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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

II. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population
forecasting;

III. the analysis and design of migration and settle-

ment‘golicz;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the eighth in the spatial population dynamics
series, examines the dynamics of structural change in gpatial
demographic systems by extending the single-region formulas of
mathematical demographers such as Goodman and Keyfitz to the
multiregional case. It was written here at IIASA this past
year as part of a doctoral dissertation submitted to Northwestern
University and was financially supported by a research fellow-
ship awarded to Willekens by the Institute.

Willeken's study illuminates an important aspect of our
work in migration processes and settlement patterns. He uses
matrix differentiation techniques to develop sensitivity func-
tions which link changes in various age-specific rates to
corresponding changes in important multiregional demographic
parameters. In this way he is able to develop a uniform proce-
dure for tracing through the impacts of changes in fertility,
mortality, and migration.

Related papers in the spatial population dynamics series
and other publications of the migration and settlement study
are listed on the back page of this report.

A. Rogers
June 1976
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Abstract

This paper studies the impact on major popu-
lation characteristics of changes in structural
demographic parameters. The parameters considered
are age-specific fertility, mortality and migration
rates. Applying the technique of matrix differen-
tiation, sensitivity functions are derived which
link changes in important multiregional demographic
statistics, such as life-table statistics and
population growth and stable population character-
istics, to changes in age-specific rates. 1In
addition it is shown how the discrete and continuous
models of population growth may be reconciled.
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CHAPTER 1

INTRODUCTION

The field of mathematical demography is concerned with
the mathematical description of how fertility and mortality
combine to determine the characteristics of population,
and to shape their growth. Traditionally, demographers
[e.g., Keyfitz (1968) and Coale (1972)] have restricted their
attention to fertility and mortality, assuming in fact that
populations are "closed" to migration, i.e., populations
undisturbed by in- and outmigration. This is an unrealistic
assumption, especially in population analysis at the sub-
national level. The introduction of migration into mathe-
matical demography has been pioneered by Rogers (1975).

He describes, in analytical terms, how fertility, mortality
and migration combine to determine the features and the
growth of multiregional population systems. The basic tool
used is matrix algebra.

Mathematical demography demonstrates how various
demographic characteristics may be expressed in terms of
observed age-specific fertility, mortality and migration
rates. The fundamental assumptions underlying the models
is that the age-specific rates, i.e., the structural param-
eters, are known exactly and that they remain fixed over
time. The implications of this are expressed by Keyfitz
(1968; p. 27): "The object (of population projection) is
to understand the past rather than to predict the future;
apparently the way to think effectively about an observed set
of birth and death rates is to ask what it would lead to if

continued."




No one truly believes that fertility, mortality and
migration schedules are measured without observation error
and that they will remain unchanged for a prolonged period
of time. However, variations in structural parameters have
not been considered until recently (e.g., Keyfitz, 1971;
Goodman, 1969, 1971b; Preston, 1974).

It is the purpose of this paper to contribute to a
better understanding of the impact on the population system
of changes in its structural parameters. The system
considered is a multiregional demographic system, described
in Rogers (1975). The parameters are the age-specific
fertility, mortality and migration rates. In general terms,
the problem is to find how sensitive stationary population
characteristics, population projections, and stable popula-
tion characteristics are to changes in age-specific rates.

The sensitivity of the stable characteristics of popula-
tion systems undisturbed by migration have received most
attention. That most effort has b=2en devoted to the stable
population becomes clear if one recalls that the stable
population concept was developed as a device which displays
the implications for age composition, birth rates, death
rates, and growth rates of specified schedules of fertility
and mortality, on the assumption that the schedules prevail
long enough for other influences to be erased. In actual
fact, however, the stable population is never achieved, since
the basic schedules change through time. The question of the
impact of such changes on the stable population therefore is
principally one of theoretical rather than empirical impor-

tance.



Two approaches to impact analysis may be distinguished.
The first is the simulation approach, or the arithmetic
approach as Keyfitz (1971; p. 275) calls it. It is simply
the computation of the population projection under the old
and the new rates. The difference between the two in the
ultimate age distribution and other features gives the
impact of changing the rates. Suitable tools for the
simulation approach are provided by the model life tables
and model stable populations such as those developed by
Coale and Demeny (1966) for a single-region demographic
system and by Rogers (1975; Chapter 6) for a multiregional
system. An illustration of this approach has been given by
Rogers (1975; pp. 169-172) and Rogers and Willekens (1975;
pp. 28-30). Besides its demanding character in terms of
computer time, the approach tells us nothing about the
complete set of parameters on which the changes in the final
results depend. It will be found useful, however, for
verifying the results of the second approach, which is the
analytical approach. This procedure derives a general
formula for assessing the impact of a particular change
in terms of well-known population variables. Such a formula
will be designated as a sensitivity function. Partial
differentiation will be seen to be the basic ingredient in
the analysis of such functions.

In this paper, impact analysis is performed using the
analytical approach. It is assumed that all the functions
are differentiable with respect to the variables in which
the changes occur. Since multiregional demographic models
are formulated in matrix terms, matrix differentiation

techniques are applied. And because not much work has been




done in the area of matrix calculus, the first section of
the Appendix to this paper reviews several relevant topics
of such a calculus1

In order to be able to study the sensitivity of the
stable population characteristics, we need an additional
piece of information. All stable population features may
be expressed as functions of the stable population distri-
bution, the growth ratio of the stable population, and the
age-specific fertility, mortality and migration rates.
Therefore, the prerequisite to impact analysis of the stable
population is a knowledge of the sensitivity of the stable
population distribution and the stable growth ratio to
changes in the age-specific rates.

Rogers (1975; p. 128) has shown that the stable growth
ratio is the dominant eigenvalue of the growth matrix, and
that the stable population distribution is the associated
right eigenvector. The problem may, therefore, be reformu-
lated as finding the sensitivity of the dominant eigenvalue
and eigenvector to changes in the growth matrix, and the
sensitivity of the elements of the growth matrix to changes
in the age-specific rates that are used to define it.

The problem of eigenvalue and eigenvector sensitivity
has received some attention in the engineering literature

(e.g., Cruz, 1970; Part III). An overview of the major

'a11 major textbooks on matrix algebra lack a chapter

on matrix calculus, although some scattered treatment may
occur. The only unified treatment of matrix differentiation
that we have found is by Dwyer and MacPhail (1948). A
simplified and extended version appeared twenty years later
in Dwyer (1967). The formulas given there are general enough
to handle differentiation problems in life table functions

and in the analysis of population projections over a finite
time horizon.



relevant results of this literature is given in the second
section of the Appendix. It is worth noting at this point
that the application of this technique in population dynamics
is not restricted to the stable population. This technique
is relevant in every situation where the eigenvalues of a
particular matrix have some demographic meaning. For instance,
Rogers and Willekens (1975; p. 39) state that the dominant
eigenvalue of the net reproduction matrix of a multiregional
population system represents the net reproduction rate of the
whole system. Hence examining the impact on the net repro-
duction rate of the United States of a change in the net
reproduction rate of rural-born women living in urban areas,

is a problem of eigenvalue sensitivity analysis.




CHAPTER 2

IMPACT OF CHANGES IN AGE-SPECIFIC
RATES ON LIFE TABLE FUNCTIONS

The concept of a multiregional life table as developed
by Rogers (1973 and 1975, Chapter 3) is a device for
exhibiting the mortality and migration history of a set of
regional cohorts as they age. It is assumed that the age-
specific rates describing the mortality and mobility
experience of an actual population remain constant, and
that the system of regions is undisturbed by external
migration.

The first part of this chapter sets out the life table
functions. The cohorts we will consider are birth cohorts
or radices. Their life history is of special interest
because they provide the information required by population
projection models. The life table statistics are given by
place of birth. 1In the second part, we combine the life
table functions with the matrix differentiation techniques
described in the Appendix. This enables us to develop life

table sensitivity functions.

2.1. THE MULTIREGIONAL LIFE TABLE

All the life table functions are derived from a set of
age-specific death and out-migration rates. Let M(x) denote
the matrix of observed annual rates for the persons in the
age interval from x to x + h. The length of the interval
h is arbitrary. Without loss of generality, we will consider

age intervals of five years. For a N-region system, M(x) is



N
M. (x) + Z M. . (%) - M., (x) - M (X)) -
16 i 1 b1 31
N
M(x) = - M, (x) My (x) + } My (x) My, (x) =-e
j#2
)
M, ,(x) - (x) M, (x) + M,.(x))*-"
13 M3 35 ihy 3

(2.1)

where Mid(x) is the age-specific annual death rate in region
i, and
M..(x) is the age-specific annual out-migration rate
from region i to region j. It is estimated by
the annual number of out-migrants to j divided

by the mid-year population of i.

Let P(x) be the matrix of age-specific probabilities

of dying and out-migrating:

= ce ]

Py (x) Py (%)

P(x) = . (2.2)




with pij(x) being the probability that an individual in
region i at exact age x will survive and he in region j at
exact age x + 5. The diagonal element pii(x) is the
probability that an individual will survive and be in
region i at the end of the interval. 1If qg;(x) is the
probability that an individual in region i at age x will

die before reaching age x + 5, then the following relation-

ship follows

p;;(x) =1 - qg;(x) - _Z p..(x) . (2.3)

If multiple transition between two states is allowed during
a unit time interval, then P(x) is given by (Schoen, 1975;

Rogers and Ledent, 1976):

P(x) = [I+ 5 M(x)]""

1 -3M60] . (2.4)

The probability that an individual starting out in
region j, i.e., born in j, will be in region i at exact

age x is denoted by jQi(x). The matrix containing those

probabilities is

13/1 (x) 23/1 (x) . ¢« o .
p0x) = | 40,00 S, x) o e e e (2.5)




By this definition we have that

2(x) = P(x = 5) P(x = 10) <+- P(0)

P(x - 5) &(x - 5)

(2.6)

Define

IR

L{x) =

~

(x) £(0) (2.7)

where g(O) is a diagonal matrix of the cohorts of babies
born in the N regions at a given instant in time. Typically,
iJLi(O) is called the radix of region i and is set equal to
some arbitrary constant such as 100,000. -Then £(x) is the
matrix of the number of people at exact age x by place of
residence and by place of birth.

Another life table function is the total number of
people of age group x, i.e., aged x to x + 5, in each region
by place of birth:

1L1(x) 2L1(x) e & o o

L(x) = 1L2(x) Lo(x) ¢« ¢« ¢ = (2.8)

with jLi(x) being the number of people in region i in age
group x who were born in region j. The element jLi(x) can
also be thought of as the total person-vears lived in

region i between ages x and x + 5, by the people born in
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region j. The matrix L(x) is given by

5 5
%(x) = J %(x + t) dt = J
0 0

R

(x + 5) dt L(0) .
(2.9)
Assuming a uniform distribution of out-migrations and
deaths over the 5-year age interval, we may obtain numerical

values for L(x) by the linear interpolation

L(x)

i

5L + L(x+ 5]

or (2.10)

E,(x) % [; + 13(x)] 2(x) .

Aggregating L(x) over various age groups, we define

the exvected total number of person-years remaining to the

people at exact age x, as

z
T(x) = ] Li(y) (2.11)

where z is the terminal age group. Expressing T(x) per
individual, we get the matrix of expectations of life of

an individual at exact age x:

z -1
) I:(y)]g (x) . (2.12)



A very useful life table function is the survivorship
matrix. It is an essential component of the pooulation

projection matrix. Rogers (1975; p. 79) has shown that the

survivorship matrix

s11(x) 521(x) e e o .

is given by

S(x) = L(x +5) L

~

(x) . (2.14)

The element sij(x) denotes the proportion of individuals
aged x to x + 4 in region i, who survive to he x + 5 to |
X + 9 years old five years later, and are then in region j.
We now have set up the important life table functions,
and can proceed to the analysis of their sensitivities to

changes in the underlying rates, i.e., in M(x).

