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Raman K. Mehra 

Abstract 

This paper presents new results on the problem of 
measurement scheduling, sensor location and design for 
linear dynamic systems. Both time-invariant and time- 
varying systems are considered and different norms of 
the Observability and Information matrices are maxi- 
mized with respect to the structural parameters of the 
system. A close connection is established between these 
problems and the Kiefer-Wolfowitz Theory of Experimental 
Design for Regression problems. Both randomized and 
nonrandomized designs are considered. It is shown that 
the optimal designs obey certain minmax properties that 
lead to rapidly convergent algorithms. The results are 
illustrated by an analytical and a numerical example. 

I. Introduction 

The importance of measurement system design has been recog- 

nized for a long time, but very few attempts have been made at 

solving this problem. Meier, Peschon and Dressler [I] consid- 

ered the problem of measurement scheduling and obtained a 

computational solution using dynamic programming. Johnson [2] 

defined measures of the quality of controllability and observ- 

ability and attempted to maximize these measures with respect 

to structural parameters in the control distribution matrix 

and the measurement system matrix. (These parameters, in 

certain systems, depend on controller and sensor locations.) 

The optimization procedure leads to a nonlinear eigenvalue 

problem. Mflller and Weber [3] considered other measures of 

the quality of controllability and observability and obtained 

l~his research was supported by the U.S. Office of Naval 
Research under the Joint Services Electronics Program through 
Contract N00014-67-A-0298-0006 extended to the Division of 
Engineering and Applied Physics, Harvard University, and partly 
by IIASA. 



optimum locations of thrusters for satellite attitude control 

problems. 

An extensive literature on the problem of experimental 

design exists in the field of statistics. Especially signifi- 

cant is the work of Kiefer and Wolfowitz [4] and Fedorov [5] 

on the theory of optimal experiments for regression. The 

systems considered are static, and only recently have their 

results been extended to dynamic systems for input design 

[6,7,8]. In this paper, we show how similar results can be 

obtained for a whole range of problems in measurement system 

design for dynamic systems (both time-invariant and time- 

varying). The interesting thing about these results is that 

in addition to revealing interesting minmax properties of 

optimal designs, they also provide simple algorithms for the 

computation of such designs. 

The organization of the paper is as follows. In section 

2, we motivate and formulate mathematically different opti- 

mization problems and the associated performance criteria. 

The results on optimal measurement schedules are presented in 

section 3. The optimization of sensor and controller struc- 

tures is considered in section 4. Examples presented in section 

5 illustrate the design procedures and elaborate the differences 

between randomized and nonrandomized designs. 

2. O~timization Problems and Criteria 

Consider a finite-dimensional time-varying linear dynamic 

system with state equations 

where state x E $nr control u E emr measurement y E process 

noise w E $q and measurement noise v E $p. Processes w(t) and 

v(t) are uncorrelated zero mean Gaussian white noise (ZMGWN) 

processes with intensities Q(t) and R(t) . The initial state 



x(0) is normally distributed with mean xo and covariance Po 

and is independent of the noise processes {w (t) , v (t) , 
to 5 t 5 t,). 

It is well known that for the above system, the Kalman- 

Bucy filter [9] provides a minimum-variance unbiased estimate 

of the state conditional on all past data. The minimal co- 

variance matrix P(t) of the filtered state estimate obeys the 

following Riccati Differential Equation 

For a system with fixed structure, i.e. specified Po, F, 

T, Q and R matrices, matrix P(t) is fixed. But in many prac- 

tical problems, it is possible to vary H and R under certain 

constraints. For example, on a flight vehicle, the location 

of accelerometers influences H and measurement scheduling 
-1 affects R(t). In the latter case, R (t) denotes the precision 

of the measurements and zero precision (R-l (t) = 0) corresponds 

to no measurement at time t. In certain applications, e.g. 

