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Preface

This paper is the fourth in a series on 'Regional Development
and Land-Use Models'. The purpose of this series is to consider
the application of optimizing and behavioural land-use models as
tools in the study of regional development. The present paper
considers the problem of the impact of economic growth on regional
land-use patterns. A theoretical model of a simple spatial econ-
omy is developed. The model can be used to trace out the impli-
cations of different kinds of economic growth. The 'saturation'
principle identified there is a useful, and potentially very
important, concept which should be included in more applied
models of regional development. This is viewed as the first in
a group of papers concerned with models of private sector

behaviour in regional development.
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Abstract

A formal micro-economic medel of a simple dualistic
spatial economy is outlined. The equilibrium solution
to this model includes a measure of population density
whose level is dependent on the technical parameters of
the economy. Numerical experiments with the model high-
light the importance of a saturation principle in deter-
mining how economic growth affects the spatial pattern
of population density. Although the model is abstract,
the saturation principle is seen to be an important
concept for future applied behavioural models of regional
development.
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ON DUALISTIC EQUILIBRIUM AND TECHNICAL

CHANGE IN A SIMPLE HUMAN SETTLEMENT MODEL

John R. Miron

Settlement system pclicies can not be designed without
models and theories of the processes which underly the current
spatial pattern of population. The scarcity of empirical models
of settlement systems would therefore seem to be incomprehensible
given the current near-universal concern with such policies.
However, this paucity reflects somewhat an inadequate theoretical
basis for a policy-relevant applied model. The lack of a firm
theory has in part been attributed to the complexity of dealing
with a system whose elements usually have considerable locational
flexibility. Where, for instance, can one find a model or theory
which explains relocation processes caused by economic growth and
technological change?

The purpose of this paper is to make a contribution towards
a theory of a settlement system. A model of a simple spatial
economy is presented in which a spatial equilibrium distribution
of population can be defined. This model is based on classical
micro-economic theory and presumes a competitive land market
wherein Ricardian land rents preserve the equilibrium. This model
can be pursued in several interesting ways. Here, emphasis is
placed on the implications for spatial density patterns of those
parameter variations which might represent technical change and
economic growth. It is shown that this formal micro-economic model
gives several interesting deductions about the changes in spatial
"behaviour associated with economic development. The model empha-
sizes differences among market areas and specifically the role
played by a kind of market 'saturation'.

The model used in this paper contains twc kinds of economic
units. The first is a factory, occupying a spaceless point, and
producing a single output. The second is a set of farms with each
using 1land and producing two goods (one land-using and the other

a perfect substitute for the factory good). These farms are each




capable of varying the amount of land they use in response to
local economic factors and it is the resulting spatial density
of farms which is of central concern in this paper. Two sub-
models are defined; one for the factory and one for the farm at
a given distance from the factory. These sub-models are linked
by prices and market equilibria conditions. The effect of
technological change (represented as parameter variations) in
either sub-model on the spatial density of farms can thus be
examined.

It might be argued that a model based on farming units is
not very useful to the analysis of settlement systems which are
overwhelmingly urban in nature. The Losch-Christaller models of
an urban system for example emphasize multiple market-thresholds
in defining hierarchies of urban centers. However, these same
models base all urban structure on a rural hinterland which is
assumed to be uniformly dense through space. The present model
can be viewed as the replacement of this assumption by a model of
the hinterland and a lowest-threshold factory which endogenously
determines the spatial pattern of farm densities. At the same
time, this model can in a general sense represent the effect of
a centre anywhere in the urban hierarchy on its whole hinterland
including dominated lower-order centres. Under either of these
two interpretations, the present model is a contribution toward

a better understanding of settlement systems.

I. THE STUCTURE OF THE MODEL

(a) THE FARM SUB-MODEL: ASSUMPTIONS

The farm sub-model used in this paper has been developed by
the author in an earlier paper.l The assumptions, definitions,
and hypotheses from that paper are reviewed quickly here. The
solution to this model is extended to cover a special corner
solution case of some subsequent interest.

Begin by assuming three sets of actors associated with a very
large homogenous plane; (i) a single factory at some fixed space-
less point on the plane, (ii) a very large set of farms occupying
the remainder of this plane at an everywhere finite density, and

(1iii) a large set of absentee (from the plane) landlords. Each



landlord is identical in certain respects. Each resides outside
the region and also spends his land rent income there. Each
attempts to maximize the rent received for his unit of land.
However, each landlord behaves competitively in that there are
no collusive agreements and no landlord possesses enough land
to behave monopolistically.

Each farm behaves as a unit maximizing its well-behaved
utility function. Each has the same total amount of labour, h,
which it allocates among activities in fulfilling this goal.
Further, each farm (or labour unit as it might equally be referred
to) can locate wherever it chooses if its bid rent is the highest
offered for that site. Any relocation is itself assumed to be
costless. Every farm is also free to choose the amount of land
() to be occupied by it. Each has the same, strictly-convex,
utility function (U) defining its preference orderings over
consumption of two infinitely divisible goods; soap (X) and food
(Y).2 Each produces a gross output of food, (Q) using labour
(hy) and the land area of the farm as inputs with decreasing
returns to scale. This gross output can be divided into rental
payments, RL, and a remainder termed net food output, Y;. The
farm also produces an output of soap, X, which is tied solely
to its labour input, hx’ with constant returns to scale. Finally
the farm can also allocate labour services to the factory in the
amount of hz units although the total labour constraint must not
be exceeded.