2.2 SENSITIVITY ANALYSIS OF LIFE TABLE FUNCTIONS

The fundamental question posed in this section is:
what is the effect on the various life table statistics of
a change in the observed age-specific rates? To resolve
this guestion, the life table functions are combined with
the matrix differentiation techniques of the appendix.

This section is divided into five parts. Each

part starts out with a specific life table function.



The derivative of this function with respect to an element
of the matrix of age-specific rates yields the correspond-
ing sensitivity function.
a. Sensitivity of the probabilities of dying and
out-migrating

Recall the estimating formula set out in (2.4):

1 5

P(x) = [I+3M17 [I-2Mx] . (2.4)

~

In it g(x) only depends on M(x). Therefore, P(a) is not
affected by a change in M(x) for a # x.
The derivative of P(x) with respect to an arbitrary

element of @(x) is, by formulas (A.13) and (A.25) of the

Appendix,
6P(x)  S[I + 3 M(x)]] ]
= (I -35Mx)]
6<¥(x)> 6<¥(x)> ~ ~
5
_1 O8I = 5 M(x)]
+ 0T+ M) 2
N ” §<M(x)>
. _q 80T + -g—M(X)] 5 -1
= - (I + 35 M(x)] - - [I + 5 M(x)]

6<¥(x)>

5
_q SI[I - 5 M(x)]
(I - 3M)] + [1+3Mm) " ——2=

6<@(x)>

= - I+ 3]

5

(3 32(x) + 3 3]

where J is a matrix of the dimension of M(x) with all elements
zero except for a one on the position of the arbitrary element

<M(x)>. (This notation is further explained in the Appendix.)
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The sensitivity function for P(x) therefore is

SP(x) 1

= -2+ 2 M7

[Saa]

'g—————— J[P(x) + 1] . (2.15)
<l’\:l(x)> ~oT -

After the transformation

[1 + ;:irg(x)]‘1 [[; - %l‘}(x)] + [T + %B}(x)l]

[P(x) + }]

5

[1+ 3 Mx)]7

[+ I =201 +3M6)]7

the sensitivity function becomes

6P (x) 5

2

1 1

= - SII+ 2 M) JIT 4 3 Mx)]T (2.16)

6<M(x)>

b. Sensitivity of the number of people at exact age a
A change in g(x) does not affect g(a) for a < x. There-
fore we look only at the case a > x. Note that £(a) may be

written as

f(a) = P(a=-5) Pla- 10) =+ P(x) £(x)

Recalling that M(x) only affects P(Xx), we write

§g(a) SP (%)
————— = P(a - 5) P(a - 10) --- =
S<M(x)> ” ” S<M(x)>

2 (x)

~

- % [E(a - 5) P(a - 10) == E(x + 5) (2.17)

(1 + 3400177 Jp(x) + I g(x)]
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Inserting

5 =1

I=1[I-3Mx] L(x 2 >

() [1-3m60]"7"

in (2.17) and substituting for E(x) yields

64 (a)

—_——— = - % [P(a - 5) P(a - 10) +*+ P(a + 5) P(x) 2(x) Q_1(x)
S<M(x)> ” ~ - - ~ ~
5 -1
(I - 5 M(x)] J[P(x) + I] g(x)]
82(a) 5 -1 5 -1
=- 3 g(a) & (x) [I - 3 M(x)] J[P(x) + I] 2(x)
6<¥(x)> ~ - - - - -

(2.18)

or by (2.10)

5§ (a) _
= = - 2(a) & (%) [I -

un

A 7M(x)]'1 JL(x) .  (2.19)
5<¥(x)> h T

For a = x + 5, we have

dg(x + 5)

1 1

= - P(x) [I-3M)]17 JL(x) = - [T +3Mx17" JL(x)

§<M (x) >
(2.20)

An interesting formulation of the sensitivity function

follows from writing (2.18) as

64 (a) -1 SP(x)
— = 2(a) [P(x) 2(xX)] - 2 (x)
S<M(x)> N N §<M(x)> ~

1 1 SP (x)
= 2(a) 2 (x) P (X) ——— (%)

~

S<M(x)> ~



or

SP (%)
= (X) ——mm— 2 (x) . (2.21)
§<M(x)> S<M(x)> ~

x
g

This shows that the relative sensitivity of 2(a) to changes
in @(x) is a weighted average of the relative sensitivity
of g(x), énd is independent of a. Consider the first age
group and suppose that all regions have the same radices,
i.e., g(O) is a scalar matrix, i.e., a diagonal matrix with
the same diagonal elements. The relative sensitivity of
any £(a) is then equal to the relative sensitivity of P(0).
c. Sensitivity of the number of people in age group
(a, a + 4)

What is the impact of a change in g(x) on the number
of people in age group (a, a + 4) and on their spatial
distribution? It is clear that g(x) does not affect g(a)
for a < x. Therefore, we consider here the case of a > x.
Recall from (2.10) that

L(a) = 3 [%(a + 5) + 8(a)] .

Differentiating both sides gives

5L (a) 5 [5g<a + 5) 6% (a) ]
6<¥(x)> -2 6<¥(x)> ‘ 6<@(x)>
8% (a)

If a = x, then ————— = 0 and we have
6<M(x) > -




6L (x)

6<¥(x)>
which has the

6L (x)

(S<]_Z[ (x)>

If a > x,

and therefore

- 16 -

Gg(x + 5)

5 5 5 -1

————— =3 [I + 5 M(x)]  JL(x) (2.22)
? s 2 2T IR IL
following alternative expressions:
- S[P(x) + I] JL(x) (2.23)
-3 P& [I-3M]7 JLx) (2.24)
- Lo 270 11 - 3017 JL

(2.25)

+ 200 - 3 Mx)17 JL(x)

we know that P(a) is independent of M(x),

SL(a) o 52 (a)
——— = 3 [P(a) + I]
8<M (x) > " Ts<M(x)>
= - 3 [p(a) + I 2(a) 27 (x) (I -2 Mx)17" JL(x)
_ -1 5 -1
= - L(a) 2 (x) [I - 5 M(x)] JL (x) (2.26)
which may also be written as
6L (a) 1 6% (a)
———— = 3 [P(a) + I] 2(a) ¢ (a) ———
§<M(x)> - T ~ §<M(x)>



whence, since % [g(a) + 5] %(a) = %(a),
-1 SL(a) -1 ég(a)
L (a) ——— = ¢ (a) —————m . (2.27)
b 6<M(x)> - 6<M(x) >

Equation (2.27) indicates that the relative sensitivitv of
the number of people in age group (a, a + 4) is equal to
the relative sensitivitv of the number of people at exact
age a for a > x.

d. Sensitivity of the expectation of life at age a

We now proceed to deriving the sensitivity function
of the most important life table statistic, namely the
expectation of life. First consider the sensitivity of

g(x). Differentiating both sides of (2.12) yields

Z
Se (x) ‘S[ l T:(Y)] 1 2 5071 (x)
~ — V=X | g (x) + [ Z E'(y)] .

5 <M (x) > 5<M (x) > y=x 5<M (x) >

(2.28)

From (2.22) and (2.26), we see that

V4
6[2 I;(y)‘-l ”
Y=X L - - [ ) r:(y)] 27 ) 11 - 3 me017! IL ()

§<M (x) >

1
1
| —
1N

an

=

RS
—

x

+
oL

[

x

+
NS

H

|

oo

tH

| S
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2 -1 -1 5
= - I Lly) & (x) +L(x) & (x) - 51
y=x+5 ” - ” N

S - 2 M1 gL )

- le(x) - 2 I1 [I-3M46017" JL(x)

Since g(x) is independent of @(x), we may write (2.28) as

follows

oe (x) 1 1

(%)
(2.29)

= - le(x) - 311 [I-3M17" JLx) &

6<g(x)>

For a < X, we have

b4 X-5 -1

s (a) 8 _2 L(y) + L(x) + 2 L(y)| & (a)
~ - v=X+5 y=a

8 <M (x) > 8<M (x)>

We know that

SL (y)
-~ =0 , for vy < x
6<¥(x)> -
and
68 (a)
=0 ’ for a < x

6<¥(x)>
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Therefore
Z -1
se (a) 6[_2 y(y{‘ 2”1 (a)
i 9 V—x i
8<M (x) > 5<M (x) >
s T | 2T o0 27 @
Se(a) Lo - SR a
= _ y=X
6<g(x)> 6<@(x)>
e (a) Se(a) -1
- - 2 (x) 27 (a) (2.30)
S<M(x)> S<M(x)> ~ ~
Se(a) _ _
———— = - [e(®) -2 1) [I-3M] ILEx) L7 ()
6<[11(x)> ~ ~ ~ - ~
(2.31)
= - e(x [I-3M)]17" JLx) 2 (a)

1 1

+2 00 - 24017 JLx) 27 (@) . (2.32)

The second component of the sensitivity function is due to the

linear approximation L(X) =

5

5 [2(x + 5) + 2(x)] of the

continuous relationship




_20_
Consider the continuous definition of g(a)

w
e(a) = J g(t) at| 27" (a)

~

a

where w is the terminal age. Differentiating yields

se(a) | (Y su(t) »
- J - at{ 2 '@ , fora < x
§<M(x) > §<M(x)> )
[ W
- J - 206 270 1 - 3 M1 gre) at| 27 ()
| X
Since 2(t) is independent of @(x), if t < x
Se(a) ; -1 5 -1 1
—_—— = - J 2(t) dt Lo (x) [T - 5 M(x)] Je(x) & (a)
6 <M (x) > - - - - -
~ X
_ 5 -1 -1
= - et [I-3M17 32 2 (@) (2.33)

which is equivalent to the first term of (2.32) with the term
g(x) replaced by %(x) in the discrete case. The expression
(2.33), written in terms of differentials, is similar to the
sensitivity function of the expectation of life, given by

Keyfitz (1971, p. 276) for the single-region case

de(a) = - e(x) [AM(x)] &(x) 2 ' (a)

where e(*), 2(*) and M(+) are scalars.



