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Abstract

In this paper we investigate a class of nonlinear infinite horizon optimal control problems
arising in mathematical economics in consideration of economic growth problems and
problems of innovations dynamics. First order necessary optimality conditions in a form
of the Pontryagin maximum principle are developed together with some extra conditions
on the adjoint function and the behaviour of the Hamiltonian at the infinity. These
conditions allow us to guarantee in some cases the validity of the standard transversality
conditions at the infinity.
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First Order Necessary Optimality Conditions for

a Class of Infinite Horizon Optimal Control

Problems

Sergei Aseev (aseev@iiasa.ac.at)
Arkadii Kryazhimskii (kryazhim@aha.ru)
Alexander Tarasyev (tam@imm.uran.ru)

1. Statement of the problem

Consider the following optimal control problem (P ):

ẋ = f0(x) +
m∑
i=1

fi(x)u
i, u ∈ U ; (1)

x(0) = x0; (2)

J(x, u) =

∫ ∞
0

e−ρt(
n∑
i=1

γi lnx
i + g(u))dt→ max , (3)

Here x = (x1, . . . , xn) ∈ Rn; u = (u1, . . . , um) ∈ Rm; U is a convex compact subset
of Rm; fi(x), i = 0, . . . , m are continuously differentiable vector functions; x0 is a fixed
initial point with all strictly positive coordinates xi0 > 0, i = 1, 2, . . . , n; ρ > 0; γi > 0,
i = 1, . . . , n; g is a concave continuous function on U . We search for a minimizer of the
problem (P ) in a class of all measurable vector functions u : [0.∞) → Rm which are
bounded on each finite time interval [0, T ], ∀T > 0.

Optimal control problem (P ) naturally arises in mathematical economics in consider-
ation of economic growth problems and problems of innovations dynamics [1], [14], [20],
[21], [22]. In the present paper we shall not touch upon the economic motivations for
consideration of the problem (P ). Our main goal here consists in developing of the math-
ematical tools for investigation of this problem. Namely, in this paper we are concerned
mostly in development of the first order necessary optimality conditions for the problem
(P ).

Note, that the main distinction of the problem (P ) from the classical optimal control
problem [19] consists in infinity of the time interval on which we consider the behavior
of the control system. The important features of this problem incorporate a special type
of the integral functional which contains a discounting multiplier e−ρt and a logariphmic
function of the state vector coordinates. Another important feature of the problem (P)
consists in the absence of any a priory assumptions concerning the behavior of an optimal
trajectory at the infinity.

For the first time, the necessary optimality condition for problems with infinite horizon
in a form of the Pontryagin maximum principle were obtained in [19] under additional
assumption on the behavior of the optimal trajectory x∗ of the form limt→∞ x∗(t) = x1,
where x1 is a given point of the state space Rn. It has been shown in [19] that under
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this additional assumption a minor modification of the standard proof of the Pontryagin
maximum principle [19] provides its validity for the problems with infinite horizon. We
should note that the reasonings given in [19] are applicable also in the case of the free
right end point infinite horizon problems (in particular in the case of the problem (P )).
But in this case these reasonings provide an incomplete version of the maximum principle
without transversality conditions at the infinity.

We remind that in the case of the free right end point optimal control problem on a
finite time interval [0, T ] the transversality conditions at the right end point have a form

ψ0 = 1, ψ(T ) = 0,

where ψ is a solution of the adjoint system from the relations of the Pontryagin maximum
principle and ψ0 is a Lagrange multiplier which corresponds to the maximized functional1

J. Due to this circumstance it was natural to expect that in the case of infinite horizon
problems the transversality conditions at the infinity should have an analogous form

ψ0 = 1, lim
t→∞

ψ(t) = 0. (4)

However, as it was first noted in [15] in a general case of infinite horizon optimal con-
trol problems “natural” transversality conditions (4) are failed. See [15] for examples
of such kind of pathology. Note that the transversality conditions at the infinity plays
an important role in the studies of the infinite horizon optimal control problems via the
Pontryagin maximum principle. The relations of the maximum principle are incomplete
without these conditions and they select in this case too wide set of admissible controls
which are suspectable for optimality.

In this paper under some additional assumptions we obtain a new version of the Pon-
tryagin maximum principle for the problem (P ), which contains an additional information
concerning the adjoint function ψ and the behavior of the Hamiltonian at the infinity. In
some cases this additional information allows us to guarantee the validity of the “natural”
transversality conditions (4). We should note that earlier in [9] the maximum principle
was also obtained together with additional transversality conditions in the case when the
control system (1) is linear and some extra assumptions on the discount parameter ρ and
other data of the problem are valid.

The main method which we use in the present paper for the investigation of the problem
(P ) is the method of approximations. We approximate the initial infinite horizon problem
(P) by a sequence of classical optimal control problems, each of which is considered on its
own fixed finite time interval. This method allows us to obtain the necessary optimality
conditions for the problem (P ) using the standard limit procedure in the relations of the
Pontryagin maximum principle for the approximating problems. Earlier such approxima-
tions approach for the derivation of the necessary optimality conditions for the different
nonclassical optimal control problems (problems with state constraints, optimal control
problems for differential inclusions, nonsmooth optimal control problems) was used in [3],
[4], [5], [6], [7], [18]. The review of the approximations methods of this type is given in [8].
Here we note only that using this approach we are not doing any variational analysis of
the approximating problems and the necessary optimality conditions for the initial prob-
lem (P) are obtained here as a direct consequence of the classical Pontryagin maximum
principle [19].

In what follows, we assume that the inequalities for the vectors (matrixes) are under-
stood as carried out for all their coordinates (components).