It is assumed that the factory offers to trade its own soap
for farm food at a given mill price, Pb, where food is the nume-
raire. With freight costs proportional to distance, the delivered
price, P(s), increases with distance 's' from the factory. The
farm at distance 's' offers to purchase an amount of soap, X,
from the factory for which it gives up P(s) X, units of food.
The factory also offers employment at a wage of Wp units of food
per unit of labour. Distance-proportional commuting costs
decrease the net wage w(s), received by the farm.

Finally, it is assumed that all farms are in a state of
equilibrium such that there is no incentive for any farm to

alter its location or production-consumption combinations. Given




that the farm optimizes its production-consumption bundle at any
location, the Ricardian rent level, R, is such as to permit each
household to achieve at best the same level of utility at every
location.

The specific structure of the farm sub-model is outlined in
Table 1. Note that all variables are assumed to be non-negative.
Further, there is assumed to be a uniform positive land rent, R¥*,

which forms a floor for all land rents (i.e., R(s) 2 R*).

Table 1: Structural Equations in the Farm Sub-Model.

u = x%1 @ (0 < a < 1)
- By
Q—bhyL (b,B,y >0 ; B+ 7Y < 1)
Y, =Q - RL
Xl = Chx (c > 0)
P(s) = P + ts (t > 0)
w(s) = Wy, T IS (r > 0)
h = hx + h. + hz (h > 0)
X = Xl + X2

Source: See text

(b) THE FARM SUB-MODEL: SOLUTION

The assumptions of the model render it an 'open' model in
the sense of Wheaton (1974). The uniform rent R*, occurring
without the factory, continues to exist in the presence of the
factory although only outside its market areas. The factory is
small enough that it has no effect on these outlying areas even
though density and rent levels change within its market areas.
Because the factory has no effect on conditions at or beyond

its largest market boundary and because the total number of farms



within its market areas is variable, the model is said to be
open.3

As discussed in Miron (1975, pp. 155-156), there are three
equilibrium solutions to this sub-model ignoring a possible
corner solution. These solutions correspond to different distance
ranges from the factory. A distance s* can be found beyond which
the delivered price of factory soap is so high that each farm
moves to a state of autarky (i.e., X,=0). Another distance sA
can be defined beyond which the farm chooses not to allocate any
labour to factory work (i.e., hz=0). For simplicity of presen-
tation, it is assumed that sA< s*. Thus, we may define an autarky
solution where s 2s*, an M, solution when sAstss s*, and an M,
market solution where 0 < s < sb.

These solutions are discussed extensively in Miron (1975;
pp. 156-162) and are summarized here in Tables 2,3, and 4. The
principal differences between the M; and M, solutions occur
because of the constant marginal productivity of labour in factory
work and in on-farm soap production. Because these are constant,
the farm engages in at most one of these two activities at any
given distance from the factory.4 These are factory labour in
the M, zone and on-farm soap production in the M; zone. Thus in
the M; solution it is noted that hX and X, are zero while hZ
is zero in the M; solution.

A very significant difference between the M, and M; market
solutions can now‘be established. 1In both markets, the total
demand (X) for soap by any farm is inelastic with respect
to the delivered (or even the mill) price.5 In the M, market,
the demand for purchased soap (X,) is also inelastic because
the lack of farm soap production makes purchased demand
equivalent to total demand. In the M; market, there is some
on-farm production of soap. The demand for purchased soap
here is more elastic than in the M, market because of the
possibility of substitution between soap purchases and production

on the farm. Another way to express this is to sav that the




Table 2: Autarky Solution (s > s¥*).

U = U*
X =c(l - kl) h
Y = (1 - vy) blyb/r¥) Y/ (7Y) 1y B/17Y
hX = (1 - kl) h
hy = klh
h =20
z
R = R*
Xl = c(l - kl) h
X2 =0
P = bl/(l—Y) (R/c) (Y/R*)Y/(l—Y) (klh)—(l—Y"B)/<l"Y)
where
k; =[80 - o]/[BQ - @ +ad - 1]
Ut = [c(l - ky) hl/kl]o‘ {(1 -y b/ (Y/R*)Y/(l'”kﬁ/(l‘”] 1-o
Source: Miron (1975; pp. 156-157).



Table 3: M; Market Solution (s? < s < s¥*),

U = U*

X = o¢k2P(s)OL-l

Y = (1 - a) kzp(s)o‘

hX = [(l - v) chP(s) - BkzP(s)a]/[(l - B8 -Y) CP(Sq
hy = |Bay ()] /[ (e)]
h_ =0

Q = ga(S)

<
il

(1 - v) ga(s)

Xl = [(l - v). chP(s) - BkzP(s)aJ/[(l - B - P(s)]
X, = |- /1a-8-na-kl[apE™-cd-x) h]
P(s) = Pb + ts
where
g, (s) = [kzp(s)o‘ - chP(s)]/[l - B - y]
k, = ura %1 - )" 17

Source: Miron (1975; pp. 157-160).




