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Abstract 

Technological learning, i.e., cost reductions as technology manufacturers accumulate experience, is increasingly being incorporated 
in models to assess long-term energy strategies and related greenhouse gas emissions. Most of these applications use learning rates 
based on studies of non-energy technol ogies, or sparse results from a few energy studies. This report is a step towards a la rger 
empirical basis for choosing lea rning rates (or learning rate distributions) of energy conversion technologies for energy models. We 
assemble data on experience accumula tion and cost reductions for a number of energy technologies, estimate learning rates for the 
resulting 26 data sets, analyze their varia bility, and evaluate their usefulness for applications in long-term energy models. © 2001 
El sevier Science Ltd. All rights reserved. 

For many products and services, unit costs decrease 
with increasing experience. The idealized pattern describ­
ing this kind of technological progress in a regular 
fashion is referred to as a learning curve, progress curve, 
experience curve, or learning by doing (Dutton and 
Thomas, 1984; Argote and Epple, 1990; Argote, 1999). In 
its most common formulation, unit costs decrease by 
a constant percentage, called the learning rate, for each 
doubling of experience. 

Because experience accumula tes with time, unit costs 
for a given technology thus decrease with time. Early 
modeling efforts therefore approximated non-linear 
learning curves by simple time series in an effort to avoid 
computational and methodological difficulties. Modelers 
have specified cost reductions over time both for indi­
vidual energy technologies (Capros and Vouyoukas, 
1999; Nakicenovic et al., 1998), and for groups (clusters) 
of similar technologies (Yohe, 1996; IEA-ETSAP, 1999). 

When models in which costs decrease only as a func­
tion of time are used to compare alternative greenhouse 
gas (GHG) emission reduction strategies, they generally 
favor strategies that delay such reductions (Wigley et al., 
1996). This is so because the long-term atmospheric con­
centration of C0 2 depends mainly on cumulative C02 

emissions (Houghton et al., 1996). Thus, for a given 

•Co rresponding author. Tel.: + 43-223 6-807225; fax: 43-2236-
71313 . 

E-mail address: leo@iiasa.ac.at (L. Schrattenholzer). 

concentration target, it makes no difference whether 
carbon reductions are early or delayed, and delayed 
reductions are cheaper. The models therefore tend to 
recommend delay. 

For most products and services, however, it is not the 
passage of time that leads to cost reductions, but the 
accumulation of experience. Unlike a fine wine, a techno­
logy design that is left on the shelf does not become better 
the longer it sits unused. Indeed, interruptions in produc­
tion and use can cause experience to be lost and unit 
costs to rise, i.e., "forgetting by not doing" in contrast to 
learning by doing. Therefore, a number of initiatives are 
underway to incorporate into energy models technolo­
gical cost reductions, not as functions of time, but as 
explicit functions of experience, i.e., as learning curves 
(Messner, 1997; Mattsson, 1997; EIA/DOE, 1999; 
Goulder and Mathai, 2000; Griibler and Gritsevskii, 
2000). Such a formulation introduces in the models both 
non-linearities and positive feedbacks (the more a tech­
nology is used, the greater the incentive for using it more). 
This drastically increases model complexity and prob­
lematic non-convexities, both of which result in large 
computational requirements. But progress in modeling 
and computer performance is rapid, and if the new 
methods are to produce sensible and useful results, good 
estimates of technological learning rates will be needed as 
model input. 

The importance of good (reliable) learning rate esti­
mates is shown in Fig. 1. Using illustrative, but realistic, 

030 1-4215/01 /S-see front matter ~ 200 1 Elsevie r Science Ltd. All rights reserved. 
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Fig. I. Sensitivity of break-even capacities and technology maturing 
costs to learning rate rnriations. 

values, Fig. l presents a hypothetical new technology 
with an initial unit cost of $2000kW- 1 and a fixed 
"competitive cost target" of $1000kW- 1

• The left bars 
represent break-even capacities for a new technology at 
different assumed learning rates, where the break-even 
capacity is defined as the capacity additions needed to 
drive unit costs down to the fixed competitive cost target. 
The right bars are the technology maturing costs, or the 
investments - over and above the competitive cost tar­
get - needed for the break-even capacity additions. 
Because the vertical axis of Fig. I is logarithmic and the 
horizontal axis is linear, the figure shows that with de­
creasing learning rates, technology maturing costs and 
break-even capacities grow faster than exponentially. 
For our hypothetical new technology, decreasing the 
learning rate from 20 to 10% would increase technology 
maturing costs from $2 billion to S 16 billion, and the 
break-even capacity from 9 to 96GW. 

