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INSURABILITY OF CATASTROPHIC 
RISKS: THE STOCHASTIC 
OPTIMIZATION MODEL 
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Catastrophes produce losses highly correlated in space and time, which break the law of 
large numbers. We derive the insurability of dependent catastrophic risks by calculating 
conditions that would aid insurers in deliberate selection of their portfolios. This paper 
outlines the general structure of a basic stochastic optimization model. Connections be­
tween the probability of ruin and nonsmooth risk functions, as well as adaptive Monte 
Carlo optimization procedures and path dependent laws oflarge numbers, are discussed. 
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ability; nonsmooth risk functions; adaptive Monte Carlo optimization; path-dependent 
laws of large numbers 
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1. INTRODUCTION 

Catastrophic risks challenge both conventional economic and existing 
risk (insurance) theory. Although risk is a key concept to characterize 
future uncertain outcomes of any socio-economic and environmental 
changes, existing economic theory does not provide appropriate risk­
related approaches. The standard economic theory is dominated by 
the universal power of the price system to reveal all uncertainties and 
bring the economic system to an efficient equilibrium. Insurers are 
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then able to derive the possibility of pricing and spreading risks 
through markets over the whole society in such a way that those who 
have enjoyed gains will compensate those who have suffered losses. 
Under such assumptions of certainty, catastrophes pose no special 
problems [l]. 

Insurance risk theory has developed independently of the funda­
mental economic ideas [l, 11]. The central problem of this theory is 
modeling the probability distribution of total future claims [14], which 
is then used to evaluate ruin probabilities, premiums, reinsurance ar­
rangements etc. This theory essentially relies on the assumption of in­
dependent, frequent, low-consequence (conventional) risks, such as car 
accidents, for which decisions on premiums, estimates of claims and 
likelihood of insolvency (probability of ruin) can be calculated by 
using rich historical data. The frequent conventional risks also permit 
simple "trial-and-error" or "learning-by-doing" procedures for adjust­
ing default decisions, for instance, premiums and coverage. 

Catastrophes produce claims highly correlated in space and time. The 
law of large numbers does not operate (in general) and the probability 
of ruin can be reduced only if insurers deliberately select the dependent 
catastrophic risks they will cover. So-called catastrophe modeling [15] is 
becoming increasingly important to insurance companies for estimating 
dependent catastrophic losses as they analyze alternatives on the allo­
cation of coverage, premiums, reinsurance agreements, and the effects 
of mitigation measures. 

The aim of this paper is to show that the choice of insurance decisions 
in the presence of catastrophic risks can be regarded as a stochastic 
optimization problem. Section 2 illustrates the peculiarities of emerging 
stochastic optimization problems by using a typical model of risk 
theory. Section 3 discusses a rather general model attempting to bridge 
decision-oriented economic theory with risk theory and catastrophe 
modeling. This discussion closely follows papers [5-7]. The concept of 
risk emphasizes the variability of outcomes, the possibility of gains 
and, at the same time, the chances of losses. This type of "hit-or miss" 
situation often leads to nonsmooth models [4], challenging the standard 
paradigm of smooth utilities and their marginal values. In our model the 
risk of ruin is modeled by nonsmooth risk functions. Section 4 discusses 
the connections between the nonsmooth risk functions and the chance 
constraints. Section 5 and 6 analyze the adaptive Monte Carlo 
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optimization procedure on the basis of path-dependent laws of large 
numbers. Section 7 gives concluding remarks. 

2. THE STANDARD RISK MODEL 

To begin with, let us consider a simple model of an insurance business 
[14]. The main variable of concern is the risk reserve rt at time 
t: rt = r0 + 7r t - At' t 2:: 0, where 7r t, At are aggregated premiums and 
claims, and r0 is the initial risk reserve. The process A 1 = L,:~1/ Sk, 

where N(t), t 2:: 0, is a counting process (e.g. , a Poisson process) with 
N(O) = 0, and {Sk};-'° is a sequence of independent and identically dis­
tributed random variables (claims), in other words, replicates of a 
random variable S. 