Inertial Navigation, it is possible to control the level of 

precision R-l (t) indirectly by making multiple measurements 

close together and averaging them. We, therefore, formulate 

a measurement scheduling problem as follows: 

Problem 1 ' : Select a measurement precision matrix R-' (t) 

subject to a constraint on the total precision [' tr R-l (t)dt - < C 

to minimize a suitable norm of the error covariance matrix 

P (tor tl 1 . 
Problem 1' is similar to the problem considered by Meier, 

Peschon and Dressler [I], if R-l (t) is allowed to take only two 

values, one of which is zero (no measurement)*. 

The nonlinear nature of the Riccati Eq. (3) makes it very 

difficult to obtain analytical results and to gain any insight 

into the nature of the optimal measurement schedules. This 

* 
The question of practical implementation of the solution 

to Problem 1' will be considered in section 3. 
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For this case, the results presented in sections 3, 4 and 

5 are exact. In particular, the maximization of IM(tO,tl) 1 
that is to be considered in the following problem formulations 

is equivalent to the minimization of the volume of the un- 

certainty ellipsoid for estimating x(tl) based on the observa- 

tions {y(t) ,to 5 t 5 tl 1 [8] . 
Based on the above discussion, we state the following 

problems : 

Problem 1: Same as Problem 1' with P(tO,tl) replaced by 
-1 

M (tort1). 

Problem 2: Minimize a suitable norm of M- ' (to, tl ) with 
respect to free parameters in H subject to a norm constraint on 

H. (Nonrandomized Design, a control version of this problem, is 

the location of jets on a satellite for attitude control; see 

section 5.2.) 

Problem 3 : Minimize a suitable norm of M-' (to, tl ) with 

respect to a probability distribution on the free parameters b 

in F and H, b being constrained to the set Rb. (Randomized 

Design, see sections 5.1 and 5.2 for examples). 

In the next section, we provide a solution to Problem 1 

and in sections 4A and 4B, we provide solutions to problems 3 

and 2 respectively. Problem 2 is similar to the one considered 

in Refs. [2, 31, but problem 3 is new. It is motivated by the 

work of Kiefer and Wolfowitz [4] and Fedorov [5] on Experimental 

Design in Regression. It is known that randomization can 

improve performance greatly in experimental design problems. 

The reader may also refer to Ref. [8] for a brief summary of 

the results of Ref. [4, 51 and for solutions to a closely relat- 

ed problem, viz. Input Design for parameter estimation. 

3. Measurement Schedulins (Problem 1) 

3.1 Scalar Measurement Case: 

Define normalized precision information 



u (t) = R-I (t)/C 

Since 

it. follows that 

Let 

where 

A 

Lo 
M(tO,tl) will be called a Normalized Information Matrix. 

A 

It is obvious that the maximization of a suitable norm of 

M(tOItl) under the constraint (11) is equivalent to Problem 1. 

Definition: 

If a(*) is a continuous function, the design will be called 

continuous. If a(*) consists only of delta functions, the design 

will be called discrete. We first prove the following result. 

Theorem 1: For any continuous design, there exists a dis- 

crete design with no more than [n(n + 1)/2 + 1 1  points such that 
A 

the two designs have the same information matrix M(tO,tl). 

Proof: The proof follows from a classical theorem of 

Caratheodory which states that a point in the convex hull, S*, 

of a set S in an m-dimensional Euclidean space can be expressed 

as a linear combination of (m + 1) or less points of S; i.e. if * 
s* E S , one can find ai such that 

where 



A 

We now identify S* with the set of all information matrices M 
2 in an n(n + 1)/2 dimensional Euclidean space . This set is 

A 

convex since if M( al ) and M( a2) belong to S* and 

then 

h 

Therefore, M(a) belongs to S*. Furthermore S* is the convex 

hull of point measurement (i-e. a(t) = 6(t - tl)) information 
matrices 

h 

It now follows from catath60dory1s Theorem that any M(tO,tl) 

be written as 

The right hand side of Eq. (16) corresponds to the discrete 

design 

We now prove a theorem characterizing the solution of problem 1. 

