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Abstract

A genetic model is investigated in which two recombining loci determine the geno-
typic value of a quantitative trait additively. Two opposing evolutionary forces are
assumed to act: (i) stabilizing selection on the trait, favoring genotypes with an
intermediate phenotype, and (ii) intraspecific competition mediated by that trait,
favoring genotypes whose effect on the trait deviates most from that of the pre-
vailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent
component describing stabilizing selection, and a frequency- and density-dependent
component modeling competition. We study how the underlying genetics, in partic-
ular recombination rate and relative magnitude of allelic effects, interacts with the
conflicting selective forces and derive the resulting, surprisingly complex, equilib-
rium patterns. It is investigated under which conditions disruptive selection on the
phenotypes can be observed, and how much genetic variation can be maintained in
such a model. A number of unexpected phenomena are discovered, for instance that
with little recombination the degree of stably maintained polymorphism and the
equilibrium genetic variance can decrease as the strength of competition increases
relative to the strength of stabilizing selection. In addition, mean fitness at the stable
equilibria is usually much lower than the maximum possible mean fitness, and often
even lower than the fitness at other, unstable, equilibria. Thus, the evolutionary
dynamics in this system is almost always nonadaptive.
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On a Genetic Model of Intraspecific

Competition and Stabilizing Selection

Reinhard Bürger

Biological evolution results from the interplay of the selection caused by the
ecological system a population is embedded in and the genetic mechanisms occur-
ing along with reproduction. Evolutionary ecology and genetics each are flourish-
ing fields, but only a minority of studies have contributed to their integration. In
population-genetics modeling, the ecology is typically packed into the fitness func-
tion and, in the vast majority of investigations, this fitness function is assumed to
be constant, as if populations lived in a static environment. Although the conse-
quences of physical environmental change, such as periodic or random changes, have
been explored to some extent, the interactive effects between a population and its
own environment have mostly been ignored. Such feedback, induced for instance
through the exploitation of the available resources or predation on or from other
populations, leads to frequency- and density-dependent selection.
By contrast, the interactions within a population and between a population

and its biotic and abiotic environment are the central topics of ecological research.
The evolutionary consequences of frequency-dependent selection have been inves-
tigated mainly within the framework of evolutionary game theory (e.g. Maynard
Smith 1982, Hofbauer and Sigmund 1998) and, more recently, also within what is
sometimes called adaptive dynamics theory (cf. Dieckmann 1997). Common to ap-
proaches within these frameworks is, with very few exceptions, a lack of genetics,
i.e., reproduction is usually assumed to be asexual and populations monomorphic.
Frequency-dependent selection has been included in population-genetics theory

since its conception (Fisher 1930), but concrete studies remained sporadic for a long
time (e.g. Wright 1948). Only much later has the theory of one-locus models under
frequency- (and density-) dependent selection been developed more systematically
(e.g., Clark 1972, Cockerham et al. 1972, Matessi and Jayakar 1976, Asmussen 1983).
In these investigations, fitnesses, or growth rates, are assigned directly to genotypes
and assumed to depend in a linear logistic, hyperbolic, or, more generally, in a
monotone decreasing way on the strength of competition perceived by that geno-
type. The strength of competition experienced by, say, genotype i is expressed in
the form

∑
j αijPjN , where the αij are coefficients measuring competition between

genotypes i and j, Pj is the frequency of genotype j, and N is the population size (cf.
Asmussen 1983). The focus of these studies is on the exploration of the basic proper-
ties of the resulting models, such as equilibrium structure, conditions for a protected
polymorphism, examination of the possibility of multiple polymorphic equilibria, or
search for optimization principles. A general conclusion that can be drawn from
these investigations is that the conditions for maintaining a stable polymorphism
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are much relaxed compared with constant fitnesses because heterozygote advantage
is no longer required. Another feature of frequency- and density-dependent selec-
tion, most generally explored by Nagylaki (1979), is that neither mean fitness nor
population size are maximized, though for weak selection approximate optimization
results with error estimates can be derived.
Whereas in the above-mentioned approaches frequency dependence enters in a