1In the present paper we assume that optimal control problems are the maximization ones. In the case
of the problems of minimization the adjoint variable ψ0 will have an opposite sign.
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An admissible pair u, x is assumed to be an arbitrary measurable control u which is
given on its own finite or infinite time interval and bounded on each finite time interval
and satisfies u(t) ∈ U for almost all t, and the corresponding trajectory x of the system
(1) satisfying to the initial condition (2). If a pair u, x is defined on a finite time interval
[0, T ] then we shall assume that it is continued to an admissible pair u, x defined on the
whole time interval [0,∞) by an arbitrary way.

We shall assume also that the data of the problem (P ) satisfy the following assump-
tions:

(H1) f0(x) +
∑m
i=1 fi(x)u

i ≥ 0 ∀x ≥ x0, ∀u ∈ U ;

(H2) ∃C > 0: 〈x, f0(x) +
∑m
i=1 fi(x)u

i〉 ≤ C(1 + ‖x‖2) ∀x > x0, ∀u ∈ U .

Condition (H2) is a standard boundedness condition of the different existence theorems
of the optimal control theory [11], [13]. Due to this conditions and (H1) all admissible
trajectories of the control system (1) with initial condition (2) have positive coordinates
and defined for all t ≥ 0. Due to the assumption (H2), and convexity and compactness of
the set U the set of all admissible trajectories is a compact set in C[0, T ] ∀T > 0. Further,
due to the condition (H2) the integral (3) converges absolutely for any admissible pair u,
x.

It is easy to see that due to the condition (H2) there exists a nonnegative nonincreasing
function ω : [0,∞)→ R1 such that ω(t)→ 0, as t→∞, and for any admissible pair u, x
of the system (1) with initial condition (2) and arbitrary T > 0 the following inequality
holds: ∫ ∞

T
e−ρt|

n∑
i=1

γi lnx
i(t) + g(u(t))|dt≤ ω(T ). (5)

2. Construction of approximating problems and auxiliary
results

We start from the existence result for the problem (P ). Actually, this result is a particular
case of the existence theorem 3.6 [10]. Nevertheless we include a simplified proof of this re-
sult in the papper for the illustration of our approximation approach and for completeness
of the presentation.

Theorem 1. There exists an optimal control u∗ in the problem (P ).

Proof. Let {Tk}, k = 1, 2, . . . be an arbitrary sequence of positive numbers such that
Tk < Tk+1 ∀k and Tk →∞, as k →∞.

For k = 1, 2, . . . let us consider now the following sequence of optimal control problems
(Qk) each of which is defined on its own finite time interval [0, Tk]:

ẋ = f0(x) +
m∑
i=1

fi(x)u
i, u ∈ U ; (6)

x(0) = x0; (7)

Ĵk(x, u) =
∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i + g(u)]dt→ max . (8)

Here function g, vector functions fi, i = 1, 2, . . . , m, set U , vector x0 and constants ρ, γi,
i = 1, 2, . . . , n are the same as in the initial problem (P ). We are searching for a minimizer
of the problem (Qk) in a class of all measurable bounded functions u : [0, Tk]→ Rm.
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Due to the theorem 9.3.i [11] there exists an optimal control uk in the problem (Qk)
for all k = 1, 2, . . . . Denote by xk the trajectory corresponding to uk, k = 1, 2, . . ..

Consider now the sequence of controls {uk}, k = 1, 2, . . . on the time interval [0, T1].
Due to the convexity and compactness of the set U one can choose a subsequence {u1,k} of
{uk} such that u1,k → u∗ weakly in L1[0, T1], as k →∞ where u∗ is an admissible control
on the time interval [0, T1]. Note that by the construction each control u1,k, k = 1, 2, . . . is
an optimal one in a corresponding problem (Qm(1,k)) of the form (6)–(8) for some number
m(1, k) ≥ 1 on the time interval [0, Tm(1,k)] where Tm(1,k) ≥ T1. Assume x1,k is the
optimal trajectory corresponding to u1,k on the time interval [0, Tm(1,k)], k = 1, 2, . . ., and
x∗ denotes the trajectory of the system (6) corresponding to control u∗ on the time interval
[0, T1] with initial condition (7).

Due to the linearity in respect to control of the system (6) we have x1,k�x∗ on [0, T1],
as k →∞. Obviously, ẋ1,k → ẋ∗ weakly in L1[0, T1], as k →∞.

Consider now the sequence {u1,k}, k = 1, 2, . . . on the time interval [0, T2] for k ≥ 2.
Analogously to the previous case there exists a subsequence {u2,k} of the sequence

{u1,k} such that {u2,k} converges weakly in L1[0, T2] to an admissible control which is
defined on the time interval [0, T2] and coincide with u∗ on [0, T1]. Let us denote the
control constructed by this procedure on [0, T2] again by symbol u∗.

By the construction each control u2,k, k = 1, 2, . . . is an optimal one in a corresponding
problem (Qm(2,k)) on the time interval [0.Tm(2,k)], Tm(2,k) ≥ T2 of the type (6)–(8) for some
number m(2, k) ≥ 2. Let x2,k is the corresponding to u2,k optimal trajectory on the time
interval [0, Tm(2,k)], k = 1, 2, . . . and let x∗ be the trajectory of the system (6) corresponding
to control u∗ on the time interval [0, T2] with the initial condition (7).

Analogously to the previous step we have x2,k�x∗ on [0, T2], as k →∞ and ẋ2,k → ẋ∗
weakly in L1[0, T2], as k →∞.