Theorem 2: Let * be the optimal measurement schedule. Then 

n(n + 1) 1 o*(t)dt = 1 and o*(t) may be chosen to consist of 5 - 
to 

'an .nxn symmetric matrix can be represented by a point 
R n (n+1) /2 

3 ~ f  i(tO,tl) lies on the boundary of the set S*, e.g. when 

I M ]  is maximum, then only n(n+1)/2 points are required to 
A 

represent M (to, tl ) . 



points, i.e. measurements are made at only k different time 

point. Furthermore, the following are equivalent: 

A 

(i) o*(t) maximizes / M ( ~ ~ , ~ ~ . u ) I  

(ii) a* (t) minimizes Max d(tO,tl ,t,o) , 
t 

where 

(iii) Max d(tO,tl ,t,a*) = n . 
t 

(19) 

All designs satisfying (i)-(iii) and their linear combi- 

nations are optimal and have the same information matrix. 

Remark: To illustrate the nature of the results in Theorem 

2, we show that the quantity d(tO,tl,t,a) is the variance of the 
A A 

estimate y(t 1 tO,tl) = ~(t)x(tlt~,t~), i.e. the conditional 

estimate of the output based on all observations over the period 

[to,tl]. This is easily seen from the relations 

and 

(It is assumed that Q = 0.) Thus, 

Part (ii) of Theorem 2 implies that the design a* is also optimal 

in a minmax sense, i.e. it minimizes the maximum over time of the 

output prediction variance. From part (iii), ~q.'(19), the minmax 

value of the prediction variance is n, the dimension of the state 

vector. In fact, it will be shown in Corrollary 1 that the 

function d(tO,tl,t,o*) looks like a Chebychev function with all 



local maxima of d(tO,tl,t, ) (Fig.1). From an Information 

Theoretic viewpoint, measurements are made atthose times when 

the output entropy is maximum. This appears to be a fairly 

general principle. 

Proof: We prove the theorem in four parts: 

(1) The condition a* (t) dt = 1 follows trivially from 

the fact that a scaling of a*(.) by c scales I~(t~,t~,o*) 1 by 
n c . Heuristically, it is optimal to use all the precision that 

is available. 
4 

(2) We now show that for any normalized design a, 

max d(tO,tl ,t,a) - > n . 
t 

Consider 

ftl Since 1 2 a <t) 2 0 and ( a(t)dt = 1, Eq. (23) follows from 

' to 
Eq. (24). 

We now show that for an optimal design a* satisfying 

property (i), the inequality (23) is reversed, i.e. 

max d(tO,tl ,t,a*) - < n . (25 
t 

Then parts (ii) and (iii) of Theorem 2 follow from Eq.(23) and 

4 

A normalized design a ( . )  is such that It' (t)dt = 1. 

to 



Then parts (ii) and (iii) of Theorem 2 follow from Eq. (23) and 

(25). 

Consider a perturbation from the optimal design of the 

following type. 

where S(t - ti) is a delta function at ti and 0 5 a < 1. The 

information matrix for a(t) design is (for simplicity, the sub- 
A 

scripts (tO,tl) are omitted from M) 

A A 

Since a* maximizes J M I  or equivalently log (MI, any deviation 
A 

from 8* such as Eq.(26) should result in a decrease of log [MI, 

Since Eq.(28) holds for any ti, Eq.(25) follows if ti is 

chosen to maximize d(tO,tl,t,a*) with respect to t. 

(3) We now show that (i) and (iii) follow from (ii). 

Indeed (iii) follows directly from (ii) and Eq. (23). To show 

that (i) also follows, assume the contrary, i.e. a* satisfying 
A 

(ii) does not maximize ( M I .  Consider a perturbed normalized 

design. 

a t )  = (1 - a)a* (t) + aa(t) 

A A , t O ( t < t l  , O < a < 1  - . 
M(u) = (1 - a)M(a*) + aM(a) 



It follows that a can be chosen such that 
( 

A 

Now using Theorem 1, M(a) can be expressed as (cf. Eq. (1 6) ) 

A k A 

M(u) = 1 M(ti)ai 
i=l 

where 

and 

Thus 

But from (iii), it easily follows that 

Eqs. (30) and (31 ) are in contradiction unless (i) holds. 