Such high, non-linear sensitivity to learning rate vari­
ations emphasizes the value of, first, reliable learning rate 
estimates as inputs and, second, stochastic model formu­
lations that can explicitly calculate the impact of remain­
ing learning rate uncertainties on the eventual model 
results. 

As a step in the direction of reliable estimates of en­
ergy-related learning rates, and their uncertainties, this 
paper assembles data for a variety of energy technologies 
(from natural gas pipelines to sub-components of end-use 
technologies), estimates the implied learning rates, checks 
how well the da ta fit the classic learning curve model, and 
draws conclusions about incorporating the resulting 
learning rates in energy models. Table 1 summarizes 26 
data sets and their estimated learning rates assuming that 
cost reductions are a function only of the experience 
measure specified in the table. Table 1 also gives the 

correlation coefficients (R 2
)

1
, the measures of technolo­

gical improvement used in the different cases, and the 
measures of experience. For comparison, Table 2 lists 
additional energy-related learning rates that we have 
collected or calculated from the literature, but for which 
the original data sets are not available for our own 
analysis. 

The first important feature of Tables 1 and 2 is the 
range of the estimated learning rates across the energy 
technologies. The range from Table 1 is illustrated as 
a histogram in the left panel of Fig. 2. For comparison, 
the right panel shows the results of Dutton and Thomas' 
(1984) compilation of over 100 studies of learning rates 
(not restricted to energy technologies) at the level of 
individual manufacturing firms. The ranges of learning 
rates in both panels of Fig. 2 are comparable, and the 
median value of 16-17% for energy technologies is not 
far below the 19-20% median for the manufacturing 
firms. This suggests that learning rates (and their vari­
ations) from studies not restricted to energy technologies 
are useful starting points for energy modelers until more 
detailed studies of energy technologies are available. 

To shed light on the reliability of the estimated learn­
ing rates, Table l also shows the correlation coefficients 
(R 2

) for the estimated learning rates, and the second 
important feature of the table is the range of values for 
R2

. Values range from very good (0.99 for Harmon's data 
on solar PY modules) to very bad. Moreover, there can 
be more variability within a given data set than might be 
suggested by a high R2 value. As an example, consider 
Harmon's data on PY modules as presented in Fig. 3. 
The left part of the figure fits a learning curve to the data, 
yielding an estimated learning rate of 20%. The fit looks 
impressive, and, as just noted, R 2 equals 0.99. But on the 
right of Fig. 3, we still find considerable variety in the 
data set. This part of the figure shows all learning rates 
that can be calculated from any two points in the data 
set, as follows. Consider first the curve labeled "1968" 
(the first label in the legend box). This curve describes the 
learning rates between 1968 and the year described by the 
value on the horizontal axis. Taken together, the curves 
on the right of Fig. 3 seem to show more variability 
within the data than is evident from the estimated learn­
ing curve on the left, and indicate how much calculated 
learning rates depend on the data points that are chosen. 
Given that the bulk of the calculated learning rates with 
end points in the last 15 years fall between 18 and 25%, 
the overall learning rate of 20% shown in Table 1 looks 
reasonable, but the right-hand side of Fig. 3 suggests 
an energy modeler might want to incorporate more 

1 The correlation coefficient is a real number between 0 and 1 (inclus­
ively). It expresses the quality of the fit between the learning curve model 
and the data. The extreme values of 0 and I reflect "no correlation" (or 
no explanatory value of the postulated formula) and "perfect correla­
tion" (complete explanation by the postulated formula) , respectively. 



