale layoffs at production facilities. Ex­
perience gained during the early 1970s was lost with the 
staff turnover; as a result, the planes buill in the early 
1980s were in real terms more expensive than those built 
in the early 1970s (Argote and Epple, 1990). 

Learning rates in manufacturing, including production 
of energy-related technologies, mainly vary from I 0 to 
30%. In some cases, typically at the early stages or 
commercialization or a technology, learning rates ap­
proaching 50% have been observed (Argote and Epple, 
1990; Christiansson, 1995). A typical lea rning curve, 
shown in Fig. 2 for gas turbines used in electricity genera­
tion, consists of two segments. The first segment corres­
ponds with the innovation stage - from the invention 
(adapted from jet aircraft engines) in the 1950s to the 
middle 1960s when the first gas turbine demonstration 
projects had been built and gas turbines entered niche 
markets. During this slage, cost reductions were rapid 
(some 20% per doubling of the small installed capacity or 
demonstration projects); gas turbines were a truly radical 
technology - extremely expensive, but promising if sub­
stantial investments were made. The second segment, 
from the middle 1960s until 1980, is marked by smaller 
cost reductions for each doubling of experience, charac­
teristic or expanding niche markets and early commer­
cialization. Learning rates were approximately 10%. 
During that period the technology was costlier than 
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mature technology alternatives but became increas ingly 
co mpctiti\·e through continued improvements that were 
sustained by su bstantial in\'estments. Overall, the cost 
per unit of capacity declined by a factor of 4 as cumulat­
i\·c experience rose three orders of magnitude. Since 1980 
gas turbines ha,·e been an incremental technology - in­
creasingl y applied in commercial markets as one com­
ponent of the electricity generation system. Today, gas 
turbines arc the preferred technology for most electricity 
generation applications and a rc in the midst of pervasive 
difTusion . Our estimate is that the total investments 
- R&D and commercial sales for niche market applica­
tions - approached USS5 billion before the new techno­
logy became economically competitive with alternative 
electricity generation technologies beyond special niche 
markets. However, the exact cost of applied R&D is 
diOicult to estimate because statistics on such spending 
by pri\·a te firms is typically not publicly available. More­
O\'er. this figure does not include any of the original 
public and private investments into aircraft jet engines 
before their first deriva tives were adapted for electricity 
generation. 

Fig. 3 contrasts the learning curve of the gas turbines 
wi th two new renewable electricity generation technolo­
gies - wind and photovoltaics. Both technologies display 
rapid learning that began at high cost; already both can 
be competitive under special conditions. Wind power, for 
example, is profitable at sites with steady strong breezes, 
though often only with subsidies. Both are examples of 
radical technologies that are competing within an exist­
ing, mature technological system (i .e., electricity produc­
tion and distribution). For producers of photovoltaics in 
both Japan and the United States, costs fell by over 20% 
with each doubling of capacity - a learning rate similar to 
the early history of the gas turbine. 

A single learning curve, as in Figs. 2 and 3, helps 
convey the cost improvements that result from the com­
plex processes of learning by doing in the commercial 
marketplace. But such conventional learning curves are 
inadequate for modeling the relationship between invest­
ments in a technology and consequences such as lower 
costs and improved performance which affect the ability 
of technologies to compete for market share. Such learn­
ing curves include only investments that yield experience 
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in the commercial marketplace; they omit pre­
commercial research and development (R&D) as well as 
non-commercial demonstration projects that lead to 
commercial demonstration projects in niche markets. 
Yet, together, research, development and demonstration 
(RD&DJ are vital to the improvement of performance 
and the lowering of costs in the early stages of technolo­
gical development. For example, the cost of photovol­
taics produced in Japan halved between 1973 and 1976, 
but none of this improvement is evident in Fig. 3 because 
it was prior to any installation of demonstration units 
and thus cumulative installed capacity was zero. Such 
RD&D expenditures are a small factor in the cost im­
provements of technologies that are already advanced to 
the stage of commercial niche markets and are candi­
dates for pcrrnsive diffusion, such as gas turbines in 1980. 
But in the earlier stages, RD&D accounts for a larger 
share of performance improvements and cost reductions. 
Thus learning curves must be expanded from their 
standard formulation if they are to be of practical 
use in modeling technological change that results from 
the changing competitive position of technologies. 
Doing so requires accurate and comparable data on 
applied research and development , which are usually 
scarce. 

One of the few reliable sources of product-specific 
RD&D expenditures is Watanabe's analysis of the 
Japanese Ministry of International Trade and Industry 
(MIT!) "sunshine" technology program to promote 
new energy technologies such as solar photovoltaics 
(Watanabe, 1995, and personal communication). His ex­
ceptionally comprehensive data include both public 
( M lTI) and private RD&D expenditures. Watanabe esti­
mated the parameters for a model that traced the direct 
and indirect !feedback) relationships between MITI-in­
itiated RD&D spending. pri\ate RD&D spending, pro­
duction of photovoltaics. and changes in the unit cost of 
photo\oltaics in Japan. In his model, public RD&D 
spending and other incentives stimulated industry 
RD&D and increased the stock of knowledge specific to 
photornltaics. which led to performance and cost im­
pro,·cments. Lower costs stimulated demand for these 
impro,·ed products. which increased the size of commer­
cial niche markets and led to learning effects and further 
cost reductions. Larger commercial markets yielded pro­
duction increases and additional stimulus for industrial 
RD&D. In his terms. RD&D lubricated a "spin cycle". 
(He excluded inter-industry and cross-national R&D 
spillO\-cr effects, as well as those from purchases of equip­
ment. 3 Such effects flow into and out of firms that are 
im-cstigating particular photovoltaic technologies and 

J On ··srillmcr· effects sec Mansfield (1985): on the impact of equip­
mi:nt purcha sl!s sec Organisation for Economic Cooperation and De· 
,cl,>rmcnt 11996). 

increase the stock of relevant knowledge, but they are 
notoriously difficult to quantify.4

). 

Parameters from Watanabe's plausible model can be 
used to plot a more comprehensive form of the "learning 
curve'', shown in Fig. 4. The independent variable is 
cumulative investments, which includes RD&D as well 
as commercial consumer purchases. Over the period 
1973 to 1995 a total of 206 billion Yen (approximately 
US$2.5 billion in 1995 prices and exchange rates) were 
spent on photovoltaics in Japan. 78% (162 billion Yen) of 
that amount were actual investments in commercial 
photovoltaic capacity, and 22% (44 billion Yen) was 
spent on RD&D proper. The figure confirms that once 
a technology reaches the niche market stage that invest­
ments in hardware (ie, installed capacity) dominate, but 
that RD&D is significant contributor to lower costs, 
especially in the early stages. Moreover, such investments 
and RD&D cannot be treated as separate, independent 
sources of technological improvement. Only when com­
bined does a curve that is characteristic of a learning 
curve materialize. Our understanding of the learning 
process is that it involves the interaction of both sup­
pliers and users of technology. 

This new "learning curve" has two important features. 
First, it is entirely economic and thus can be used in 
models that compute economic relationships between 
resource spending and changing prices of technologies. 
Such relationships are crucial for technological modeling 
because it is the anticipation of lower costs that leads to 
investments in immature technologies. In turn, those 
costs partially determine which technologies are selected 
for application, with environmental consequences. This 
chain of relationships - from investments to learning to 
cost reductions to market application to environmental 
consequences - is not perfectly known ex ante. Thus 
models which use of learning as a driving force of techno­
logical change must incorporate uncertainty, which 
we consider further below. 5 Second, the curve is 
conceptually coherent because it includes both of the 
major sources of technological improvement - RD&D 
and commercial purchases. This approach thus also ad­
dresses one of the critiques of conventional learning 
curves - they do not include RD&D inputs. Similar 
curves can be calculated for other technologies, indus­
tries and countries, pending the availability of data. 

4 An analysis of inter-sectoral relationships of R&D expenditures for 
the US and how these could be affected by climate policies (leading out 
to ··crowding out" phenomena) is reported in Gouldcr and Schneider 
(1996) and Schneider and Goulder (1997). 

5 Postulating a relationship does not mean that the parameters of 
that relationship are known ex ante. Uncertainty therefore persists vis. 
the eventual outcome (level of improvement in cost and performance) 
and the level of investment (in R&D and niche markets) needed to 
achieve a particular outcome. 
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3.2. Tech110/ogy drnamics: market co111petitio11 
a11d dijfi1sio11 

Learning curves help illuminate the dramatic reduc­
tion in cosls e\ idenl especially in the early stages of 
a technology - innovalion, niche market commercializ­
alion. a nd the initial diffusion into widespread applica­
tio n. Learning curves help to identify technologies that 
might become compelitive with adequate investment. 
But Ihe tool is less powerful as the learning rate slows and 
a technology enters wider ma rket applicalion. In those 
situations. often many technologies compete and it is 
co nceptually and empirically difficult to develop com­
plele and robusl learning curve models tha t include all 
technologies a nd processes that determine the outcome 
of dynamic competition between technologies in the mar­
k el place. In Ihe ideal world Ihe modeler would estimate 
the cost and potential of all technologies a nd then deter­
mine Ihe o utcome according to cost differences. Empiric­
a ll y and conceptually that world does not exist (yet). 
Thus a multilude of techniques is needed. 

In addiiion to learning curves, another a pproach is to 
identify general patterns by which technologies diffuse 
through competitive markets. Such patterns are often 
evident when pla iting the fraction (f) of a useful product 
or sen·ice. such as electricity or mobility, supplied by 
each major competing Iechnology. The typical result is 

an S-shaped curve, which is often termed a logistic substi­
tution or diffusion curve. At the earliest stage of commer­
cialization, growth in a technology's market share is slow 
as the technology is applied only in specialized niche 
markets and costs are high. Growth accelerates as early 
commercial investments lead to compounding cost re­
ductions and standard-setting, which leads to imita lion 
and adoption in a wider array of settings. As the potential 
market is saturated and a product matures, growth in 
market share declines to zero. With the arrival of better 
competitors, the market share of the senescent techno­
logy declines. Such S-shaped curves are cha racteristic of 
many social and biological processes where the rate of 
diffusion or substitution depends on the probabilily 
of encounter between a supplier and a receptive host. 
Other studies of diffusion have applied these curves 
- pioneered by Lotka (1924) and Volterra (1927)- to the 
spread of infrastructures and technologies, as well as the 
diffusion of epidemics, ideas and forms of social organiza­
tion (Hiigerstrand, 1967; Fisher and Pry, 1971 ; Marchetti 
and Nakicenovic, 1979; Marchetti, 1980; Griibler, 1990; 
Astakhov et al, 1990; Buttner and Griibler, 1995; 
Nakicenovic, 1990; United States Department of 
Commerce, 1975). 

Perhaps the most famous case of technological sub­
stitution is motor cars for horses. In this simple case, 
one technological artifact, the passenger car, replaced 
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Fig. 5. A simpk case of technological substitution. \Vi th a time constant(~!) of 12 yr. motor cars replaced horse-drawn carriages for transportation in 
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S1J11rrc: NakiCcno,·iC { 1986). 

another individual transport technology: the riding horse 
and the carriage. Looking at the absolute numbers of 
draft animals and cars in the USA (Fig. 5), we see that the 
millions of horses and mules used for transport practic­
ally disappeared from the roads within fewer than three 
decades. Interestingly, growth in transport services - ap­
proximated by the growth in the sum of vehicles on the 
road (horse carriages + cars) - rose smoothly and con­
tinuously, largely unaffected by the fierce competition. 
The time constant (1'1r), which measures the time required 
for a new technology to grow from 10 to 90% eventual 
market share. was only 12 yr, fast enough to traumatize 
the displaced oat growers, coachmen, blacksmiths and 
(fatally) the horses. Similar time constants are observed 

in other cases of single transportation technologies com­
peting in a common infrastructure. For example, the 
diffusion of modern low-emissions vehicles with catalytic 
converters also occurred with the time constant of 12 yr 
in the USA (Griibler, 1996; Nakii:enovii:, 1986). Decade­
long time constants also governed the replacement of 
railway rolling stock and substitution of steam by diesel­
electric locomotives (Griibler, 1990). 