Repeating this procedure we construct step by step an admissible control u∗ on the
infinite time interval [0,∞) and the corresponding trajectory x∗. Simultaneously we con-
struct a countable family of controls {ui,k}, i = 1, 2, . . ., k = 1, 2, . . . and the corresponding
family of trajectories {xi,k}, i = 1, 2, . . ., k = 1, 2, . . .. Furthermore, for all i = 1, 2, . . .,
k = 1, 2, . . . the control ui,k which is defined by this procedure, is an optimal one in an op-
timal control problem (Qm(i,k)), m(i, k) ≥ i on the corresponding time interval [0, Tm(i,k)]
where Tm(i,k) ≥ Ti, i = 1, 2, . . .Moreover, for all i = 1, 2, . . . we have

ui,k → u∗ weakly in L1[0, Ti], as k →∞;

xi,k � x∗, on [0, Ti], as k →∞;

ẋi,k → ẋ∗ weakly in L1[0, Ti], as k →∞.

Let us take the diagonal sequence {uk,k}, k = 1, 2, . . . from the constructed family
{ui,k}, i = 1, 2 . . ., k = 1, 2 . . . and denote vk = uk,k, yk = xk,k, and m(k) = m(k, k),
k = 1, 2, . . ..

Constructed by this procedure admissible pair u∗, x∗, and sequences of controls {vk},
k = 1, 2, . . . and corresponding trajectories {yk}, k = 1, 2, . . . satisfy to the following
properties:

a) ∀k = 1, 2, . . . the control vk is defined on the time interval [0, Tm(k)], m(k) ≥ k and
vk is an optimal control in the problem (Qm(k)) of the form (6)–(8).

b) ∀i = 1, 2, . . . we have

vk → u∗ weakly in L1[0, Ti], as k →∞;

yk � x∗ on [0, Ti], as k →∞;
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ẏk → ẋ∗ weakly in L1[0, Ti], as k →∞.

Let us prove that the constructed above control u∗ is an optimal one in the problem
(P ).

Assume that the control u∗ is not optimal in the problem (P ). Then there exist ε > 0
and an admissible pair ũ, x̃ such that

J(x∗, u∗) < J(x̃, ũ)− ε. (9)

Further, due to the the properties of the function ω there exists k1 such that ∀T ≥ Tk1 we
have

ω(T ) <
ε

4
. (10)

Consider now the above constructed sequences {vk}, {yk} on the time interval [0, Tk1]
for k ≥ k1.

On this time interval [0, Tk1] we have

vk → u∗ weakly in L1[0, Tk1], as k →∞;

yk � x∗ on [0, Tk1], as k →∞;
˙̂yk → ẋ∗ weakly in L1[0, Tk1], as k →∞.

Further, due to the upper semicontinuity of the functional Ĵk1 (see theorem 10.8.ii in
[11]) there exists k2 ≥ k1 such that ∀k ≥ k2 the following inequality holds:

Ĵk1(yk, vk) ≤ Ĵk1(x∗, u∗) +
ε

4
(11)

Consider now the admissible pair vk2 , yk2 on the corresponding time interval [0, Tm(k2)].
By the construction vk2 is an optimal control in the optimal control problem (Qm(k2)) on
the time interval [0, Tm(k2)]. Hence, due to (10) and inequality (5) we have

Ĵm(k2)(yk2 , vk2) ≥
∫ Tm(k2)
0

e−ρt[
n∑
i=1

γi ln x̃
i(t) + g(ũ(t))]dt≥

≥
∫ ∞
0

e−ρt[
n∑
i=1

γi ln x̃
i(t) + g(ũ(t))]dt− 1

4
ε = J(x̃, ũ)− 1

4
ε.

Whence due to (10), inequality (5) and (11) we get

J(x̃, ũ) ≤ Ĵm(k2)(yk2 , vk2) +
1

4
ε =
∫ Tm(k1)
0

e−ρt[
n∑
i=1

γi ln y
i
k2
(t) + g(vk2(t))]dt+

+
∫ Tm(k2)
Tm(k1)

e−ρt[
n∑
i=1

γi ln y
i
k2(t) + g(vk2(t))]dt+

1

4
ε ≤ Ĵm(k1)(x∗, u∗) +

3

4
ε ≤ J(x∗, u∗) + ε,

that contradicts (9). Hence u∗ is an optimal control in (P ). The theorem 1 is proved.
Now we shall modify the auxiliary problems (Qk), k = 1, 2, . . . used in the proof of

the theorem 1 by such a way that the corresponding sequence {uk}, k = 1, 2, . . . of their
optimal controls will provide an appropriate (strong in L2[0, T ], ∀T > 0) approximation
of the given optimal control u∗ of the problem (P ). We need such a strong approximation
to derive the desirable necessary optimality conditions for the problem (P ).

Assume u∗ is an optimal control in the initial problem (P ) and x∗ is the corresponding
optimal trajectory.
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For k = 1, 2, . . . let us fix a continuously differentiable vector function zk : [0,∞)→ Rn

such that
sup
t∈[0,∞)

‖zk(t)‖ ≤ max u∈U‖u‖+ 1, (12)

∫ ∞
0

e−ρt‖zk(t)− u∗(t)‖2dt ≤
1

k
, (13)

sup
t∈[0,∞)

‖żk(t)‖ ≤ σk <∞. (14)

It is easy to see that such sequence {zk}, k = 1, 2, . . . of continuously differentiable vector
functions zk exists. Without loss of generality we can assume that σk →∞, as k →∞.