Table I 
Estimated energy-related learning rates" 

Technology Country / region 

Oil extraction North Sea 

Gas rirclincs. onshore us 
Gas ripclincs, olTshore us 
DC con vcrtcrs World 

Gas turbines Worldc 

Gas turbines Wor)dc 

Gas turbines Worldc 

Nuclear power plants OECD 
Hydrorower plants OECD 

Coal power rlants OECD 
Lignite power rlants OECD 

GTCC power plants OECD 

GTCC power rlants World 

GTCC power plants World 

Wind power plants OECD 

Wind power (electricity) California 

Wind Germany 

Wind turbines Denmark 

Solar PY modules' World 

Solar PY panels us 

Ethanol Brazil 

Modcl-T ford us 

Compact fluorescent lamps, us 
integral-electronic type 

Air conditioners Japan 

4-function pocket us 
calculators 

SONY laser diodes -

Time reriod 

1984-1997 
1984-1997 
1976- 1994 

1958- 1%3 
1963- 1980 
1958-1980 

1975-1993 
1975-1993 

1975- 1993 
1975-1992 
1984-1994 

1981-1991 

1991-1997 
1981-1995 

1980-1994 

1990-1998 
1982-1997 

1968-1998 

1959-1974 

1979-1995 
1909-1918 

1992-1998 

1972-1997 

Early I 970s 

1982-1994 

Estimated R2 
" 

learning rat\.': 
('Y.>) 

::: 25 

3.7 
24 
37 

22 
9.9 

13 

5.8 

1.4 
7.6 
8.6 

34 

- JI" 
26" 
17 

18 

8 
8 

20 
22 

20 
14 

16 

JO 
30 

23 

0.09 
0.76 
0.35 

0.'J.+ 

0.95 
0.89 

0.90 
0.96 
0.78 

0.41 
0.90 
0.94 

0.85 

0.95 

n.a. 
0.99 
0.94 

0.89 
0.96 

0.66 

0.82 
n. a. 

0.95 

"Note: sp. =specific; inv. =investment; cum. = cumulative: car.= capacity: prod. = production. 

Performance measure 
(dependent variable) 

sp. labor (man-hrs lo 

construct one loll or 
rlatrorin jacket) 

sr. inv. price (S/ milc-inch 2
) 

sp. inv. rrice (S/ milc-ineh 2
) 

conversion losses ('Y..) 

sr. inv. cost ($/ kW) 
sp. inv. cost ($/ kW) 
sp. inv. cost ($/ kW) 

sp. inv. cost ($/ kW) 
sr. inv. cost ($/kW) 

sp. inv. cost ($/kW) 
sr. inv. cost ($/ kW) 

sr. inv. cost ($/ kW) 
sp. inv. rricc ($/ kW) 

sr. inv. price ($/ kW) 
sr. inv. cost ($/kW) 

sp. rrod. cost ($/ kWh) 

sp. inv. rrice ($/ kW) 

sr. inv. price ($/ kW) 

sr. inv. price ($/ WP"'') 
sr. sale price ($/ W r'"') 

sp. sale rricc ($/ boc) 
sale price($ per car) 

sr. sale price ($ per lumen) 

sale price (Yen per unit) 
sale price ($ per unit) 

prod. cost (Yen per unit) 

Exrerience measure 
(independent variable) 

cum. cap. (construction 
projects) 

cum. cap. (milc-inch 2) 

cum. cap. (mile-inch 2 ) 

cum. car. (installed units) 

cum . car. (MW) 
cum. cap. (MW) 
cum. cap. (MW) 

cum. cap. (MW) 

cum. car. (MW) 
cum. cap. (MW) 
cum. cap. (MW) 

cum. cap. (MW) 
cum. cap. (MW) 

cum. cap. (MW) 
cum. cap. (MW) 

cum. prod. (TWh) 

cum. cap. (MW) 

cum. cap. (MW) 
cum. cap. (MW) 

cum. cap. (MW) 

cum. prod. (cubic meters) 
cum. prod. (cars) 

cum. prod. (units) 

cum. sales (units) 

cum. prod. (units) 

cum. prod. (units) 

Reference/data source 

Blackwood ( 1997) 

Zhao (1999) 

Zhao (1999) 
Rabitsch (1999) 

MacGregor et al. ( 1991) 
MacGregor et al. (1991) 
Nakicenovic et al. (I 998); 

MacGregor et al. (1991) 
Kouvaritakis et al. (2000) 
Kouvaritakis et al. (2000) 