(4) To prove the last part of Theorem 2 ,  consider two 

designs at and a s  both satisfying (i) - (iii) . Construct a new 

design 



Then 

From the concavity of log IMI, 

A A 

But by definition logl~(o*)I $ log/M(oi)I, for i = 1,2, so 
A A A 

that M(o*) = M(a*) = M(o5). 1 

Corollary: At all points ti of the optimal design, 

d(tO,tl,ti,o*) attains it maximum value n. 

Proof: Assume the contrary, that for some ti, 

Then 
k 

which contradicts Eq. (24) . Thus 

for all points ti of the optimal design (see ~ig.1). 

3.2 Algorithm for Computation of a* 

Algorithm 1: 

(a) Start with a discrete normalized design o0 = {oo(ti), 
A 

i = 1, ..., k) such that ~(0') is nonsingular. The number of 

points k in the design must be more than n to have a nonsingular 

bI(o0). Let j = 0. 

(b) Compute d(tO,tl,t, j) and determine its maximum with 

respect to t. Denote the maximizing t as tk+j+l. 

(c) If max d(tO,tl,t,oO) = n, stop, since oJ is then the 
t 

optimal design. Otherwise proceed to (d). 



(d) Update a' to ojCi = aJ"(ti). i = l.....k+j+l I 
follows: 

C 

where 0 < a' - < 1 is chosen by either a one-dimensional search 

to maximize IM(a jC1) I or any sequence such that 
w 

I 1.1 ( a J > a I 1 aj = w lim aj = 0. 
j =O j +W 

(e) Go to (b). 

Remarks : 

1. The above algorithm is very similar to an Input Design 

algorithm in Frequency Domain described in Ref. [61. Identical 

proofs of convergence of the algorithm hold in both cases. These 

methods are related to the work of Kiefer, Wolfowitz and Fedorov 

[4,5], the last reference being an extensive treatment of the 

sub j ect . 
2. A practical implementation of the design would consist 

of clusters of measurements at the design points ti; i.e. 

multiple measurements will be made close together, but without 

violating the assumption of independence of measurement noise to 

achieve a specified precision level a(ti). The closeness of any 

given design a to the optimal design a* may be tested using the 

following bound which is derived analogously to a similar bound 

in Input design #[71 : 

> exp n - max d(tO,tl ,t,o) . - 
IM(~*) 1 t 

In practice, the optimal design a* may not be achieved 

precisely, but one can check its closeness to the optimal design 

by usin,g Eq. (33). 



3.3 Vector Measurement Case 

This case, though technically more difficult, leads to 

results essentially similar to the scalar measurement case. 

Since the proofs and derivations are similar to those for Input 

Design [ 7 ] ,  we only state the main results without proofs. 

Notice, however, a special case in which the measurement noise 
--1 matrix may be written as R-l (t) = (t)R (t) where E(t) is fixed 

and only (t) is subject to choice. By appropriate scaling, we 

can convert the constraint (tl tr (R-l (t) )dt = C to the constraint 

a(t)dt = 1. Then the problem of selecting a(t) is similar to 

that of the scalar measurement case and all the results of Theorem 

2 apply with M(tO,tl,a) and d(tO,tl,t,a) modified appropriately. 