Let us take now a sequence of positive numbers {Tk}, k = 1, 2, . . . such that Tk < Tk+1
∀k; Tk →∞, as k →∞, and ∀k = 1, 2, . . . we have

ω(Tk) ≤
1

k(1 + σk)
. (15)

Consider now the sequence of the following auxiliary optimal control problems (Pk),
k = 1, 2, . . . each of which is defined on its own time interval [0, Tk]:

ẋ = f0(x) +
m∑
i=1

fi(x)u
i, u ∈ U ; (16)

x(0) = x0; (17)

Jk(x, u) =

∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i + g(u)− ‖u− zk(t)‖2

1 + σk
]dt→ max . (18)

Here function g, vector functions fi, i = 1, 2, . . . , m, set U , vector x0 and constants ρ, γi,
i = 1, 2, . . . , n are the same as in the initial problem (P ). We are searching for a minimizer
of the problem (16)–(18) in a class of all measurable bounded functions u : [0, Tk]→ Rm.

Due to the theorem 9.3.i [11] there is an optimal control uk in the problem (Pk) for all
k = 1, 2, . . . . Denote by xk the trajectory corresponding to uk, k = 1, 2, . . ..

As usually in what follows we shall assume that for any k = 1, 2, . . . the pair uk, xk
is continued by an arbitrary way to an admissible pair uk, xk on the whole time interval
[0,∞).

Lemma ∀T > 0 we have

uk → u∗ in L2[0, T ], as k →∞.

Proof. Let T > 0 and let us take a number k1 such that Tk1 ≥ T . Obviously, for any
k = 1, 2, . . . we have

Jk(xk, uk) =

∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i
k(t) + g(uk(t))−

‖uk(t)− zk(t)‖2
1 + σk

]dt ≤

≤
∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i
k(t) + g(uk(t))]dt−

e−ρT

1 + σk

∫ T
0
‖uk(t)− zk(t)‖2dt.

Hence, due to the optimality of uk in the problem (Pk), k ≥ k1, optimality of u∗ in the
problem (P ), (5), (13) and (15) we get

e−ρT

1 + σk

∫ T
0
‖uk(t)− zk(t)‖2dt ≤

∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i
k(t) + g(uk(t))]dt− Jk(x∗, u∗) ≤



– 7–

≤ J(xk, uk)− J(x∗, u∗) + 2ω(Tm(k)) +
∫ ∞
0

e−ρt

1 + σk
‖zk(t)− u∗(t)‖2dt ≤

3

k(1 + σk)
.

Whence we get ∫ T
0
‖uk(t)− zk(t)‖2dt ≤

3eρT

k
.

Hence

(
∫ T
0
‖uk(t)− u∗(t)‖2dt)

1
2 ≤ (

∫ T
0
‖u∗(t)− zk(t)‖2dt)

1
2+

+(

∫ T
0
‖uk(t)− zk(t)‖2dt)

1
2 ≤

√
eρT

k
+

√
3eρT

k
= (
√
3 + 1)

√
eρT

k
.

Hence ∀ε > 0 ∃k2 ≥ k1 such that ∀k ≥ k2 the following condition holds:

‖uk − u∗‖L2[0,T ]dt ≤ ε.

Hence the assertion of the lemma holds. The lemma is proved.
It follows immeadiately from the assertion of the lemma that without loss of generality

we can assume that for arbitrary T > 0 we have

uk → u∗ in L2[0, T ], as k →∞;

xk � x∗ on [0, T ], as k →∞;
ẋk → ẋ∗ in L2[0, T ], as k →∞.

3. The main result

In this section we develop a new version of the first order necessary optimality condi-
tions for initial problem (P) using the limit procedure in the relations of the Pontryagin
maximum principle for the problem (Pk), as k→∞.

First let us introduce some standard notations.
Let

H(x, t, u, ψ) = 〈f0(x), ψ〉+
m∑
i=1

〈fi(x), ψ〉ui+ e−ρt(
n∑
i=1

γi lnx
i + g(u))

and
H(x, t, ψ) = sup

u∈U
H(x, t, u, ψ)

denote the Hamilton–Pontryagin function and the Hamiltonian (maximum function) re-
spectively for the problem (P ) presented in a normal forms (i.e. the Lagrange multiplier
ψ0 corresponding to the maximized functional J(x, u) is equal 1).

In what follows we shall assume that the following conditions hold:

(H3) There exist vectors a0 ∈ Rn, a0 > 0 and u0 ∈ U such that the following inequality
holds:

f0(x0) +
m∑
i=1

fi(x0)u
i
0 ≥ a0. (19)

(H4) Along any admissible pair u, x of the system (1) with initial condition (2) we have

∂f0(x(t))

∂x
+
m∑
i=1

∂fi(x(t))

∂x
ui(t) ≥ 0 (20)

for almost all t ≥ 0.
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Our main result is the following.

Theorem 2 (maximum principle). Assume that conditions (H1)–(H4) are fulfilled,
and u∗ is an optimal control in the problem (P ) and x∗ is the corresponding to u∗ optimal
trajectory. Then there exists an absolutely continuous vector function ψ : [0,∞) → Rn

such that the following conditions hold:
1) The function ψ is a solution to the adjoint system2

ψ̇
a.e
= −[∂f0(x∗(t))

∂x
+
m∑
i=1

∂fi(x∗(t))

∂x
ui∗(t)]

∗ψ − e−ρt(
γ

x∗(t)
); (21)

2) For almost all t ∈ [0,∞) the maximum condition takes place:

H(x∗(t), t, u∗(t), ψ(t)) = H(x∗(t), t, ψ(t)); (22)

3) The condition of the asymptotic stationarity of the Hamiltonian is valid:

lim
t→∞

H(x∗(t), t, ψ(t)) = 0; (23)

4) The vector function ψ is nonnegative, i.e.

ψ(t) ≥ 0 ∀t ≥ 0. (24)

Remark 1. Note, that the formulated above theorem is a variant of the Pontryagin max-
imum principle in a normal form. It asserts that a Lagrange multiplier ψ0 corresponding
to the maximizing functional is strictly positive and hence may be taken equal 1. Further,
this result incorporates some additional conditions (23) and (24), where the stationarity
condition (23) is analogous to the transversality condition with respect to time in the
formulation of the Pontryagin maximum principle for a free time finite horizon optimal
control problem (see [19]).