Kouvaritakis et al. (2000) 
Kouvaritakis et al. (2000) 

Kouvaritakis et al. (2000) 
Claeson (I 999) 

Claeson (I 999) 
Kouvaritakis et al. (2000) 

CEC (1997); Loiter and 
Norberg-Bohm (1999) 
Durstewitz (I 999) 

Neij (1999) 

Harmon (2000) 

Maycock and Wakefield 
(1975) 

Goldemberg (I 996) 
Lipman and Sperling (I 999); 

Abernathy and Wayne 
(1974) 

lwarune (2000) 

Akisawa (2000) 

Maycock and Wakefield 

(1975) 

Lipman and Sperling (1999) 

"Two cautions are in order concerning values for R2
• For each line in the table, R2 expresses the quality or the fit between the data and the estimated learning curve. However, R2 values in 

dilTerent lines should not be compared because sample sizes arc different. Second, R2 measures the correlation for a straight line fit to the logarithms or the dependent and independent 

variables. As linear regression minimizes the sum of error squares. this means that relative rather than absolute errors arc minimized. 
<The geographical scope of the data is not reported explicitly. The context suggests it is the whole world. 

dNote that these learning rates are based on prices, and one explanation or the negative 1981-1991 "learning" rate could be oligopolistic pricing behavior. 

<Based on preliminary data. 
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Table 2 
Reported energy-related learning rates• 

Technology Country/ Time period Estimated Performance measure Experience measure Reference/data source 
region learning rate (dependent variable) (independent variable) 

(%) 

Retail gasoline us 1919-1969 20 sp. prod. cost ($/ bbl) cum. prod. (bbl) Fisher (1974) 
processing 

Crude oil at the well us 1869-1971 5 sale price ($/ bbl) cum. prod. (bbl) Fisher (1974) 
Coal for electric us 1948-1969 25 sale price to utility cum. prod. (tons) Fisher (1974) 

utilities ($/ ton) 
Electric power us 1926-1970 25 sale price ($/ kWh) cum. prod. (kWh) Fisher (1974) 

production 
Solar PY EU 1985-1995 35 sp. prod. cost cum. prod. (TWh) IEA (2000) 

(ECU/ kWh) 
Wind power us 1985-1994 32 sp. prod. cost ($/ kWh) cum. prod. (TWh) IEA (2000) 
Wind power EU 1980-1995 18 sp. prod. cost ($/ kWh) cum. prod. (TWh) IEA (2000) 
Wind power Germany 1990-1998 8 sp. inv. price ($/ kW) cum. cap. (MW) IEA (2000) 
Wind power Denmark 1982-1997 4b sp. inv. price ($/ kW) cum. cap. (MW) IEA (2000) 
Electricity from EU 1980-1995 15 sp. prod. cost ($/ kWh) cum. prod. (TWh) IEA (2000) 

biomass 
Supercritical coal us n.a. 3 sp. prod. cost ($/ kWh) cum. prod. (TWh) IEA (2000); Joskow and 

Rose (1985) 
GTCC EU n.a . 4 sp. prod. cost ($/ kWh) cum. prod. (TWh) I EA (2000); Claeson 

(1999) 
Solar PY modules World 1976-1992 18 sale price ($/WP"•) cum. sales (MW) IEA (2000) 
Solar PY modules EU 1976-1996 21 c sale price ($/W pook) cum. sales (MW) IEA (2000) 
Ethanol Brazil 1978-1995 22d sp. sales price ($/boe) cum. prod. (cubic !EA (2000) 

meters) 
Coal power plants us 1960-1980 J.0-6.4e sp. inv. cost ($/kW) cum. cap. (units) Joskow and Rose (1985) 

'Note: sp. =specific: inv. =investment; cum.= cumulative; cap.= capacity; prod.= production. 
bBased on Neij ( 1999). The learning rate of 4% considers only wind turbines equivalent to 55 kW or larger. The 8% learning rate reported in Table 

I for Neij's data includes all Danish wind turbines. 
' 21 % is the learning rate for the ''stability" stage described in the text. For the "development" and "price umbrella" stages the learning rate is 16%. 

For the "shakeout" stage it is 47%. 
"21 % is the learning rate for the "stability" stage described in the text. For the "development" and "price umbrella" stages the learning rate is 10%. 