We now consider the case in which complete R-l (t) processes 

can be selected subject to tr (5 R-l (t)dt 5 1 and show that 

-1 ' 
R (t) may be chosen to be zero everywhere (i.e. no measurements) 

except at a finite number of time points. In actual practice, it 

may be difficult to make measurements in such a way as to achieve 

the optimal design since it would involve controlling correlations 

between measurements. For this reason, we present the following 

results more for theoretical completeness rather than for irnrne- 

diate practical applications. 
* 

Theorem 3: For the optimal measurement policy 1 = (R*)-' , 
* 

tr 1 (t)dt = 1 and the following are equivalent: 

A 

(i) I* maximizes 1~1, 

(ii) I* minimizes max A t max 
A T 

~(t.1) = ~(t)m (t,tl)~-' (toftl (t) , 
(34) 

and Amax(B) denotes the maximum eigenvalue of ~(t,1), 



The information matrices of all normalized designs satisfy- 

ing (i) - (iii) are identical and their linear combinations also 
satisfy (i) - (iii) . 

3.4 Other Criteria 

Theorem 2 is easily extended to more general criteria such 

as tr(~-~), k > 0. We state here the results for the scalar 

measurement case only. 

Theorem 4: For an optimal design a*, the following are 

equivalent: 

(i) a* minimizes tr(~-~), k > 0 

(ii) a* minimizes max d (t,a) where 
t 

*-(k+l) (a) QT(t,tl ) H ~  (t) d(t,o) = ~ ( t ) Q ( t , t ~ ) ~  (36) 

(iii) max ditto*) = tr(h-*lor)) . 
t 

Remark : 

If the determinant of the lower bound, i. e. I M + W-l 1 , in 
the Riccati solution (4) is to be minimized, then the relevant 

quantity d (t, a) is 

and 

max d(t,a*) = tr 
t [(M(a*) + W-l)-lM(a*) 

Similarly, for minimizing the determinant of the upper bound, 

viz. IM-I + Wl, the relevant d(t,o) is 

and 



max d(t,o*) = tr 
t 

[(M-' (o*) + w ~ ~ M ( o * q  - . 

4. Optimization of Sensor Designs 

In this section, we consider solutions to Problems 2 and 3 

posed in section 2. First, Problem 3 involving Randomized Designs 

will be considered since its solution resembles closely the solu- 

tions to the measurement scheduling problem. 

A. Randomized Designs: 

Let b denote the vector of design parameters in H and F 

and let Qb be the set of allowable b values. It will be assumed 

that Rb is a compact set and that randomization is permitted, i.e. 

different values of b may be chosen with different probabilities 

during the experiment. We, therefore, define a probability mea- 

sure c for all Bore1 sets of Rb including single points and search 
for the optimal design €,* that maximizes a suitable norm of M(<). 

It will be shown that €,* may be chosen to have a finite support, 

i.e. a discrete probability distribution with mass at only a finite 

number of points in Rb. 

Information Matrix: 

For a randomized design €,, the expected information matrix is 

where 

and M(b) is the information matrix corresponding to the single- 

point design €, (b) = 1. 

It is clear from Eq. (41) that the set of all.M(€,) is a 

convex and closed set in #n(n+1)'2. It is also the convex hull 

of single-point information matrices M(b) so that using 

Caratheodory's Theorem, one may write (see proof of Theorem 1 



and Ref. [ 4 -81  ) . 

where 

If Pl(b) is linear in b, then M(C) = ~(i;), where is the 

mean value of b. Thus, nothing is gained by randomization on 

those parameters which effect M linearly, i.e. a(t) in section 3. 
5 

We now derive the following theorem for D-optimal designs . 
Theorem 5: Let be the D-optimal design. Then the fol- 

lowingare equivalent. 

(i) c* maximizes JM(c) I 

(ii) c* minimizes max tr M-I (c)~(b)} 
bcQb { 

(iii) max tr M-I (c*)~(b)} = n . 
b€Qb 

All designs satisfying (i) - (iii) have the same information 
matrix M and their linear combinations also satisfy (i)-(iii). 

Proof: Since the proof of this theorem is similar to that 

of Theorem 1 we only give an outline. Consider 

tr M-' (g)M(bj c (db) 5 max tr (c)M(b)) M 1  b ~ )  = 1, ( 
bcQb 

- 
5~ D-optimal design is one that maximizes the determinant 

of the information matrix. 