Typically many technologies compete, not just two. 
When competitors arrive in the market at different mo­
ments in time, the result is a sequence of S-shaped logistic 
curves. For example, in steel manufacturing (Fig. 6) as 
many as four technologies have competed simulta­
neously, with varied time constants. The simple direct 
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replacement of crucible processes took less than two 
decades. Its much superior replacement, the Bessemer 
process, enabled for the first time mass production of 
high quality steel at low costs. Nearly seven decades were 
needed for the diffusion of electric arc steel in the USA, 
which was accompanied by other long-term changes in 
the steel industry, such as increased use of (recycled) 
scrap in steel manufacture. the emergence of "mini mills" 
and made-to-order small batch production. That longer 
replacement process entailed far-reaching changes in in­
dustrial structure. shifts to natter economies of scale, and 
availability of steel scrap as raw material instead of iron 
orc. 6 

The S-shapcd curves arc useful for analyzing two sim­
ilar but distinct processes - diffusion and substitution. 
The fo rmer refers to the spread of a technology into 
,,·ho lly ne\\. markets. often to pro,·ide services that pre­
\ iously did not exist. Substitution is the replacement of 
an existing technology with a new one, such as Bessemer 
for crucible steel production or motorized cars for horse­
dra\\·n carriages. However. a firm distinction between the 
two processes is often difficult because both affect the 
supply of and demand for a service. Often substitution of 
an old technology by a new one yields lower prices and 
better performance; more efficient supply of the service 
induces greater demand. The expansion of automobile 

"' An ~il y s is or economic determinant s or different diffusion rates found 
that cctcris paribus diffusion rates are higher (faster) for technologies 
with higher rdati\ c economic ad,·antage (performance. costs) and lower 
inYcstmcnt requirements. Sec the classic studies of Mansfield (1961 , 
1%~1 anJ ~tan s licd et al (1977). 

travel in the United States, for example, is often analyzed 
as two overlapping processes. The first entailed the rapid 
substitution for horse carriages shown in Fig. 5, and 
second was the longer diffusion process during which 
automobiles co-evolved with the growing road network 
and redefined American mobility. Similarly, the growth 
of railroads in the United States beginning in the 19th 
century is often cited as a case of pure diffusion - the new 
technology (railroad) and services it provided were novel. 
However, over a shorter period, the railroads also largely 
substituted a feeble competitor - stagecoaches - out of 
the business of inter-city transportation. 

The competitive status of a technology is indicated not 
only by changes in its market share but also by costs. 
Fig. 7 shows proxies for costs for the three main trans­
port modes that have competed this century to supply 
US transportation services. As expected, costs declined 
most rapidly at the earliest stages of technological devel­
opment when market diffusion was most rapid - for 
railways in the 1870s (but data are scattered and time 
series are not available), roads for automobiles in the 
1900s and 1910s, and air travel in the 1930s and 1940s. 
(For more on transport infrastructures, see Fig. IO and 
discussion below.) Fig. 8 illustrates the relationship in 
more detail for one technology: the automobile and its 
surfaced road infrastructure. The sales value of new auto­
mobiles, which fell sharply as the automobile was com­
mercialized, in tandem with the early growth of the 
necessary surfaced road infrastructure. Ideally we would 
illustrate these principles with data on automobile oper­
ating costs and levels of mobility, but neither was reliably 
measured before the 1950s. 
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Sro111T<': Griibkr J1990). 

Although a sharp drop in costs marks the onset of 
perrnsive diffusion, costs are not static once a technology 
is in widespread use. For example, the length of the 
railway network reached 80% of its saturation by 1910; 
nonetheless. real costs per passenger-mile have since de­
clined by half. Further improvements are still possible 
- for example, traffic management systems are improving 
rail speeds and load factors, thus sustaining competition 

with roads and airways for passengers and freight. A dy­
ing competitor does not exit without a fight - a phenom­
enon also called the "sailing ship effect" (Ward, 1967). 
When steam ships became competitive in the 1850s for 
ocean-going freight and passengers, sail-powered boats 
improved significantly. Indeed, the "golden age" of 
Clipper sailing ships emerged only once steam ships had 
appeared as competitors; Montroll (1978) has estimated 
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from historical data that this effect may have delayed the 
extinction of sail ships by one decade. Although sailing 
ships were slower and less competitive for passenger 
traffic they did preserve a niche in hauling less 
time-sensitive freight, including, ironically, coal for 
steamers. 

Despite variable time constants and substitution pro­
cesses, the basic patterns of technological substitution 
and diffusion are largely invariant across a large and 
di verse set of historical examples. Theory suggests that 
the characteristic time constants of technology substitu­
tion a nd d iffusion vary depending on characteristics in­
trinsic to new technologies (such as their costs, perfor­
mance. social acceptability) as well as a function of more 
general ''sys temic" characteristics of technology. For in­
stance, ceteri s paribus. diffusion can proceed faster when 
replacing an artifact that previously provided a similar 
functi on; technologies that provide an entirely new ser­
vice diffu se more slowly. The replacement of black-and­
whitc TV se ts by color ones, for example, proceeded in all 
markets much faster than the initial diffusion of black­
and-white TVs. 7 

The dilTusion model can be extended from competition 
in a single market to separa te or only loosely linked 
markets. Tha t phenomenon is common in technological 
analysis because technologies arc developed and tested in 
small, core markets from which they dilTuse globally. An 
immature new technology is more cost ly and requires 
greater investments to be competitive in its first market; 
the dilTusion time is thus longer when compared with the 
periphery. However, the longer period of establishment 
allows the technology to have a larger elTcct on setting 
stand a rds that bar competitors and thus the penetration 
level is higher in core markets. Because much technolo­
gica l knowledge is a free good peripheral regions can 
"catch up" rapidly to the core. as the technologies have 
been tried out already in core markets, and initial high 
costs ha ,·e a lready declined through R&D efforts and 
learning elTects. 

Historica l analysis confirms that the periphery gener­
ally reaches lower adoption levels when compared with 
core markets (E Schmidt. cited in Marchetti, 1983; 
Grtiblcr. 1991 ). For example, the automobile dilTused 
into widespread passenger service first in the United 
States with a time constant (i'lr) of 60 yr. At its 1960s peak 
in this core market automobiles supplied over 90% of all 
motorized passenger kilometers. In contrast, the diffu­
sion rate was more rapid in Europe (t.t about 30 yr), but 
today European automobile travel is saturating at about 
70% of total passenger kilometers. In countries 
sta rting motoriza tion even later, the dilTusion rate for 

- C ha racterist ic d iffusion rates or bl ack-and-white TV sets are 30 yr 
in OECD countries. whereas the replacement or black-and-white by 
color TV sets took typically only about hair that time. See Steward 
I 198"1. 

automobiles has been even more rapid - about two 
decades in Japan and in Latin America, for example - but 
the saturation level will probably also be lower. In the 
peripheral regions, automobile shares are lower in part 
because the next generation of transport technologies 
- high speed trains and aircraft - are already diffusing 
and substituting rapidly. In core regions, entrenchment 
or "lock in" of dominant technologies can also limit 
competition and the development of new alternatives. 8 

Hence, market shares are higher and saturation takes 
longer. 

Viewed together, early and late markets exhibit 
a strong focusing of diffusion - as the technology reaches 
saturation the fraction (F) of saturation level narrows 
between early and late markets. This phenomenon is 
illustra ted in Fig. 9 for the major transport infrastruc­
tures in industria lized countries during recent centuries. 
Ultimate saturation occurs in all markets over a relative­
ly short common time period. Such synchronicity may be 
evidence and cause of world economic cycles (Griibler, 
1991). 

3.3. Infrastructures and technological clusters 

Learning curves help modelers estimate performance 
and cos t improvements in the early stages of a techno­
logy, and the diffusion model helps model the dynamics 
that result from selection of technologies in competitive 
markets. Individual and firm-level decisions that result in 
the selection of technologies are often so numerous and 
complicated that they can not be modeled individually. 
Learning curves and substitution/diffusion models a llow 
simplified, but powerful and conceptually coherent, 
means of modeling technological changes and dynamics. 
But by themselves neither technique is complete. Neither 
full y explains which technologies attract investments and 
survive to the market; nor does either tool internally 
determine the rates of change, such as i'lr, and extent of 
diffusion that prevails in the marketplace. 

The fuller picture is partially completed by analyzing 
clusters of related technologies, not only the individual 
components. Individual technologies cause externalities; 
as technologies grow synergistically, the network effects 
increasingly bind the fates of all technologies in the 
cluster. At the center of these clusters are "infrastruc­
tures" - technologies that serve mainly the purpose of 
supplying externalities. The most obvious examples are 
energy, transport, and communication infrastructures, 
without which numerous end-use technologies could not 
function. Since the cluster partially determines the selec­
tion of its technological components, it also strongly 
influences environmental impacts. 

8 For a more detai led discussion and model or technological "lock­
in" see Arthur (1983, t989) a nd David (1985). 
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Fig. 9. Focusing of diffusion between leading and laggard markets. industrialized countries. Technologies and infrastructures have co-evol\'ed across 
countries in industrial society. Three eras are evident. each dcfi.nt!d by its principal transport infrastructure - canals. railways. and roads (cars). Those 
infrastructures also correspond with three: difforcnt principal energy sources - wood , coal and oil, respectively. The initial stages o f diffusion of each 
tr~rnsport infrastructure are marked by high diversity in starting dates and diffusion speeds, which focus as the technology cluster matures. The 
countries indic<.1tcd are those industri:.1\ nations for which diffusion was earliest (and slowest) and latest (and fastest). The Y-axis shows the respect ive 
size o r transport inrrastructures as a fraction or their historical sa turation levels (forecasted in the case or cars). The next technology cluster might be 
defined by aircraft and trains that orerate at similar speeds. electricity and natural gas. 

So11rcc: Griiblcr and Nakiccnovic (1991). 
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Fig. 10. The e\'Olution or inrrastructures in the United States. The figure shows the length of the three major transportation infrastructures (canals. 
railways and hard su rfaced roads) as a rraction of their total saturation levels. The total length grew approximately ten-fold for each new infrastructure. 
At their peak in 185 1 canals extended o\·er 6500 km. Railroad s peaked at 490.000 km in 1929. Growth in the road network has slowed considerably. 
and" ith a logi stic modi!! we estimate that it will soon saturate at approximately 6 million kilometers. Analysis in terms of total saturation is the same 
as application o f the fraction concept (F} introduced in Fig. 5. Also evident in the figure is the co-evolution of compatible infrastructures: railways and 
telegraphs: roads and oil pipelines. 

So11r{'c: Grliblcr and NakiC:cnoviC ( 1991 ). 

The importance of infrastructures and of networks for 
long-term technological evolution and economic growth 
is a well covered field (Schumpeter, 1934; Isard, 1942; 
Hugh cs. 1983; Anderson et al, 1984; Teubal et al, 1996). 

Infrastructures, like other technologies, can be analyzed 
with the diffusion model. Fig. 10 shows the case of trans­
portation infrastructures. Canals, rails and roads have 
each evolved along a similar S-shaped dynamic pattern. 
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In the figure the size of individual networks has been 
normalized by the saturation level for each infrastruc­
ture; the values shown are the fraction (F) of that level. In 
absolute values, surfaced roads were an order of magni­
tude longer than the rail network, which was one order 
of magnitude larger than the maximum length of the 
canal system. In time, the three infrastructures are 
spaced rhythmically apart by a half-century or so. The 
duration of growth (ti.r) has risen slightly with each new, 
longer infrastructure. Today, su.rface roads are saturat­
ing; aircraft infrastructures are growing rapidly, though 
comparable measures are not available: modern air­
craft navigation. traffic control and "airways" are a 
different kind of infrastructure compared with railways 
and roads. 