Table 4: M, Market Solution (0 < s < s?).
U:U*
X = o¢k2P(s)a_l
Y = (1 - a) kzp(s)o‘
h =20
X
hy = ng(s)/W(s)

h = [(1 - v) hw(s) - BkzP(S)a]/[(l - B - Y) W(Sﬂ

R = Ybl/Y [W(S)/B]-B/Y gb(s)—(l_B_Y)/Y

Q = gb(s)

Y, = (1 - v) gb(s)

X, = o¢k2P(s)OL_l

P(s) = P, + ts

b
w(s) = Wy - rs
where
gb(s) = [ kzP(s)Ot - wi(s) b]/[l - B - v]

Source: Miron (1975; pp. 160-162).



M, area is saturated because the factory supplies all the soap
consumed there while it supplies only a portion of the soap
market in the M) area.

(c) THE FARM SUB-MODEL: CORNER SOLUTIONS

Two problems emerge with this model by way of corner solu-
tions. The first occurs where the farm allocates all labour to
food production (i.e., hy=h). In the M, market, it is noted that
hy is an increasing function of 's' while, in the M) area, it is
decreasing. Thus if h_ equals h anywhere, it occurs in a band of
s-values around sA. Ii particular, this corner solution emerges
6

when s? <s <s§ where the limits are defined by

1/(1~-a)
(1.a) sg = [?kz/ Ch(l—Ja] /t - Pb/t
(1.b) w(sh) =[Bk2/(ch(1—6))] p(sh)®
and such that

A A

(l.c) sé 2s and s?s S

The two conditions in (l.c) can be shown to be equivalent.

We can define an M; market area, when (l.c) holds, for
s%<<s <s§. Such an area is illustrated in Figure 1. The solu-
tion for each optimized variable can be determined in a manner
similar to that outlined in the earlisr paper. The derived
optimal solutions are presented in Table 5. Note that the in-
elastic demand for factory socap by a farm is a feature shared
with the M, market solution. In this sense, both the M, and M;
areas can be thought to have saturated demands for soap.

An M3 market area need not exist in this model. It is just
one possibility. However, for simplicity of presentation, we
shall assume that it always exists. In the case where it doesn't,
the values s%emd s? can be thought to converge to sA so that the
M; market vanishes.

The measure of population density used in this paper is h/L.
This can be interpreted as the total number of labour units (e.g.,
man-hours) per unit area. This, of course, is proportional to the
number of farms per unit area. An example of how h/IL behaves in
the different market areas is displayed in Figure 2. This example

illustrates the monotonically-declining densities with distance



-10-

1.0

/

~<3'
l:l)"

;
: :
.75 | |
I |
| '
} ]
' l
] 1 )
.50 ; ] i
! = i
' | 1
1 : !
25 : : l
N‘i"r- N|3 -?-l h41 -ﬁ
[] Y ! o !
s1A 8 168 24 *
2 distance

Figure 1. Food labour input as a function of
distance from the factory; base run
solution.



- 11 -

Table 5:
= U*
a=-1
= akzP(s)
= (1 - a) k,P(s)”

h =0
X
h =nh
Y
hZ =0
L = (th)'l/Y gc(S)l/Y
Q = gc(s)
Y, = (1L - Y) gc(s)
Xl = 0 ‘
B a-1
X, = akzP(s)
P(s) = Pb + ts
where
g, (s) = [1:2/(1 - Y)] p(s)®
Source: See text.

M3 Market Solution (s%

A
< s < 52)'
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found in the M, and M, areas in contrast to the M; zone where the
density is increasing. As argued in the earlier paper, density
always increases with distance for at least some range of dis-
tances adjacent to s* in the M; market.

The second corner solution problem is much more difficult to
reconcile. This problem occurs when the farm allocates all labour
to the factory. This is significant because farms near the factories
would no longer consume any land, the density of population would
then become infinite, and a utility equilibrium could not be main-
tained by a scheme of Ricardian land rents,7 The model loses its
interpretability in such a situation. In the results described
in the remainder of this paper, attention was paid to ensure that
such a sclution was not approximated.8

(d) THE FACTORY SUB-MODEL

In specifying a model of producer behaviour in space, two
important choices have to be made. 1In both cases, the simpler
option has been chosen. The first choice concerns an assumption
about the existence of competition. Two equilibrium cases are
usually considered in the literature; pure monopoly and spatial
monopolistic competition. The former assumes the factory to be
the only one on the plane while the latter assumes many identical
factories (equally spaced) with the smallest overlapping areas
such that all consumers are served.9 The difference involves both
(i) treatment of the firm's boundary which moves from a circle
in pure monopoly to a hexagon in monopolistic competition and (ii)
the determination of optimal behaviour at this boundary. The pure
monopoly case is assumed here because of its relative simplicity
although the Christaller and Loschian models, for example, are
based on monopolistic competition.