The term [} - % E;I(x)]_1 in (2.33) is due to the fact that

we consider observed rates where Keyfitz derived the

formula using instantaneous rates. If M (x) contained

instantaneous rates, then M(x) = 0 and [I - % M(x)] = I.
e. Sensitivity of the survivorship proportions

As in the proceeding sections, we treat separately S (a)

for a = x and for a > x. The survivorship matrix is given

by (2.14) as

S(x) = L(x +5) L' (x) ,

which may be reexpressed as

1 1

S(x) = [P(x + 5) + Il P(x) &(x) 2 (x) [P(x) + I
(2.34)
= [P(x + 5) + I] P(x) [P(x) + I]
Differentiating with respect to <¥(x)> yields
6§(x) SP (x) -1
———— = [P(X + 5) + I] ——— [P(x) + I]
6<§(x)> ~ - 6<g(x)> ¥ -
-1
§[P(x) + I
+ [P(x + 5) + I] P(x) ~
- T 6<¥(x)>
8P (x) -1
= [P(x + 5) + I] | —— - P(x)[P(x) + I]
= = S<t1 (%) > z 3 b

+ [P(x) + 117

6P (x)

6<¥(x)>

]




(p(x + 5 + 1 [1
p(x + 5 + 11 |1

I+ 3 Mx)]"
3 [P(x + 5)

Substituting for §(x) gives

88 (x)

6<§(x)>

N

Noj

[S(x) - P(x + 5) +

S(x) [T+ 3M(x)1”

N

S(x) [1+3M)1°

1

1

1

- E(x)

- P(x)

[P (x)

[P (x)

J [P (x)

J

J

v 11 [0 )

N

8P (%)
+ I]—1] S
- 6<¥(x)>
-1
[P(x) + I]

M(x)]™. 3

[P(x +5) + I [I+3Mx] " J

S 3PE+5) + I PG L6 &0 PG+ 2ME]T g

1

1

-~
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Since
S Ip(x + 5 + I] B(x) &(x) = Lix + 5)

and

e P oo a3 meo1T = g7 e T -
where g—1(x) may bhe written as
2™ (x) =[§]g'1<x) 1+ P17 5 [I+ P(x)]

=17 IR,

~

we have that

65 (x)

Il
1Y)
)
D
Y
+
nof
=
%
o

6<g(x)>

- L(x+5) L) 3 II4 R M- 3M601

= % S(x) [I + % lgl(X)]_1 J - % S (x)

S(x) P(x) [I-35Mx)1 "3

[
N L

But

P(x) [I-3Me)]17 " = [1+3H]

N U

5
1-3

M),

1

M(x)]"

J

1

J
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Thé;efore
85 (x) _
—_— = - % s(x) [I - g M) g (2.35)
<M (x) > ~ ~ - -

To illustrate the dynamic relationship between the 1life
table statistics, we may express the sensitivity of S(x) in
relation to the sensitivity of other statistics. For

example, a combination of (2.35) with (2.26) vields

-1 68 (x) -1 SL(x) 4
S (X) ————— =P (X)) —/———— L ' (x)
~ 6<¥(x)> - §<M(x)>

and a combination of (2.35) with (2.19) gives

-1 68 (x) 5 -
S (x) —— = - 5 P (x)
¥ 6 <M (x)> ~ §<M(x) >

-1

S2(x + 5)

The relative sensitivity of §(x) may be regarded as a
weighted measure of the sensitivities of other statistics.
We now turn to the sensitivity of §(a) to changes in

@(x) for a # x. For a > x and for a < x - 5, S(a) is
independent of a change in @(x). This can easily be seen in
equation (2.34) while noting that g(a) is not affected by
@(x) if a # x. The sensitivity of §(x - 5) to a change in
@(x) is derived next. We begin by writing (2.34) for

X -5
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1

S(x - 5) = [P(x) + Il P(x = 5) [P(x - 5) + I]
§s(x - 5)  S[P(x) + II -1
> = = — P(x - 5) [P(x - 5) + I]
6<]L1(x)> (S<!L1(x)> ~ ~ ~
- _5 5 -1 _ -1
= -3 [I+3Mx1 J[P(x)+ I1P(x - 5)[P(x - 5) + I
§S(x - 5) 5 5 -1
———— =- 3 [I + 3 M(x)]  J S(x - 5) (2.36)
S<M(x) > ” ~ T
_ .55 5 -1
= - %5 P(x) [I-5Mx)] JIs (x-25) . (2.37)

The relationship

S(x - 5)

~

§S (x)

§<M (x)>

§S(x - 5)

§<M(x)>

is

S (x - 5) (2.38)

S(x - 5) . (2.39)




CHAPTER 3

IMPACT OF CHANGES IN AGE-SPECIFIC RATES
ON THE POPULATION PROJECTION

Population projection is often carried out under the
assumption that an observed population growth regime will
remain constant. This implies that the observed age-specific
rates will not change over the projection period. (This is
a crude assumption and no demographer or planner considers
it to be a realistic one. Nevertheless it produces a use-
ful benchmark against which to compare other alternative
projections.) In this chapter, we deal with the guestion
of how sensitive population projections are to changes in
age-specific rates. These variations may occur at any point
in time. If they occur in the base year, they can be
related to observation errors. The sensitivity functions
we develop remain exactly the same, no matter what the
causes of the variations are.

In the first part, the population growth model is set
out as a system of first order linear homogenous difference
equations with constant coefficients, as in Rogers (1975,
Chapter 5). The second part studies the sensitivity of

population growth to changes in observed age-specific rates.

3.1. THE DISCRETE MODEL OF MULTIREGIONAL DEMOGRAPHIC GROWTH

Population growth may be expressed in terms of the
changing level of vopulation or in terms of the variation
of the number of births over time. 1In demography, it has
been a custom to formulate the discrete model of population

growth in terms of total pooulation, while the continuous
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version describes the birth trajectory (Keyfitz, 1968;
Rogers, 1975). A secondary objective of this and the next
chapter is to contribute to the reconciliation of both
growth models. We will formulate population growth in the
discrete time domain. However, several particularities of
the continuous model have a discrete counterpart. 1In this
section, it will be shown how the population growth path
relates to the trajectory of births.

a. The population model

A multiregional growth process may be described as a

matrix multiplication (Rogers, 1975; p. 123):
x ™Dy - gx(t)) (3.1)

where the vector {g(t)} describes the regional age-spvecific

population distribution at time t, with

x® (o)) k(8 (x)
x® (5)) k(&) (x)

x®)y - ) and (x‘®) (%)} = , , (3.2)
x® (2)) k(&) (x)

z being the terminal age interval and N the number of regions.

Fach element K(E)(x) denotes the number of people in
region i at time t, x to X + 4 years old. Note that t + 1
represents the next moment in time, i.e., 5 years later than
t. We consider age-groups and time intervals of 5 years.

The operator G is the generalized Leslie matrix




| 9 9 ?(a — 5) * s 00 g(B -— 5) 9 o e s 9
?(0) 0
G = 9 §(5) (3.3)
o 0 " S(z - 5)0

with S(x}, the matrix of survivorship proportions, retaining
the definition set out in the previous chapter. The first
and last ages of childbearing may be denoted bv a and B,
respectively, and

I e —

b11(x) b21 (x) R

B(x) = |P12(X)  Bpylx) =ece

where an element bij(x) denotes the average number of babies
born during the unit time interval in region i and alive in
region j at the end of that interval, per individual living
in region i at the beginning of the interval and x to x + 4
years old. The off-diagonal elements of g(x) are measures
of the mobility of children 0 to 4 years old, who were born
to a x to x + 4-year-old parent. It is clear that their
mobility pattern is determined by the mobility pattern of
the parents.

It can be shown that ?(x) obeys the relationship

(Rogers, 1975; pp, 120-121):
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B(x) = 3 L(0) £ (0) [E(x) + F(x + 5) S(x)]

whence (3.4)
B(x) = & [P(0) + Il [F(x) + F(x + 5) S(x)]

since
L(0) = 5 [£(5) + £(0)] = 3 [B(0) + Il £(0)

where L(0), %2(0), P(0) and S(x) are defined in the previous
chapter. Here P(0) and S(x) are given by the life table,
and g(x) is a diagonal matrix containing the annual regional
birthrates of people aged x to x + 4. The number of births
in year t from people aged x to x + 4 at t is g(x){g(t)(x)}.
The number of births during a five year period starting at

t, from people aged x to x + 4 at t, is

5 [g(x){g(t)(x)} + Px + 5) R (x4 5)}]

=3 [F(x) + F(x +5) 501 & (x)}

Of these births, a proportion IEJ(O)[SLL(O)]-1

will be surviving
in the various regions at the end of the time interval.
Because of the special structure of the generalized Leslie

matrix, (3.171) may be written as two egquation systems:

(£+1) (gy3 =
o

-5
{K I B0 &k ) (3.5)
-5 ~




{K(t+1)(

~

x + 51 =se& D0, (3.6)

for 5 < x <z -5

The vector {g(t)(x)} may be expressed in the form

(t+3)
% 5 o [S(x - 5) S(x - 10) +++ s(5) s(0)] (k") (0))

1l

(3.7)
- a0 &1, say
where we define
I for x =0
A(x) = = L(x) L"1(0)
ol 0 = b
Il §(y) for x = 5,10...2
y=X-5

0
with T S(y) = S(x - 5) S(x - 10) +++ S(5) S(0)
y=X-5 ) N N

The element aij(x) of A(x) is the proportion of individuals
aged 0 to 4 years in region i, who will survive to be x to
X + U years old exactly x years later, and will at that time
be in region j.

b. The birth model

The growth path of the births may easily be derived from
the growth path of the population. Recall (3.5), and

substitute (3.4) for B(x). Then

B=5

(0 = T 2T+ rOIFEE +Fx+5) sl )
-5 - - N

a
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1 8_5
=% [I +P(O)] ]

R (t)
5 [F(x) + F(x + 5) s(x)]{K " (x)}
a-5 ~

(t+1,t)}

:
=3 [I+P(O)]{Q ' (3.8)

where the regional distribution of births during a five-year

period starting at t, is denoted by {9(t+1't)} and is defined

as
(t+1,t) B35 5 (t)
{0 'Y’} = ] 5 [F(x) + F(x +5) SR T ()} . (3.9)
~0=5
Note that
M0y = Loy 270y (ot )y (3.10)
and
™y 2 o) 1o x (o))
= 2[1 + 13(0)]"1 {g(t+1)(0)} . (3.11)
Substituting
(t-%)
§(t)(X) = A(x) {g 5 (0)} ' for t > % ’
in (3.8), we have
(t+1) °3° 5
{K (0} = ] 7 II+Pp(0)]
=3 (3.12)

{ (t-3) }
[F(x) + F(x + 5) S(x)] A(x)1K (0) ’




for t

1v
X

and, therefore, the growth path of the births may be related
to the number of births that occurred some time ago. Sub-

stituting (3.10) into (3.12) gives:

B-5
P18y - T 2 [P 4 Fx 4+ 5) S(x)] A(x) [I + P(0)]
a-5 - - - - - -

X ¥
(t_—l t-1) }
] {0 575 ,

for t > % + 1 ,

5 (t—i,t—5-1)}
{9 > , say , (3.13)

since

{Q(t+1,t)} 1

~

=21 + (017" x 1 (0))

and

X

0 < 3t pon 1T

Formula (3.13) expresses the growth path of the births,
occurring during the period (t +1,t), five years say. The
annual number of births is

B-5
(
0™y = 7 Feox™® (1))
” a=-5 " ¥

(3.14)

B=5

F (x) g(x){g(t-g)(O)}

~

a~5



Assuming stationarity, we may express the number of people
in the first age group as a function of the births, as in

Equation (2.10)

5

[I + P(0)1{Q (3.15)

We have that

BS (t-%)
01 =1 2Fx am [;+13(0)]{9 g} . (3.16)
a-5

for t >

BT

which is equal to

B-5 (t-%)
{Q(t)} = ) F(x) L(x) {Q ‘5’} ' (3.17)
- 0=-5 "~ ~ -

in which we once again relate the number of births at time
t to the number that occurred some time ago.