Proof. Let us consider the sequence of auxiliary problems (Pk), k = 1, 2, . . . constructed
above in section 2. Let uk be an optimal control in the problem (Pk) and let xk be the
corresponding optimal trajectory, k = 1, 2, . . .. As it was shown in section 2 for i = 1, 2, . . .
we have

uk → u∗ in L2[0, Ti], as k →∞;

xk � x∗ on [0, Ti], as k →∞;

ẋk → ẋ∗ in L2[0, Ti], as k →∞.

Due to the Pontryagin maximum principle [19] for the problem (Pk), k = 1, 2, . . .
there exists an absolutely continuous function ψk : [0, Tk] → Rn such that the following
conditions hold:

ψk(t)
a.e.
= −[∂f0(xk(t))

∂x
+
m∑
i=1

∂fi(xk(t))

∂x
uik(t)]

∗ψk(t)− e−ρt(
γ

xk(t)
); (25)

Hk(xk(t), t, uk(t), ψ(t)) a.e.= Hk(xk(t), t, ψk(t)); (26)

ψk(Tk) = 0. (27)

2Here and in what follows a symbol ( γx ) denote the vector (
γ
x ) = ( γ1

x1
, γ2
x2
, . . . , γnxn ).



– 9–

Here

Hk(x, t, u, ψ) = 〈f0(x), ψ〉+
m∑
i=1

〈fi(x), ψ〉ui+ e−ρt(
n∑
i=1

γi lnx
i + g(u)− ‖u− zk(t)‖2

1 + σk
)

and
Hk(x, t, ψ) = sup

u∈U
Hk(x, t, u, ψ)

are the Hamilton–Pontryagin function and the Hamiltonian (maximum function) for the
problem (Pk), k = 1, 2, . . . in a normal form.

3

We should note that due to relations (25), (26) of the Pontryagin maximum principle
for the problem (Pk) the following condition holds for k = 1, 2, . . .:

dHk(xk(t), t, ψk(t))

dt

a.e.
=

∂Hk
∂t

(xk(t), t, uk(t), ψk(t)). (28)

Further, due to (25), (26) and (27) we have ψk(t) > 0 ∀t ∈ [0, Tk].
Indeed, due to (25) and (27) we have the inequality ψk(t) > 0 for all t from some small

enough left neighborhood of the point Tk. Let us show now that

ψk(t) > 0, ∀t ∈ [0, Tk]. (29)

Let us assume that there exists t∗ ∈ [0, T∗) such that at least one coordinate of the vector
ψk(t∗) is equal 0. Let t∗ be a maximal such point and let i∗ be a coordinate such that
ψi∗k (t∗) = 0. Then

ψk(t) > 0 ∀t ∈ (t∗, Tk) (30)

and

ψi∗k (t) = −
∫ t
t∗
〈∂f0(xk(s))

∂x
ei∗ , ψk(s)〉ds−

−
∫ t
t∗

n∑
i=1

〈∂fi(xk(s))
∂x

ei∗ , ψk(s)〉ds−
∫ t
t∗
e−ρs〈( γ

xk(s)
), ei∗〉ds,

where ei∗ is a vector with unite coordinate i∗ and vanishing all other coordinates. Now
this equality and (20) imply inequality ψi∗k (t) ≤ 0 ∀t ∈ (t∗, Tk) which contradicts to (30).

So, the condition (29) is proved.
Now we show that the sequence {‖ψk(0)‖}, k = 1, 2, . . . is bounded. For this purpose

let us integrate the equality (28) on the time interval [0, Tk], k = 1, 2, . . ..
Using (28) we get

H(x0, 0, ψk(0)) = e−ρTk [
n∑
i=1

γi lnx
i
k(Tk) + max u∈U(g(u)−

‖u− zk(Tk)‖2
1 + σk

)]+

+ρ

∫ Tk
0

e−ρt[
n∑
i=1

γi lnx
i
k(t)−

‖uk(t)− zk(t)‖2
1 + σk

]dt− 2
∫ Tk
0

e−ρt
〈uk(t)− zk(t), żk(t)〉

1 + σk
dt.

It is not difficult to see that due to the conditions (12)-(14), boundedness of the set U
and condition (H2) there exists a constant M > 0 such that for all k = 1, 2, . . . we have

Hk(x0, 0, ψk(0)) ≤M.

3The problem (Pk) is a free right end point optimal control problem on the fixed time interval [0, Tk ],
k = 1, 2, . . .. Hence the multiplier ψ0 can be taken equal 1.
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From this inequality using (19) we derive

〈a0, ψk(0)〉 ≤M +
n∑
i=1

γi lnx
i
0 +max u∈Ug(u).

Now the boundedness of the sequence {‖ψk(0)‖}, k = 1, 2, . . . follows directly from the
last inequality, strict positeveness of the vectors a0, ψk(0), k = 1, 2, . . . and boundedness
of the set U .

Now consider consequently time intervals [0, Ti], i = 1, 2, . . . and sequences {uk}, {xk}
and {ψk} on [0, Ti], as k →∞.

Due to the Bellman–Gronwall inequality [16], boundedness of the sequence {‖ψk(0)‖},
k = 1, 2, . . . and (25) we may assume that there exists an absolutely continuous vector
function ψ : [0, Ti]→ Rn such that

ψk� ψ on [0, Ti], as k→∞,

and
ψ̇k → ψ̇ weakly in L1[0, Ti], as k→∞.