The second choice to be made concerns the pricing behaviour
of the firm. Two common alternatives are to assume either that
the firm sets a fixed mill price or that it engages in spatial
price discrimination. Beckman (1968) shows that the latter is
usually more profitable as a pricing strategy. However, the mill
pricing case is assumed here because of its simplicity and its

frequent occurrence in reality.
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To introduce producer behaviour, we need only add production
and profit functions to the above assumptions. A simple pro-
duction function relating factory output, Z, to labour input, N,
is used. Further, the profit level (w) is the difference between
the output sales and the sum of fixed costs (Cy) and labour costs.
The relationship between the mill wage-price combination and the
output-demand and labour-supply levels is determined from the farm
sub-model. Such relationships, presuming circular markets, are
described in Table 6.

The factory has the freedom to choose only one of the four
variables (Pb, Wi Z, and N) within its domain in maximizing
profits. The constraints A, C, and D in Table 6 simultaneously
determine all three remaining variables. Further, it is noted
from Tables 3, 4, and 5 that both Z and N in Table 6 are each
jeointly dependent on both the mill wage and the price of the
factory. Changes in Pb for example affect both the demand for

soap and the labour supply made available.

Table 6: The Factory Sub-Model

A. Production
_ 8
Z = KN (0 <8 <1; K >o)
B. Profits
T = PbZ - CO - wa
C. Demand
A
{51 . S% s*
2 = 27 J (sX2/1) ds + 27 (sX,/L) ds + 27 (sX,/L) ds
o
S% sg
D. Labour Supply
A
[51
N = 27 (shZ/L) ds
Jo

Source: See Text



(e) NUMERICAL RESOLUTION OF THE MODEL

If one attempts to analytically determine optimal factory
behaviour in this sub-model, a problem emerges in the evaluation
of the integrals in Table 6. Consider the demand equation as an
example. Substituting from Tables 3, 4, and 5, the output de-
mand equation reduces to that shown in Table 7. The third and
final integral term in this expression poses an immediate prob-
lem. It can be broken into a sum of integrals whose typical

structure each is as follows

(2.a) (Xm (a + bxn)p dx

J

where m, n, and p are here constants.
According to Gradshteyn and Ryzhik (1965; page 71), no general
mathematical solution exists for such an integral.

A numerical procedure must be drawn upon to approximate
at least part of the integral in Table 7., The generalized
Simpson's Rule has been used for the numerical results de-

scribed below.11

This method is used to approximate the first
and third (corresponding to the M, and M,; markets respectively)
integrals in Table 7 as well as the labour supply integral
(corresponding to the M, area) of Table 6.‘]2
An example of the discrepancy between the actual integral
and the approximation is presented in Figure 3, Here the labour
supply integral is estimated by a sum of 10 rectangular blocks
as shown. The error in approximation usually appears to be on
the order of 2.0 to 2.5 per cent.13
Given the necessity of numerical analysis, a systematic
method for evaluating the virtually-infinite array of possible
parameter combinations is required. The method used here begins
by defining a base run set of parameter values. Then, experi-
ments can be defined in which one or more of these parameters

are varied while the rest are held at their base run values.
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(f) THE BASE RUN AND ITS INTERPRETATION

Such an approach makes the choice of a base run quite impor-
tant because all the experiments described below are based on
variations of it. The particular values used in the base run
are described in Table 8 and the resulting solution is summa-
rized in Table 9. An intuitive feel can be lent to this base
run by examining some of these values. It is noted, for in-
stance, that the low value for o suggests that farms consume a
large portion of their real income in food. Further, the value
of y indicates that each farm spends half of its gross food out-
put in land rent charges. The value of h is set as the average
number of man-hours worked by two persons in one year. The
autarky land rent, R*¥, is set as $9600 per square mile (or
about $37 per hectare) per year,.

In the solution, these parameters generate a relatively
small labour shed radius of 4.19 miles (6.7 km) and an output
market area radius of 27.85 miles (44.8 km). Further, about
two-thirds of the demand for factory soap is concentrated in
the M, and M; markets where, it has been noted, the individual
farm's demand for soap is inelastic., Finally, the average
density (total man-hours in the market area divided by total
market area) differs markedly from area to area. In autarky
the farm consumes .0499 square miles (12.9 hectares) so that
the average density there is 80,160 man-hours per square mile
(or 309.4 man-hours per hectare). Thus, the average density
in the M3 and M. areas is lower than the autarky density while
the M2 average density is considerably higher,

The base run solution emphasizes a primarily rural economy
in an early phase of development. Farm rent payments are high
relative to incomes. Freight costs restrict the market area
of the factory quite significantly. Food consumption accounts
for well over half of the total budget of each farm. This kind
of early-development solution is the most appropriate given the
assumptions underlying the farm sub-model in subsection I (a)

above.
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8: Base Run Parameter Values

A. CONSUMER PREFERENCES.

a = 0.20

B. FOOD PRODUCTION

b =

900 R

Y

= 0.50

= 0.20

C. DOMESTIC SOAP PRODUCTION

c = 0.10

Table 9:

D. FREIGHT AND COMMUTING COSTS

t = 0.02 r = 0.01

E. OTHER FARM PARAMETERS

R* = 9600. h = 4000.