Infrastructures yield externalities - "network effects" 
- that allow compatible technologies and infrastructures 
to prosper while raising high barriers for products and 
processes that are incompatible. Components of these 
networks thus co-evolve. Such externalities are also often 
found between infrastructures. Fig. 10, for example, sug­
gests that the railway and the telegraph evolved together 
- both used the same strips of land (rights of way). 
Synchronization is also evident in the evolution of the 
road network and the oil pipelines that deliver fuel to 
power cars and trucks. Such technological interdepen­
dence - or technology .. clusters" - are responsible for the 
pervasive effects of technological change throughout the 
economy and society. For example, the emergence of 
pipelines and petrol retailing has reinforced the domi­
nance of petroleum-fueled automobiles and made it in­
creasingly difficult for incompatible electric vehicles to 
supply automobility at the turn of the century. Only with 
the redefiniti o n of automobile performance by requiring 
lo\\·er specific \·chicle emissions has electricity re-emerged 
as a possible automobile propulsion. Technological 
interdependence is also a source of considerable inertia 
in technological systems. In that respect, numerous 
technological sys tems arc ··1ockcd in" to particular 
configurations which arc inherently difficult to 
dislodge \\·ithin a short period of time. The constrained 
crnlution of technology clusters over time is also referred 
to in the literature as ··path dependence'". Models of 
induced innovation often describe technological change 
as a cumulative process and thus can explain the phe­
no menon of path dependency (Binswanger, 1978; Ruttan, 
1996). 

From a macro perspective. the network effects of in­
frastructures create technological clusters. Infrastruc­
tures lie at the center of technological clusters that define 
major eras in economic development - for example, the 
age of .. railways" or the .. automobile era'". The diffusion 
of technologies shown earlier in Fig. 9 (for the industrial­
ized countries) and in Fig. 10 (for the USA) are the 
infrastructures that define those eras - they are both 
indicators and causes of the network effects that create 

the cluster. 9 Analysis at the level of individual countries 
and markets is important because it is crucial to examine 
the diffusion of technologies within the boundaries of 
their network effects, which typically coincide with the 
boundaries of coherent social system. 

Three rather clear clusters can be distinguished, al­
though the individual technologies entered the market at 
different dates and diffused with different time constants. 
The first cluster saturated around 1865, the second 
around 1930, and the third is saturating now. Due to the 
overlap of technologies between clusters, perhaps 
a fourth cluster of technologies has been already laun­
ched, but is not yet clearly perceivable due to the insigni­
ficant degree of diffusion achieved to date by its key 
constituent technologies. Looking back from the future, 
the new emerging cluster might be one day characterized 
by dematerialization, the dominance of natural gas and 
electricity infrastructures, and worldwide communica­
tions that are too cheap to meter. 

Technology clusters partially determine the time con­
stants (ti.t) that govern the diffusion processes. Fig. 11 
shows the cumulative frequency distribution of ti.I for 265 
diffusion processes in the USA, based on studies per­
formed at IIASA (117 cases) and 148 other well­
documented examples from the literature (Griibler, 
1991 ). The case studies include diffusion of energy, trans­
port, manufacturing, agriculture, consumer durables, 
communication, and military technologies, as well as 
economic and social processes, such as literacy, reduction 
of infant mortality, and changes in job classes. The time 
constants of change range from very short-term processes 
of only a few years to processes that extend over two to 
three centuries. The mean value of the time constants is 
41 yr, with a standard deviation of about equal size. Few 
diffusion processes extend more than one century and 
thus span more than one cluster. Half of the diffusion 
processes have ti.r of less than 30 yr; about three quarters 
have ti.r of less than 50 yr; and 93% of the sample exhibits 
ti.r of less than I 00 yr. Analysis that distinguishes the 
types of technologies in the data sample suggests that the 
appropriate time constants for diffusion of infrastruc­
tures and of entire technology clusters span up to a cen­
tury (Fig. 10), with the main period of growth extending 
between 5 to 6 decades. Most technologies diffuse 
within the time-period of a single cluster. Only a few 

9 Technology clustering and network effects are also reforred to as 
technological interdependence in the literature. Technological interde­
pendence can delay diffusion of new technologies that are either incom­
patible with existing network effects. or need considerable time to 
establish their own. The classic paper (and model) on this topic remains 
Frankel ( 1955). Recently, similar concepts have been included in form of 
a "technological inertia" variable in traditional macro-economic model 
formulations with exogenous technology to analyze its impact on 
climate policies and their timing (Ha-Duong et al, 1997). although 
application of the model is difficult since the phenomenon of "inertia'" 
has not been crisply defined nor is it currently measured. 
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Fig. 11. The cumulative distribution of dirTusion rates (i1t) for 265 diffusion processes. The sample is the superset of diffusion processes documented in 
the literature and those analyzed at llASA. The mean rate is 41 )T and the standard deviation is 42 yr. 

Source: Grublcr (1990). 

technologies can tunnel from one to another cluster such 
as some infrastructures. 

In sum. technical change remains an extremely com­
plicated process. The di!Tusion/ substitution model can 
help simplify the modeling of that process and thus can 
aid in the projection of market shares and global change 
c!Tects of specific technologies. It remains impossible to 
determine - from theory or statistical analysis of histori­
cal data - exactly what rates (M) will prevail in particular 
circumstances. But both theory and history can help 
modelers by bounding a range of plausible rates, which 
Table 2 summarizes and illustrates. Those rates can be 
used for future projections; statistical methods and pack­
ages exist for estimating di!Tusion parameters for a var­
iety of models, from simple one-on-one competition to 
competition between multiple technologies (Griibler 
<'I al , I 9SS: Marchetti and Nakicenovic, 1979; Meyer, 
199~). 

In general. re\·olutionarychanges score high on each of 
the factors summarized in Table 2 and thus are marked 
by long di!Tusion constants. Such changes can be robustly 
identified only with hindsight of several decades, when 
the cluster. including its infrastructures, has substantially 
di!Tused into use and the interdependencies are evident in 
practice. A future hydrogen-powered economy will re­
quire not only new end use technologies (eg, fuel cells) but 
also infrastructures (eg. hydrogen pipelines) and interde­
pendent technologies (eg. upstream hydrogen production 
methods). Individually some of those elements may be 
able to di!Tusc rapidly -for example, today there is sub­
stantial production of hydrogen for use in refineries - but 
the system as a whole can emerge only at the pace of the 
necessary infrastructure, ie over a time span of several 

decades. Indeed, the historical record shows that the 
largest technological systems diffuse with long time con­
stants (6 to 8 decades). 

4. Implications for global change 

The typology and basic observations on patterns of 
technological change evident in the historical record 
allow at least three improvements to the way that 
analysts model technological changes and their environ­
mental impacts. One improvement is based on a long­
term pattern that is directly evident in the historical 
record - the existence and pace of decarbonization. The 
other two concern modeling. At the micro level it is 
possible now to endogenize rigorously the process of 
technological change due to (uncertain) learning. At the 
macro level it is possible to employ modeling techniques 
that stylistically endogenize technological change, but 
only if conventional macroeconomic models are linked 
with models that allow resolution in the choice of par­
ticular technologies. None of these three improvements is 
fully reflected in the mainstream models and scenarios 
that are being used to analyze global change. 

4.1. The historical record: decarbonization 

The existence of technological clusters partially deter­
mines the selection of energy sources and thus environ­
mental effects. When fuel wood and animal feed were the 
prime sources of energy, people traveled mainly by foot 
(walking and horses) and boat (canals). During the age of 
coal, railways provided most mobility; today, in the age 



Tahlc 2 
Examples of Dilfu!\ion processes 

Duration delta T Example Diffusio n (DJ Reference Relative Scale Infrastructure Technical 
lyr) Suhstillltion (S) advantage needs interdependence 

Long 110 Coal vs. traditional energy. World s Nakicenovii: ( 19X4) ++ +++ +++ +++ 
>40 yr 80 Coal vs. traditional energy. USA s Nakicenovii: ( 1984) ++ +++ +++ +++ 

60 Growth or railways. World D Griibler (19901 +++ +++ +++ +++ 
47 Growth of railways, France D Griibler ( 1990) +++ ++ +++ +++ 
55 Steam vs. sailships, World s Griihlcr (1991) +++ +++ ++ + 
70 Open-hearth steelmaking. World s Nak ice no vie ( 1990) ++ +++ + + 
55 Open-hearth stcclmaking, USA s Nak ice no vie ( 1990) ++ ++ + + 
44 Elcctrilication of homes, USA D US DOC 11975) +++ +++ ++ ++ 

Medium 25 % households with radio. USA D US DOC (1975) +++ ++ + ++ 
20-40 yr 26 Air vs . rail in intercity travel , USA s Fisher and Pry (1971) ++ ++ ++ ++ 

28 Mechaniza tion in coal mining, USSR s Astakhov ct al (1990) ++ + + ++ 
25 Basic oxygen steel furnace, World s Nak iccnovic ( 1990) + +++ + + 
20 Basic oxygen steel rurnacc. UK. USA s Nakiccnovic ( 1990) + ++ + + 
27 Railway track electrification. USSR D Griihlcr (1991) + ++ ++ ++ 
26 Chemical preservation or railway tics USA s Griiblcr (1991) ++ ++ + + 

Fast 18 Car air conditioners, USA D Nakii:enovii: (1986) + ++ + + 
<20 yr 19 Air conditioners in homes, Japan D Ilullncrr and Grublcr (1995) + ++ + + 

16 Automobiles vs cariagcs, UK s Griiblcr I 1990) +++ + ++ ++ 
15 Cars vs. horses, France s Griiblcr (1990) +++ + ++ ++ 
12 Cars vs horses. USA s Nakiccnovic (1986) +++ + ++ ++ 
16 Cars vs horses, UK & France s Griiblcr ( 1990) ++ + ++ ++ 

Diescl/clcctric vs. steam 
12 Locomotives, US. USSR, UK s Griiblcr (I ~·~o) + + + + 
15 Transistors vs. vacuum tubes in radios, USA s Steward ( 1982) + + + ++ 
15 Illack and white vs. color TV. USA s Steward ( 1982) + ++ + + 
9 Washing detergent vs. soap, USA s Fisher and Pry (1971) + + + + 

Note: Stylized summary or diffusion rates and their determinants. The rate or diffusion (6.t) or technologies is determined by many factors. Four major ones arc summarized in the table that, other things 
being equal, have the following effects. (a) Relative advantage, comprising a variety or dimensions including engineering (cg, performance, productivity), economic (cg, relative costs, profitability), and 
social (cg, case or adoption and use). The higher the relative advantage of a new technology compared to existing ones. the higher (faster) will cctcris paribus be its diffusion rate. (b) "Size," comprising 
a variety or dimensions like geographical spread (cg local vs. global), market size and adoption in specialized applications (cg, process technologies in specialized industries) vs. pervasive adoption (eg, in 
every household). Cctcris paribus, larger size implies longer (slower) diffusion rates. (c) Infrastructure needs (network externalities), which imply cetcris paribus longer (slower) diffusion rates. Although 

frequently an important overlap exists between infrastructures and large technical systems, not all large-scale technologies require new infrastructures. For instance, nuclear power was able to diffuse 
relatively rapidly by profiting from an electricity transport and distribution infrastructure largely already in place. (d) Interdependence with other technologies. Cctcris paribus, the higher technological 
interdependence, the slower individual technologies diffuse. The latter two factors that are often interrelated arc frequently termed "network efTects." For each illustrative example or technological 
diffusion or substitution, the authors have qualitatively scored each of above influencing factors ranging from low ( +),medium ( + +).to high ( + + + ). Cctcris paribus, more"+" symbols lead to 
longer (slower) diffusion rate, but also indicate more pervasive impacts or technological change. Our approach and classification is highly stylized, as rew or these concepts have been represented by 
comparable indicators for which data are available. For each illustratio n the table also indicates whether the process is predominantly diffusion (D) or the technology into a new service, or substitution 
(S) for an existing technology. However, in most cases firm classification is difficult (sec text for explanation). Substitution processes are orten more rapid than diffusion because they typically occur 
within a technological system that is compatible with bo th the old and new (substituting) technology. 
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Fig. 12. Sd:c1 ion of fuels progressively lighter in carbon. Figure shows the primary energy supply in the United States in familiar units (million tons of 
oi l equi,·a lcnt. f\.1toe). For each major fuel it s fraction {f) of total energy supply was calculated. and then transformed as in Fig. 5 so that logistic 
substituti0n processes appear as straighl lines. The result, shown in the bottom figure. makes it easier for the human eye to identify those processes at 
work . US data ~.ire used beca use they are the most complete. 