The relation between (3.17) and (3.13) is implicit in
expression (3.15). Substituting (3.8) into (3.15) gives:

(t/e=1)y _ 5

5 [I+ P(0)]1{0 r + p(0)1(g(t))

or

Ey o Lt ey (3.18)

uy

This implies that the annual number of births is a simple
average of the births during the previous period. Eguation

(3.17) is an (B-5)-th order difference equation. To derive




a birth growth

by a system of

~

or, in condensed form,

model analogue to

(3.1), we replace

(3.17)

(B-5) first order difference ecuations:

9 9 coe (g(d-S) P(G—S)) P (Q(B-S) &(8-5)) {Q(t—1)}
I 9 {Q(t—Z)}
. . &
=1: I . : {Q(ts}
" B-5
} 9 sss00sss0esssessnsssee 9 {Q(t-—s_
(3.19)
(0 = mgtM)y (3.20)

Equation (3.20) relates the births at time t to the births

at t-1.

of the population distribution may be computed by

and (3.8).

Once the birth trajectory is known, the trajectory

(3.15)

3.2. SENSITIVITY ANALYSTIS OF THE POPULATION PROJECTION

Recall the population growth model defined in

{K(t+1)}

~

= o{x(t))

~

(3.1) ¢

(3.1)

The assessment of the sensitivity of {5(t+1)} to changes in

age-specific rates M(x), may be analvzed by means of a

two-step process.

The first step considers the sensitivity

of the growth matrix to changes in age-specific rates. The

second step derives a sensitivity function which describes

the impact on the population distribution of a change in the




growth matrix. In our sensitivity analysis of life

table statistics, we were not concerned with the time
when the change in M(x) occurred. The time consideration
was irrelevant, since the life table is a static model.
For the sensitivity analysis of the population growth,
however, it is important to know not only the age group
where a change in M(x) occurs, but also the time when the
change occurs. We will denote this time by ty- The time
at which the change in the population distribution is
measured will be denoted bv ty.

Besides the change in {g(t1)} due to a change in the
age-specific rates at tO, one may also consider the problem
of how a unigque change in {g(to)} affects {§(t1)}. These
are two separate sensitivity problems. In the first, the
parameter changes at t0 and remains at his new level there-
after. The second problem, however, is ecuivalent to a
parameter change at ty onlv. These two sensitivity probhlems
will be treated separately.

a. Sensitivity of the growth matrix

The growth matrix G is composed of two types of sub-
matrices, S(x) and B(x). The sensitivity on S(x) of changes
in g(x), as given in Section 2.2, appears only in the two

age groups, x and x-5:

——— = - 3 S(X)[I - 3 M(x)] J (2.35)
§<M(x)> ~ - ~ -

% P(x) [I - % M(x)17! 3 s(x - 5) (2.37)

~

6§(x - 5)

S<M (%) >
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§S (a)
—_ =0 for a > x , or
S<M(ix)> ¥
- for a < x - 5 .

The sensitivity function of B(xX) remains to be derived.

Recall from (3.48) that

B(x) = 2 [P(0) + II[F(x) + F(x + 5 S()1 , (3.4)
where B(x) depends on the age-specific death and out-migration
rates through S(x) and P(0), and on the age-specific fertility
rates F(x) and F(x + 5). Consider the partial derivative

of g(x) with respect to g(x):

8B (x) §[P(0) + I

5 5 ¢ [P (0) + I]
— =7 F(x) + T F(x + 5) S(x)
S<M(x)> §<M(x)> v S<M(x) > ~ -
5 §S (x)
iy [P(0) + I] F(x + 5) ——— . (3.21)
T S<M(x)>

Since g(O) is affected by a change in @(x) only if x = 0,
and because for this case g(x) and E(x + 5) are 0, (3.21)

reduces to

8B (x) 5 §S (x)

~

— =7 [P(O) + I] F(x + 5) —— (3.22)
S<M(x)> ~ T §<M(x)>

which, by (2.35), is
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SB (%) _
- -2 [P(0) + Il Flx +5) 3 SG)II - 3Mx)]7" g

It

P —

5<@(x)>
(3.23)

-2 [p(0) + I F(x + 5 S - 311" g

I

Since a change of ¥(x) affects S(x

5), it also affects

?(x - 5)

1

SB(x - 5) -
- FMx)17 3 stx - 5)

= 5 [P(0) + I] F(x) P(x)II

6<§(x)>

(3.24)
_ 25
= - 5 [P(0) + }] E(X)lf(x) + I] J S(x = 5)
(3.25)
The sensitivity of §(x) with respect to g(x) and
F(x + 5) also may be derived easily:
§B(X) 5
_— = T [P(0) + I]1 J
§<F(x)> ~ A
- (3.26)
= 3 LOILOIT g
and
—_— = [P(0) + I] T s(x - 5) . (3.27)

6<§(x)>



Thus the impact of a unit change in the fertility matrix
F(x) on the element B(x) is ; times the proportion of new-
born babies that will he alive at the end of the time
interval.

Having derived sensitivitv functions for the elements
of the growth matrix, we now can proceed to the question of
how changes in the growth matrix affect the growth of the
population. This is sometimes called trajectory sensitivity.

b. Sensitivity of the population trajectory

Recall the population growth equation

(t+1)} (t)}

{K . (3.1)

= G{K
Since G is assumed to be constant over time, the population

distribution at time t, is given by

{K(t1)} _ §t1-t0 {g(to)} .

~

We assume that the change in the growth matrix occurs at tg-
Without loss of generality, we may set tO equal to zero,

and ty equal to t. Then
x®y - 6tx 0y |
The sensitivity of {g(t)} to a change in G is

(t) t
§{K } ) S [G™] {K(O)}
6<§> 5<§>
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The sensitivity of Gt to a change in <G> is given by (A.24)

of the Appendix. Applying this result, yields:

dfg(t)} t-1

e~}

8§<G> i=0
A related problem might come up in policy making. Under
the growth model (3.1), the population distribution which

yields a specified distribution at time t is given by
w@y = 67w ™y

If {K(O)} deviates much from the actual pooulation distribu-
tion, the policy maker mayv consider changing some elements
of the growth matrix through policy measures. The impact

on {g(o)} is

(0) t
§{K } 8SG
= - ey 57 k()
6<§> - §<a> ° -

t-1 . .
_ [gt]—1 [ y 91 ggt—1—1] [§t1-1 {5(0)}
i=0

t-1
- Z [g

i=0

il

(t—i)]-1 g[g(i+1)]—1 {5(0)}

(3.29)

If, bv some means, an optimal growth matrix is defined

(t)}’

which leads a population {5(0)} to a desired (X the

next problem is to find out under what conditions variations

®)y,

in G do not affect {K Such specific conditions are
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derived by Tomovié and Vukobratovié (1972; ». 138). They
will not be discussed here. This and similar problems of
trajectory insensitivity or invariance are receiving an
increasing attention in system theory and optimal control
theory. For a review of some applications in the social
sciences, see Frickson and Norton (1973).

The next section addresses the topic of the sensitivity
of population growth to changes in the population distribu-
tion at a certain point in time. This will be called the
analysis of small perturbations around the growth path.

c. Perturbations around the population growth path

The impact on {g(t)} of a change in {E(O)} is very
simple in the time-invariant eguation system (3.1). Applying

the results of vector differentiation of the Appendix gives:

stk sctix®y
= - = =G . (3.30)
s{x ()} s (x(0)y'

(0)4" (0)y |

where {g is the transpose of {g
Fouation (3.30) relates changes in the state vector at

time t to changes in the state vector at time zero. If the

growth matrix is time-dependent, then this problem cannot

be solved analytically, and one must rely on simulation.

An illustration of such a situation is when the model

incorporates a feedback loop, i.e., the growth matrix at

time t depends on the state vector at time t. An application

of feedback models to urban analysis is given by Forrester

(1969). Nelson and Kern (1971) have simulated the impact

of small perturbations around the trajectorv for a Forrester-

type of urban model.
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d. Sensitivity of the secguence of births

The sensitivity analysis of the growth matrix of the
system trajectory and of perturbations around the trajectory
could be repeated with the growth model (3.20). There are
no real differences in methodology. The growth matrix now
is simpler, and the state vector is the spatial distribution
of the births. We will only consider the impact on the births
seguence of a change in births at time zero where the birth

sequence is described by
68y = wtg(0)y (3.31)

with H given by (3.20).

Suppose that a change occurs in the first sub-vector

(0)}

of {8 and that the impact is measured on the first

(t)},

sub-vector of {é then the sensitivity coefficients

are given by the submatrix [§t111. Since new-born babies

only affect the births sequence if they reach the reproductive

a-5
5 -

Another approach to sensitivity analysis of the births

ages, [Ijt]11 is 0 for t <

sequence may be more convenient, especially if, at the same
time, one is interested in the sensitivity of the growth path
of the whole population. This approach is based on the

relationship

~

{g(t)} = F{g(t)} — Egt{K(O)} ’ (3.32)

where F is the matrix of age-specific fertility rates

F=100 0 F(a) ++ F(B-5) 0 +++]
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A change in the growth matrix G affects {Q(t)} in the

following sense

a{Q(t)} SF () , 6{K(t)}
- = — {K } + F -
6<g> §<§> ~ - 6<g>

If the change occurs in the mortality or migration, but not

in the fertility, then

= F —————— = F Z Gl JGt—‘I‘l {K(O)} . (3-33)
~ ~ .=0 ~ ~ o~ ~

This chapter dealt with the sensitivity analysis of
demographic growth. It has been shown that demographic
growth may be expressed eaqually well in terms of bhirths
as in terms of population. This analogy will be extended
in the next chapter while discussing the sensitivity of

stable population characteristics.



CHHIAPTER {4

IMPACT OF CHANGES IN AGE-SPECIFIC RATES
ON STABLE POPULATION CHARACTERISTICS

The stable population concept provides a major frame-
work for analysis in mathematical demography. It has proved
to be a helpful device in understanding how age compositions
and regional distribhutions of populations are determined.
The premise upon which the concept is based is the property
that a human population tends to "forget" its past. This
property is called ergodicity. The regional age compositions
and regional shares of a closed multiregional population are
completely determined by the recent history of fertility,
mortality and migration to which the population has heen
subject. It is not necessary to know anything abhout the
history of a population more than a centurv or two ago in
order to account for its present demoqraphic characteristics
(Lopez, 1961). 1In fact, the regional shares, the age com-
positions and the seauence of births can be calculated from
no more than a specified seauence of fertility, mortality
and migration schedules over a moderate time interval.

Therefore, a particularly useful way to understand
how the age and spatial structure of a population are
formed and its vital rates determined, is to imagine them
as describing a population which has been subjected to
constant fertility, mortality and migration schedules for
an extended period of time. The ponulation that develops
under such circumstances is called a stable multiregional
population. 1Its principal characteristics are: constant

regional age compositions and reglional shares; constant



regional annual rates of birth, death and migration; and a
fixed multiregional annual rate of growth that also is the
annual growth rate in each region. Such multiregional
stable populations have been studied by Rogers (1973, 1974,
1975).

The first section of this chapter is an exposition
of the major characteristics of stable populations. It is
customarv in mathematical demography to distinguish between
a discrete and a continuous model of vopulation growth,
and the stabhle povulations associated with them. The reason
is mainlv historical. The discrete model, which expresses
the population growth as a matrix multiplication using a
discrete time-variable and a discrete age-scale, derives
largely from the work of Leslie (1945). The Leslie model
is, in fact, a svstem of homogenous first-order difference
equations, similar to (3.1). The continuous model uses
a continuous time-variable and a continuous age-scale,
and in its modern form originates from the work of Lotka
(1907) and Sharpe and Lotka (1911). Lotka's work starts
out with the population growth equation provided by Malthus
(1798), which is, in fact, a homogenous first-order differ-
ential equation. Although in the literature the formulations
of the continuous and the discrete model of growth seem very
different, thev are closely related. Goodman (1967) and
Keyfitz (1968) have provided insights in the reconciliation
of both growth models.