However, for a design 5 = (1 - a)c* + aSO , 0 < a 5 1 it 

follows from (i) that 

max trb-1(5*)M(b)] 5 n . 
b&Slb 

Choose E0 to be a design that assigns probability 1 to the 

Eqs. (44) and (46) are contradictory unless (ii) and (iii) 

hold. To show that (ii) implies (i), we assume the contrary, i.e. 

S* minimizes max [tr M-I (c)M(b)] so that (43) holds, but E* 
b&Qb 

does not maximize I M ( ~ )  I or there exists a design 5 = (1- a )<*+ aF; 

such that 

value bo&flb maximizing tr 

Using Eq. (42), this implies 

M-I (5)M (b) 1 . Then 



max tr Lv 1 - l  (<*)M(b)l > n . 

This contradicts (ii) and (iii) so that <* must maximize 
IM(~)(. The rest of the theorem follows easily from the con- 

cavity of ( M ( S )  ( .  
The following lemmas are easily proved from Theorem 5. 

Lemma 1: At all points bi, i = 1, ..., k of the design <*, 

T Lemma 2: Let b = H = h and consider a scalar measurement 

case with Rh = hTh < 1 . Then 

where 

The points of the design c* are eigenvectors of unit length 
of C' (c*) corresponding to Amax = n and are equal in number to 

the multiplicity of this eigenvalue. 

The computation of c* is easily performed by an iteration 
similar to that for computing a*. 

Alaorithm 2: 

(a) Start with a design c0 such that M(SO) is nonsingular. 
Let j = 0. 

(b) Compute tr M-' (6 j)M (bj)) and find its maximum over { 
b. E Rb. If the maximum is equal to n, stop. Otherwise go 

3 

where 



is such that 

The choice of a is done by a search to maximize ~ M ( s ~ + ~ )  1 or 
j 

according to the rule in Algorithm 1. 

(d) Go to step (b) . 
B. Nonrandomized Desisns (Prob. 2) : 

In this section, we discuss the problem considered by 

Johnson [2] and ~iiller and Weber [3]. The motivation for 

considering nonrandomized designs is that in many practical 

situations, it is not possible to employ randomized designs. 

The price paid for nonrandomization can be quite high as will 

be shown by a numerical example in the next section. Further- 

more, the optimization problem becomes nonconvex leading to 

the appearance of local optima and severe difficulties in 

computation. 

Since the examples given in the next section are for SISO 

(single-input time variant systems, we present 

results here only for these systems. It was shown by Johnson 

[2] that for this case, the optimization of the Information 

Matrix may be replaced by the optimization of the Observability 

Matrix of the following kind: 

n- 1 T i T  Q =  1 ( F )  H H F ~  . 

We give the results here for the maximization of a general 
1 /s 

norm ms = (;trQS) , s 5 0 subject to the norm constraint 
\ 

HHT . - 1 (our res;lts are similar to those of Miiller and Weber 

[31 except for the correction of an error in the results of 

Ref. [l3] ) . Notice that 



Theorem 6: Let H* be a locally optimal nonrandomized sensor 

design. Then H * H * ~  = 1 and the following conditions are necessary 

for local optimality: 

(i) H* is a normalized eigenvector of 

corresponding to the eigenvalue 

(This is a nonlinear eigenvalue problem). 

(ii) If A* is the maximum eigenvalue of A(H*) , then H* 
minimizes the maximum eigenvalue of A(H). If A* is the minimum 

eigenvalue of A(H*), then H* maximizes the minimum eigenvalue 6 

of A(H) . 
Proof: The property H*H*~ = 1 follows trivially since ms 

T is a homogeneous function of H of degree 2. Let h = H and 

define the ~agrangian function 

where p is a Lagrange multiplier. 