So11r.-e.1 Nakiccno1ic { 1984) and Griibler and Nakiceno1ic (1991). 

of oil. automobiles, buses and aircraft provide unprece­
dented levels of indiYidual mobility. When people and 
materials tra veled by foot, most energy was consumed at 
the point of gathering; in contrast, today, most energy is 
itse lf transported. Increasingly, energy is converted into 
a readily usa ble form (eg electricity) prior to transporta­
tion . The share of final energy supplied by electricity is 
growing rapidly in most countries and worldwide, with 
no sign of saturation (Ausubel and Marchetti, 1996). The 
em·ironmental problems of at-source energy gathering 
were localized. such as deforestation adjacent to roads 

and settlements. Today the reach is global, and part of 
environmental concern is focused on the transport of 
fuels themselves, such as oil spills and electromagnetic 
fields . 

Fig. 12 shows the shares of total primary energy in the 
United States supplied by different fuels (top panel ) and 
estimates for the consumption of major primary fuels 
worldwide (bottom panel). We use US energy data often 
in this survey and review paper because the statistically 
documented record is longest and thus technological 
dynamics most evident. As with the evolution of 
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Fig. 13. Decarbonization of the energy supply. The ra tio of carbon per unit of energy has steadily declined in the United States and the World. Data 
for this figure and Fig. 12 include estimates for fuel wood and feed (biomass) that were major energy sources until the middle/ late 19th century. We are 
mindful that thei r carbon intensity depends on the mode of production; for the purpose of calculating decarbonization we make the reasonabk 
assumption that production of these f ucls (mainly fuel wood) was not through sustainable harvesting and thus net released carbon. E\·e n if these fuels 
arc omitted and only fossil fuels are included in the analysis. the strong trend of decarbonization since the rise of coal in the early 19th century is still 
e1ide111. Source: Grubler and Nakiccnovic (1996). 

particular technologies and infrastructures, the diffusion 
of energy sources follows a similar pattern. The market 
share of a fuel expands initially slowly as gradually ex­
panding niche markets are filled; a more lengthy process 
of pervasive diffusion follows, eventually saturating and 
declining as a superior competitor enters and diffuses. 
Despite the simultaneous competition and interaction 
among many different sources of energy. each historical 
period is characterized by a clear dominance of a single 
energy source. which corresponds with the main techno­
logical clusters: fuclwood (and feed), followed by coal, 
and later by oil and natural gas. The rates for diffusion 
also correspond - all of the major fuels (wood, coal, oil, 
gas) required a century to achieve their ultimate satura­
tion . The time constant for nuclear is not yet evident 
because it has low market share. Planned nuclear instal­
lations have fallen radically, which suggests that the 
energy source may be saturating. A new pulse for diffu­
sion of nuclear power may require a new concept for 
reactors and their attendant cost and waste disposal 
problems. The existing nuclear power capacity diffused 
into sen·ice relatively rapidly because it could employ an 
existing large-scale infrastructure (ie, the electrical grid). 

The consequence of shifting fuels is one of the most 
striking and consistent trends in the energy system: de­
carbonization. Each of the main fossil fuels has been 
progressi,·eJy lighter in carbon per unit of energy released 
when burned. Coal. the dominant fuel from 1880 to 1950, 
contains appro.ximately one hydrogen per carbon atom. 
Today's dominant fuel. oil, contains two hydrogen atoms 
for c\·cry carbon. The hydrogen to carbon ratio in gas, 
the primary fuel whose share is rising most rapidly today, 

is four to one. More recently energy sources that have no 
direct carbon emissions such as hydropower and nuclear 
fission lighten our carbon diet . Hydrogen-rich fuels re­
lease more energy for every carbon atom that is oxidized 
to C02 during combustion. 

As shown in Fig. 13, the carbon to primary energy 
ratio for the USA has declined about 0.25% per year 
since 1800. Worldwide, decarbonization of energy sour­
ces has occurred at a similar pace (0.3% per year since 
1850). In some countries decarbonization has been rela­
tively rapid - in France, for example, since 1950 nuclear 
power has replaced fossil fuels as the supplier of nearly all 
electricity. Decarbonization of the economy has been 
even more dramatic because the decarbonization of en­
ergy sources (grams carbon per unit energy) has been 
multiplied by the decline in energy intensity of the econ­
omy (unit energy per dollar of economic output). Nearly 
every country's economy has shifted from energy-inten­
sive industries to services; in addition, efficiency with 
which useful energy is generated from primary fuel sour­
ces has also risen in most countries over most periods of 
time. In the United States, the specific carbon dioxide 
emissions per unit of economic output has declined by 
almost an order of magnitude during the last two centu­
ries, from about 2.5 kg of elemental carbon (C) per $1 
GDP (at 1990 prices) in 1800 to about 0.3 kg C per $1 
GDP in 1990. In other terms, the economic "productiv­
ity" of carbon increased by more than I% per year 
during the last two centuries. 

Decarbonization has not autonomously eliminated 
carbon from the economy, but it has steadily softened the 
economy's impact on the atmosphere. For example, if the 
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fuel mix of the 1920s powered the American economy 
today then annual carbon emissions would be more than 
300 million metric tons (24%) higher. For comparison, 
those averted emissions total more than today's annual 
industrial carbon emissions from Argentina, Brazil, 
Canada and Mexico combined. 10 

Although decarbonization is strongly evident in the 
historical record, most baseline scenarios project the op­
posite - stagnation or even re-carbonization with rising 
market shares for coal, which is the most carbon-inten­
sive primary fuel. We return to those scenarios, especially 
the widely used IS92a baseline scenario of the Intergover­
nmental Panel on Climate Change (IPCC), after discuss­
ing the types of models that are often the foundation of 
scenario analysis. Technological change is poorly ad­
dressed in those models, and thus it is no surprise that 
model estimates of future decarbonization rates - which 
is one indicator of technological change - are not consis­
tent with the historical record. 

4.2. Modeli11g the selectio11 of tech110/ogies a11d 
their e11i-iro11111e111al impacts 

Historical data indicate possible futures - such as 
dccarbonization - but projecting the future by merely 
extending past historical trends is rarely adequate, espe­
cially when the underlying causal process are complex 
and liable to change. Thus causal models are often used 
to project scenarios for the future and to analyze policy 
choices. However, such models depend on good know­
ledge o f the underlying processes. Because most energy 
analysts assume that technological change is hopelessly 
co mplex and shrouded in uncertainty, few rigorous 
causa l models have been applied. Herc we argue that the 
process o f technological change is sufficiently well under­
stood to make possible plausible models that endogenize 
techno logical change. Mathematical and computational 
barriers remain , but we illustrate the argument with one 
promising micro-scale approach that rigorously en­
dogenizcs the dynamic ernlution of three electricity gen­
eration technologies. In the next section we address the 
arguments on a macro scale - in modeling and building 
scenarios for the world energy system - and show that 
c\·en there better, though much more stylized, treatment 
of technological change is possible. 

The controversy that surrounds modeling of technolo­
gical change is endemic not only to energy and environ­
mental assessments but also in economic analysis more 
generall y. Treatment of technological change lies at the 
center of the debate between advocates of "old" and 

10 Data from the Carbon Dioxide Information Analysis Center 
1CDlACi. Oak Ridge National Laboratory, Oak Ridge, USA. Values 
arc cxpn:sscd in tons of carbon; because those emissions are in the form 
of carbon dioxidt:. some studies report data in tons of carbon dioxide. 
To convert. multiply by 44/ 12 (3.67). 

"new" growth theory. 11 Both sides agree that technology 
is central to long-term growth, but the mechanisms, and 
how to include them in formal models continue to be 
disputed. As Joseph A. Schum peter observed long ago (in 
1934), technological change arises from ll'ithin the eco­
nomic system and is central to its growth. In contrast, 
most models consider technological change as exogenous 
- in an expression coined by Bill Nordhaus, these models 
assume that new technologies fall into service like "leaves 
from autumn trees". In the field of global change, resolv­
ing these controversies and including endogenous tech­
nological change in models is especially important since 
the objective of this research - projecting plausible levels 
of future emissions, and assessing policies for controlling 
them - all depend principally on technology. 

While the processes that lead to inventions remain 
largely opaque, it is now possible to model the factors 
that affect which innovations are selected for investments 
that lead to niche market applications, commercializ­
ation, and widespread adoption of technologies. The 
approach rests on two fundamental reasons for why 
private firms and the public (through government) invest 
in the pursuit of new technologies. (1) Investments into 
RD&D and practical experience in commercial niche 
markets leads to learning, which improves costs and 
performance and thus makes technologies more competi­
tive and offers profit opportunities for economic agents. 
(2) Uncertainty about the future - such as level of de­
mand for technology services (eg, electricity generation), 
costs, and learning rates - lead firms and societies to 
hedge risks by investing in portfolios of new technologies 
with potentially useful attributes (Mansfield et al., 1972, 
1977). 

Despite overwhelming empirical evidence and solid 
theoretical underpinnings, learning phenomena - as dis­
cussed above - have been explicitly introduced into only 
a few models of intertemporal choice. A first detailed 
model formulation was suggested by Nordhaus and van 
der Heyden (1983) to assess the potential benefits of 
enhanced R and D efforts in new energy technology (the 
fast breeder reactor). Computational limitations at that 
time precluded the application of the model to a wider 
portfolio of technologies in the model formulation. A first 
full-scale operational optimization model incorporating 
systematic technological learning was first developed at 
IIASA (Messner, 1997; Nakicenovic, 1996). Conventional 
learning curves for a number of advanced electricity 
generating technologies were introduced into a linear 
programming model of the global energy system. Be­
cause learning rates were assumed ex ante, future techno­
logy costs in the model depended solely on the amount of 
intervening investments in installed capacity. Given spe­
cific (known) learning rates, the model determined 
the optimal investment profile that would yield future 

11 See references in note. 2. 
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technology improvements via learning by doing. (RD&D 
that did not directly result in an increase in installed 
capacity was excluded as a source of technological 
change in the model.) That model confirmed the expecta­
tion that it can be economically optimal to invest into 
costly, immature technologies in anticipation of improve­
ments through technological learning. Absent such prior 
investment, new technologies did not become competi­
tive in the future - rather, the technological system re­
mained "locked-in" to existing technologies, productivity 
did not increase, and the portfolio of available cost-effec­
tive technologies remained limited and insufficient to 
address possible long-run resource or emissions con­
straints. In such cases, the only options for addressing 
those futures in such a technology optimization model 
(and in real society) entailed resorting to currently known 
expensive technological alternatives ('"backstops"), lead­
ing to economic losses, such as lower consumption and 
welfare. 

Today, few of the main models used to assess the level 
and costs of controlling future carbon emissions rigor­
ously employs a learning curve formulation. Thus few of 
the models internally generate the investments needed to 
yield new commercial technologies. Rather, future costs 
are assumed as exogenous model inputs and are indepen­
dent from any intervening efforts and costs. 12 We suggest 
that if technological change is to be adequately included 
then models must explicitly link investment decisions to 
changes in technology characteristics. The learning curve 
concept is one simple device for doing this. But the simple 
application of learning curves confronts two shortcom­
ings. One is that only traditional learning curves have 
been employed in these models and thus cost improve­
ments due to RD&D have been ignored. As shown 
earlier, especially at the stages of innovation and niche 
market commercialization, RD&D is a significant con­
tributor to improved cost and performance. The other is 
that the empirical literature suggests a range of learning 
rates that might be expected, but exact rate for particular 
technologies and processes remains of course uncertain, 
and thus the learning rate - ie, returns from investments 
- must be modeled as uncertain. 