Considering the sequence of increasing time intervals [0, Ti], as i → ∞, and passing to
a subsequence of {ψk}, k = 1, 2, . . . on each of these time intervals, and taking then a
diagonal subsequence we can suppose that there exists an absolutely continuous vector
function ψ : [0,∞)→ Rn, such that ∀T > 0 we have

ψk� ψ on [0, T ], as k→∞,

and
ψ̇k → ψ̇ weakly in L1[0, T ], as k→∞.

Due to the uniform convergence of the sequence xk to x∗, as k → ∞ and convergence of
uk to u∗ in L2[0, T ], as k → ∞, passing to a limit in (25) for almost all t ∈ [0, T ], as
k → ∞ we get that due to the Mazur theorem [18] the absolutely continuous function ψ

is a solution to the adjoint system (21) on time interval [0, T ].
Hence the condition (21) is proved.
Due to the positiveness of the functions ψk, k = 1, 2 . . . we have ψ(t) ≥ 0 ∀t > 0, i.e.

the condition (24) is proved.
Passing to the limit in (26), as k→∞ we get the maximum condition (22).
Let us prove now the asymptotic stationarity condition (23). To this end let us take

an arbitrary t > 0 and integrate the equality (28) on the time interval [t, Tk] for large
numbers k such that Tk > t. Due to the equality (27) we get

Hk(xk(t), t, ψk(t)) = e−ρTk [
n∑
i=1

γi lnx
i
k(Tk) + max u∈U(g(u)−

‖u− zk(Tk)‖2
1 + σk

)]−

−ρ
∫ Tk
t

e−ρs[
n∑
i=1

γi lnx
i
k(s) + g(uk(s))−

‖uk(s)− zk(s)‖2
1 + σk

]ds+

+2
∫ Tk
t

e−ρs
〈uk(s)− zk(s), żk(s)〉

1 + σk
ds. (31)

Further, passing to the limit in the equality (31), as k→∞ we have

H(x∗(t), t, ψ(t)) = ρ

∫ ∞
t

e−ρs[
n∑
i=1

γi lnx
i
∗(s) + g(u∗(s))]ds. (32)
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Finally, passing to the limit in the last equality (32), as t→∞ we get the condition (23).
The theorem 2 is proved.

Remark 2. It is easy to see that condition (23) immediately implies the following equality:

lim
t→∞

(〈f0(x∗(t)), ψ(t)〉+
m∑
i=1

〈fi(x∗(t))ui∗(t), ψ(t)〉) = 0.

Remark 3. In the case n = 1 the theorem 2 is valid without the assumption (20). Indeed,
condition (20) was used in the proof of the theorem 2 only for proving the positiveness of
the vector functions ψk, k = 1, 2, . . .. In the case n = 1 the positiveness of the functions
ψk, k = 1, 2, . . . is an immediate consequence of (25) and (27).

Corollary 1 Assume that assumptions (H1)–(H4) are fulfilled and an admissible pair u∗,
x∗ satisfy to the conditions (21)–(24) of the maximum principle (theorem 2). Moreover,
assume that there exists a vector a1 ∈ Rn, a1 > 0 such that the following inequality takes
place:

f0(x(t)) +
m∑
i=1

fi(x(t))u
i(t) ≥ a1 (33)

along the pair u∗, x∗. Then the transversality condition at the infinity (4) holds.

Proof. Indeed due to the condition (23) (see remark 2 above) and (33) we have

lim
t→∞
〈a1, ψ(t)〉 ≤ lim

t→∞
[〈f0(x(t)), ψ(t)〉+

m∑
i=1

〈fi(x(t)), ψ(t)〉ui(t)] = 0.

From these relations due to (24) we have

lim
t→∞

ψ(t) = 0.

The corollary is proved.

Corollary 2 Assume that assumptions (H1)–(H4) are fulfilled and an admissible pair u∗,
x∗ satisfy to the conditions (21)–(24) of the maximum principle (theorem 2). Moreover,
assume that there exists n× n matrix A > 0 such that the following relation holds:

∂f0(x∗(t))

∂x
+
m∑
i=1

∂fi(x∗(t))

∂x
ui∗(t)

a.e.
≥ A (34)

along the pair u∗, x∗. Then the strengthened transversality condition holds:

lim
t→∞
〈x∗(t), ψ(t)〉= 0. (35)

It is easy to see that due to the positiveness of the vector x0 and (H3) the relation
(35) imply (4).

Proof. Indeed, due to the conditions of the maximum principle (theorem 2 ) and (34) we
have

d

dt
〈x∗(t), ψ(t)〉 a.e.=< f0(x∗(t)), ψ(t)> +

m∑
i=1

〈fi(x∗(t))ui∗(t), ψ(t)〉−
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−〈x∗(t), [
∂f0(x∗(t))

∂x
]∗ψ(t)〉 − 〈x∗(t),

n∑
i=1

[
∂

∂x
fi(x∗(t))]

∗ui∗(t)ψ(t)〉 − 〈x∗(t), e−ρt(
γ

x∗(t)
)〉
a.e
≤

a.e
≤ −〈Ax∗(t), ψ(t)〉+H(x∗(t), t, ψ(t))− e−ρt[

n∑
i=1

γi lnx
i
∗(t) + g(u∗(t))]− e−ρt

n∑
i=1

γi.

Hence there exist constants µ > 0 such that

d

dt
〈x∗(t), ψ(t)〉 ≤ −µ〈x∗(t), ψ(t)〉+ α(t),

where α(t) = H(x∗(t), t, ψ(t))− e−ρt[
∑n
i=1 γi lnx

i
0 +min u∈Ug(u)] → 0, as t → ∞. From

the last inequality we have

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−µt〈x0, ψ(0)〉+ e−µt
∫ t
0
eµsα(s)ds. (36)

Further, due to the relation ddtH(x∗(t), t, ψ(t))
a.e.
= ∂
∂tH(x∗(t), t, u∗(t), ψ(t)) we have

α̇(t)
a.e.
= −ρe−ρt[

n∑
i=1

γi lnx
i
∗(t) + g(u∗(t)] + ρe−ρt[

n∑
i=1

γi lnx
i
0 +min u∈Ug(u)] ≤ 0.