Assume that N (t) , Sk are independent, N (t) has intensity a, i.e., 
E[N(t)] = a t, and 7r

1 = 7rt , 7r > 0. Then the expected profit over the 
interval [O, t] is (7r - aES)t, that is, the expected profit increases in time 
for 7r - aES > 0. The difference 7r - aES is the "safety loading" . It 
follows from the strong law of large numbers that lim1_.00[7rt -At]/ . 
t = 7r - a ES with probability 1. Therefore, in the case of positive safety 
loading, 7r > aEL, we have to expect that the real random profit 7r 

1 
- A 1 

for large enough t would also be positive under the appropriate choice 
of premium 7r = (I+ p)aES, where p is the "relative safety" loading, 
p = (7r - aES)/aES. This is a basic actuarial principle: premiums are 
calculated by relying on the mean value of aggregated claims increased 
by the (relative) safety loading. Thus, practical actuarial approaches 
ignore complex interdependencies among timing of claims, their sizes, 
and the possibility of ruin, rt::::; 0. The random jumping process rt is 
simply replaced by a linear int function r1 = r0 + (7r - aES)t. 

The main problem of the risk theory [14] is the evaluation of the ruin 
probability '11 = P{rt::::; 0 for some t, t > O} under different assump­
tions on 7r

1 and At. There are several cases where '11 can be explicitly 
given, or at least given in a form suited for numerical calculations. 
An important case arises when the claim distribution is a mixture of 
exponential distributions and claims occur according to a Poisson pro­
cess. There are numerous approximations for the probability distri­
bution of A 1

• Most of them provide satisfactory results only in the 
area of mean values and cannot be applied to catastrophes. 
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Various decision variables affect w. Claim size S depends on the 
coverages of the insurer from different locations. Important decision 
variables are r 0 , 7r, and reinsurance arrangements, for example, the 
"excess of loss" reinsurance contract. In this case the insurer retains 
only a portion, S(x) = min{S,x},x~O, of a claim Sand the remain­
ing portion is passed to the reinsurer. The reinsurance contracts with 
deductibles are defined by two variables x = (xi, x 2). In this case 
S(x) = max{x1,min[S,x2]},x1 ~O,x2 ~0 is retained by the insurer. 
The reduction of \JI to acceptable levels can be viewed as the well­
known chance constraint problem [17, 22]. The complexity is associ­
ated with the jumping process A 1

• 

Consider t = 0, I, .. . , and assume that r 1 can be subdivided into a 
"normal" part (including r 0) M 1

, associated with ordinary claims, and 
a "catastrophic" part B 1

; 7r
1 = 7rl, where 7r corresponds to premiums 

related to catastrophes; the probability of a catastrophic event p is 
characterized by a probability distribution in an interval [p,p], and the 
probability distribution Vr(z) = P{M 1 < z} can be evaluated. Assume 
also that ruin may only occur due to a catastrophe. Then the pro­
bability of ruin after the first catastrophe and with the "excess of loss" 
contract is defined as 

00 

\J!(x) = E LP (I - p) 1
-

1V1(min{x, B 1
} - 7rt). 

1=1 

The problem is to choose the reinsurance contract x that guarantees 
a firm will not exceed a given level of ruin, \J!(x) = /, 'Y > 0. 

We can define the following stochastic approximation type pro­
cedure (see, for example [21] for general definitions) . Let xk be an 
approximate solution calculated after k simulations, where x 0 is an 
arbitrary nonnegative value. Step k +I: choose tk with a probability 
µ1,'f:. 1':,1 µ1 =I, from the set tE{l,2, . .. }; generate Pk E [p,p] and 
simulate claim B~k by a catastrophe model. Adjust xk accordi;:g to the 
feedback 

xk+I =max { O,xk + k: 
1 
µ~ 1 [P (I - p)1k- 1 V1k(min{xk,B~k} 

- 7rtk) - 1] }• 
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where k = 0, I, ... ,p is a positive constant. The sequence xk, 
k = 0, I, ... ,converges to the desired value since µ~ 1p (I - p)rk- 1Vrk 
(min{xk,s;k} - 7rtk) is an estimate of'l!(xk), i.e., its expected value is 
'l!(xk). This type of approach is discussed in Sections 5 and 6 for 
general problems with many insurers and complex dependent claim 
processes. The choice of probabilities µr, t = 0, I, ... can regulate the 
efficiency of the importance sampling (Section 6). 