The stationary condition = 0 and the fact that 
h* 

6 ~ t  is stated incorrectly in Ref. [31 that A* is always the 
minimum eigenvalue of A(H*). A counterexample is given in 5.1. 



Premultiplying Eq. (62) by h*T, we get 

T S-1 h* A(h*)h*-nm (h*)p = 0 
S 

P = ms (h*) . (61) 

From Eqs. (60)-(61), part (i) of Theorem 6 follows. To 

prove part (ii) , consider 

where 

Since A and B are symmetric and B 2 0, it is easily shown 
that (see Appendix A) : 

'min tr (AB) = tr (' Q (h) ) - < Amax k(h)) (631 

From Eq. (65), it is clear that if - 

'*(A) = ? max (A) = tr(Qs (h*)) ! 

then h* minimizes the value of Amax (~(h)) . similarly if 

\ 
A *  (A) = hmin (A), then h* maximizes the value of Amin (~(h), . 

\ 

Remark: For maximizing IQJ, we consider lim s -+ 0. This 

gives 

and 



The following algorithm may be used to compute h*. 

Alaorithm 3: 

(a) Start with an ho such that Q (ho) is nonsingular. 

Let k = 0. 

n- 1 
(b) Compute A(hk) = 1 ii~-l (hk)(FT)i and find all eigen- 

i= 1 

value-eigenvector pairs j = 1, ..., of A(hk). If for 

k 
j j 

some j, hk = n and @ = hk within specified tolerances, then hk 

is a candidate for local optimality. Evaluate (numerically or 

analytically) - 
hk 

and check for negative- definiteness. 

Stop if the above conditions are satisfied. Otherwise proceed 

to (c). (Additional computational steps will have to be added 

to search for the Global Optimum). 

(c) Order the eigenvalues such that hl 2 A2 > = * * >  - An and 

compute successively the scalar products (A; - n)h:@rl 
~ j = l...n. Let j = i be the eigenvalue for which this product 

7 is maximized . Then set 

where 0 < B - < 1 and 

T k  c = (1 - f3)2 + B2 + 28(1 - B)hkOi 

is a normalizing factor. 

It is shown in Appendix B that the directional gradient 

where hk+l satisfies Eqs. (65) - (66) . 



Choose f3 by either a one-dimensional search to maximize 

Q(hk+l) or any sequence satisfying the conditions given in 

Algorithm 1. 

(d) Go to step (b). 

5. Examples 

5.1 Second Order Intesrator 8 

. 
Consider the system with states xl = x, x2 = x and the . . 

system equations x = u, or in state-vector form, 

Only one measurement is made continuously in time, 

We consider the problem of selecting hl and h2 under the 

constraint (hi + hi) - 1. Both randomized and nonrandomized 

solutions will be considered and it will be shown that they 

are the same in this case. This is also true for the control 

version of the N~~ order integrator problem considered in Refs. 

[2,3]. The observability matrix is 

where IQI = h; ; 

clearly h; = k 1 and hf = 0. 

 his example is given here mainly for illustrative purposes. 





It is clear that the maximum of I~(p)l is attained for a p 

making the negative term zero, i.e. h2 - - h; = 0 ,  + 1. To 

maximize the terms in the first bracket, h2 = hi = + 1. Thus 

the optimal solution is nonrandomized. 

A graphical illustration which sheds further light on the 

effect of randomization is shown in Fig.2. The matrix Q(p) can 

be represented in $', but since Qll(p) = 1, the set of all Q(p) 

lies on a two-dimensional plane which is depicted in Fig.2. 

Without randomization, the attainable values of Q12 and Q22 lie 

on a parabola and its mirror image, i.e. curve ABCD. As h2 is 

varied from 0 to 1, the point (Q12,Q22) moves along the parabolas 

from A to C. However, by randomization, all (Q12,Q22) values 

inside the parabolas are attainable. Thus the set of attainable 

values is expanded and made convex. 