Whence, integrating by parts we get

∫ t
0
eµsα(s)ds =

1

µ
[eµtα(t)− α(0)] +

1

µ

∫ t
0
eµsα̇(s)ds ≤

≤ 1

µ
[eµtα(t)− α(0)].

Substituting the last estimation in (36) we get

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−µt〈x0, ψ(0)〉+ e−µt[
1

µ
[α(t)− α(0)].

Hence 〈x∗(t), ψ(t)〉 → 0, as t→∞. The corollary is proved.

Corollary 3 Let assumptions of the theorem 2 are valid. Then the following equality
holds:

J(x∗, u∗) =
1

ρ
[〈f0(x0), ψ(0)〉+

n∑
i=1

γi lnx
i
0 +max u∈U{

m∑
i=1

〈fi(x0), ψ(0)〉ui+ g(u)}]. (37)

Proof. Indeed the conditions of the Pontrygin maximum principle (21), (22) for the
problem (P ) imply the validity of the equality

d

dt
H(x∗(t), t, ψ(t))

a.e
=

∂H
∂t
(x∗(t), t, u∗(t), ψ(t)) = −ρe−ρt(

n∑
i=1

γix
i
∗(t) + g(u∗(t))).

Integrating this equality on the time interval [0,∞) due to (23) we get

H(x0, 0, ψ(0)) = ρ

∫ ∞
0

e−ρt(
n∑
i=1

γix
i
∗(t) + g(u∗(t)))dt= ρJ(x∗, u∗).

So, the equality (37) is valid and the corollary is proved.
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Remark 4. The equality (37) is related with the Hamilton-Jacobi equation for the prob-
lem (P ). Indeed, assume that assumptions of the theorem 2 are fulfilled and w(t0, x0) is
the value function of the following optimal control problem (P(t0,x0)):

ẋ = f0(x) +
m∑
i=1

fi(x)u
i, u ∈ U ;

x(t0) = x0;

J(t0,x0)(x, u) =
∫ ∞
t0

e−ρt(
n∑
i=1

γi lnx
i + g(u))dt→ max .

Here the function g, vector functions fi, i = 1, 2, . . . , m, set U , constants ρ, γi, i =
1, 2, . . . , n are the same as in the initial problem (P ), and t0 ≥ 0, x0 > 0 are arbitrary
initial time and initial state respectively. The pair t0, x0 is considered in the family of
problems (P(t0,x0)) as a parameter. Obviously the problem (P(0,x0)) coinsides with the
initial problem (P ).

Let v(x0) = w(0, x0) be the stationary projection of the value function w(t0, x0). One
can easily prove that w(t0, x0) = e−ρt0v(x0) (see [12]). Assuming that function w(t0, x0)
is continuously differentiable and substituting it into the Hamilton-Jacobi equation

∂w(t0, x0)

∂t
+max u∈U{〈

∂w(t0, x0)

∂x
, f0(x0) +

m∑
i=1

fi(x0)u
i〉+ e−ρt0(

n∑
i=1

γi lnx
i
0 + g(u))} = 0

we obtain after contracting e−ρt0 the stationary Hamilton-Jacobi equation

−ρv(x0) + 〈
∂v(x0)

∂x
, f0(x0)〉+

n∑
i=1

γi lnx
i
0 +max u∈U{

m∑
i=1

〈∂v(x0)
∂x

, fi(x0)〉ui + g(u))}= 0.

(38)

Taking into account that v(x0) = J(x∗, u∗) and
∂v(x0)
∂x = ψ(0) we come to the conclusion

that relation (37) is a generalization of the stationary Hamilton-Jacobi equation (38).
At the end of this section we present a sufficient condition of optimality for the problem

(P ) in a form of the Pontryagin maximum principle. Note, that results of this type for
problems on the finite time interval run back to the paper [17]. In the case of the infinite
horizon problems a similar result under other a priory assumptions was obtained in [2].

Theorem 3. Let the assumptions (H1)–(H4) of the theorem 2 are fulfilled and a pair
u∗, x∗ satisfy to the conditions (21)–(24) of the maximum principle (theorem 2) together
with the adjoint function ψ. Assume also that there exists a matrix A > 0 such that the
relation (34) holds along the pair u∗, x∗, and the Hamiltonian H(x, t, ψ(t)) is continuously
differentiable and concave in x for all t ∈ [0,∞). Then the pair u∗, x∗ is an optimal one
in the problem (P ).

Proof. Due to the definition of the Hamiltonian H(x, t, ψ) for all x and all t we have

〈f0(x), ψ(t)〉+
m∑
i=1

〈fi(x), ψ(t)〉ui∗(t) + e−ρt(
n∑
i=1

γi lnx
i + g(u∗(t))) ≤ H(x, t, ψ(t)).