3. THE STOCHASTIC OPTIMIZATION (STO) MODEL 

To deal with the insurability of catastrophic risks one should 
characterize patterns of possible catastrophic events, geographical 
locations of current and possible new coverages of insurers, available 
loss reduction (mitigation) measures and insurance-linked securities. 
Assume that the study region is divided into subregions or locations 
j = 1, 2, ... , m. For each location j there exists an estimate W/ of the 
"wealth" at time intervals t = 0, 1, ... that includes values of houses, 
factories, etc. A sequence of random, possibly catastrophic, events 
w = {w1, t = 0, 1, . .. } affects different locations} and generates at each 
t losses Lj(w). In the following we do not use a specific structure of the 
sequence w: we simply assume that w is an element of a probability 
space (n, F, P), where n is a set of all possible w; Fis a O'-algebra of 
measurable (with respect to probability measure P) events from n, 
and {Fr} is an increasing family of O'-algebras,Fr ~ Fr+1,Fr ~ F. 
Random variables Lj(w) are assumed to be Fr - measurable, that is, 
they depend on the observable "history" till t. In the following we also 
assume the existence of all necessary mathematical expectations 
without specifying the standard requirements each time. 

Losses Lj(w), in contrast to conventional risks, are shared by many 
participants, such as governments, insurers, reinsurers, banks, and 
brokers. In the model these are called "insurers". 

For each insurer i, the risk reserve rf at time t = 0, I, ... is defined, 
in general, as rf+ 1 = rf +I/ - Of - Sf, t 2: 0, where r? is a fixed 
amount of the initial risk reserve; I/ represents incomes such as 
premiums from insurance contracts and other assets; and Of stands 
for transaction costs and other outcomes, e.g., debts, loans, etc. In 
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the case of catastrophic risks there are strong dependencies among 
variables !/,Of, Sf defined by patterns of catastrophes and decision 
variables. 

Let us denote by qij a fraction of Lj(w) covered by insurer 
i, Li:! qij ~ 1, qij 2: 0. Then the claim process can be written as 
Sf = L 1': 1 qijLJ. The decision variables q affect also!/, Of. For example, 
the income of insurer i from premiums 7rf at time t and the outcome 
from transactions costs Cf may be linear functions of q. nf = 
"'m I I ct - "'m ct I Th 1 . st h L..-J=I 1riJqiJ, i - L..-J=I iJqiJ. e c aim process i as a more com-
plex, nonsmooth structure in the case of reinsurance arrangements. 
Thus insurer i retains only the part Sf =min { uu, LJ:I qijLJ} in the 
case of "excess of loss" contract with reinsurer /, which is defined by 
the decision variables uu. The reinsurer I absorbs the claim Sf = 

Li max { 0, LJ:I qijLJ - uu}, where the sum is taken with respect to all 
insurers having this type of contract with /. Apart from decision vari­
ables q, the distribution of Lj may depend on mitigation measures in 
location}. Variables / 1

, Of are also affected by decisions on other assets. 
Let us define all possible ex-ante decision variables by a vector x. 

If W,° is the initial wealth, then location j's wealth at time t + I is 
w/+ 1 = ")1 + !/ - o; - LJ. We assume that the "aggregate indivi­
dual" from j maximizes his expected wealth ")1

, taking into account 
the risk of underestimating losses, min (0, ")1 

- E")1
], and insolvency, 

W/ < 0. Therefore assume that decisions x are chosen from the 
maximization of the expectation function HJ(x) = Eh/1 (x, w), hj = 
")

1
-

1 +11min (0, ")1
-

1 
- E")t-1] + ¢1 min (0, ")1

), where 11,<f>J are 
substitution coefficients (or risk coefficients) between possible wealth, 
the risk of underestimating losses, and insolvency; TJ is a stopping 
time, for example, the time of ruin not exceeding T, r1 = 
min [T, min { t : ")1 ~ 0, t > 0}]. Similarly, insurer i maximizes his 
expected wealth rf, taking into account the risk of overestimating 
profits and the risk of insolvency (ruin), that is, function Di(x) = 

Ed >.;( ) di_ 1-1 + . [o 1-1 E 1-1] + f; • {o 1} h i x,w, i - ri c;mm ,ri - r; uimm ,ri , w ere 
Ei, 8; are substitution coefficients between profit and the risk of over­
estimating profits, min (0, rf - ER!], and insolvency; >.; is a stopping 
time. e.g.,>.;= min [T,min{t: rf ~ 0, t > O}]. 