The contours of constant I Q I  = QllQ22 - Q12 are also para- 
bolas and it is clear from Fig.2 that the maximum of I Q ~  is 
attained at point C. Since this is a boundary point which is 

attainable by a nonrandomized design, there is no advantage in 

randomization on the present case. However, we will show in 

the next example that in more general situations this is not 

the case, since the optimum of ( Q I  may be attained in the 

interior of the set which is only attaibable via randomization. 

5.2 Satellite Attitude Control of Optimally Located 

Thrust Jets 

This example is taken from ~uller and Weber [31 ,  where the 

nonrandomized solution is computed using a nonlinear programming 

technique. The results presented in Section 4 are easily applied 

to this problem using the Duality Principle. The state vector 



dimension is 6, consisting of three angular positions (@,$,8) 

and three angular velocities (+,$,6). The equations of motion 

are linearized for small angle deviations. The resulting F 

and G matrices are 

cos a/ 

cos B/. 
cos y 

0 

0 

where alBly define the direction of thrust. I 

By using a state transformation T = Diag.[.8571.285711,111,1]I i 
T we can convert the above system to (FIG) such that (G' ) G' = cos2cu. ~ 

Table 1 summarizes the results of maximizing lac /  where Q, 

is related to the controllability matrix by 

Algorithms 2 and 3 of section 4 were used to compute the 

randomized and nonrandomized optimal designs. It is seen that 

using randomization, l Q C l  is increased from 627 to 2.43 x l o 6  

and mo = / Q, 1 is increased from 2.93 to 11.59. A randomized 

design which is nearly optimal consists of four different loca- 



The implementation of the randomized solution would require 

controllable thrust direction, but would involve no extra 

fuel consumption. For the nonrandomized design, the eigen- 

value in contrast to the previous example where it was the 

largest eigenvalue of A. 

Nonrandomized solution 

a* 56.91 

8 * 52.48 

Y * 54.70 

m NR = l M 1 1 / 6  = 2 - 9 3  
0 

l"INR = 626.81 . 
Randomized solution: 

Table 1: Comparison of Nonrandomized and Randomized 

solutions to the Satellite Attitude Control 

Problem. 

6. Conclusions 

A large number of different problems arising in the 

design of measurement systems for estimating states in linear 

systems are solved by using an Experimental Design approach 



based on the work of Kiefer, Wolfowitz and Fedorov [4,5]. The 

techniques are easily extended to parameter estimation using 

Fisher ~nformation Matrix criteria derived in Refs.[6,7.8] on 

Input Design. Three computational algorithms based on certain 

minimax properties of the designs are given. By duality, 

similar results hold for the control problem. This is illus- 

trated by a problem in Satellite Attitude Control for which 

both randomized and nonrandomized solutions are computed numer- 

ically. 
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Appendix A 

Lemma: Let A and B be nxn symmetric matrices B 1 0. Then 

'min tr(B) - < tr(AB) 2 Xmax(A)tr (B) . 

Proof: Let P b e an orthogonal matrix with eigenvectors of 

A as its columns. Then 

 PAP^ = Diag [Al,. .. ,in] 

T T n T 
tr(AB) = tr(PAP PBP ) = Ai(PBP )ii . 

i- 1 

T Since (PBP ) ii - 0 t 

'min tr (B) 5 tr (AB) 5 x~~~ (A) TR(PBP~) = (A)tr (B) , 

where Amax is the maximum eigenvalue of A, and Amin is the 

minimum eigenvalue of A. 



Appendix B: Computation of the Directional Gradient 

(Algorithm 3) 

In this appendix, we calculate the gradient of I Q I  with 

respect to f3 when h is updated according to the iterative 

scheme of Eq. (67): 

k where 0 5 f3 5 1 and (I is a normalized eigenvector of I 
p-1 i - 1  T i 

A(hk) = 1 F Q  (hk) (F corresponding to the eigenvalue A k 

i=o I 

From Eq. (3) 

For B = 0, hk+l k ' ac - -2 + 2Qj hk = hk, c = 1 and - - a B 
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