Further due to the maximum condition (22) the following equality holds for almost all
t ≥ 0:

〈f0(x∗(t)), ψ(t)〉+
m∑
i=1

〈fi(x∗(t)), ψ(t)〉ui∗(t)+e−ρt(
n∑
i=1

γi lnx∗(t)
i+g(u∗(t))) = H(x∗(t), t, ψ(t)).
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Hence, for almost all t ≥ 0 we have

ψ(t)
∂f0(x∗(t))

∂x
+
m∑
i=1

ψ(t)
∂fi(x∗(t))

∂x
ui∗(t) + e−ρt(

γ

x∗(t)
) =

∂H(x∗(t), t, ψ(t))

∂x
,

and the adjoint equation (21) can be rewritten in this case in the following equivalent way:

ψ̇(t) = −∂H(x∗(t), t, ψ(t))
∂x

. (39)

Let now u, x be an arbitrary admissible pair. Then due to the concavity of the Hamiltonian
H(x, t, ψ(t)) in x we have the following inequality:

〈∂H(x∗(t), t, ψ(t))
∂x

, x∗(t)− x(t)〉 ≤ H(x∗(t), t, ψ(t))−H(x(t), t, ψ(t)). (40)

Hence, due to the conditions (39), (40) for almost all t ≥ 0 we have

〈ψ̇(t), x(t)− x∗(t)〉 ≤ H(x∗(t), t, ψ(t))−H(x(t), t, ψ(t))≤

≤ 〈f0(x∗(t)), ψ(t)〉+
m∑
i=1

〈fi(x∗(t)), ψ(t)〉ui∗(t) + e−ρt(
n∑
i=1

γi lnx
i
∗(t) + g(u∗(t)))−

−〈f0(x(t)), ψ(t)〉−
m∑
i=1

〈fi(x(t)), ψ(t)〉ui(t)−e−ρt(
n∑
i=1

γi lnx
i(t)+g(u(t))) = 〈ψ(t), ẋ∗(t)−ẋ(t)〉+

+e−ρt(
n∑
i=1

γi lnx
i
∗(t) + g(u∗(t)))− e−ρt(

n∑
i=1

γi lnx
i
∗(t) + g(u(t))).

Hence

d

dt
〈ψ(t), x(t)− x∗(t)〉+ e−ρt(

n∑
i=1

γi lnx
i(t) + g(u(t))) ≤ e−ρt(

n∑
i=1

γi lnx
i
∗(t) + g(u∗(t))).

Whence, integrating the last inequality on the arbitrary finite time interval [0, T ], ∀T > 0
we have

〈ψ(T ), x(T )−x∗(T )〉+
∫ T
0

e−ρt(
n∑
i=1

γi lnx
i(t)+g(u(t)))dt≤

∫ T
0

e−ρt(
n∑
i=1

γi lnx
i
∗(t)+g(u∗(t)))dt.

As far as ψ(t) ≥ 0, x(t) ≥ 0 ∀t ≥ 0 and due to the strengthened transversality condition
(35) (see corollary 2) passing to a limit in the last inequality as T →∞ we get

∫ ∞
0

e−ρt(
n∑
i=1

γi lnx
i(t) + g(u(t)))dt≤

∫ ∞
0

e−ρt(
n∑
i=1

γi lnx
i
∗(t) + g(u∗(t)))dt.

Hence, the pair u∗, x∗ is an optimal one and the theorem 3 is proved.

Remark 5. It is easy to see that if for any admissible trajectory x �= x∗ on a set of
positive measure the inequality (40) holds as a strict one then the optimal trajectory x∗
is unique.

Corollary 4 Let the assumptions (H1)–(H4) of the theorem 2 are fulfilled and there exists
a matrix A > 0 such that the relation (34) holds for almost all t > 0 along any admissible
pair u∗, x∗. Assume also that the Hamiltonian H(x, t, ψ) is continuously differentiable
and concave in x for all t ∈ [0,∞) and all ψ > 0. Then the maximum principle (theorem
2) is a necessary and sufficient condition of optimality for the problem (P ).
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In conclusion let us give an illustrative example.
Example. Consider the following optimal control problem:

ẋ = x+ u, u ∈ U = [0, 1]; (41)

x(0) = 1; (42)

J(x, u) =

∫ ∞
0

e−ρt lnxdt→ max , (43)

where x ∈ R1, u ∈ R1 and ρ > 0.
Due to the theorem 1 there exists an optimal control u∗ in the problem (41)–(43). Ob-

viously, conditions (H1)–(H4) and (34) are fulfilled in this problem and the Hamiltonian
H(x, t, ψ) = xψ +max u∈[0,1]uψ + e−ρt lnx is continuously differentiable and concave in x

for all t ≥ 0 and all ψ ≥ 0. Hence, due to the corollary 4 the maximum principle (theorem
2) is a necessary and sufficient condition of optimality for the problem (41)–(43) and the
strengthened transversality condition (35) is valid (see corollary 2). Note that necessary
conditions of optimality obtained in [9] are not applicable to the problem (41)-(43) in the
case ρ ≤ 1.

The application of theorem 2 provides us immediately with the unique optimal con-
trol u∗(t)

a.e.
= 1 for problem (41)–(43) ∀ρ > 0. Indeed, due to conditions (21), (24) we

have ψ(t) > 0 ∀t > 0 and due to the maximum conditon (22) we have u∗(t)ψ(t)
a.e.
=

max u∈[0,1]uψ(t). Hence u∗(t)
a.e.
= 1 is the unique optimal control and x∗(t) = 2e

t−1, t ≥ 0
is the unique optimal trajectory in this problem.

The adjoint system for the problem (41)–(43) is the following one:

ψ̇ = −ψ − e−ρt

x∗(t)
.

Solving it we get

ψ(t) = e−t[ψ(0)−
∫ t
0

e(1−ρ)s

2es − 1ds].

Hence due to the strengthened transversality condition (35) (limt→∞ x∗(t)ψ(t) = 0) we
have

ψ(0) =

∫ ∞
0

e(1−ρ)s

2es − 1ds.

Thus, in this example there is a unique adjoint variable ψ which corresponds to the op-
timal pair u∗, x∗ via the developed version of the Pontryagin maximum principle (theorem
2).
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