For the "shakeout" stage it is 53%. 
'Joskow and Rose estimate a range of lea rning rates for different utilities, architect-engineering firms, and technology categories, after accounting for 

inflation. plant size. the inclusion of scrubbers or cooling towers, whether certain structures are indoors or out, and whether a unit is the first on a site. 
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Fig. 2. Distribution of learning rates in Table 1 (left panel) and as observed in 22 field studies (right panel) (Dutton and Thomas, 1984). 

uncertainty about this value than suggested simply by 
the R2 value of 0.99. 

The frequent occurrence of low values for R2 in Table 1 
means that further research is needed to discover missing 
explanatory factors , some (but not all) of which may be 
important to include in long-term energy models. As an 
example of such additional information, consider the one 

negative "learning" rate in Table 1, -11 % for gas turbine 
combined-cycle (GTCC) power plants from Claeson's 
1981-1991 data. Note first that the dependent variable 
for this data set is the specific investment price, not cost. 
Prices are driven by many factors besides costs, and are 
for that reason inferior to costs as measures of learning 
and technological progress. In this case in particular, one 
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Fig. 3. Learning curve estimated for Harmon's da ta (2000) on unit prices for solar PV modules (left panel) and variability in learning rates (right panel). 

possible explanation of the negative learning rate is 
short-term oligopolistic pricing behavior (Claeson, 1999). 
To the extent that such behavior explains the negative 
learning rate for this data set, the calculated learning rate 
is largely irrelevant for long-term global energy scenarios 
in which costs rather than prices are the relevant variable. 
Another explanatory factor is suggested by the negative 
learning rate shown in the right panel of Fig. 2, which 
describes the production experience of Lockheed's L-
1011 TriStar and provides good evidence of experience 
depreciation. Experience depreciation is much more rel­
evant to long-term energy scenarios than short-term 
oligopolistic pricing behavior. It should thus be given 
higher priority in subsequent research to quantify the 
missing explanatory factors indicated by low R2 values in 
Table l. 

We now turn to the third important feature of Table 1, 
variations in learning rates among and within data sets 
for the same technology. Two cases are evident in the 
table, gas turbines and GTCC power plants. Ifwe neglect 
the GTCC data set with the negative learning rate (for 
the reasons discussed in the last paragraph), the trend 
seems to be that later data imply lower learning rates. 
Some energy modeling groups therefore use "kinked" 
(piece-wise linear) learning curves, with successively 
lower learning rates for technologies at more mature 
development stages (Kouvaritakis et al., 2000).2 In an 
alternative formulation, used by Argote (1999) and 

2 We refer here to kinks in learning curves for costs. Such kinks reflect 
postulated decreases in learning rates as technologies mature. This is 
different from proposed kinks in learning curves for prices to reflect 
changing relationships between cost and price learning rates as markets 
mature (see discussion of the IEA/ BCG model). 

others, experience depreciates with time, i.e., experience 
gained from units built last year results in greater current 
cost reductions than experience from 10 years ago. This 
formulation results in the same phenomenon of decreas­
ing learning rates, but in a smooth fashion, not requiring 
largely arbitrary boundaries between different develop­
ment stages. Both Argote's and the "kinked" approaches 
can lead to learning "floors", i.e., non-zero minimums 
below which unit costs will never fall. 