F. FACTORY SOAP PRODUCTION

A. The factory and its market areas
Optimal Price = 0.222

Outer Radius

Output Demand (000's)

Factory Labour (000's)

Total Labour (000's)
)

Average Density (000's

B. The Farm in Autarky

KX

381.9
153.8
479.3
1538.5
2461.5

0.0

= 10.0 § = 0.90

Solution for Base Run

Optimal Wage = 0.0916

Market Area

M,
4.19
676
3133
7542
136.5

(S @) ol

'_l

on

Ms M Total
16.96 27.85 ————
3958 2305 6939
———— —-———- 3133
65675 116210 189428
77.4 75.8 77.8

0.0499
9600.

958.7
479.3

153.8
0.0

0.779



I1I. EXPERIMENTAL RESULTS AND INTERPRETATIONS

It is possible to vary any of the parameters in either of
the two sub-models, measure the change in the optimal mill wage-
price combination, and determine the implications of this for
the average density within the factory's various market areas.
Here, we choose to examine variations only in three parameters;
KO, 6, and b. The first two of these are scale and labour elas-
ticity parameters respectively in the factory's production function.
Changes in them might reflect changes in the firm's capital
stock or technology. The final one is a scale parameter in the
farm's production function reflecting its level of agricultural
capital stock or technology.

In all cases, the experimental results are described in a
similar two-part manner. First, the effects of parameter vari-
ations on the optimal wage-price combination are described and
explained. Then, the implications of these wage-price variations
for the spatial pattern of population are discussed. This pro-
cedure emphasizes the fact that it is only through the wage and
price variables that the farm sub-model (and thus population
density) reacts to the factory sub-model.

(a) VARIATION OF THE FACTORY SCALE PARAMETER: WAGE PRICE

EFFECTS

Variations in Ko have interesting effects on the levels of
wage and price chosen by the firm. Consider the following experi=-
ment where all parameters are given their base run values with the
exception of Ko whose value is varied from 1.0 to 20.0lu- The
resultant wage-price combinations as a function of the value of Ko
are displayed in Figure 4. As shown in that figure, the profit-
maximizing price declines monctonically with increasing Ky although
Bsz / BKé is positive. The wage level, however, is at first an
increasing, then a decreasing, function of K,. What causes Py to
decline so quickly at first and then almost level out? What does
this have to do with the non-monotonic behaviour of Wy, ?

To answer these questions, it is useful to estimate the price

elasticity of demand, €.

- _(Bb 37
(3.a) € = (Z 3Pb)
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This elasticity is a function of both the wage and price chosen.
Using the base-run parameters in the farm sub-model, this elas-
ticity has been estimated for a net of Py - wp, values where

0.18 € Py, < 0.56 (increments of 0.01) and 0.075 < wp < 0.110 (incre-
ments of 0.001). The estimated elasticities are presented
graphically in Figure 5 where the mill price is measured along
Oa, the mill wage along Ob and the elasticity along bc.15 The
estimates range from a low of 0.900 (Pp = 0.18, wp = 0.077) to

a high of 6.29 (Pp = 0.56, wp = 0.095). From Figure 5, it is
seen both that at a high mill price (regardless of the wage level)
demand is very elastic and that at lower prices demand becomes
increasingly inelastic.

The effect of increasing K, on the factory's wage-price
choice can now be intuitively explained. As the firm experiences
an increase in Ky, it can be expected to react in a combination
of two ways; decreasing its price and increasing revenues or
decreasing its wage and its costs to take advantage of its en-
hanced productiveness. 1Initially, when Py is high, an increment
in Kq is reflected primarily in a price reduction because demand
is quite elastic. As K, becomes larger and Py smaller, increments
to K, are not reflected in sizable decreases in Pp because demand
is inelastic at these Pp values. Instead, the wage offer is
reduced.

What causes demand to become inelastic at these lower Pp
values? The answer lies in the shifting composition of the
factory's output market. The elasticity of demand observed by
the factory is partly dependent on the relative number of farms
in the M2 and M3 areas as compared with the M; area. As indicated
earlier each farm in the former area has an inelastic demand while
each in the latter has a more elastic demand. The proportion of
output demand in the M; and Mj; areas is displayed in Figure 6 for
the case of the present experiment. This proportion, m;, declines
initially until about K5 = 1.75 and then increases monotonically.
The shape of this curve reflects the monotonically declining pro-
portion of the market in the M, area and the monotonically increasing
proportion of the M3 area above K, = 1.75 (where it initially

appears). In effect, with an increasing value of K,, the factory



elasticity

-23-

— —
. — —
e
—

7/
7 ,;//////I/ i

g
AL W,
W el

)

7]
J

Figure 5. The elasticity of demand (€) as a
function of price (oa) and wage (ob)
using base-run parameters.




-24-

ﬁi1 | €
g 6
m|
4
.5
2
€
3 e ——
6 12 18
I(O

Figure 6. Proportion of market within M, and M3

areas (51) and the elasticity of demand

(€) as functions of Ko'

-



- 25 -

finds its output market increasingly 'saturated' with individually-
inelastic farms. This accounts for its increasingly inelastic

market demand.