We focus in this chapter on the discrete model of
population growth. Fowever, we shall freauently refer to
aspects of the continuous model that can he developed as

well for the discrete case.



The second part of this chapter deals with the
sensitivity analysis of the most important stable population
statistics: the stable vpopulation distribution and the
stable growth ratio. Demetrius (1969), XKeyfitz (1971),
Goodman (1971), Coale (1972) and Preston (1974), among
others, have addressed this problem for a single region
population without migration. Most take the continuous
version of the stable population as a vehicle for sensitivity
analysis. Demetrius and Goodman, however, use the discrete
version. Their approach is our starting point for the
sensitivity analysis. However, there are fundamental
differences between the forumulation of a single region and
a multiregion stable population which necessitate other tools
for analysis. One such tool is the eigenvalue and eigen-
vector analysis derived in the Appendix. An alternative
approach, which starts out from the characteristic ecquation
as in Keyfitz (1971), is also provided. This enables us to
derive sensitivity functions that are similar to their

single-region counterparts.

4.1. THE MULTIREGIONAL STABLE POPULATION

As in the previous chapter, we distinguish between the
population model and the birth model. They are two equiva-
lent formulations for population dynamics.

a. The population model

Recall the discrete model of population growth that

was set out in (3.1). It mav be written as

x®y = gtx(0y (4. 1)




Consider the asymptotic properties of (4.1) when t gets
large. Such prooerties have been studied by Keyfitz (1968),
Svkes (1969), Feeney (1973), Le Bras (1973) and Pollard
(1973; pp. 39-46), among others. Rogers (1975; op. 124-129)
extends the arguments of Le Bras, Feeney, and Svkes to a
multiregional system. The key element in the analysis is
the Perron-Frobenius theorem. It establishes that any
nonnegative, indecomposable, primitive souare matrix has

a unique, real, positive eigenvalue, A1 say, that is larger
in absolute value than any other eigenvalue of that matrix.
With this dominant eigenvalue are associated a right and
left eigenvector, both with only positive elements. The
growth operator is nonnegative and decomposable. However,

G may be partitioned, yielding a square submatrix, W say,
which is indecomposable and which is similar to g, and which
therefore has the same eigenvalues. The matrix W is primi-
tive if the fertility of two adjacent age groups are positive
in each and every region, i.e., if in (3.3) two consecutive
matrices, ?(x) are positive (e.g., see Rogers (1975;

pp. 124-129)). The dominant eigenvalue and the two
associated eigenvectors have demographic meaning. The
dominant eigenvalue of G represents the stable growth ratio
of the population. The associated right eigenvector gives
the stable age- and region-specific population distribution,
while the corresponding left eigenvector gives the spatial
reproductive values. Therefore, the sensitivity of the
growth ratio of the stable population to changes in the
growth matrix is a problem of eigenvalue sensitivity. The
sensitivity of the stable population distribution may be

translated into eigenvector sensitivity.
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We have seen, in the previous chapter, that because
of the particular structure of G, the growth equation may

be written as:

-5
kDo = 7 B kP x)) (3.5)
~ o=5
{§(t+1)(x + 5)} = S(x) {g(t)(x)} . (3.6)

At stability, the characteristic value equation holds.

Thus
w®Dy ey 2™y, (4.2)

where X is the dominant eigenvalue of G. Therefore,

-~

x5 = s K'Y = axP o+ 5)

(4.3)
hence
x® 45t =Lsew &Py . (4.4)
Combining (4.4) with (3.6), we have
X
x® e =22 am k0 (4.5)

where A(x) is defined by (3.6).
The single-region analogue to (4.5) may be found in
Goodman (1967; p. 543, and 1971; o. 340), Demetrius (1969;

p. 133) and Cull and Vogt (1973; p. 647), among others.




Equation (4.3) gives the number of people in each age group
and region in terms of the regional distribution of the
people in the first age group. Now we derive an expression
for the stable growth path of the population in the first

age group. By (4.3) and (3.5) we may write:

x93 = ax P (o))

B=5

I7oBx) (k) (x)3 .
_5 ~ ~

a

Substituting for (4.5) and deleting the superscript, gives

B=5 -z

ME(0)) = § B(X) A O A(x) (K(0)} (4.6)
~ ols * 2 =
which is the expression given by Rogers (1975; p. 1u40).
It may be replaced by

B=5 - (z+1)

YA B(x) A(x) - I {k(0)} = {0} . (4.7)

a—5

Eguation (4.7) is the discrete version of equation (4.7)
in Rogers (1975; p. 93).
The matrix

§(x) = B(x) A(x) (4.8)

is the discrete formulation of the multiregional net

maternity function, and

YOy = 7 % (x) (4.9)
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is the corresponding discrete multiregional characteristic
matrix.

The stable growth ratio A is the number that gives
?(X) a characteristic root of unity. The vector {5(0)}
is the associated eigenvector. An equivalent formulation

is
¥ - 1] =0 . (4.10)

Condition (4.10) may also be derived in a different
way. The idea is to reduce the growth matrix G to its
generalized companion form. The notion of companion form
of a matrix occupies a central place in system theory.

See, for example, Wolovich (1974; p. 79) and Barnett (1974;
p. 671). Kalman (1969; p. H44) considers several companion

forms. Two commonly used forms are

o
.
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The companion form arises when a dynamic system is written
as a linear differential or difference equation of the Z-th
order. The elements of the first row of ¥ or last row of g,
respectively, are the coefficients of the characteristic
equation. Recall that the growth equation (3.1) is a system

of Z linear first-order difference equations, where Z is the




number of age groups. Each system of linear first-order
difference equations may be transformed into one linear
difference eaquation of the Z-th order, and vice versa.

This transformation corresponds to a change in the coor-

dinate system. For example, (3.19) is a companion form,

arising from the (B-5)-th order difference eguation (3.17).

Instead of scalar elements, {(3.19) has submatrices as
elements. Barnett (1973; p. 6) has called this form a
generalized companion matrix. A transformation of a
single region population growth matrix into a companion
matrix of form M is given by Pielou (1969; p. 37). Wu
(1972) sets up a transformation to both forms M and N.

In fact

EME =

~ o~ o~

2z

(4.

where

0----.0 1
0

0

The transformation of the multiregional growth matrix G

into a generalized companion matrix G may be expressed as

1)

@ = HGH (4.12)
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where

{\(Z) 9 LI A} 9

0 A(Z-5) :
w=f - 7. :

O cosceccces A(0)

with g(x) as defined by (3.6), and where

0 0 [B(10) A(1O)][B(15) A(15)] ++-[B(B-5) A(B=5)]++* 0

I 9 *

c= |2 1 .
i : * . :
0 . . e 0
(4.13)

Since (4.12) is a similarity transformation, it implies
that G and é have the same eigenvalues. They may be found

b solving

|6 - A1

I
o

(4.14)

or

I
o
L]

|G - A1 (4.15)

Kenkel (1974; pp. 319-322) shows that (4.15) may be reduced:

Z / y/
. 1 =1
|G - A1] = IA§+ I - Ag B(0)A(0) - 2> B(5)A(5) ...

(4.16)

~ AB(Z - 5) A(Z -~ 5) - B(2)A(2) |




Z
1
Dividing by A , and since B(x) = 0 for x < a - 5 and for

Xx > B - 5, we have that

. B=5 ~-(g+1)
|G = A1 = | ] A B(x) A(x) - I (4.17)
2 kS oLs 2 2 ~

which is condition (4.10). Wilkinson (1965; p. 432) labels
(4.17) as the generalized eigenvalue problem.

The generalized companion matrix provides a mathematical
tool to link (4.10) to (4.14). Since (4.10) is the discrete
version of the condition in the continuoué model that the
stable growth rate must give the characteristic matrix an
eigenvalue of unity, the companion matrix has a role in the
reconciliation of the discrete and the continuous models of
demographic growth.

The eigenvector of G and G are related as
{K} = H{K} . (4.18)

b. The birth model

The birth trajectory may be described by (3.20):
168y = mpt" My | (3.20)

Since all the elements of H are nonnegative, we may apply
the Perron-Frobenius theorem and derive expressions for A
analogue to (4.10) and (4.14). However, there is a third
formulation of the condition that X must satisfy. It draws

on the relationship between {K(0)} and {Q}, the births in



- 53 -

the stable population:

1

(x(0)} = 2* 2 [1 + P(O)I{Q} (4.19)

which has its origin in (3.15). Substituting this into

(4.6) and introducing B(x) yields

8'5 -(‘5'+1) 5 5
I oA 7 [I+ P(OIIF(x) +F(x + 5) S(x) A(x) 5 [I + P(0)1{Q}
a-5 - - ~
1 (4.20)
=23 1+ 0100 .
1
Multiplying both sides by A2 % 1+ 13(0)]'1 gives
A 5 [F(x) + F(x + 5) s(x)] A(x) 3 [I + P(0)1{g} = {q}
a-5 - -
(4.21)
But
> 11 + 2(0)] = L(0)
and

A(X) L(0) = L(x)

where L(x) is the number of years lived in the age group x

to x + 4 by unit regional radices. Therefore (4.21) becomes

1
B=5 - (zt+=)
[ T oA 577 % [F(x) + F(x + 5) S(x)] y(x)] {0} = {9}
a=5 ~ ”

(4.22)




The matrix

(A = ) A x [F(x) + F(x + 5) S(x)] L(x)
a-5 ~ ~ - ~

[0 =4

(4.23)

is very close to the numerical approximation of the contin-

uous characteristic matrix, given by Rogers (1975; p. 100):

B=5
vir) = § e T*2:5) piy Lix) (4.20)
T a=5 ~ ”
where A = e°F and F(x) = ! [F(x) + F(x + S) S(x)]. The

stable growth rate XA is the solution of

B"5 _(2'5{"'%') 1
A vl [F(x) + F(x + 5) S(x)] L{x)}) - I| =0 .
o=5 ¥ - ¥ h -

Once the stable distribution of births is known, the stable
population distribution can be computed by means of (4.19)

and (4.5).

4.2. SENSITIVITY ANALYSIS OF THE STABLE POPULATION

To perform a sensitivity analysis of the stable popula-
tion, we may apply the eigenvalue and eigenvector sensitivity
functions, derived in the Appendix, directly to the growth
matrix. Another approach starts out from the generalized
eigenvalue problem, expressed in (#.17) and (4.22). This
approach is more related to the sensitivity analysis in the
single-region case. There is a crucial difference, however.

For a single-region growth matrix, the companion form is
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composed of scalars. The elements of the first row are the
coefficients of the characteristic equation, a scalar poly-
nomial. The characteristic equation of the multiregional
growth matrix is a matrix polynomial. Its analysis is
much more complicated. Both approaches will be discussed
here.
a. Sensitivity analysis with the whole growth matrix
The sensitivity of the eigenvalue to changes in the
matrix is given in the Appendix by (A.56):

ary = [{g}; (v};] * aa (A.56)

i
where {g}i and {y}i are the right and left normalized eigen-
vector of A, respectively, associated with the root Ai.

Let A = G, the multiregional growth matrix, and denote the
eigenvectors by {K} and {v}, respectively. When the eigen-
vectors are not normalized, the formula becomes

dr = ——— [{K}v} | * dg (4.25)

{vl {K}

where

{r(0)} {v(o)}
{x(5)} {v(5)}

z)} {v(z)}

Z '
{vi (g} = ] {vix)} {xx)} .