relatively abstract way, in another line of research the relevant parameters have been
derived from explicit models of differential resource utiliziation by genotypes (Chris-
tiansen and Loeschcke 1980, Matessi and Jayakar 1981, Loeschcke and Christiansen
1984). These authors examined the effects of intraspecific exploitative competition
for a linear resource spectrum using models based on the niche concept of MacArthur
and Levins (1967) and some of its generalizations (Roughgarden 1972, Christiansen
and Fenchel 1977). Since this work is closely related to ours, we shall return to its
discussion further below. Similar types of models are employed in the treatments
of competition for one resource by Matessi and Gatto (1984) and of differential
utilization of two resources by Wilson and Turelli (1989).
Various aspects of frequency-dependent selection have also been investigated

within the framework of quantitative genetics and phenotypic evolution (e.g. Bul-
mer 1974, 1980; Lande 1976; Slatkin 1979; Taper and Case 1992; Charlesworth
1993; Day and Taylor 1996). In contrast to the ESS-related approaches in which
the fate of a rare mutant in an otherwise monomorphic, usually asexual, population
is studied, the quantitative-genetic models realistically assume variable continuous
traits, but with a Gaussian frequency distribution of fixed genetic and phenotypic
variance. Under this assumption, the dynamics of the mean value of the trait under
selection can be described by relatively simple difference or differential equations,
but application to long-term evolution is problematic because it requires the genetic
variance to change on a much slower time scale than the mean, an assumption that
is questionable (e.g., Turelli 1988, Bürger 2000). Interestingly, despite their fun-
damental differences, the ESS-related and these quantitative-genetic models share
substantial mathematical similarities; under some conditions even similar results are
obtained (e.g. Iwasa et al. 1991, Abrams et al. 1993, Taylor and Day 1997).
From a population-genetics point of view, the ESS-related models, the pheno-

typic quantitative-genetic models, and the one-locus models all are based on rather
restrictive, though very different, assumptions. Quantitative traits – and many traits
of ecological importance belong to this category – are determined by several or many
gene loci that may be linked. Such traits usually exhibit substantial genetic vari-
ability and its amount can neither be ignored nor be expected to be constant accross
many generations. Indeed, different assumptions about the underlying genetics, may
yield qualitatively different conclusions about the maintenance of genetic variation
under frequency-dependent selection (Slatkin 1979).
It is the purpose of this paper to further diminish the gap between ecological and

population-genetic modeling by using an explicit genetic model of a quantitative trait
to explore the consequences of a balance between two opposing evolutionary forces:
stabilizing selection on the trait and intraspecific competition for a one-dimensional
rescource continuum. To this end, we proceed from the standpoint of population
genetics and incorporate both frequency-independent stabilizing selection as well as
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the ecological interactions between genotypes into the, then frequency- and density-
dependent, fitness function of the trait. As a first step in approximating reality, in
which a quantitative trait may be determined by a small number of major genes
assisted by a larger number of minor genes (Lynch and Walsh 1998, Chap. 13),
the trait is assumed to be determined by two recombining loci of arbitrary effect.
The advantage of such an approach is that population-genetic modeling has a firm
foundation, namely the laws of Mendelian genetics, and ‘mechanistic’ models are
available, whereas in some ecologically oriented approaches approximations are used
to include basic genetics that are difficult to justify or verify.
Part of the motivation for the present investigation originated from the desire

to study and understand the mechanisms by which heritable variation in quanti-
tative traits is maintained. Although, this has been a major research program in
evolutionary genetics for the past thirty years (receiving much momentum through
the work of Lande 1975) and substantial progress has been achieved, many open
questions remain (for a comprehensive review see Bürger 2000, Chaps. VI and VII).
However, the examination of some mechanisms has been neglected, in particular
those related to ecology. One reason may be that the early work of Bulmer (1974,
1980) and Slatkin (1979) showed that frequency-dependent selection can increase
the genetic variance of a trait under stabilizing selection, but only if a number of
prerequisites are fulfilled, in particular, competition must be strong enough. There-
fore, and because many quantitative traits of interest to geneticists and breeders
are unlikely to be under frequency-dependent selection, frequency-dependence has
not been considered as being a factor of general relevance in maintaining heritable
variation. It may, however, be of importance for traits of ecological relevance, some
of which show very high heritabilities (cf. Mousseau and Roff 1987), but this has
not yet been properly investigated. Because substantial heritabilities are a common
feature among quantitative traits, much of the work on the maintenance of genetic
variation has focused on mechanisms that have the potential of being general agents
in promoting genetic variation, such as mutation.
This study is related to the work of Bulmer (1974), Slatkin (1979), Christiansen