(b) VARIATION OF THE FACTORY SCALE PARAMETER: WAGE-PRICE
INTERACTION

We have specified in an intuitive manner how the wage and
price offers of the firm are inter-related as Ky is increased.

To make a more specific or formal statement about their inter-
connections, it is useful to consider momentarily a somewhat
simpler model than that found in Table 6. Specifically, let us
consider the model outlined in Table 10.

This simple model differs from the one of Table 6 in that
the output demand and labour supply relations have been made more
tractable. 1In Table 6, Z responds to the mill price but not with
a fixed elasticity as found in Table 10. Also, Z responds some-
what to wp in the full model and this effect is ignored in the
simple model. The simple model posits that both the mill price
and wage have an effect on the labour supply as is implicit in
Table 6. However, constant elasticities have been used when
these are variable in the full model. Finally, the wage elasti-
city of labour supply is assumed to be larger than the price
elasticity (Bi1> B2) in absolute value and this is in keeping with
numerical results obtained in experiments with the full model.

The solution‘to the full model can be expressed in terms
of the effects of Ky. We concentrate here on Z and wp. From
Table 10, it is seen that the optimal ocutput level is a monotoni-
cally increasing function of K, regardless of the parameter values
chosen. From the output demand equation, this implies that Py is
monotonically declining with respect to Kg.

However, the behaviour of the mill wage is not so clear. The

exponent of K, here has a sign which depends on the value of

(4.a) (a-1) - B2

Here, wp is an increasing or decreasing function of Ko, as (a-1)-8,
is greater or less then zero. For wy to be an increasing function
of Ko, the output demand elasticity (o) must be sufficiently

large to offset the price elasticity of labour supply (B82). 1In
other words, if the labour supply is very responsive to the output
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Table 10: A simple model of monopolistic behaviour in inter-

dependent markets

A. THE MODEL
(i) MAXIMIZE: PROFIT LEVEL
T = PbZ - wa
(ii) SUBJECT TO:

(a) OUTPUT DEMAND
a

Z = agPy~ (ag > 0; a<1)
(b) PRODUCTION FUNCTION
zZ = KON‘S (Kg>0; 0<8<1)
(c) LABOUR SUPPLY
N = bowplpy P2 (B1 > B2 > 0)
B. SOLUTION
(i) OPTIMAL OUTPUT
a<1+81)/60
Z = CoKg

(ii) OPTIMAL WAGE
[o-1-82] /56

wb=CKo

where Yo = 0 + a(l=8)By + (Bi1-B2) § >0

and Co, C1 are constants.
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price, the firm may find that a lower wage offer will still gain
enough labour to produce the required output at the new, lower,
optimal price.

Two observations can now be made with respect to the full
model. First, since the elasticities are not fixed in the full
model, there may be regions of the P, - wyp space in which
o -1 - B2 >0 and regions in which it is not. Experimental
work tends to suggest that o increases rapidly with Pp but that
B, varies only slightly so that o« ~ 1 - B, < 0 <can ususally be
expected where Py is low.16 Secondly, the simple model indicates
that it is strictly this feedback effect of the mill price on the
labour supply which generates the observed non-monotonic rela-

tionship between the mill wage and Kg.

(c) VARIATION OF THE FACTORY SCALE PARAMETER: DENSITY EFFECTS
To understand the implications of Figure 4 for the density
of farms, it is necessary to re-examine Tables 3 through 5. With-
in the three market areas, the distance-specific density levels

are as follows

L =B/ -(1-8) /o
(5.a) h/L = hn [wis) /el [ap(s)] 0< s<st (M)
(5.b) h/L = h(T¥BV ALY [ gc(s)]V‘ he s<sd (M)
1 -l
(5.¢) h/L = hb¥[cp(s) /8] ™" [ga(s)] “0BAF  sbe scsx  (my)

First, note that variations in the mill wage affect only the
densities in the M; area and the boundary between the M, and its
adjacent market area. Density can be seen to be an increasing
function of the mill wage in the M, market.l7 In the M, and M,
markets, density is a decreasing function of the mill price. 1In
the M; market, an increase in the mill price may increase or de-
crease the density level at any distance as argued in Miron (1975;
pp. 158-159). Thus the implication of Figure 4 for density levels
may well be different in each of the three market areas facing the

firm.




Three distance-specific density functions (corresponding
to Ko values of 1.0, 5.0, and 10.0) are illustrated in Figure
7. As seen from Figure 4, relative to the wp value at K5 = 1.0,
wp is larger at Ko = 5.0 and smaller at K, = 10. The mill
price at the same time is monotonically decreasing. The changes
in density are in accordance with the wage-price changes. In
the M, market, the density level increases as Kg changes from
1.0 to 5.0 but then declines for K5 = 10. An M3 area does
not exist for Ky = 1.0 but density is increasing in this area
from Ky = 5.0 to Ko = 10.0. Within the M, area densities are

shifting downward (and to the right in Figure 7) as K, increases.