The problem is to analyze the Pareto optimal improvement of the 
risk situation with respect to goal functions H1 (x ), D,{x) by maxi­
mizing W(x) = L1':1 OjHJ(x) +Li:! {3;Di(x), where a12: 0, {3; 2: 0, 
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LJ::o1 Ctj + L;'~ 1 /Ji = 1. This problem is similar to economic welfare 
programs [13] . The general idea of this model is also close to the model 

proposed in [3] for designing portfolios of callable bonds. Let 

w(x,w) = L j':I Ctjh/1(x,w) +Li:! /3id/';(x,w), then - W(x) can be 
written as W (x) = Ew(x,w). 

Remark 3.1 In general, functions H , D can be replaced by Hj(x) = 
Eh ( W O,Tj EWO,Tj ) D ( ) - Ed ( O,.X; E 0,Aj ) h O,t -j x , j , j , w , i x - i x, ri , ri , w , w ere a -

( o I r) , O I Th r h · · · a , a , . . . , a 1or a sequence a , a , . . . ere1ore, t e max1m1zat10n 
of W(x ) is an STO problem of the following form: maximize 
F(x ) = Ef(x, Eg(x, w), w). 

4. PROBABILITY OF RUIN 

W(x) includes nonsmooth risk functions to model the need for risk 
management. The use of these risk functions corresponds to the 

Markovitz mean-semivariance model [16]. In [20] it was shown that 
the use of absolute deviations with the appropriate choice of risk 
coefficients is consistent with the stochastic dominance of random out­
comes. The applicability of the well-known mean-variance model [16] 
is usually linked to the normality of the probability distribution sum­
marizing different prospects, which cannot be assumed for catas­

trophic risks. The following theorem shows that if risk coefficients 8i 
become large enough, then the probability of ruin drops below a given 
level [5]. 

The function W(q) can be represented in the form W(q) = V(q)+ 

ELi:i /3i5imin{O ,r/;}. If 5i =N//3;, then W(q)= V(q)+NE L7=1 
min{O, r7j}. If N is large enough, then maximization of W(q) ap­
proximates the maximization of V(q) subject to the chance con­

straints P{ L7=1 min {O , r;>-;} < 0} < c for arbitrarily small c > 0. 
This is due to the following general result, which, for linear chance 
constraints was, in fact, discussed in [25]. 

Consider two general problems: the chance constraint problem 

F(x) ---t maxxEX, P{g(x, w) < O} '.Sc, with optimal value F
0
* and the 

problem <I> N(x) = F(x ) + NG+(x )---t maxxEX' with optimal value if>-;;. 
Here Xis a compact set, F(x) is a continuous function, G+(x) = E 
max{O,g(x ,w)}, and N is a penalty coefficient. 
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THEOREM 4.1 Assume [5] that g(-,w) is almost sure (a.s.) continuous 

and lg (x, w)I :SC (w) for all x EX, EC 1+\w) :SC I+>. < + oo, for some 

C > 0,..\ > O; G+(x') = Ofor some x' EX; P{g(x,w) = O} = 0 VxEX. 
Then there exist non-negative functions c (N ), o.(N), {3(c) and/ > 0 such 

that limN-++oo c(N) = limN-++000.(N) = lim£-+of3(c) = 0, 

<I>~ - o.(N) :'.S F£*(N) :'.S <I>;/£1(N) - {3(c(N)), 

Fi*;N1 h + {3(1/N1h) :'.S <I>~ :'.S F£(N) + o.(N). 

In other words, there always exist large enough N so that the 
maximization of penalty function <I> N (x) generates optimal solutions, 
which also satisfy the chance constraints for any given c > 0. The 
proof of this theorem provides some insights on the reasonable choice 
of N. This value can easily be adjusted in the process of calculations 
[6, 7] by using histograms of random outcomes g (x, w). 