and Loeschcke (1980), and Loeschcke and Christiansen (1984), who investigated the
role of intraspecific competition in maintaining heritable variation on the basis of
various quantitative-genetic models. Bulmer considered variation at a diallelic locus
of infinitesimally small effect on a normally distributed trait with given variance.
Slatkin explored, among others, a continuous genotype model of Lande’s (1975) kind,
also assuming a Gaussian distribution of phenotypes. Although slightly different
assumptions about the fitnesses are employed, the two models yield qualitatively
similar results: the genetic variance maintained at a stable equilibrium depends in
a threshold-like manner on the strength of competition relative to the strength of
stabilizing selection, i.e., with weak competition no genetic variance is maintained,
with strong competition disruptive selection balances stabilizing selection and much
genetic variance can be maintained. A similar result was proved by the present
author for a two-locus model with equivalent loci (Bürger 2002). Slatkin (1979)
also investigated a one-locus model, but it produced different equilibria because of
constraints on the relationship between the mean and the variance imposed by the
genetic assumptions.
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Christiansen and Loeschcke (1980) examined the equilibrium structure of a one-
locus model with multiple alleles and determined conditions under which a poly-
morphism is stable. Roughly, their main conclusion is that if competition is strong
relative to stabilizing selection, then for a broad range of parameters two alleles are
maintained in the population, but almost never more than two. For weak compe-
tition, the conditions under which more than one allele is maintained are rather
restrictive. Loeschcke and Christiansen (1984) studied a two-locus model, mainly
for tightly linked loci, and assumed strong competition. Then, in general, two-locus
polymorphisms are maintained. Since their work is the one which is most closely
related to the present one, this relation will be examined in a separate section and
in the Discussion.
This paper is also concerned with a two-locus model of a quantitative trait,

but from a quite different perspective than in Loeschcke and Christiansen (1984).
In a certain sense, the present analysis considers stabilizing selection as given and
investigates the consequences of increasingly strong competition and frequency de-
pendence. Two special cases of the presently used model, namely loci of equal effects
and free recombination, were treated in a previous paper (Bürger 2002). Here, a
more general model with arbitrary linkage and arbitrary locus effects is analyzed.
We determine all possible equilibrium structures, investigate how the equilibrium
genetic variance depends on the genetic and ecological parameters, explore under
which conditions empirically detectable disruptive selection on the phenotypes oc-
curs, and examine the extent to which the evolutionary dynamics is adaptive and
mean fitness is maximized. It turns out that the interaction of the genetic sys-
tem with the selective forces induced by the ecological model leads to a number of
surprising, previously unobserved, phenomena.

The Model

We consider a randomly mating diploid population with discrete generations and
equivalent sexes that is sufficiently large to ignore random genetic drift. Selection
acts only through differential viabilities. Individual fitness is assumed to be deter-
mined by two components: (i) by stabilizing selection on a quantitative character,
and (ii) by competition among individuals.
The first component is frequency independent and may reflect some sort of direct

selection on the trait, for example through differential supply of a resource whose
utilization efficiency is phenotype dependent. However, frequency-independent sta-
bilizing selection could as well be caused by indirect selection through pleiotropic side
effects of alleles that primarily contribute to a fitness-related trait (e.g. Robertson
1967, Hill and Keightley 1988, Bürger 2000, Chap. VII). We ignore environmental
variation and deal directly with the fitnesses of genotypic values (see also below).
For simplicity, we will sometimes use the words genotypic value and phenotype syn-
onymously. Following the population-genetic tradition starting with Wright (1935),
stabilizing selection is modeled by the quadratic function