In the single-region case, the inner product

v(x) K(x)

<
1]

——
<
t
——
=
t
"

i c~109

is the total reproductive value of the stable pooulation.
If the eigenvectors are normalized, then {y}'{g} = 1, and
v (x) K{(x) is the reproductive value of age group x, as a
fraction of the total reproductive value.

If one applies formula (A.59), other useful relation-

ships may be derived

ax = [tr B(A)] ?(A) * dg (A.59)
where B(A) is the adjoint matrix of [9 - AI] and g is the
growth matrix. The single-region analogue of (A.59) is
derived by Demetrius (1969; p. 134). Morgan (1966; p. 198)
has shown that tr B(x) is equal to the first derivative of
the characteristic equation of G. Based on this result, it
can be shown that for the single-region case, the following

equality holds:

]
>
g

Q‘g—x(}—) = tr R(})

(4.26)

where A is the mean age of childbearing of the stable popula-
tion and g(A) is the characteristic eqguation of G. This
result is similar to the one derived by Goodman (1971;

p. 346) and Keyfitz (1968; p. 100).

Formula (4.25) and (A.59) are particularly useful to

study the interaction of the population distribution and the
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distribution of the reproductive values. Goodman (1971)
and Demetrius (1969) illustrate this for a single-region

1
system. Consider, for example (4.25), and let t = {v} {K}.

Written in component terms, (4.25) is

— I
{15(07? 0 0 GB(10) eeceveeen.
{K(5)} ds(0)
" : T dss)
a =1 : [{v(0)} «o- {vz)}1] * i
{K(z)} T as@ o
L N I _
(4.27)
The impact on X of a change in B(x) is
ar = £ HK)Hv(0)}'] aB(x) . (4.28)
The impact of a change in S(x) is
ar = & RGO My (x + 5)1'1 ds(x) . (4.29)

From (4.28) and (4.29), we see that a change in B(x) is

equivalent to a change in S(x) if

[{R(x)}{v(0)} 1 dB(x) = [{K(x)Hv(x + 51} ] ds(x)

or

1

dB(x) = [{KG)HV(0)}']7 " [{R(x)Hv(x + 5)}'] ds(x)

if the inverse exists.
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since

X

K} =2 > AmIKO}
we have
-1 | -X -1 X
dB(x) = [{K(0)}{v(0)} 1] [k gst(x) A 3 Zj(x)]
[{K(0) Hy(x + 5)} ] dS(x)

y =1 '

aB(x) = [{K(0)}{v(0)} ] H{K(0) Hy(x + 5)} ] ds(x) . (4.30)

Equation (4.30) shows that a change in B(x) may be translated
into a change in S(x), having the same impact on the growth
ratio. It formulates, therefore, a trade-off between
fertility change and mortality and migration change. The
change in S(x) to have the same effect as dB(x) must be
smaller the greater are the reproductive values of the
people aged x + 5 to x + 9, i.e., {v(x + 5)}.

It should be noted that the equivalence only holds for
the growth ratio, and not for the stable population distri-
bution and other stable characteristics. The stable popula-
tions which result from applying ds (x) or dB(x) given by
(4.30) have the same growth ratio, but all other character-
istics are different.

b. Sensitivity analysis with the characteristic matrix

The discrete multiregional characteristic matrix is

(4.9)

Yy = 3(x) (4.9)



where the stable growth ratio X is the solution of
|[¥(x) - 1] =0 . (4.10)

What effect does a change in an element of the growth matrix
have on A? As in the previous section, we distinguish
between a change in fertility, as expressed by B(x), and a
change in mortality and migration, as expressed by S(x).
This approach is equally valid to trace through the impact
of changing fertility, mortality and migration patterns in
the continuous model of demographic growth. Instead of
using ?(A), one then uses its continuous counterpart, given

by Rogers (1975; p. 93),
y(r) = j e " ¢ (x) dax (4.31)

where r is the intrinsic growth rate.

The impact on A of a changing element of ?(A) is such
that the determinant |¥()) - I| remains zero. We treat the
impact on A of a change in B(x) and S(x) separately.

b.1. Sensitivity of the growth ratio to changes in

fertility

Consider first the derivative of the determinant with
respect to an element of B(x), denoted by <B(x)>. Applying
the chain rule of matrix differentiation, given in the

Appendix by (A.30), we get

1700 - 1f s1T00 - 1l sI¥1
- tr — . =0 . (4.32)
6<§(x)> Gy(k) 6<§(x)>
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By (A.35)

§|¥ () - I

— = cof [¥Y(r) - 1] . (4.33)
Y (1) ) )

The derivative of the transpose of the characteristic matrix

with respect to <B(x)> is

B=5 -(§+1) '
ST “[Z ) B(x) é‘x)l

a-5

6<§(x)> 6<§(x)>

Assume that the change in B{(x) is due to a fertility change,

then
3-5 —(§+1)
R [A(x)]'[B(x)]"
___OL—S | -
6<§(x)>
- (X+1) x '
B=5 . - - (F+1) . 8B (x)]
= § A [B(x)] e + ) [A(x)] ————
a=-5 6<§(x)> 6<§(x)>
where
-Z41) - 41
R W Y\
§<B(x)> SA §<B(x)>
- (%+2)
=-E+ oA



._6]__

and
S[B(x)]
- =7J' .
§<B(x) > h
Therefore
a[ﬁ<x)]" B-5 - (3+1) \
—— = - [% I+ 12 5 B o A(x)]] oA
6<§(x)>- a=5 - - 6<§(x)>
(4.34)
- (F+1)
+ A 5+ é'(x) g'
Let
B-5 - (F+1) : -
25 (. + 1) A 5 [B(x) A(x)] = [v(0)]™ 2. (4.35)
a—

Generalizing the idea of Goodman, [Y(O)]—1 is the matrix of
the average age of mothers of children who are in the 0-th
age group in the stable population. Tt is the discrete
approximation of the mean age of childbearing. The matrix
V (0) represents the eventual reproductive value of a female
in the 0-th age group in the stable population.

Substituting (4.33), and (4.34) in (4.32) gives

tr cof [¥(1) - 1] [- % V()] & ——— + A A’ (x) g'] =0

2The single region counterpart of (4.35) is given
by Goodman (1971; p. 346).
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which may be written as

0 2 - cof (¥ - 11 * ') J'1 .

6<§(x)>

1
X

cof [F() - 10 * V|

Pre-multiplying both sides with [cof [?(A) - }]] vields
X
1 -1 sn - (&th . \
T I*¥ [V ()] ————— =1} I *A'(x) J
S§<B(x)> h - -

But I * [Y_1(0)] is nothing else than tr [V_1(0)]. There-

fore, we have

S 1, -1 .75
—_— = [tr Vv (0)] X tr [A'(x) J'] . (4.37)
§<B(x)> - ~ ~

By (A.32) of the Appendix,

=X
R B AR TR Y A= v SN CIN
§B (x) Kk - -
X
ster Vi1 P Atk (4.38)

In a single-region system, (4.38) reduces to

X
5

A~ vy A a) (4.39)

§b (x)

where b(x}, v{(0) and a(x) are scalars. Formula (4.39) is

identical to the sensitivity function given by Goodman (1971;



p. 346), and equivalent to the ones derived by Demetrius
(1969; p. 134), Keyfitz (1971; p. 277), Emlen (1970) and
others. Note that A_§ A(x) is the eventual expected number
of people in age group X to x + 4, per individual in the
0 - 4 age group. In other words, X_g A(x) describes the
age composition of the stable population.

b.2. Sensitivity of the growth ratio to changes in

mortality and migration

The impact on A of a change in S(x) mav be derived in

a way similar to the above arguments. First, note that

11 - 1 s - 1] sIFM
= tr — . =0 .
§<S (x) > SY¥ (X)) §<S (x) >

(4.40)

- 1
The derivative of [Y¥(A)] with respect to an element of

§(x) is
B=5 = (z+1) '
stroo1’ S| L2 Bx) 200
_ | (4.u41)
6<§(x)> 6<§(x)>
X
B=5 C ey 5T ams - (E41) sat (x)
= )} [B(x) A(x)] + 7 A ——— B'(x)
a=5 7 ” §<S(x)> a-5 6<§(x)> h
B-5 = (X+1) SB' (X)
+ ) A 5 A' (X)) —m— . (4.42)
a-5 - 6<§(x)>
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The derivatives are

- (3+1) - (F+1)
T _s 2 5
6<§(x)> Sx 6<§(x)>
(4.43)
- (F+2)
—-(§+1)x 579
6<§(x)>
To derive an expression for
B=5 = (z+1) A" (x)
A —— B' (x) (4.44)

a-5 §<s(x)> ~

recall that

A'(x) = S'(0) S'(5) ... 8'(x - 5) .

~

Therefore, a change in S(x) affects A'(y) if y > x. For

example,

SA' (y)

———— S'(0) S'(5) ... S8'"(x = 5) J'S'"(x +5) ... S"(y - 5)
§<s (x)> ~ ~ ~ A -

1

A'(x) J'IA'(x + 5)]  A'(y) . (4.45)

Applying this result, (4.44) reduces to

AT(x) 3" (x + 5)17 A'(y) B (y)

(4.46)



- 65 -

To compute the third element of (4.41), we need

§B' (x) 5 85" (%) '
————— = § ———— F'(x + 5) [P(0) + I]
8<5 (x) > 6<S(x)> - -
(4.47)
=2 J'F'(x +5) [P(0) + I]
Therefore (4.42) becomes
SIT(M)] B-5 - %42) \
—— = [— ] g+ 12 5 B0 a0 ] A
6<§(x)> a=5 - - 6<§(x)>
(4.48)
5~ (5+1) :
+ A A'(x) J'F'(x + 5) [P(0) + I]
where by (4.35)
B-5 - (3+1) , _
I E+ a2 Tx ac] = w1
a=-5

Substituting (4.48) in (4.40) gives

§1¥(x) -~ 1| - -
= ~_ = tr cof [Y(2) - I] [‘ % [v(o)] T_ %A

6<§(x)>

6<§(x)>

B=5 -~ (¥+1)

+ ) A 1

A'(x) J'[A'(x + 5)]  A'(y) B'(y)

+£—A A'(x) J'F'(x + 5) [P(0) +;]']=0
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which is equivalent to

_ B=5 - (£+1)
[%—tr[V(O)] 1] R U R [A'(x) JUIA (x + 5)] )
- §<8 (x) > y=X+5 ¥ A
- (z+1)

tr [A'(x) J'F'(x + 5)[P(0) + I

or
- -1| B> - -
B = e v T 5 e (B 2w am + 517" 3200
§<S (x)> y=X+5 - - - o
X (4.49)
5, 5
+ T A tr [[?(0) + E] E(x + 5) g%(x)
and
5 1, o | B E -1
= [tr V  (0)] ) A T B(y) A(y)I[A(x + 5)] A (x)
6§(X) - y=X+5 - - h h
x (4.50)
+ 20 ° [P(0) + I] F(x + 5) A{x)
If the effect on B(x) of S (x) is negligible, as Goodman
(1971; p. 343) assumes, and which is so in the continuous
case, then
, 1| 85 % } i,
2 e v 1| L 2 P By Ay AT ) 5T (%) A
88 (x) ~ Y=X+5 N ~ - - -




The single-region analogue of (4.51) is

1A > bly) aly) (4.52)

which is identical to formula (35) of Goodman (1971; o. 346),
and equivalent to expressions provided by other authors.