5. THE ESTIMATION OF SUBGRADIENTS 

The maximization of W(x) has the following form. Let j1(x, w), 
((x, w), t = 0, 1, ... be real-valued, random F 1 - measurable func­
tions, which guarantee the existance of necessary expectations; 
T(x, w) = min[T, min{t: (1(x, w) :S 0, t > O}]. Then the maximization 
of W (x) can be viewed as the maximization of a function F (x) = 

Ef(x, w), f(x, w) = fr(x, w). If /1(x, w) are concave in x, then F 1(x) = 
Ef1(x, w) are also concave, but not F(x) due to the dependence of 
T(x, w) on x. The class of so-called generalized differentiable (GD)­
functions is important for problems involving min, max operations as 
in "excess of loss" reinsurance contracts. 

DEFINITION 5.1 Function/: Rn--> R is called generalized differenti­
able at x ER" if in some vicinity of x there exists an upper semi­
continuous at x multivalued (subdifferential) mapping 8/ with closed 
convex compact values 8/ (x) such that f(y) = f(x) + (g, y - x) + 
o (x, y, g ), where ( · , ·) denotes the inner product of two vectors, 
gE8f(y) and limk lo(x,yk,gk)l/llyk-xll=O for any sequences 
yk--> x, gk E 8/(yk). Function f is called generalized differentiable if 
it is generalized differentiable at each point x ER". 
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It is important [19] that continuously differentiable, convex or 
concave functions are generalized differentiable: class GD-functions is 

closed with respect to max, min operations and superpositions, there is 
calculus of subgradients: 

8min(f1,J2)(x) = co{8.fil.fi(x) = min(f1(x),J2(x))}, (5.1) 

where co{·} denotes a convex hull of { ·}; the subdifferential 

8f0(ji, ... Jm) of a composite function fo(fi, ... Jm), where foO is a 
GD-function, is calculated by the chain rule. In addition, the class of 
GD-functions is closed with respect to expectations. It is easy to see 
that f r(x,w)(x, w) may be function discontinuous in x for continuous 

f 1
(-, w), (1(-,w), t = 0, 1, .... Therefore, in general, the maximization of 

F(x) requires the use of stochastic mollifiers [4]. For many important 
cases, for example, when T does not depend on x, andf1(-,w) are GD­
functions, it is possible to show thatfr(x,w)(x, w) is a GD-function and 

to derive the following estimator of a subgradient Fx: 

THEOREM 5.2 Assume [5] that Xis a compact set and 

(i) functions (1(x, w), t = 0, 1,.. . are continiously differentiable in 
x EX for almost all w and sup {I ( 1 (x, w)I Ix EX}::; L(w), with 
integrable function L(w); 

(ii) generalized gradient (in x) mappings ap(x, w) are measurable in w 
and bounded by L (w) for all x EX; 

(iii) for all x EX and t = 0, 1, ... the probability P{ ( 1(x, w) = O} = 0. 

Then 8F(x) = E8f(x, w), where 

at (x,w) = 8f 1(x,w)l1=r· (5.2) 

Assume now X = {xiw(x)::; O}, where w is a GD-function, inf 

{ligll :gE8'11(x)} > O; F(x) = Ef(x,w), where f(·,w), F(-) are GD­
functions. The following key result was proved in [8]. Consider the 
stochastic quasi-gradient (SQG) procedure: 

xk+I E IIx(xk - Pk~k), x0 EX, k = 0, 1, ... ' 

E{~klx0 , ... ,xk} E 8/ (xk,wk), 
(5.3) 

where Ilx(Y) is the (multivalued) projection of y on X, Ilx(Y) = arg 

min{liy- x 11
2, x EX}; Pk~ 0, 'L,~0 Pk= oo, 'L,~0 pi < oo; wk is a 
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sequence of independent observations (simulations) of w. Define X* = 
{xl0E8F(x)+Nx(x)}, where Nx(x) = {u8'11(x):u20} if w(x) = 0 
and Nx(x) = 0 if w(x) < 0. Let X be a compact and 11e11::::; C < oo 
(this usually follows from the compactness of X). 