S(g) = 1− g2/(2Vs) , (1)

where Vs is an inverse measure for the strength of stabilizing selection. Of course,
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S(g) is assumed to be positive on the range of possible phenotypes, thus restricting
the admissible values of Vs.
The second component of fitness is frequency dependent. We assume that com-

petition between phenotypes g and h can be described by

α(g, h) = 1− 1

2σ2α
(g − h)2 , (2)

with the obvious constraint that the maximum difference between genotypic values
must be less than

√
2σ2α. Thus competition between individuals of similar phenotype

will be much stronger than between individuals of very different phenotype, as it
will be the case if different phenotypes preferentially utilize different food resources.
In this context, σ2α can be interpreted as the variance of the genotypes’ utilization
functions which differ only in their mean but not in their variance (cf. Christiansen
and Loeschcke 1980). Small σ2α means that phenotypes are specialized and implies a
strong frequency-dependent effect of competition. In the limit σ2α → ∞, frequency
dependence vanishes because every phenotype can utilize nearly the full resource
spectrum.
Let P (h) denote the relative frequency of individuals with phenotype h. Then

the intraspecific competition function ᾱP (g), which measures the strength of com-
petition perceived by phenotype g if the population distribution is P , is given by

ᾱP (g) =
∑
h

α(g, h)P (h)

and calculated to be

ᾱP (g) = 1−
1

2σ2α
[(g − ḡ)2 + σ2g ] . (3)

Here, ḡ and σ2g denote the mean and variance, respectively, of the distribution P of
genotypic values.
Similar to Bulmer’s model (1974, 1980), we assume that the absolute fitness of

an individual with genotypic value (phenotype) g is given by

W (g) =
(
ρ− N
κ
ᾱP (g)

)
S(g) , (4)

where ρ and κ are positive parameters and N denotes the total population size. For
notational simplicity, the dependence ofW (g) on N and P is omitted. We note that
the fitness functionW (g) belongs to the class of fitness functions used by Asmussen
(1983) in her study of a single diallelic locus (cf. Introduction).
In the context of density-dependent growth models, the parameter ρ in (4) is

related to the growth rate of the population and κ is proportional to the carrying
capacity. The precise relation of the present model to those of Slatkin (1979), Chris-
tiansen and Loeschcke (1980), and Loeschcke and Christiansen (1984), who assumed
a Lotka-Volterra-type functional form for fitness, is worked out in the following sec-
tion. In these studies the functions S and α specified in (1) and (2) are assumed
Gaussian, but the quadratic functions used here will be adequate approximations,
unless selection or competition are very strong. In particular, the present choice
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enables us to deduce some results analytically and, as explained in the Discussion,
does not lead to certain special effects that a Gaussian fitness function causes under
strong selection. In addition, environmental noise has a smoothing (and weaken-
ing) effect on the fitnesses assigned to genotypic values, hence the fitness function
modeling selection on genotypic values can usually be assumed to be smooth (cf.
Nagylaki 1989). Therefore, a quadratic fitness function S(g) will be the natural one
as a model of stabilizing selection as long as selection is sufficiently weak or locus
effects sufficiently small that the fitness function can be approximated by its Taylor
polynomial of degree two.
The genetic assumptions are as follows. The trait values g are determined addi-

tively by two loci (no dominance or epistasis), each with two alleles, A1 and A2, B1
and B2. After reproduction, the four gametes A1B1, A1B2, A2B1, A2B2 have rela-
tive frequencies p1, p2, p3, p4, respectively. We label these gametes by i = 1, 2, 3, 4.
Frequencies in the subsequent generation are denoted by p′i. Let the contributions
of the alleles A1, A2, B1, and B2 to the genotypic value g of the trait be β − 1

2
γ1,

β + 1
2
γ1, −β − 1

2
γ2, and −β + 1

2
γ2, respectively, where β is an arbitrary constant.