Uncertainty is pervasive when firms and societies 
make technological choices and thus must be reflected 
throughout models used in technological forecasting. 
The importance of technological uncertainty has been 
recognized and explored ever since the earliest days of 
global environmental modeling (eg, Nordhaus, 1973; 
Starr and Rudman, 1973). Different approaches have 
been followed for analyzing the impacts of technological 

1 
! Some models deploy additional exogenous constraints to "force·· 

molkls into earlier im·cstments into expensive technologies before 
cheapa ones become available. See. for example. Manne and Richels 
I 1997). 

uncertainty including the formulation of alternative scen­
arios (eg, Nakicenovic et al, 1995), analysis of model 
sensitivity to input parameters (eg, Nordhaus, 1973; Nor­
dhaus, 1979), and sensitivity analysis based on expert 
polls or Delphi-type methods (eg, Manne and Richels, 
1994). Yet in practice these studies were principally based 
on adaptations of the deterministic optimization 
models. 13 

That modeling approach has allowed assessment of 
the sensitivity of models outcomes to variations in uncer­
tain model input parameters or some exploration of 
optimal management strategies, such as strategies that 
emphasize adjustment of policy decisions over time as 
uncertainties are resolved (Hammit et al, 1992; Lempert 
et al, 1996) (more generally see Holling, 1978, and Wal­
ters, 1986). But the deterministic framework is unable to 
identify investment strategies that are robust or "opti­
mal" when decision-makers simultaneously face many 
uncertain choices because uncertainty (stochasticity) is 
not built into the decision framework. In the model of 
endogenous technological change explored here, uncer­
tainty translates into both economic risks and oppor­
tunities, and both are directly endogenized into the 
model's decision rules and the resulting technology strat­
egies. 

True endogenization of uncertainty and learning phe­
nomena has required the application of models that are 
mathematically cumbersome involving simultaneously 
stochasticity and recursive formulations. Moreover, tech­
nological learning is a classical example of increasing 
returns, ie, the more learning takes place, the better 
a technology's performance. Thus the mathematical solu­
tions are non-convex - the more investment the lower the 
costs - which is especially difficult to handle in tradi­
tional optimization models and algorithms. A general 
methodology for handling uncertainty in optimization 
problems through a stochastic sampling technique was 
described in Ermoliev and Wets (1988) and an improved 
algorithm was developed by Ermoliev (personal com­
munication). That stochastic optimization framework 
has been applied in the MESSAGE technological optim­
ization model for several technologies by the IIASA 
energy research group. 1"' Similar mathematical and 

"For example, Manne and Richels (1994). Examples of models 
incorporating stochasticity include Kolstad (1993) and Fragniere. and 
Haurie (1995). 

14 See Golodnikov et al (1995), Messner et al (1996) and Messner 
(1997). Fragniere and Haurie (1995) have applied a similar framework 
using the MARKAL optimization energy model. The two stochastic 
modeling approaches are however different. The stochastic MARKAL 
model takes the classical stochastic approach towards decisions under 
uncertainty: assuming that at some future date, uncertainty (on techno­
logy costs, environmental limits, etc.) becomes resolved. The stochastic 
MESSAGE model does not rely on the assumption that at a given date 
uncertainty disappears altogether. Rather the model calculates an opti­
mal diversification strategy in face of persistent uncertainty by integrat­
ing stochastically drawn samples into an overall objective function. 
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conceptual problems also have been partially addressed 
in work on "path-dependence," in which initial decisions 
lead to multiplying network effects and increasing re­
turns from the adoption of a particular technological 
solution (Cowan, 1991 ). 

4.2.1. A model of technological change through uncertain 
learning 

The model with endogenous technological change de­
veloped at IIASA overcomes the main failings of existing 
approaches - the inadequate representation of learning 
as a consequence of both RD&D investments and cumu­
lative commercial experience (learning by doing), as well 
as the failure to incorporate uncertainty in models of 
technological learning (Griibler and Gritsevskii, 1997). 
The intention is to extend the traditional approach to 
modeling energy technologies in which technical change 
is induced only by relative resource and factor endow­
ments and price changes. 1 5 In contrast, the II ASA 
approach yields an optimization model that can make 
forward-looking investments that are needed to yield 
(uncertain) learning and cost reductions for particular 
technologies. Thus new technology may be rendered 
competitive and is selected for widespread commercial 
application. Traditional optimization models make no 
such anticipatory investments. 16 

The conceptually simple model represents a demand 
for one homogenous good, electricity. Total demand 
rises over time in proportion to total demand in the 
widely used IPCC and IIASA/World Energy Council 
(IIASA/ WEC) ''high demand" scenarios. 1 7 There exists 
one primary resource (coal), whose extraction costs in­
crease o\·er time as a function of resource depiction, while 
being sufficiently large that absolute resource scarcities 
arc not encountered over the entire simulation horizon 
(200 yr). 

Three technologies - ··Mature", "Incremental'', and 
"Radical" - arc available that can supply the demand for 
electricity. The stages of technological development for 
those correspond with the same-named stages in Table I. 

1 ~cg. Hayami and Ruttan (1985); for OYerviews see Binswanger 
(1971\). Jorgenson and Fraumeni (1981) and Rullan (1996). 

It> Linear programming models typically include constraints on the 
r;:Jle at which a new technology can enter the marketplace; without such 
constraint s the model would instantly switch rrom one technology to 
another as soon as the latter is less costly (for additional discussion. see 
Fragnicre and Haurie (1995)). Thus the optimal solution to these 
models often entails earlier investments into new technologies so that 
r~Jtc constraints are met. Such in\'estments are the consequence of the 
model formulati on. not because the model anticipates (as does a profit­
s~cking firm) th al an in\'estment will make a technology more competi­
tin:· in 1hc future. 

1 
- Demand is scaled to economic growth in the Series A scenarios of 

the World Energy Council (\VEC) and the !S92e and f scenarios of the 
!n1ergovernmen1al Panel on Climate Change (!PCC). For !PCC see 
Pepper ct a/ (1992): for ll!ASA·\VEC see Nakii:enovii: er al (1995). 

The current costs of each technology are assumed to be 
known perfectly, but the potentials for future learning 
vary markedly as a function of the uncertainty in learning 
rates. t 8 The Mature technology is assumed to be in 
widespread diffusion; its characteristics (costs and re­
source conversion efficiency) do not change over time. 
The Incremental technology has a slight efficiency ad­
vantage over the mature technology, is initially more 
costly (by a factor of 2), and has a potential mean learn­
ing rate assumed at 10% for each doubling of cumulative 
production capacity. The Radical technology hardly re­
quires any resource inputs and thus offers a substantial 
efficiency premium. Because it is a radical innovation it is 
also a factor of 40 more costly than the Mature techno­
logy. However, as common with radical new technolo­
gies, it has high potential for technological learning - we 
assume a mean learning rate of 30% (per doubling of 
capacity), which is consistent with historical examples of 
radical technological change reviewed earlier. For both 
the Incremental and Radical technologies the rates of 
learning are treated as uncertain, represented by a log­
normal distribution function around the mean value. For 
the Radical technology the variance of the distribution 
function is three times that of the Incremental techno­
logy, reflecting the much higher spread of uncertainty 
associated with radical technologies. 

These three technologies correspond with three prom­
inent electricity technologies available today. Current 
coal-fired power stations, with thermal efficiency of30%, 
and costs of US$ I 000 /kW(e). are a typical mature tech­
nology. An incremental improvement is represented by 
an advanced coal-fired power station (eg, with fluidized 
bed boilers and all basic environmental equipment such 
as precipitators and SOx and NOx removal units. but not 
C01 removal), with thermal efficiency of 40% and initial 
costs of US$2000/kW(e). The coal resource in our model 
is consistent with known world reserves and resources of 
coal, which exceed 200 years and exhibit rising extraction 
costs as the most accessible and highest quality reserves 
are depleted. The Radical technology corresponds with 
photovoltaic (PV) cells, which use a basically free re­
source (sunlight) but are initially very costly (we use 
a starting value of US$40,000 USD/kW(e) characteristic 
of PV costs in the early 1970s). 

For each run in a large sample N the stochastic model 
samples a value for each of the uncertain parameters. The 

18 Current prices of new technologies (which are costly but decline 
with learning) are assumed to be known perfectly (the market provides 
for the mechanism to reduce any uncertainty on current costs: actual 
investment). The model treats future learning rates as uncertain. Hence 
future technology costs are a function of (uncertain) learning ra tes and 
the resulting intertemporal optimum investment profile the model 
determines for any given (stochastic draw) of the learning rate. No 
further exogenous cost inputs enter the model. The model also does not 
require exogenous specification of a future "floor" price, ie a lower 
bound to which costs decline as a result of technological learning. 
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Fig. I 4. A simple optimization model with endogenous technological change. The figure shows the frac tion or total installed generating capacity 
supplied by alternative new electricity generating technologies: Incremental (dashed lines) and Radical (solid lines). These differ in their current costs as 
well as possibi lities for ruture cost reductions (learning). Four simulation runs are shown: (I) static technology costs and performance for all 
technologies. which yields technological change only in respo nse to resource depletion; (2) exogenously given cost improvements for Incremental 
technologies; (3) certain (deterministic) lea rning rates for Incremental and Radical technologies: and (4) uncerta in lea rning rates for Incremental and 
Radica l technologies. Without endogenous learn ing. the Radical technology remains at zero market share. When the rate or learning is certain the 
optimal solu tion is to invest heavily and early into new technologies because the resulting cost declines render the technology quickly competitive. 
When lea rning rates are uncertain. the optimal solution is more cautious. Market shares for the existing, Mature technology are not shown on this 
figure. Source: Griibler and Gritsevskii (1997). 

model then calculates the minimum cost to build the 
installed capacity for each of the three technologies 
needed to satisfy the total demand for electricity. (For 
simplification, we assume 100% capacity utiliza tion for 
all three technologies.) That calculation includes the opti­
mal investment profile that yields future cost reductions 
in the Incremental and Radical technologies, which is 
necessa ry to make those new technologies competitive 
with the existing Mature technology. Because the lea rn­
ing rates arc stochastic, the future RD&D and invest­
ment costs needed to make the incremental or radical 
technology competitive in the future is also a stochastic 
functi on of the intervening cumulative investments. Thus 
actual costs in any run of sample N may deviate from the 
expected costs, which arise by applying the mean learn­
ing ra te. 

The optimal solution for the entire sample is calculated 
by finding the minimum of the overall objective function, 
which integrates all the realized outcomes from each of 
the stochastic draws in sample N. Because each indi­
vidual draw deviates from the expected model outcome 
we need a weighting procedure for integration of all these 
different reali zed individual model solutions into the 
o\·e rall objec tive function. The overall objective function 
incorporates the objective function of the mean (ex­
pected) value expanded to include two additional terms. 
( l) If the realized costs in a draw are less than expected, 
the resulting cost difference (savings) is added to the 
objective function (i.e. subtracted). (2) If costs exceed 
expectations. the resulting cost difference (cost overrun) 

is also added to the objective function, but quadratically. 
This reflects our assumption that underestimating future 
costs is penalized more heavily in competitive markets 
than cost overestimation. Cost underestimation (leading 
to higher costs than expected and higher than one's 
competitors) risks the very survival on the market, 
whereas cost overestimation, which leads to lower future 
technology cos ts than expected yields merely higher 
profits than expected. In other words, our model is con­
servative - it assumes that commercial decision-makers 
give paramount value to survival. The model performs 
a simultaneous sampling of parameter values. All realiz­
ed outcomes (plus and minus the two additional terms 
explained above) of the individual draws of sample N are 
integrated into the overall objective function. The result­
ing overall minimum solution represents the optimal 
technological diversification strategy vis a vis the (uncer­
tain) economic returns on learning that result from R&D 
and investment into technology demonstration and niche 
markets. 19 

Fig. 14 shows results - the share of electricity supplied 
by each technology - for four of the simulations. If 
technology is treated as static (no learning) then generally 
neither the Incremental nor the Radical technology is 
selected, and 100% of the market is supplied by the 

19 For each draw, the model solves simultaneously the non·convex 
and non-smooth optimization problem by applying a combination or 
a simple global procedu re, a modified Nelder-Mead algorithm, and 
a BFGS quasi-Newton minimization (see Griibler & Grit sevskii , 1997). 
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Fig. 15. Endogenous technological change with carbon constraints and other uncertainties. Figure shows new capacity additions for three simulation 
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Source: Gri.ibk:r and Gritsc\"skii ( 1997). 