The expression

B-5 -%
v(0) J A b(y) aly) = v(x) (4.53)
y=%

is defined by Goodman as the eventual reproductive value of
an individual in the x, x + 4 age interval. Generalizing
this concept to the multiregional case, we define the matrix
of eventual reproductive values per individual in the x,

X + U age group, by place of birth and by place of residence,

to be
V(x) = )} A7 B(y) Aly) . (4.54)

The sensitivity function (4.51) becomes

1

") sThx) a) . (u.55)

1

= ftr V(@17 vix + 5) A

§S (x)




CHAPTER 5

CONCLUSION

This paper has been devoted to the problem of
sensitivity analysis in multiregional demographic systems.
From mathematical demography, we know that demographic
change may be traced back to changes in age-specific
fertility, mortality and migration rates. To show how the
mechanism works has been the subject of this paper.

We derived a set of sensitivity functions relating
a change in demographic characteristics to a change in the
vital rates. The primary purpose was to contribute to the
knowledge of spatial population dynamics by presenting a
unifying technique of impact assessments. In the single-
region mathematical demography, ordinary differential
calculus is used to perform sensitivity analysis. 1In
rmultiregional demography, where we deal with matrix and
vector functions, the application of ordinary calculus is
very complicated. Instead, matrix differentiation tech-
niques prove to be very useful. A review of these tech-
niques has been given in the Appendix. These mathematical
tools have been applied to derive analytical expressions
for multiregional demographic features, such as life table
statistics, population projection, and stable population
characteristics, representing the impacts of changes in
vital rates. The sensitivity functions reveal how each
spatial demographic characteristic depends on the age-
specific rates and how it reacts to changes in those rates.

Matrix differentiation techniques form a powerful tool for

the analysis of structural change in multiregional systems.




A secondary objective of this paper was to contribute
to the reconciliation of the discrete and continuous models
of demographic growth. Traditionally, there has been a
sharp distinction between the discrete model and the
continuous model of population growth. It is our belief
that the reason is mainly historical. We have attempted
to show that the results derived for the continuous model,
may easily be extended to the discrete model. Therefore,

the discrete and continuous models of demographic growth

are equivalent tools for the analysis of population dynamics.




APPENDIX

MATRIX DIFFERENTIATION TECHNIQUES

The purpose of this appendix is to provide the necessary
mathematical tools to pverform sensitivity analysis of structural
change in multiregional demographic systems. The basic notion
is that of matrix differentiation. Neudecker (1969; p. 953)
defines matrix differentiation as the procedure of finding nartial
derivatives of the elements of a matrix function with respect to
the elements of the argument matrix. Although not much has been
written on matrix differentiation and the technique is not
covered in most textboolks on matrix algebra, this appendix does
not intend to be complete. It only covers the technicues apovlied
in this study.

The appendix is divided into two parts. The first part
deals with the derivatives of matrix functions. It is mainly
based on the work of Dwyer and MacPhail (1948) and Dwyer (1967).
The second part develops several expressions for the sensitivity
of the eigenvalues and the eigenvectors of a matrix with respect
to change in its elements. The behavior of the eigenvalues
under perturbations of the elements of a matrix has been
studied by Lancaster (1969; Chapter 7), among others, under
the heading of perturbation theory. 1In this theorv, qualita-
tive measures of eigenvalue sensitivitv are developed, in the
sense that upper and lower bounds to eigenvalue changes are
formulated. Perturbation theory, however, does not provide
us with sensitivity functions defining the exact change of

eigenvalues and eigenvectors under changing matrix elements.



An eigenvalue sensitivity function was derived by Jacobi in
1846 and has heen avplied and extended in the svstems theorv

and design literature.

A.1. DIFFERENTIATION OF FUNCTIONS OF MATRICES

Let Y be an P x Q matrix with elements Yij’ and let X be
an M x N matrix with elements Xy gt Dwyer makes a distinction
between the position of an element in the matrix and its value.
The symbol <X>10 is used to indicate a specific k, f-element
of X. 1Its scalar value 1is X g Less formally, <)~(>kg may be

replaced by <X>. Therefore, <X> is an arbitrary element of the

~

matrix X. As in conventional notation §' denotes the transpose
of X and §—1 is the inverse of X.

The relevant results of matrix calculus are given below.
To introduce some notation, we start out with the differentiation
of a matrix with respect to its elements. We follow this with the
differentiation of a matrix with respect to a scalar, and the
differentiation of a scalar function with respect to a matrix.
The most important scalar function is the determinant. The
tools provided in the section on the differentiation of matrix
products are frequently used in performing sensitivity analysis
of multiregional systems. Also of great importance is the
derivative of the inverse. The next section gives some chain
rules of matrix differentiation. Vector calculus and matrix
calculus are closely related, since a vector is a matrix with
only one row or one column. The formulas for vector differen-

tiation, however, have a different appearance and are less




complex. Therefore, a separate section will be devoted to

vector differentiation.

A.1.1. Differentiation of a matrix with respect to its

elements

The derivative of a matrix X with respect to the element

<§>k2 is

§X
.3 (A.1)
6<§>k2 k2

where Jkﬂ denotes an M x N matrix with zero elements every-

where except for a unit element in the k-th row and

2-th column.

Similarly

6X'

8<X>

=g (A.2)
X>xp K

where JiP is an N x M matrix with all elements zero except

for a unit element in the 2-th row and k-th column.
Instead of considering the derivative of a matrix with respect
to an element, one may also consider the derivative of a

matrix-element with respect to the matrix.

§<Y>. .
~ 1

5v - Kij (A.3)

~



where Kij is a P x O matrix with zeroes evervwhere except for

a unit element in the i-th row and j-th coclumn.

Similarly

6<Y>i.
sy - Ky ¢ (A.4)

~

For convenience, the subscripts will be dropped. For example,
<X> will denote an arbitrary element of X and J a matrix with
all elements zero except a unit element on the appropriate

place determined by the location of <X>.

A.1.2. Differentiation of a matrix with respect to a scalar

and of a scalar with respect to a matrix

Let Y(a) be a matrix function of the scalar a. The

derivative

(A.5)
Gyij
1s a matrix with elements b EFEach element of g(a) is
differentiated.
The derivative of a matrix function with respect to a

matrix is denoted by

§ £ (X)
—_— (A.6)




and is a matrix with elements

§£ (X)
X?f;;; . (A.7)

Two important matrix functions are considered: the determinant
and the trace. We begin with the assumption that X is a square
matrix.
a. Determinant
The determinant of the square matrix X can be evaluated
in terms of the cofactors of the elements of the i-th row

(Rogers, 1971; p. 81):

= c c * e c
X[ 0= xqX{ F XX, ¢ * Xi¥iN
It can easily be seen that
§|X|
= = X?. (A.8)
§<X> 17

where Xij is the cofactor of the element |X|

Xli5- And

§1x|
——— = cof X = [adj X]'
6X - v

where cof X is the matrix of cofactors, and adj X is the adjoint

matrix of the matrix X. But if X is nonsingular,

cof X = |x]1x"17" . (A.9)



Eguation (A.8) may be written as

8|

o]

= le[x']"1 . (A.10)

8

5

This formula is well known in matrix theory and can also be
found in Bellman (1970; p. 182).

It should be noted that if X is symmetric

§ x|
- = 2x5. for i # j
§<X> . . ~1]
+J (A.11)
= xS, for i = j
~17

b. Trace
The trace of the square matrix X is the sum of its

diagonal elements, and

§tr (X)
—_— =1 for i = j
§<X>. .
~ ] (A.12)
=0 for i # 3
with
dtr(g)

where I is the identity matrix.




A.1.3. Differentiation of matrix products

Let U and V be two matrix functions of the matrix ¥. The

derivative of their product Y = UV with resvect to <X> is

~

5y  S[uvl 85U 8V
= = ihdad = V + U - . (A'13)
§<X> §<X> §<X> S<X>

The derivative of a product of three matrices is

8§y S[QYW] 59 SV W

= = VW + U W + UV . (A.14)
S<¥> §<X> §<X> §<X> S<X>

These general formulas may be applied to various cases. Some
cases of interest are listed below. The matrices A and B are
constant, i.e. independent of X. The matrices J, and K are

as defined in A.1.1.

5Y
¢ Y
- S<¥>
AX AJ (A.15)
XB JB (2. 16)
X'B J'B (A.17)
XX JX 4+ XJ (A.18)

~ ~ ~ ~ ~ o~

§'§ J'X + X'J (A.19)



AXB AJB (A.20)
XXX JXX + XJX + XXJ (a.21)
axa™ aga™ (.22)

~ o~~~

The derivative of the power of a square matrix can readily

be computed using these formulas

G[Xn] _ n-2 e _
= = gx™ 7 xSax™TTS 4 x0Ty (A.23)
§<X> i s=1 =~ 77 ~ ~
. . 0
or, if we write X~ = I, then
§1x"1  n-1 _
2 _ z xSgxn 1-s (A.20)
§<%> s=0 =~ 77
The derivative of an inverse follows. By definition
X" =1 .
Therefore
-1
S[xx '] s
o2 _ -0 |
S<x> §<X> ~
but
sixx” 1 sx s1x ]
= X ’ + X Ll




It follows that

-1
SIX 1 4 -9
— = x'ax7" . (A.25)

5<X>

An application of this result is

]
= Jax" ' - xax”

~ o~ o~ ~ o~ o~

S§XAX

o ix™1 . (A.26)
S<X> -

8Y
So far we have considered the derivative =

where Y is
§<X> ~
a matrix product and <X> is an arbitrary element of X. The

~

result is a matrix of partial derivatives. But what is the

§Y

formula for — , where X represents the full matrix? This
86X -

guestion has been studied by Neudecker (1969). 1Its solution

involves the transformation of a matrix into a vector and the
use of Kronecker products. For example, let Y = §§§ and one
is interested in the derivative of Y with'respect to X.

If Y is of order P x Q, define the PO column vector

vec Y (denoted this wav to distinguish it from the vector {z})

where

vec Y = . .




In a similar way, one can construct vec X. Neudecker shows that

vec {AXB) = [g' ® Al vec X (A.27)

~ o~

where ® denotes the Kronecker product. Eguation (2A.27) may be

differentiated using the formulas for vector differentiation:

§ vec ([AXB]

~ o~ ~

= [B' ® A] .

§ vec X

Since the transpose of a Kronecker product is the Kronecker

product of the transposes, we have3

§ vec [§§?]

= B ® A' . (A.28)
§ vec X ~ -

8y
We will not explore the various formulas for — further since

¢
they are not explicitly used in this study.

A.1.4. Chain rules of differentiation

Let f(Y) be a scalar function of Y and let Y be a matrix

function of X.

3For an exposition of the properties of Kronecker products

or direct products, see Lancaster (1969; pp. 256-259).
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Then

Sf(g) ) df(g) . 6<¥>k2
6<§> k2 6<¥>k2 6<§>
S§E(Y) SE(Y) sy’

= = tr - . =
§<X> 8y §<X>

If ¥ is a matrix function of a scalar a,

becomes

6f(¥) éf(g) Sy!

Sa 8y Sa

Consider also the derivative

6f(¥) 6f(¥) 6<¥>k2

6§ k2 6<¥>k2 6§

Several interesting applications arise.