Because of additivity, the effects of the gametes A1B1, A1B2, A2B1, and A2B2 are
−1
2
(γ1+ γ2), −12(γ1− γ2), 12(γ1− γ2), and 12(γ1+ γ2). The resulting genotypic values

are shown in table 1. For definiteness, we assume γ1 ≥ γ2 > 0 and refer to these
loci as major and minor, respectively. The parameters γ1 and γ2 are the effects of
allelic substitution at locus one and two, respectively. For brevity, we call them the
effects of the loci.
For the recursion relations that describe the demographic and genetic dynamics,

we need to derive the fitnesses of the genotypes, the (marginal) fitnesses of the
gametes, and the mean fitness of the population. To this end it is useful to introduce
the following parameters:

γ = 1
2
(γ1 + γ2) , e =

γ1 − γ2
2γ

, s =
γ2

2Vs
. (5)

Table 1. The genotypic values in the additive model.

B1B1 B1B2 B2B2

A1A1 −γ1 − γ2 −γ1 −γ1 + γ2
A1A2 −γ2 0 γ2
A2A2 γ1 − γ2 γ1 γ1 + γ2

Here, γ2 may be called the average (substitional) effect of the loci on the trait,
e measures the disparity of effects (0 ≤ e < 1, and e ≥ 1

3
if the effects differ by a

factor of two or more), and s is a measure for the strength of stabilizing selection on
genotypes (0 < s < 1

4
because S(g) must be positive). Following from (1) and (5),

the fitness of the most extreme genotypes under stabilizing selection alone is 1− 4s.
In the absence of competition, this yields a special case of the so-called symmetric
viability model (Karlin and Feldman 1970) with the genotypic fitness values given
in table 2.
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Table 2. The fitnesses of genotypes, S(g), caused by stabilizing selection.

B1B1 B1B2 B2B2

A1A1 1− 4s 1− (1 + e)2s 1− 4e2s
A1A2 1− (1− e)2s 1 1− (1− e)2s
A2A2 1− 4e2s 1− (1 + e)2s 1− 4s

To exploit the symmetries of the model, the following coordinates are introduced:

x = p1 + p4 , y = p1 − p4 , z = p2 − p3 . (6)

A straightforward calculation shows that the mean genotypic value, or mean phe-
notype, is

ḡ = −2γ(y + ez) , (7)

and the genetic variance is

σ2g = 2γ
2[x− y2 − 2eyz + e2(1− x− z2)] . (8)

Therefore, the competition function ᾱP (g) can now be calculated by substituting
(7) and (8) into (3). We shall write it in the form

ᾱP (g) = 1−
γ2

2σ2α
ϕP (g) , (9)

where explicit expressions for ϕP (g) = [(g− ḡ)2+σ2g ]/γ2 (g ≥ 0) are given in table 3.
The value ϕP (−g) is obtained from ϕP (g) by the simultaneous substitutions y → −y
and z → −z.

Table 3. The values of ϕP (g) for g ≥ 0.
ϕP (γ1 + γ2) = 2[2 + x+ 4y + y

2 + 2ez(2 + y) + e2(1− x+ z2)]
ϕP (γ1) = 1 + 2x+ 4y + 2y

2 + 2e(1 + 2y + 2z + 2yz) + e2(3− 2x+ 4z + 2z2)
ϕP (γ1 − γ2) = 2[x+ y2 + 2ey(2 + z) + e2(3− x+ 4z + z2)]

ϕP (γ2) = 1 + 2x+ 4y + 2y
2 − 2e(1 + 2y − 2z − 2yz) + e2(3− 2x − 4z + 2z2)

ϕP (0) = 2[x+ y
2 + 2eyz + e2(1− x+ z2)]

As a convenient measure for the strength of competition, or rather the amount
of frequency dependence induced by competition, we introduce the dimensionless
‘coefficient of competition’

c =
γ2/(2σ2α)

(ρκ/N) − 1 . (10)