Mature technology. The first simulation (labeled .. static 
technology") portrays technological change as in models 
that employ the concept of a "backstop" technology. The 
Incremental technology diffuses eventually not by im­
proved performance but as a result of resource depletion 
that raises energy prices, making the Incremental techno­
logy commercially viable due to exogenous develop­
ments. A second run , which we term "exogenous learn­
ing", assumes that the cost of the Incremental technology 
falls at an exogenously determined rate. The result is 
a pattern thaI is again typical of optimization models 
that employ exogenous technological change: at some 
point in Ihe future a new technology massively enters the 
picture due to an exogenously assumed cost reduction. 
Large-scale technology optimization models, which are 
widely used 10 assess the costs of abating various envir­
onmental problems. display similar "flip-flop" behavior. 
Published runs typically do not illustrate such behavior 
only because additional constraints or restrictions on the 
rate and pattern of technological diffusion, tuned accord­
ing to the modelers sense of the historical record, are 
applied to make the outputs appear more realistic. Like 
sausage, the final product is evidently wholesome but the 
method of producing tasty results is best left shrouded in 
mystery. 

A third run in Fig. 14 shows the effect of adding 
learning with zero uncertainty- what we term "determin­
istic (certain) learning". A fourth run illustrates "un­
certain learning .. - it fully incorporates uncertainty 
(slochasticity) and learning, and thus is the full model of 
endogenous technological change. Note that the addition 

of learning in both of these runs leads the Radical techno­
logy to enter the market. In the deterministic case with no 
uncertainty a new technology enters the market earlier 
and diffuses faster. When learning is uncertain, diffusion 
is more gradual and market entry is later. Only the latter 
case exhibits the S-shaped diffusion patterns evident in 
the historical record. Both learning and uncertainty are 
essential to building a model that endogenously produces 
results that reflect how technologies enter and diffuse 
into markets in the real world. 

Fig. 15 shows the results when an uncertain possibility 
of a constraint on emissions - represented by a carbon 
tax - is added to the model. For illustration, we assume 
that there is a one in three chance that some tax would be 
implemented sometime in the future; if the tax is imple­
mented, we assume that the probability of introduction 
by 2050 is 50%, rising to 99% by the year 2100. The level 
of the tax is also uncertain - we draw a Weibull distribu­
tion around the mean expected value of the tax (USS50 
per ton carbon), with a 99% probability that it would not 
exceed US$ l 25 per ton carbon. As expected, the existence 
of an uncertain environmental constraint alters the pat­
terns of technological change substantially. Investments 
in new technologies are shifted earlier in time to prepare 
for the possibility of facing a costly future with environ­
mental constraints. For comparison, Fig. I 5 also shows 
the results if future demand is treated as uncertain - high­
er or lower - than in the base case runs in Fig. 14. These 
three types of uncertainty shown in Figs. 14 and 15 
- learning rates, emissions constraints, and demand - are 
the most important unknowns for the energy sector. In 
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all three, earlier and longer investments in new technolo­
gies is the result when the need for technologies with new 
attributes looms large. 

The goal with this exercise is not a full-blown realistic 
model of technological change for all aspects of the 
energy system. Rather, at this initial stage, the purpose 
has been to develop a simple model that demonstrates 
the feasibility of a mathematical formulation. Even with 
this simple model, three important points emerge. First, 
radical technological change does not occur in the model 
if there is no endogenous mechanism for improving fu­
ture performance and costs (unless one ventures into 
imposing daring exogenous technological discontinuities 
into the model ). It is hardly surprising that if technolo­
gical change is modeled as a certain, gradual and auton­
omous process - as it is in most energy technology 
models and nearly all macroeconomic models - then the 
computed technological dynamics evolve slowly, if at all, 
and the future is assumed to look much like the present. 
(Nonetheless, not all parameters are endogenous to the 
model; the sensitivity of the results to the exogenous 
parameters is examined elsewhere.20

) 

Second, only by including uncertainty and learning 
docs the model display S-shaped diffusion curves that are 
similar to those that have been observed empirically. 
Uncertain learning leads to risk minimization and hedg­
ing strategies-ie to initial investments that make new 
technologies more competitive and allows them to enter 
niche markets. Modeling uncertainty in other para­
meters, such as the possibility of higher energy demand, 

~ 0 A model that incorporates increasing returns is obviously highly 
scn siti\·c to the parameter values adopted in the simulations. Sensitivity 
analyses showed that model outcomes depended most hea\'ily on the 
<.i ssumcd lc:arning rates (treated endogenously in the model). followed 
by unccria intics in energy demand. and the possible (uncertain) exist­
ence of cm·iro nmcntal constraints. Com·erscly. varying initial costs 
math:rcd only for some combinations. For instance. varying the initial 
costs fro m 10.000 to 30.000 for a mean learning rate of 30% delays the 
economic brc:ak-e\·cn point of the Revolutionary technology by more 
than live dc:ca<lcs Initial costs were not treated as uncertain. - as in 
reality uncertainty can be reduced immediately by placing of an order. 
The group also i1wcstigatcd scnsiti\·ity to changes in the discount rate 
(results in figure: are based on a 5% discount rate). As expected. higher 
di sco unt rates result in postponed technological investment. experi­
mentation and karning. 

Maintaining the same variance in the uncertainty of the learning rate 
but changing the distribution (eg. from the symmetric lognormal to 
asymmc:tric distributions with long tails like \Veibull or Gamma distri­
butions) wc:re also found to influence the model outcomes. Even with 
the: same \·;..1riancc. the model is sensiti\'e to the existence of even 
extremely low-probability outlier values. For example. including the 
\·cry small possibility of an extreme high learning rate. the model moves 
in direct ion of earlier and higher investments in new technology. Typi­
CJ!ly th e: pcnctrJtion curve for ··uncertain learning·· (see Fig. 15) is 
shifted left by one to two decades. Even a slight chance of a big payoff 
result s in accclcratcd investment. (The converse is not fully symmetrical 
bt:"causc: the objc:ctivc function gives special aversion to under-estima­
ting actual cost s.) 

leads to similar up-front investments and S-shaped 
diffusion patterns. When full uncertainty is included (e.g., 
the runs in Fig. 15) the results can be interpreted as an 
optimal technology diversification strategy in the face of 
pervasive uncertainty. 

Third, the model autonomously produces "surprising" 
results. Even without carbon or significant resource con­
straints, plausible assumptions in the model lead to the 
widespread use of a zero carbon (photovoltaic) energy 
source. These surprises are even more abundant when 
examining individual runs rather than the optimal solu­
tion for the whole sample runs N . As the treatment of 
technology in models improves, the results become less 
deterministic. As in the real world, the future can easily 
hold dramatic changes in technological regimes that 
could eliminate or create whole classes of environmental 
problems. While the potential for surprise has long been 
recognized, until now plausible models could not simul­
taneously generate realistic technology dynamics and 
autonomous surprises. The approach thus addresses an 
important critique of existing models and other analyti­
cal methods - the tendency to ignore factors that cause 
discontinuities and surprises (Brooks, 1986). 

4.3. Models and scenarios for the world energy system 

In previous sections we have shown that it is possible 
to simulate how changing costs affect technological choi­
ces at the micro level - i.e., to model the selection among 
a handful of competing technologies in an isolated mar­
ket. But at larger scales - the energy system of a whole 
economy, region or the globe - models that fully and 
realistically endogenize technological change are still im­
possible. Relationships between the wide array of factors 
that determine technological choices are poorly under­
stood, and the need to model decision making by thou­
sands of agents and for hundreds of possible technology 
combinations exceeds available modeling and computa­
tional capacity. 

Because uncertainties abound at the macro scale, 
almost every model-based analysis employs scenarios. 
Scenarios bound possible futures, and they make it pos­
sible to focus attention on analytically tractable issues, 
such as how the adjustment of one or more "policy" 
variables causes changes in emissions from a baseline 
scenario. Because scenarios are the backbone of macro 
analysis, here we focus on ways to incorporate technolo­
gical dynamics into scenarios by incorporating technolo­
gical change into the macro modeling tools that are used 
to create scenarios. We argue that the existing model­
ing tools fail to reflect well-established patterns of 
technological change, and thus the scenarios that 
they generate are often inconsistent with plausible tech­
nological futures. The resulting policy analysis is mis­
leading. 
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Most scenario analysis begins with a "business as 
usual" baseline scenario - the result of a model run that 
incorporates no particular drastic changes in technolo­
gies or policies. The IS92a scenario of the Intergover­
nmental Panel on Climate Change (IPCC), the most 
widely used such baseline scenario, illustrates the generic 
approach (see Table 3). Worldwide economic growth is 
high (2.2% per year on average from 1990 to 2100); 
developing countries, especially in Asia, grow more 
rapidly than the industrialized countries. Radical tech­
nological change does not occur. Rather, the future is 
assumed to be merely the result of compounded marginal 
changes to today's energy system. For example, just as 
coal was the principal fossil energy source some 50 yr 
ago, in 2100 the world of IS92a is also principally (47%) 
powered by coal. The ratio of sulfur emissions to carbon 
is also high, and thus the environmental effects of sulfur, 
such as acid rain , would be severe in the world of IS92a. 
Energy consumption per unit of economic output de­
clines over 70% because the economy as a whole is 
projected to become more efficient and structural change 
has fa\'o red less energy-intensive services over industrial 
manufact uring. but the energy delivered is just as car­
bon-intensi\·e as today. Decarbonization, though strong­
ly evident in the historical record. is practically nonexist­
ent: in 1990 every 106 J (MJ) of primary energy released 
17.4 g of carbon, which decreases slightly to 14.1 g of 
carbon per MJ of primary energy by 2050. Thereafter, 
dccarbonization stagnates and reaches a value of 13.6 g 
C/ MJ by 2100). This static view of technological change 
is hardl y surprising since the models used to create the 
IS92a scenario do not capture the dynamics of technolo­
gical change. 

To illustrate the consequences of improving the repres­
cnta tion of technological change, working with collabor­
ators at I !ASA we have linked a conventional macroeco­
nomic model with a model of regional and global energy 
systems. The macroeconomic model - an 11 region ver­
sion of the widely used MACRO model (Manne and 
Richcl s. 1992)- computes the size of the economy, invest­
ment llows. and demand for electric and non-electric 
energy. Such a macroeconomic model is broadly similar 
to other macro models used for scenario analysis - its 
strength is that it treats the economy of coherent regions 
of the world in an integrated fashion and estimates de­
mand for energy. Its weakness, also shared by the models 
typica lly used in macroeconomic scenario analysis, is 
that it has little resolution of technological choices. Yet 
the choice of technologies determines emissions and en­
vironmental impacts. The IIASA team has addressed 
that weakness by linking MACRO with MESSAGE IV, 
the latest \'ersion of a widely used linear programming 
model that optimizes the technology system needed to 
satisfy a given demand for electric and non-electric en­
ergy (Messner and Strubegger, 1995). MESSAGE IV 
selects from a large portfolio of current and future tech-

nologies, whose cost and system characteristics are de­
rived from the IIASA C02DB technology inventory 
database that comprises some 1600 technologies. MESS­
AGE IV computes the minimum (discounted 5% for all 
runs presented here) total systems costs (including invest­
ment and operating costs) needed to satisfy the projected 
demand from the MACRO model. The approach par­
tially solves the classic "top-down" and "bottom-up" 
dichotomy of energy models. It allows estimation of the 
economic losses that result, e.g., when carbon constraints 
are applied to the economy (a strength of top-down, 
macroeconomic models) as well as the minimum cost 
suite of technologies needed to meet a given constraint (a 
strength of bottom-up technological system models). For 
more on the methodology of linking the models see Wene 
(1995). Because it employs a model of whole energy 
systems from technologies for production of primary 
energy through final energy consumption by end-use 
technologies - the approach accounts for the synergies 
and infrastructures that define technological clusters and 
given choices of individual technologies. 