(A.29)

(A.30)

Y(a), the formula

(A.31)

(A.32)

Tor example, let

£(Y) = |X - M|, where X may be the population growth matrix. Then
§|x - Az §|X = AI| §[X - A1l
- “— = tr T ——
§<X> S[X = NI §<X>
§|x - I

———— = |X - AI] t1-<ﬂ§ - A;]']'1 g) (A.33)
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= tr [[cof(§ - XI)] g']

and
§|X - A1 §[x - a1 §<IX - AIl'>
X k& 8<[X = XIl> 6X
(A.304)
-1
= ) |X - 1] (X - r11" J!
ke -~ -~ " ke ~ K%
§]x - A1 1
= |X - A1l [X - 11" = cof [X - AI]l (A.35)

where cof [§ - AI] is the cofactor matrix of [X - )I].

1f g(r) is a function of the scalar r, then

§1Y(r) | [alg(r)l 6[g<r)]']
_— tr

6r 6[¥(r)] Sr

_ Sly(o) 1!
o (CUCRIREE
r

and since tr AB = tr[AB]' = tr B'A'

§|¥(x)| §1Y (x)] -1
— = |¥(r)| tr [——— [Y(1)] (A.36)




Formula (A.36) is not only of interest in a study of the
sensitivity of the determinant of a polynomial matrix, but
is also useful in order to compute the determinant, as shown

by Emre and Hiseyin (1975; p. 136). An application of (A.36)

which 1s relevant is

= - |Aa = AI] tr[a - AI1" : (A.37)

This formula can also be found in Mewbery (1974; p. 1016).

Finally, consider the apovlication, where f(Y) = tr[AYR], whence

SE(Y) § tr[AXB]

= ——— = A'B' . (A.38)
§X §X T

~ ~

A.1.5. Vector differentiation

Vectors may be considered as matrices with only one row
or one column, and the rules for matrix differentiation may
be applied. But the derivative of a vector or of a vector
equation has a simpler form than the matrix analogue. It is,
therefore, worthwhile to list the formulas for vector differen-
tiation separately. Two cases are considered: the derivative
of a scalar function with respect to a vector and the derivative

of a vector function with respect to a vector.
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a. Differentiation of a scalar function with respect
to a vector
Consider the general scalar function f({g}), where
{x} is the argument vector. Some relevant formulations of

f({x}) and their derivatives are listed below.

Sf({x})
f({x}) —_—
” §{x}
{g}'{§} {a} (A.39)
{x}'{x} 2{x} (A.10)
{x}' A{x} A{x} + A'{x} (A.81)

b. Differentiation of a vector function with respect to
a vector
Let {f({x})} denote a column vector of scalar functions

£. ({x}), where {x} is the argument vector and {f({x})} represents

a system of equations. For example, let {f({x})} be a system

of linear equations in {x}, then

sa{x}
— =— = {a.} (A.042)
§<{x}>;

where {a;} is the i-th column of A.
The derivatives of {f({x})} with respect to all the

elements of the argument vector form a matrix if the argument




vector is a row vector. For example
SA{x}
= = A (A.u3)
s{x}' ~
§{£({xh}
The determinant |—————| is known as the Jacobian or
s{x}’

functional determinant.
Corresvonding to the chain rule of matrix differentiation,
one may formulate the chain rule of vector differentiation.

Let {y}, {x} and {z} be vectors. It can be shown that

S{y} s{y}? s§{z}
- = . = . (A.44)
S{x}' s{z}" s{x}’

A.2. DIFFERENTIATION OF EIGENVALUES AND EIGENVECTORS OF MATRICES

The topic of eigenvalue sensitivity has received most
attention in the engineering literature. The design engineer
is interested in identifying the impact of changes in the param-
eters of a system on the system's performance. There is a vast
'1iterature on sensitivity analysis in design“. Although most
of this literature is not related to the problem in this study,

some relevant elements are repeated here. We will separate

the eigenvalue sensitivity problem and the eigenvector

%see Cruz (1973) and Tomovié and Vukobratovié (1972)
for example.




sensitivity problem. The former has received considerable

attention, while the latter has been very much neglected.

A.2.1. Differentiation of the eigenvalue with respect to the

matrix elements

The method which follows is described by Faddeev and
Faddeeva (1963; p. 229) and can also be found in Van Ness
et al. (1973; p. 100) and in Tomovié and Vukobratovié (1972;
pp. 196-197). The assumption underlying the method is that
all the eigenvalues of the matrix are distinct. Let A be such

a matrix. Consider the eqguation

A{g}, = ki{i}. (A.U45)

where ), is the i-th eigenvalue of A and {g}i is the right
eigenvector associated with Ai.
Taking the partial derivatives of both sides with respect

to an element of A, <A> sav, gives

SA 6{§}i éxi G{E}i
- (g, +a = {g}., + ). . (A.U6)
S§<A> - 6<§> S<A> 1 1 5<§>

If the real matrix A is transposed, the eigenvalues will not
change. However, a new set of eigenvectors will be formed:
the left eigenvectors, denoted by {v}j. The scalar orocduct

of each of the terms of (A.46) with {y}j is:
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(A.47)

where J has the same meaning as in section A.1. If i is taken

equal to j, and use is made of the relationship

A'{v}. = Aj{y}j (A.48)

(A.49)

(Mg}i { }) ! ({ } (v}
, A' . + A N
(S<A> ~ }.) 1 (S<%> g 1 -\v) _1)

Since

A
-
o) (o2
FaN —~
| ey
\ —
|—l.
-
—
[
—
N
1l

s{&}.
( -, A'{v}i) ,
§<A> -
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we may write

= . (A.50)

Expression (A.50) represents the sensitivity of the eigen-
values of A with respect to an element of A.
If the eigenvectors are normalized such that their inner

product is unity, i.e.

then

SA.
l = = ]
S<A> B (g{g}l r {\’3}1) = ({E}l ' g{g}l) . (A.51)

It can be shown that (A.51) is equivalent to

o {e}. 1
= tr [[{£}.{v}]] g (A.52)
<S<{\> l: ~ 1 ~ 1 ~:|
or
5y .
= [{g}i{v}i] * J (A.53)
§<A> ~ ~ ~

T
where * denotes the inner product of two matrices”.

>The inner product A * B is defined as | |
ik

ajxby; -

The result is equal to tr[AB].
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The structure of (A.52) is very similar to (A.33) of the
previous section. The derivative of Xi with respect to the

whole matrix A is

Lo ey vy, . (B.51)

]
The matrix {g}i{y}i is the adjoint matrix of [A -~ AI],
6
normalized such that the trace is equal to one . The
sensitivity of the eigenvalue is sometimes expressed in terms

of differentials

dx; = {v}; [dal{g} (A.55)

or

dki

~

Eg}i{y};] *aa . (A.56)

The computation of the sensitivity of Ai requires that the
left and right eigenvectors be known.

If the eigenvectors are not normalized, the sensitivity

function is

5h; : \
- — [{5}.{v}.] (A.57)
§A {v e}, bt

1 ]
6tr[{§}i{y}i] is equal to {y}i{g}i which is equal to one

for normalized v eigenvectors.




where [{E}i{y}i] is the adjoint matrix of [A - AI]. Denoting

the adjoint matrix by R(A;), (A. 51) may be written as

-1
—= = [tr RO R() (A.58)

and (A.56) becomes

dry = [tr 13(Ai)]'1 R(A;) * dA . (A.59)

Equation (A.59) is exactly the sensitivity formula given
by Morgan (1973; p. 76). The matrix B(Ai) can be efficiently
computed by means of the Leverrier algorithm, described by
Faddeev and Faddeeva (1963; p. 260) and Morgan (1973; p. 76).
This is particularly interesting since the rows of R(};) are
left eigenvectors and the columns are right eigenvectors. For
a formal proof that (A.59) is identical to¢ (A.56), see
Mac Farlane (1970; pp. 413-419),.

Formulas (A.54) and (A.58) have the benefit that they
are easily computed. For analytical purposes, however, it would
be beneficial to have an expression linking the change in the
eigenvalue directly to a change in A, and to the original
value of A and of the eigenvalues. Such an expression is

derived by Rosenbrock (1965; p. 278):
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tr[n_ (A - AT dlj]
ar. = —x#l ) (A.60)
I (h: = X))
r#i . r

A.2.2. Differentiation of the eigenvector with respect to

the matrix elements

Recall eguation (A.47):

} s(e), |
(g{g}i , v j) + <13 — {y}j) _

(Mg}i {v} ot 3 v}
X - , {vi.] + . , {vl.
1 \s<n> ~ ]) (‘S<Zj> <~ T : ])

<{§}i : {y}j> =

For i # j, we have

o

We have also that

( é{g}i - ) (d{g}i o1 (6{§}i - )
A , VL = , A'{v}. = A. ’ ).
~ 6<.1~\.> ~ 3 6<1~\> SRR J ) J \s<n> E J

Equation (A.47) may be rewritten as

=L )] = S J . (A.61)
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6{£}i N
Let —~ = ) ci.{E}- (A.62)
6<§> :]____l :] ~ J
then
6{§}i (£}
s<as 3] clj<§ 3 {\3}3)

c.. = —=1 - for i # 3 (A.63)

The element Ciy remains undefined in view of the non-
uniqueness of the eigenvector. We may assume that c;j; =0
without loss of generality.

The computation of the sensitivity of the eigenvector by
(A.62) has a disadvantage, since it reaquires the knowledge
of all the eigenvalues and eigenvectors. Another approach
that relates the change in a specific eigenvector to the change

in A and to the change in the associated eigenvalue, is given

below. Consider the homogeneous equation

(A - A T1{e}; = {0} . (B.64)

Assume that all the eigenvalues of A are distinct, and let

the first element of {g}i , 1.e. g1i, be equal to 1. Ve may
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now delete the first equation of (A.64). The resulting set
forms a linearly independent system of non-homogenous equations

of order N-1.

221 422 - xi 423 N1 21 gw
231 232 433 ~ 4 : 3| _ | O
N N2 aN3 ayy - M tni LO
or in matrix notation
fa,b + [& - 2 I1{¢}, = {0} (A.65)
where the bar denotes the order N-1. Because of the non-
singularity of [é - Aii], we have
{E}. = - [B - »,117% 13,1 (A.66)
21 ~ i <1 : :

Applying formula (A.13) of section A.1. to (A.66) gives

— — -— _1 —_
{E}, (A - A1) _ _ . sfag}
SR 1 {3} - (& - A1) 1 al
6<§> 6<§> - - - 6<§>
S[A - A.T]
- — 2 i - = =1 -
= [A - ).I] - =T [A - X.I] {a.,}
- i~ S<p> - i~ <1
5{51}
- A - AT




Substituting for {;é}i and differentiating [A - kif] yields

§{E}. . sh, 1 8{a;}
—= = - [A - A\;I] - I| (B}, + (A.67)
- S§<A> §<A> ~ ¥

A,

where is computed using (A.57) or an equivalent formula.

S<A>

Some special cases now may be considered.

a. If the change in A occurs in the first row, this change
has no direct impact on the eigenvector, since 5 and {51} do not
include elements of the first row of A. There is an indirect
effect on {g}i , however, through the change in the eigenvalue.

b. If the change in A occurs in the first column, i.e. in

{§1}, then

SA

~

S<A>

c. If the change in A occurs not in the first column nor

in the first row, then




Besides (A.62) and (A.67), a third method to compute the
eigenvector sensitivity may be derived. It is based on the fact
that the columns of the adjoint matrix are right eigenvectors

and that the rows are left eigenvectors. This technique will

not be discussed here.
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