Figure 7 presents an awkward format for the solution to this
model when K, is given a number of different values. It is useful
to summarize the solution in terms of the average density within
each market. The average density {h/L}i in market i is defined

as follows

Q,Zli 2 2
(6.a) {h/L}; = [2121 sh/L ds]/[ﬁz,i - ‘h,i]

s 1

Here, Q1,i and Qz,i are the inner and outer radii of the i'th
market. In Figure 8 are presented the average densities in each
market as functions of Ko

It is noted that the average density in the M, market peaks
near Ko=6. However, from Figure 4, the mill wage peaks near
Ko=1.8. The reason that {h/1.}2 continues to increase for Ko
between 1.8 and 6.0 1s that the rate of price decline has an
effect on density levels which more than offsets effects of the
rate of wage decline. Thus, one might expect in general that
{h/pL}, will always peak at a higher value of K, than does the

mill wage.
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It is also noted that {h/L}; and {h/L;} have & monotonic
behaviour with respect to K5 that could be expected from Figure
4. Both appear to be approaching asymptotic limits for large
values of K,. Also, these variables move in opposite directions.

It seems reasonable to conclude from these experimental
results that the effect of a scale change in the factory's pro-
duction function on the population density pattern is a complex
one. Within the different market areas of the factory, different
kinds of behaviour can be expected. Further, these effects may
or may not be monotonic. However, these effects are all expli-

cable within the terms of the model used.

(d) VARIATION OF THE FACTORY LAROUR ELASTICITY PARAMETER

The second set of experiments conducted with this model
concern the effect of variations in §. A range of §-values
from 0.65 to 1.06 are used and for each value the optimal wage-

price combination is found.18

The wage and price levels for each
§ are depicted in Figure 9 where all other parameters have been
held to the base run values. These solutions bear a substantial
correspondence to those for the Ky variations in Figure 4. The
most interesting difference concerns the second derivatives of

Pp and wp in the present case. Here, Py has an inflection point
whereas earlier it did not while wp has two such points compared
to one earlier.

These price and wage characteristics have important conclu-
sions for the associated density patterns. The M; market is most
affected by the slowly changing wage and price levels near §=0.65.
In Figure 10, the average density in the M, zone is seen to in-
crease very slowly at first. For § between about 0.75 and 0.85,
there is a rapid growth in {h/L}, reflecting the quickly rising
wy, and quickly falling Pp. Thus, if the Pp-w,, pattern of Figure 9
is representative, it indicates that there will be a small inter-
mediate range of § values over which the M, density will be very
sensitive to variations. In the M; market, density is affected
only by P, and the solution depicted in Figure 10 has a shape
similar to that of the mill price solution in Figure 9. The M,
area density, on the other hand, has a monotonically increasing

density over the range of 6 values for which it exists.
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With the exception of their second derivative behaviour,
these density solutions are very similar to those of Figure 8
where K, is varied. 1In both cases, {h/L}. is the most volatile
density; at first increasing and then decreasing. The M; area
density is monotonically increasing in both cases while the M,

density is monotonically declining.

(e) SIMULTANEOUS VARIATION OF § AND Ko

Given the effect of varying ¢ and K, individually in the
previous two experiments, it is interesting to investigate the
effect of varying both parameters simultaneously. One method of
implementing this experiment is to carry out several sets of
experiments similar to the first one where K, is varied and in
which § is varied from one set to the next. These experimental
results are summarized in Figure 11 which depicts the optimal mill
wage-price combination as a function of K, for 6=0.8 and 6=0.9.

The impact of a change in § while K, is increasing can now be
seen. Larger values of § cause wp to become more sharply peaked
as a function of K,. Further, wp achieves a larger maximum while
the mill price falls more rapidly (as a function of Kgy) for higher
§ values. The resultant average densities in Figure 12 reflect
these wage-price patterns. An increase in § causes {h/L}, to peak
sooner and to have a larger maximum value. Further, this increase
causes {h/L}; and {h/L}, to reach the same asymptotes as before

but at a faster rate.

(f) VARIATION OF THE FARM FOOD SCALE PARAMETER

To this point, all experiments have been concerned with
technical change at the factory level. It is reasonable to ask
if changes in the farm's productive capacity have analogous effects
on densities. Before such an experiment can be carried out, it is
noted that a change in one of the farm's parameters changes the
nature of the autarky solution as well as the various market solu-
tions. However, we are primarily interested in the market solu-
tions relative to the autarky solution. Therefore, we standardize
here for autarky changes by considering a relative price (Pp/P*),

a relative wage (wy/cP*), and a relative average density

({h/L}i /{h/L}*) 19
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In the base run solution, b is set at 900.0. An experiment
is undertaken in which b is varied from 400.0 to 1700.0.29 pe
resultant relative wage and price are depicted in Figure 13. It
is immediately noted that there is very little change in these
solutions as b is altered. The effects of these solutions on the
average relative densities are displayed in Figure 1l4. These
indicate that the small relative wage-price changes have very
little effect on densities in any of the market areas relative
to what is happening in autarky.