The details of the models, resource constraints, popu­
lation estimates and other factors are described elsewhere 
(Nakicenovic et al. , 1998). Here we use the linked model 
to illustrate a simple point: a plausible change in the 
representation of technology in such models can lead to 
radical changes in the computed environmental effects. 
That change is impossible to implement in conventional 
macroeconomic models that ignore the competition be­
tween technologies to supply energy. 

First we generated a baseline scenario by mimicking 
the approach in existing macroeconomic models and 
"business as usual" scenarios. We assume that trade 
liberalization continues and thus the world economy 
grows rapidly - in 2100 the economy is nearly twenty 
times larger than in 1990. As in other high demand 
baseline scenarios, we allow gradual and modest im­
provements in the performance of end-use technologies. 
The economy as a whole continues the structural change 
from manufacturing to services as income rises. Thus, as 
in other models, the energy intensity of production de­
clines: in 1990 I 3.1 MJ of final energy were needed to 
produce one dollar of economic output; by 2100 only 
one-fifth the level of energy (2.5 MJ) would be needed in 
our scenario. Global energy needs thus increase less than 
a factor of 4 while the global economy grows nearly 
20-fold. Consistent with this trend towards higher effi­
ciency, the shift to higher quality final energy carriers 
also continues - the share of final energy supplied by 
electricity rises from 13% in 1990 to 35% by 2100. 
Overall , the efficiency of converting primary energy to 
GDP improves 1.3% per year, comparable with the his­
torically observed rate and also with the I% per year rate 
of "autonomous energy efficiency improvement (AEEI)" 
that is used in many macroeconomic models (Manne and 
Richels, 1992). As in other baseline scenarios such as 



274 A. Griib/er et al. / Energy Policy 27 (1999) 247-280 

IS92a, the scenario does not assume any radical techno­
logical changes in energy supply technologies and acces­
sibility of fossil energy resources. Hence, as in IS92a, the 
future world is mainly powered by coal, as conventional 
oil and gas become depleted and new, alternative energy 
technologies are not sufficiently developed and remain 
too expensive to compete with coal. By 2020 coal has 
surpassed oil as the single largest source of primary 
energy. In 2100 nearly half (42%) of primary energy 
is from coal, and coal is the dominant fuel for elec­
tricity generation. The environmental consequences are 
profound: emissions of carbon dioxide and sulfur are 
4 times 1990 levels. In Asia, sulfur emissions, which 
already are causing health and environmental problems, 
rise five-fold. 

Next the II ASA team made one revision: the addition 
of techn ological learning. The results show more rapid 
technological dynamics and different technological choi­
ces than in the baseline scenario. As in the earlier model 
that endogcnized technological learning for a single 
agent selecting between three technologies, we did this by 
dividing all technologies considered in the MESSAGE 
model into three categories - mature (existing), incremen­
tal and radical. The investment cost for existing technolo­
gies does not vary; the cost of investing in incremental 
technol ogies declines 15 % for every doubling of installed 
capacity; a nd the cost of radical technologies declines 
30% for every doubling. For example, in this "dynamic 
technology (OT)" scenario advanced coal power plants 
(an "incremental technology") decline in cost from 
USS1650 per kW(e) of installed capacity to USSl200/ 
kW(c) while total installed capacity more than doubles. 
Solar photovoltaics (a "radical'' technology) decline in 
cost from USS5000/kW(c) in 1990 to approximately 
USS500 k\V(c) as installed photovoltaic capacity rises 
from practically zero today to some 100 G\V by the end 
of the 21st century. 

(At present it is only possible to endogenize learning 
curves in a one-region model that includes a few tech­
nologies (Messner. 1997). Adding learning curves to 
a model of 11 regions with hundreds of technologies 
remains practically impossible. Thus for the full model 
discussed here the IIASA team added illustrative "learn­
ing" through an iterative process that was consistent with 
the principle of learning but did not confront the math­
ematical and computational barriers to a hard-wired full 
learning model. We first used a simple spreadsheet model 
to calculate the investment profiles and decline in costs 
for each of the incremental and radical technologies 
consistent with the assumed learning curve parameters. 
With these cost data the MESSAGE model was run 
again and the resulting im·cstment profiles of the model 
were compared with those calculated by the learning 
cun·c model. For all of the incremental and radical tech­
nologies, the actual im·estment costs made by MESS­
AGE were within 3-5% of that needed to sustain the 

appropriate learning rate (15% for incremental and 30% 
for radical technologies 21 

). 

The result of these simple adjustments to the repres­
entation of technology has little effect on the macroeco­
nomic outputs of the linked model. Because energy costs 
(per unit of economic output) are lower and investment is 
higher, the world economy is slightly larger than in the 
baseline scenario, which already envisioned even more 
robust economic growth than in the bullish IS92a scen­
ario. But unlike our baseline and IS92a baseline scenario, 
the wealthy future of the DT scenario is also relati vely 
clean. Despite declining costs for advanced coal power 
plants, MESSAGE shifts to even less costly advanced gas 
plants (which are already abundant in today's energy 
markets) and then to solar and other zero carbon fuels. 
Until 2060 the share of gas as a transition fuel for electric 
generation rises. Coal and biomass, which supply a grow­
ing share of transport fuel (methanol) and electricity in 
the baseline scenario, give way to solar-based energy 
sources, including hydrogen, and new nuclear power 
technologies such as inherently safe, modular, high 
temperature reactor designs. By 2100 decentralized 
(ie, non-grid) energy generation technologies supply 
two-thirds of all electricity demand. This category con­
sists of on-site solar photovoltaics (30%), hydrogen co­
generation (25%), and hydrogen fuel cell vehicles that 
generate household electricity when parked (45%). Hy­
drogen itself can be generated in many ways - the most 
efficient emit little carbon and sulfur (eg, steam reforming 
of natural gas) or no carbon at all (eg, when based on 
solar or nuclear primary energy). 

The impact of the different technologies in the OT 
scenario on environmental quality is dramatic. Sulfur 
emissions decline six-fold from 1990 levels by 2100, and 
world carbon emissions rise only slightly (20%). By 2100, 
only 4 g C arc released per MJ of primary energy supply, 
which is an average rate of decarbonization of 1.3% 
per year (four times the historical value). With the 
widely used MAGICC climate model 22 we have 

21 II shou ld be no1cd that because MESSAGE is a linear program­
ming model that it includes typical constraints on the rate or market 
penetration. without which the model would rapidly switch from one 
technology to another (sometimes overnight) as soon as the new tech­
nology is cost-competitive. Because MESSAGE has perfect foresight. 
these constraints lead to pre-competitive investments in new techno­
logy so that future market penetration constraints can be met. Thus the 
time path of actual technology investments, which is broadly consis tent 
with that observed in the real world. is more an artifact of the assump­
tions that underpin the linea r programming method . Consequently we 
have used the simple lea rning model to verify not only that the a nnual 
invest ment costs are consistent but, more importantly. that the total 
and multi-decade costs are consistent with the learning rates that we 
employ. These penetration constraints are not needed if a learning 
curve is used directly in the optimization model (see Messner, 1997) and 
in the micro model presented in this paper, but for the larger scale 
model such modeling tricks remain essential. 

22 The carbon model is from Wigley (1991, 1993); the climate model is 
from Wigley and Raper (1987, 1992). 



A. Griibler et al. / Energy Policy 27 (1999) 247-280 275 

Table 3 
Four global scenarios and the importance of technological change. Conventional baseline ("no policy") scenarios reflect only gradual changes or static 
technology- here, we show the widely cited IPCC IS92a and WEC/ IIASA Series A2 (high coal) baseline scenarios. In these scenarios the future energy 
system appears similar to the present and is thus heavily based on coal. Linking a macroeconomic model with a model of technological choice (eg, 
MESSAGE) can generate radically different results. We show a baseline scenario from the MACRO-MESSAGE model that is designed to mimic other 
baseline scenarios. Then we show a "DT' scenario in which learning curves have been stylistically added with the result that technology is more 
dynamic and emissions are lower, even in the absence of carbon constraints. 

Scenario attributes 1990 levels Conventional baseline scenarios MACRO-MESSAGE scenarios 

World income (10 12 1990 USD, 
market exchange rates) 

2050 (% growth)' 
2100 (% growth)' 

Final energy intensity 
(106 j per 1990 USD)' 

2050 
2100 

Primary energy (10 18 J) 

2050 
2100 

Primary energy. Share of coal and 
zero carbonc 

2050 
2100 

Carbon emissions (10 1 'g CJ' 
2050 
2100 

Sulfur eissions ( 10 1
' g SJ" 

1050 
1100 

Sulfur,'carbon ratio (g S per kg Cl 
2050 
1100 

Ra<liatin:: forcing(\\' 'm- 2r 
2050 
2100 

(observed) 

20.9 

13.I 

381 

24%/22% 

6.2 

60 

JO 

2.6-1.3 = 1.3' 

.l AYcragi: glnhal annual growth rali: since 1990. 

IPCC IS92a 

91 (2.6%) 
240 (2.3%) 

6.8 
3.6 

930 
1500 

37%/21 % 
47%/30% 

13 
20 

IOI 
123 

10 
6.2 

5.7-2 = 3.7 
8.2 - 2 = 6.2 

(this paper) 

WEC/ IIASA Series A2 Baseline Dynamic technology 
(DT) 

JOO (2.7%) 117 (2.9%) 118 (2.9%) 
310 (2.5%) 384 (2.7%) 393 (2.7%) 

7.2 5.8 5.7 
3.5 2.5 2.8 

1040 1100 990 
1900 1700 1800 

37%/27% 31%/32% 4%/50% 
38%/ 51 % 42%/46% 0.4%/77% 

JS.I 16 9.5 
22 25 8.5 

85 170 17 
160 240 11 

5.7 11 1.8 
7.4 9.6 1.3 

6 - 1.5 = 4.5 6.5 - 2.4 = 4.1 5.6 - 0.9 = 4.7 
9 - 2.3 = 6.7 10.3-2.9 = 7.4 6.9 - 0.8 = 6.1 

t. I nti:nsity of linal cnagy is a measure of the economy's efficiency: it reflects direct improvements in the efficiency with which energy is used to make 
a given econom ic output (product or scn·ice) as well as structural change (cg. shifts from energy-intensive manufacturing to service-oriented 
economy). I PCC values arc for .. secondary energy." which is comparable in definition to ··final energy" in the WEC and llASA studies (ie. heat 
conti:nt of energy after com·crsion and distribution). 

'Tht:si: \\\'l) p:irJmctl.!rs an: indicators of change in technology and the fuel mix. For IPCC, "coal .. primary energy is not reported: the values here are 
for .. solid" cni:rgy. ··zero carbon" is assumed to be nuclear and renewable energy; in none of the scenarios is carbon .. scrubbed" from flue gases. 

d Carb('ll and sulfur from industrial processes only. mainly the burning of fossil fuels and biomass for energy and as kedstocks. I PCC reports slightly 
higher ( 70 x I 0 1 ~ g SJ anthropogenic emissions of sulfur. 

c Increase in radiati\"C forcing since preindustrial era (- 1765). Cells show net increase in radiative forcing from carbon and other greenhouse gases 
(including indirect efkcts such as stratospheric water vapor and ozone) minus the negative forcing from sulfur {direct and indirect effects). Values 
comruted with ~IAGICC model and added to 1990 forcing levels to yield total increase in forcing. 