To evaluate and enhance the usefulness of the esti­
mates in Table 1 we need to summarize additional in­
formation, provided by the original sources, that might 
have potentially misleading impacts on learning rate 
estimates. First, as noted above, prices can be very imper­
fect measures of costs, and for a number of entries in 
Table 1, it is price that is the dependent variable. 
Goldemberg's ethanol data (1996), for example, are in 
terms of the price paid ethanol producers in Brazil, and 
a closer look at his original data suggests that these 
prices have to some extent moved up and down with 
international oil prices. Thus, some of the variability in 
Goldemberg's data reflects not variability in ethanol pro­
duction costs, but volatility in the international oil mar­
kets. In this light, estimated learning rate of 20%, as in 
Table 1, appears more reliable than indicated by the 
associated R 2 value of 0.89. Neij, who also analyzes 
prices, finds indications in her data of wind-turbine 
manufacturers selling below cost to drive out competi­
tors (Neij, 1999). If this is indeed the case, her price data 
should underestimate costs nearer the beginning of her 
data set and overestimate costs near the end (presuming 
less competition after some competitors have left the 
market). In that case, the learning rate of 8%, estimated 
from her data in Table 1, would appear to be too low. 
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The International Energy Agency (IEA) offers a gen­
eral extended model of relationships between costs and 
prices based on prior work by the Boston Consulting 
Group (BCG) (IEA, 2000). The qualitative background of 
the model is the assumption that costs decrease at a con­
stant learning rate, but price reductions can be divided 
into four stages. In the first two stages ("development" 
and "price umbrella"), the learning rate in terms of prices 
is constant but lower than the constant learning rate for 
costs. In the "shakeout" stage the learning rate for prices 
is higher than that for costs. And in the "stability" stage, 
learning rates for prices and costs are identical. This 
model is consistent both with Goldemberg's data cited 
above (see Table 2) and with Neij's data. Her estimated 
8% learning rate is close to the 10% the IEA considers 
typical for the "development" (and "price umbrella") 
stage. It can also help explain Akisawa's study (2000) of 
prices for new "heat-pump" air conditioners. He noted 
particular price volatility around the time the new tech­
nology was most aggressively displacing conventional air 
conditioners. Calculations based only on data from after 
the period of price volatility yield both a higher learning 
rate (17%) and higher correlation coefficient (0.94) than 
the data set as a whole. Postulating that the post-volatil­
ity period corresponds to the stability stage of the 
IEA/ BCG model, a learning rate of 17% would be more 
appropriate in long-term energy models than the 10% 
shown in Table 1 for the whole data set. 

In addition to experience depreciation and short-term 
pricing behavior, other possible causes of variability or 
biases in Table 1 include: 

• differences in performance measures (e.g., investment 
costs vs. production costs) or in experience measures 
(e.g., cumulative capacity or cumulative production), 

• definitional differences (are the costs of land acquisi­
tion, pollution abatement, and interest during con­
struction treated uniformly for all entries in a data 
set?), 

• varying intensities of resea rch and development 
(R&D), 

• economies of scale, 
• and cost variability for such things as land costs, 

wages, and interest payments that are driven by prop­
erty, financial, and labor markets. 

At this stage we can say something about differences in 
performance and experience measures and about econo­
mies of scale, but not much about the other factors. (An 
important focus of future research, however, will be the 
interplay between learning rates and R&D, given the 
pressure on governments to increase energy R&D expen­
ditures.) Concerning different performance and experi­
ence measures, we expect learning rates calculated using 
production costs and cumulative production to be higher 
than those using investment costs and cumulative 

capacity if there are concurrent increases in load factors. 
This is especially true if fuel costs are low - n.b., the 
variations in learning rates for wind in Tables 1 and 2. 3 

Concerning economies of scale, the learning rate in the 
last row of Table 2 for coal-fired power plants is cal­
culated from a regression that includes a scale term. 
Thus, it reflects learning after any economies of scale 
have been taken into account. This is not the case for the 
other power plant data presented here. They almost 
certainly include some scale effects, which may partially 
explain why they yield generally higher learning rates 
than the last row of Table 2. For long-term energy 
modeling, however, it is not clear how much effort should 
be put into trying to distinguish between the two factors. 
Given the data that are available, model inputs in 
which learning and scale economies are lumped into 
a single estimated learning rate may be simpler, as re­
liable, and therefore more useful than efforts to extract 
the two separate effects from the empirical data, and then 
treat them separately in long-term energy models. 

The purpose of the analysis presented here was to 
expand the empirical basis for the choice of learning rates 
and uncertainty ranges used in long-term energy models. 
We have presented a first edition of a catalogue of en­
ergy-related learning rates intended to quantify the phe­
nomenon of experience-related cost reductions at a level 
useful to energy modelers. Analyzing the quality of the 
statistically estimated learning rates we conclude that 
some of the identified causes of data variability, such as 
price swings due to marketing strategies, can be con­
sidered random and inconsequential for long-term en­
ergy models. More work is necessary, however, to 
properly address other factors, particularly experience 
depreciation and the impact of R&D investments. 
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