THEOREM 5.3 All cluster points of {F(xk)} a.s. constitute an interval 
in F*. If set F* does not contain intervals (for example, F* is finite or 
countable), then all cluster points of {xk} a.s. belong to a connected 
subset of X* and {F(xk)} a.s. has a limit in F*. 

From Theorem 5.3 follows the basic SQG procedure for maximizing 
W(x ). Assume that after k independent simulations of events 
w0, . . . , wk-l from (n, F, P) we obtain an approximate solution xk. 
Theorem 5.2 provides the following simple rule for calculating e 
for F(x) := W(x ). For given xk simulate wk from (n, F, P) independ-

1 f 0 k-1. b . . k - ( k k) \k -ent y o w, .. . ,w , o serve stoppmg times T_j - 71 x ,w , "; -
>.;(xk,wk), and calculate subgradients of functions hj(x,w(k)), for 
t :S 'rf, and df(x ,w(k)), fort :S >.7. Compute 

m n 

~k = La1h}x(xk,wk)l1=rj + L,Bidfx(xk ,wk)lt=A7· (5.4) 
j=1 i=l 

After that a new xk+I is adjusted according to (5 .3), and so on. The 
implementation of this basic procedure requires at least the exact cal­
culation of functions h, d, which may be impossible for general cases. 
Let us consider this in more detail. 

6. ADAPTIVE MONTE CARLO OPTIMIZATION 

The maximization of W(x), in general, is regarded as estimating the 
maximum value F* of the integral (see Remark 3.1) 

F(x) = j f(x, Eg(x, w) , w)P(dw) ( 6.1) 

and a corresponding optimal solution x* from a subset X. "Adaptive 
Monte Carlo" usually means [23] a technique that makes on-line use of 
sampling information to improve sequentially the efficiency of the 
sampling itself. We use "adaptive Monte Carlo optimization" in a 
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rather broad sense, i.e., when the efficiency of the sampling procedure 
is considered as a part of more general improvements with respect to 
different decisions and goals. The adaptive Monte Carlo optimization 
problem arises when the probability measure P and/or the sample 
function fare not explicitly known, but known only in terms of other 
explicitly known measures and functions. 

The random function f(x, Eg(x, w), w) in (6.1) may not be 
analytically tractable even for simple risk management problems 
(Section 2). The essential complexity is associated with the calculation 
of expectation Eg(x, w). Assume that f(x, v, w), g(x, w) are GD­
functions with respect to x , v, and :F - measurable with respect to 
w. A stochastic sub gradient of F(x), that is, an estimate of sub gradient 
Fx, is fx(x, Eg(x, w) , w) + f,,(x, v, w)/v= Eg(x, w~x(x, B), where w, B, are 
independent samples from P. Unfortunately, we cannot use this for­
mula directly because expectation Eg is not explicitly known. Consid­
er the sequence of estimates x \ generated by (5.3) with 

where vk is an estimate,of E[g(x\w) I xk] defined by the rule 

k+I - k ( ( k k) k) _O - 0 k - 0 l 2 v - v + ak g x ,w - v , ,, - , - , , , . . . . (6.3) 

Let us note that if ak = l /k+ 1, then vk = k - 1 I::;=I g(xs,ws). 
Assume that sequence x\ k = 0,1 , ... , converges with probability 1. 

The convergence of vk to E{g(xk,w)/xk}, vk-E{g(x\w)/xk}-tO, 
with probability 1, is then derived from known results [12, 18] on the 
law of large numbers for dependent random variables. Unfortunately, 
the convergence of {xk} (defined by (5.3) , (5.4), (6.3)) itself is derived 
only from the convergence vk - E{g(x\ w) I xk}-t 0, that is, if esti­
mates vk "track" E{g(x\w)/xk} without assumption of the conver­
gence of {xk}. This is typical situation for the nonstationary 
optimization [1 O]. The following general theorem [9] shows that v k 

is able to track E{g(xk,w)/xk} without the convergence of xk. 
Let (O,:F, P) be a probability space with a flow of nondecreasing a­

algebras :Fk ~ Fk+I ~ :F, k = 1, 2, . . . ; (k(w): 0-t R" are measurable 
with respect to :Fk. k = 1, 2, ... , zk(w) = E{(k(w)/:Fk_i}. Consider the 
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following estimators: 

where ( 0 = 0, z0 = 0, Z is a convex compact set from Rn, IIz ( y) is the 
projection of yon Zand random variables ak are Fk-I - measurable. 