This is more surprising in view of the large absolute effect
b-variations have on both the autarky solution and the market area
solutions. For example, the lot size in autarky, L*, grows expo-
nentially with b as shown in Figure 14 even though the relative
densities change little. It should be concluded that b-variations
have significant effects on solutions both inside and outside the
factory's market area but appears to have little differential

(or relative) effect between the two.

ITTI. CONCLUSIONS

A formal micro-economic model of a single dualistic spatial
economy has been outlined. The equilibrium solution to this
model includes a measure of population density whose level is
dependent on, among other coefficients, the technical parameters
of the economy. Because the model is solvable only through
numerical approximation, several experiments have been described
in which various model technical parameters are changed. The
experimental findings bear out the view that population density
does not change uniformly through space with respect with changes
in these parameters. These findings suggest that it is difficult
to make simple statements about the effect of technical change on
spatial patterns of population density without a careful speci-
fication of the kind of market areas involved.

The model presented is of a very particular structure but
the essentials of it are germane to almost any model, empirical
or theoretical, of spatial population patterns. In this model,
an improved factory technology enables the factory to expand its

market areas. This is done to some extent by stripping away local
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production in hinterland areas and encouraging more specialization
in agriculture in these areas. As this process continues, the
central factory faces a dimminishing elasticity of demand. The
factory's demand is most elastic when its market is dominated by
farms who are not completely specialized in agriculture. As the
factory decreases its mill price, its output market becomes more
and more saturated (and inelastic) in that a larger proportion of
farms are completely specialized. It is this aspect of spatial
economic development which is emphasized in the model and which is
relevant to virtually any economic model of spatial population

patterns.
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10.

11.

Miron (1975)

The utility function is strictly convex in that the associ-
ated indifference curves are strictly convex with respect
to the origin.

The utility function does not include land area as an argu-
ment. Thus there exists a limit to the interpretability
of this model which is discussed below.

The model is also open in the sense that land rent (and,
later, factory profits), are leakages from it.

Further, the correspondence between the M, and M; solutions
are seen when it is appreciated that the marginal value
product of labour is w(s) in the former and cP(s) in the
latter. :

From the total soap demand equations in Tables 3 and 4, the
elasticity in both markets is a-1. This inelastic demand
reflects the specific utility function used.

Condition (1.b) ii a non-linear equation which is solved
numerically for s -

These problems can be avoided by introducing residential
land explicitly into the farm's utility function. This has
not been undertaken in the present work because it greatly
increases the difficulty of deriving numerical solutions
without a correspondingly better insight into the model.

The condition the L > o everywhere requires, from Table 4,
that

ko Pg > th
This condition will always be satisfied. As the factory
raises its mill wage toward k p%/h, it finds that any
desired level of employment can be generated. The main
concern in experimentation was not that L would actually
drop to zero but that it would simply become 'too' small.

Refer to Stern (1972) for a discussion of producer behaviour
in either case given a uniform spatial demand.

Although solutions are available where one of the following
is an integer; P, (m + 1)/n, (m + 1)/n) + p

See Davis and Rabinowitz (1975; pp 45-48) for a description
of the method.
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There are 10 intervals used in estimating the M; area in-
tegrals for output demand and labour supply and 20 inter-
vals used in estimating the M) market integral for output
demand. (The middle integral of Table 7 has a simple exact
analytical solution). The difference here reflects the
usual relative contributions of the two areas to the total
output demand.

This error can be reduced by increasing the number of ap-
proximation interval. Only 10 or 20 are used in the present
study because of the extensive computing time required to
solve the model for a given set of parameter values. 1In

the computer program used, a pre-defined set of mill prices
are scanned to find the optimal price. For each mill price,
the corresponding appropriate wage must be found via an
iterative procedure involving usually about 10 iterations.
Since usually about 25 mill prices are scanned before an
optimal one is found, the output demand and labour supply
integrals are each evaluated about 250 times. Given the
number of sets of parameter values to be examined here,

the time involved in such computations is very substantial
and must be weighed against the insight gained from addi-
tional accuracy.

The lower limit for ko of 1.0 represents a point at which

the factory faces a negligible demand at its optimal wage-
price combination. The upper limit is chosen to illustrate
the phenomenon involved.

The 'roughness' of the elasticity surface for large values of
Py reflects the error introduced in numerical approximations.

It is noted in passing that since o and B; also enter into

<5 and c; in Table 10, the combination of mill price and

wage at which o - 1 - B; = 0 may only approximate the point
at which the mill wage crests.

3 (h/L) _ [h][w(s)h - BkzP(S)a}

IWy, L YW(s) g (s)

Thiis is always positive since, in the M; area, hz > 0 which

requires w(s)h > Bk2P(s)%/(1 -~ y) > Bk,P(s)®

As in the case of ko, the lower limit on § represents the

point at which the factory's optimal output becomes neg-
ligible. The upper limit again is arbitrarily set to
illustrate the phenomenon involved. Since § is greater
than one in some experiments, increasing returns to scale
are allowed for.




19.

20.

- 42 -

Note that P* and {h/L}, refer to autarky solutions of Table
2. The product cP* is the marginal value product of labour
in autarky and this is used to deflate the mill wage.

At b below 400.0, factory soap demand becomes negligible.
The uppler limit is chosen arbitrarily.