'Values for 1990 used in calculations here; however, note that sulfur forcing is uncertain. IPCC (1995, Fig. 6.19) reports Jess intense negative sulfur 
forcing I - 0.8 w ·m- '). 

estimated the future concentration of carbon dioxide and 
greenhouse forcing. In the baseline scenario carbon con­
centrations rise to 800 parts per million by volume (ppmv) 
from 355 ppmv in 1990. Carbon concentrations also rise in 
the OT scenario, but more slowly-by 2100 the concentra­
tion is only 556 ppmv, or approximately equal to the 
550 ppmv target that many ambitious policy makers have 
argued should be the long-term goal of climate policy. 

Interestingly, greenhouse forcing in the OT scenario re­
mains high - only 20% less intense than in the baseline 
scenario. High sulfur in the baseline scenario masks nearly 
half the greenhouse forcing from carbon dioxide. The ratio 
of sulfur to carbon drops to one-tenth that of the baseline 
scenario as coal is nearly extinguished from the economy. 

Table 3 summarizes the salient characteristics of 
the IS92a scenario and our baseline and OT scenarios. 
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Obviously the results of our model, including the DT 
scenario, depend on the assumptions that drive the mod­
els. For example, the decentralized energy future in the 
DT scenario, in contrast with the centralized grid-based 
electricity system of today, is not the only possibility. 
Here we intend only to illustrate a simple but crucial 
point: plausible changes in the treatment of technology 
can yield models and scenarios with dramatically differ­
ent environmental projections. Whereas other macro 
models have induced technological change through re­
source constraints, our approach is more consistent 
with the emerging view that fossil resources are 
abundant. Technological changes, in our view, emerge 
from new demands for energy services, which creates 
incentives for innovation and application in niche 
markets, which lead to rapid learning and declining 
costs; in turn, less costly new technologies diffuse into 
widespread use. 

In our DT scenario. as in history, radically new 
technologies emerge and dominate on the timescale of 
a century, often with dramatic changes in environmental 
worries. In our view the future environmental problems 
may be less with carbon, sulfur and other externalities of 
fossil fuels and more with the problems (if any) of hydro­
gen and electricity energy carriers. 

In sum, the use of a technology systems model can help 
to ensure that the computed future primary and end use 
energy technologies are internally consistent. A hydrogen 
economy, for example, must include a compatible hydro­
gen technology cluster - generation and transport tech­
nologies as well as end-use fuel cells and other consumers 
of hydrogen fuel. Although full endogenous macro scale 
modeling of technological change is still elusive, our view 
is that the most promising direction towards that goal is 
to build models that resolve the building blocks of indi­
vidual technologies and their interdependencies. Alterna­
tive approaches - such as AEEI and other aggregate 
trend parameters applied to models that have been tuned 
to present conditions - do not resolve individual techno­
logical choices. At best, they are adequate only over short 
time horizons during which technological change con­
sists predominantly of incremental adjustments to tech­
nologies that already exist in the market place (3- 4 
decades for energy technology systems). Over the longer 
periods that are characteristic of global change, that 
approach is inadequate unless (by chance) the aggregate 
qualities of the new system are like the old. We have 
shown that some aggregate trends have extended over 
many successive energy infrastructures. Gradual decar­
bonization. for example, is evident over two centuries 
during which more than three energy infrastructures 
have been in place. Yet even in with that aggregate 
indicator. existing modeling approaches yield inconsist­
ent results over long time periods because they fail to 
resolve individual technologies and technological clus­
ters. The IIASA approach shows a way forward, but it 

does not solve all extant problems. Notably, radical in­
ventions - the building blocks of future radically different 
technological clusters - remain difficult to project. 

5. Conclusions 

Across a wide range of intellectual and political views 
one view is shared: in the long run, technology is the 
factor that most governs growth of the economy, the cost 
and availability of services such as mobility and food, 
and the impacts on the environment. Some herald tech­
nological innovation as the savior against ecological de­
struction while others view it as the extension of what 
caused ecological concerns. Examining the role and sour­
ces of technological change, and analyzing potential pol­
icies, requires coherent concepts, historical data sets, and 
models that have not been much applied in the debate 
over the environmental effects of technology and techno­
logical change. 

Since technological change is crucial, analytical tech­
niques must be improved. The analysis here suggests at 
least six findings. 

First, while progress on technological analysis has 
been enormous, much remains to be done. The crucial 
process of invention, especially the invention of radical 
tedrnologies, remains largely opaque to systematic anal­
ysis. Perhaps an even greater inadequacy of existing 
techniques, which might be more tractable to solve, is to 
identify how inventions are selected for commercial in­
vestments. The most critical shifts in energy technology, 
such as the rise of wood- and coal-powered railroads or 
the emergence of the automobile, can be identified his­
torically, but robust identification of future technological 
regimes is poor. Most key technologies in the next era are 
probably found in the marketplace today, but at low 
levels of penetration; identifying them, and the cluster 
they comprise, remains beyond existing techniques. In 
the absence of techniques for perfect forecasting, creative 
scenario writing and continued debate on alternative 
futures must continue as the principle means to analyze 
alternative technological futures. 

Second, several patterns in the changing properties of 
technologies can be identified in the historical record, 
and these can greatly aid in the modeling of technological 
change. Learning curves, and characteristic learning 
rates, can be identified for many technologies. Such 
curves characterize the expected decline in cost due to 
investments. We suggest that such curves should be 
modified to include not only commercial investments 
- "learning by doing", which begins in niche markets 
- but also RD&D that is crucial during the earlier in-
novation stage. The result is a convenient formulation 
that allows improved endogenous modeling of technolo­
gical change. We demonstrate both micro and macro 
model applications. 
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Third, also evident in the historical record are predict­
able patterns and rates of technological diffusion, which 
can help modelers estimate the rate and character of 
change once a technology has entered the marketplace. 
In general, diffusion and substitution of compatible tech­
nologies within an existing technological system or in­
frastructure occurs more rapidly (time constants of one 
to two decades) than diffusion of infrastructures and the 
technologies that are clustered together with numerous 
other technologies and infrastructures (5 to 10 decades). 
These time constants can be applied in simple but power­
ful logistic models of substitution and diffusion. 

Fourth, clusters of compatible technologies are evident 
in the historical record. Such clusters help determine 
rates of diffusion and which technologies survive from 
invention to the commercial marketplace. The co-evolu­
tion of technologies in clusters becomes more intense as 
the cluster ages and synergies of compatible technologies 
deepen. Such co-evolution is evident not only in particu­
lar technologies but also the fuels that supply primary 
energy. The dominant fossil fuels have become progress­
ively lighter in carbon and thus decarbonization is evi­
dent as a continuous, long-term historical phenomenon. 
In the United States, as for the world as a whole, the fuel 
mix is decarbonizing at approximately 0.3% per year. 

Fifth, it is feasible to solve the non-convex, stochastic 
problems that result when modeling the (uncertain) in­
creasing returns resulting from learning processes. In our 
view the causal mechanisms for technological change are 
investments (RD&D and learning by working with infant 
technologies in commercial niche markets) that are made 
for two reasons - expectation that new technologies will 
be more competitive, and to hedge against many uncer­
ta in risks, including the risk that investments into new 
technologies will not yield expected improvements in 
cost and performance. A simple model that includes 
those drivers - expected cost reductions and uncertainty 
- yields S-shaped patterns of technological dynamics that 
are consistent with the historical record. With plausible 
assumptions, the model endogenously generates radical 
departures from existing technological practices - a zero 
carbon future without policy constraints on carbon, and 
even more rapid decarbonization when modest and un­
certain carbon constraints are included. Neither outcome 
is the result of resource constraints, which is the main 
mechanism for radical change in conventional models 
that do not endogenize the process of technological 
change. We do not contend that the carbon problem will 
thus autonomously solve itself. But the model outputs 
underscore that new technologies can penetrate the mar­
ket even if they are initially a factor of 40 (or more) more 
expensive than the existing dominant technology. The 
model suggests that a strategy of investing in radical 
technologies is socially rational and optimal when risks 
must be diversified, especially when there is even a small 
probability of a significant emissions constraint in the 

future. If the model included the varied other benefits of 
diversification and the costs of environmental problems 
such as urban smog which are caused by the same pro­
cesses that cause carbon emissions, the estimated benefits 
of diversification should grow further 

Sixth, we have also demonstrated that it is possible to 
include a stylized representation of technological change 
in macro scale models of the world's energy system. 
Doing so requires coupling traditional macroeconomic 
models with models that allow more detailed representa­
tion of technological choice - failure to do so forces the 
modeler to include only gradual and aggregate patterns 
of technological change (or implausible parameters for 
sudden, discontinuous radical technological change). 
Thus conventional models, which are widely used for 
developing the scenarios that are employed in policy 
analysis of global change, typically project that the future 
will be much like the present. Coal retains a high (even 
increasing) share of primary energy, and carbon emis­
sions are thus also high. In contrast, a coupled model 
- which we illustrate here - can plausibly yield technolo­
gical dynamics and lower carbon emissions. Our ap­
proach still does not fully endogenize technological 
change at a macro scale, but conceptually that is now 
possible. Computational and mathematical bottlenecks 
should soon be solvable. 

These six findings strongly suggest that existing base­
line scenarios, which are widely used as the starting point 
for policy analysis, are incompatible with historical ex­
perience, notably decarbonization. (Those scenarios do 
not have sufficient resolution to determine whether they 
are incompatible with learning, S-shaped technology dy­
namics, and co-evolution of technological clusters, all of 
which are also evident in the historical record.) For future 
scenarios, the burden is on modelers to justify such sharp 
deviations from historical experience. 

Finally, we offer a few speculations on the policy im­
plications of this work. Our intention has been to show 
that substantially improved treatment of technological 
change is possible and mandatory for improved policy 
analysis. Although we have not analyzed specific policies, 
our analyses underscore several facts that are relevant for 
current policy debates. In particular, normal technolo­
gical dynamics are yielding decarbonization, but at a rate 
that is slower than the rise in demand for carbon-based 
fossil fuels. Thus, overall, carbon emissions are rising, but 
less rapidly than the growth of primary energy consump­
tion. Studies of future energy technologies should take 
more seriously the need to analyze the technologies that 
will be in place the future, not to assume that the future 
will look much like the present. Those future technolo­
gies surely include variants of the present vintage, but 
they are also likely to include many others, including low 
carbon technologies that are already entering the market 
through normal technological dynamics that are occur­
ring even without significant constraints on carbon. Thus 
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the policy task may be less to promote zero carbon 
technologies from the laboratory bench to the market 
and more to explore ways to ensure that network effects 
enhance rather than bar those low-carbon technologies 
that on their own will become innovations and commer­
cialized in niche markets. 

The results from the micro-level and global optimiza­
tion models suggest that when confronted with uncer­
tainties - such as whether stringent action to slow global 
warming or other environmental externalities will be 
needed - that it is socially rational to diversify technolo­
gies. But in market societies, decisions are principally 
made by market agents rather than social optimizers; 
those agents respond to individual rather than social 
incentives. That fact has long justified social (e.g., govern­
ment) policy to promote research. Insofar as societies 
today increasingly consider the likely the need for long­
term constraints on carbon they should focus attention 
on incentives to diversify the portfolio of especially rad­
ical technologies that will be required if it proves neces­
sary to cut carbon emissions sharply in the future. As we 
have shown, there is some chance that, by surprise, those 
technologies will emerge autonomously. It is plausible to 
project a century-long transition to a practically zero 
carbon emissions that appears to eliminate (today's) fears 
about energy-related externalities without any cost. But 
it remains difficult to assess the probability of such posit­
ive surprises, or of their negative counterparts. It is clear 
that increasing the probability that markets will select 
technologies with particular characteristics requires not 
only investment into invention but also more costly in­
vestments that carry inventions through development 
and early demonstration in commercial niche markets. 
Because the benefits of those investments accrue publicly 
and globally, technology policy for global change is 
a global public goods problem. To date, nations have 
used devices such as treaties to coordinate policies to 
limit emissions that cause environmental externalities, 
which has indirectly coordinated technology policy. But 
a frontal approach to global change problems may re­
quire more direct attention to technology policy. 
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