THEOREM 6.1 Assume [9]for some 0 < c :S 1 

00 00 

O :S ak :S 1, lir1 ak = 0, L ak = oo L aL+0 < +oo a.s. : 
k=O k=O 

Then limk((k(w) - :zk(w)) = 0 a.s. Suppose additionally that 

Then limk( z k - II2(zk) = 0 a.s. and hence /imk((k(w) - IIz(zk(w)) = 
0 a.s. 

Thus, if z k(w) E Z, then estimator (k a.s. tracks a moving mean zk 
as k-. oo. Consider now again the procedures (5.3), (6.2), (6.3). We 
can always assume that llxk+I - xkll :S Cpk for a constant C. If limkpk/ 
ak=O, then lgk-Eg(x\w)l-.O for k->oo (from Theorem 6.1). 
Therefore, this justifies the use of f(xk, vk, wk) as an estimate of 
f(x\Eg(x\w),wk) and ~k from (6.2) as an estimate of Fx(xk). The 
full convergence analysis of (5.3), (6.2) is similar to [8] . 

The fast simulation of rare catastrophes and the variance reduction 
of estimates W(xk),k = 0, 1, .. . can be achieved by importance 
sampling. A general idea of adaptive improvement of the sampling 
procedure was introduced by Pugh [23]. Unfortunately, the proposed 
approach itself requires the additional estimation of some integrals. 
Stochastic optimization procedures of type (5.3), (6.2), (6.3) allow for 
sequential variance reduction without major additional computations. 
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The general idea is as follows [7]. Consider a probability measure 
µ(w) on the domain of P such that W(x) = J w(x, w)(dP/dµ)dµ(w), 
where (dP/dµ) is the Radon-Nycodym derivative [18]. The random 
variable w(x,w) (dP/dµ) is an estimate of W(x). The variance of this 
estimator is <I>:= Jw 2 (x, w)(dP/dµ) 2dµ(w) - W2(x). The aim is to find 
a µ that minimizes <I> . 

Let the family of distributionsµ be indexed by the vector parameter y. 

Then w, (dP/dµ) are functions of y. Let us assume that they are 
continuously differentiable. It is easy to see that 8<I> /8y1 = 2 J w2(d/dy!) 
(dP/dµ)dP = 2 J w2 (d/dy1) (dP/dµ) (dP/dµ) dµ. Together with proce­
dures (5.3), (6.2), (6.3) consider a sequence of measures µk := µ(yk, w) 
defined by the sequence of vectors {yk},yk+ 1 = yk - <f>kw 2(xk,wk) 
grad(dP/dµ)ly=yk(dP/dµ), where r:;;k is a sample from µk; <f>k satisfies 
the same conditions as Pk· The convergence of the resulting procedure 
easily follows because W(x) does not depend on y. 

7. CONCLUDING REMARKS 

Numerical experiments with the proposed model show a satisfactory 
convergence of the methods analyzed. The model has a rather general 
form suitable for so-called integrated catastrophe risk management 
[24], in other words, for the analysis of location-specific risk reduction 
measures combined with different risk spreading options. It takes into 
account differences in vulnerability between various insurance port­
folios and geographically explicit, dependent losses from events occur­
ing at different locations. Paper [24] discusses the need for integrated 
risk management as the natural further development of catastrophe 
modeling. 

Our model can be used by one insurer or a pool of insurers. The 
importance of cooperative efforts of insurers ("pooling" of risks) was 
emphasized by Borch [2]. In contrast to [2], the model includes trans­
action costs and deals with non-substitutable catastrophic risks. The 
solution of the resulting stochastic optimization problem by (5.3) can 
be organized in a decentralized manner by using a computer's network 
connecting all insurers. 

The maximization of functions Hj, Dj generates the insurance 
demand and supply functions, which depend on premiums. The choice 
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of premiums must reflect the balance between insurance demand and 
supply that calls for an appropriate concept of stochastic equilibrium. 
This requires special attention. 
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