Then we can write (4) as W (g) = (ρ−N/κ)w(g), where
w(g) = [1 + cϕP (g)]S(g) , (11)
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and large c means a strong frequency-dependent fitness effect of competition. The
genotype- and, hence, frequency-independent effect of competition is subsumed in
ρ − N/κ and irrelevant for the genetic dynamics. We will often view stabilizing
selection as given and consider frequency dependence as a perturbation of strength
c.
Because in the recursion relations (12) for the gamete frequencies multiplicative

constants cancel, we can use the (scaled) fitnesses w(g). We write wij for the fitness
w(g) of genotype g = ij consisting of the gametes i and j. The (marginal) fitness of
gamete i is given by wi =

∑4
j=1 wijpj, and the mean fitness is w̄ =

∑4
i,j=1 wijpipj =∑4

i=1wipi. The wij and, consequently, the wi and w̄ can be calculated straightfor-
wardly from (11) by resorting to tables 2 and 3. The explicit expressions, however,
are formidable and not given. With a formula manipulation program such as Math-
ematica (Wolfram 1996) these calculations are easily automated.
Since random mating is assumed and gamete frequencies are measured after re-

production and before selection, Hardy-Weinberg proportions obtain and the genetic
dynamics can be described in terms of gamete frequencies by the well-known system
of recursion relations

w̄p′i = piwi − ηirw14D , i = 1, 2, 3, 4 (12)

(e.g. Bürger 2000, Chap. II.1). Here η1 = η4 = 1, η2 = η3 = −1, r is the recombina-
tion fraction, and D = p1p4 − p2p3 measures linkage disequilibrium. The ecological
dynamics follows the standard recursion

N ′ = NW , (13)

where W = (ρ − N/κ)w̄ is the mean absolute fitness. We assume that the demo-
graphic equilibrium is locally stable (which may require a sufficiently small growth
rate) and the population size is given by the resulting equilibrium value. Then
the genetic dynamics becomes density-independent. This indeed is an admissible
approximation if selection is sufficiently weak (Nagylaki 1979).

Relations Between the Models

Here, we examine the relation between the ecological model used in the present
investigation, basically due to Bulmer (1974, 1980), and models that are based on
the Lotka-Volterra competition equations.
Slatkin (1979) considered a phenotypic character in a population of size N (we

omit the time dependence) and, following Roughgarden (1972), assumed that fitness
of an individual with phenotypic value z is given by the Lotka-Volterra functional
form

WS(z) = 1 +R − RN
k(z)
ᾱP (z) , (14)

where

ᾱP (z) =

∫
α(z − y)P (y) dy . (15)
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Here 1 + R is the maximum fitness in the absence of competition, k(z) represents
resources that can be utilized by an individual of type z, α(z − y) represents the
competition between individuals of type z and y for the limiting resource, and P
denotes the Gaussian density of the trait which has variance σ2z . As a model for
k(z), Slatkin used a function proportional to a Gaussian density, i.e.,

k(z) = K exp

[
− z

2

2σ2k

]
, (16)

where K may be interpreted as the carrying capacity and the variance σ2k measures
the range of available resources. Thus, small σ2k means a small such range, hence
strong stabilizing selection. Similarly, as an example of α he took

α(z − y) = exp
[
−(z − y)

2

2σ2α

]
, (17)

where σ2α measures the extent of competition between individuals. Slatkin showed
that with these choices, the fitness function (14) leads to a stable equilibrium with
nonzero genetic variance σ2g only if σ

2
k − σ2α > σ2e , where σ2e is the environmental

variance, i.e., σ2z = σ
2
g + σ

2
e . If environmental variance is ignored (σ

2
e = 0), then

genotypic and phenotypic value can be identified and the condition for maintaining
variation becomes σ2k > σ

2
α, i.e., the spectrum of available resources must be broader

than any single consumer’s niche.
Two models, closely related ecologically but on a more explicit genetic basis,

were investigated by Christiansen and Loeschcke (1980) and Loeschcke and Chris-
tiansen (1984). Respectively, they considered a trait that is determined either by
one locus with several possible alleles, and by two loci with two alleles each. Envi-
ronmental effects are ignored. Following Christiansen and Fenchel (1977, Chap. 3),
they assumed that fitness of individuals with genotype g is given by an expression
analogous to (14), but with R = R(g) depending on g and a constant proportion of
R(g) and k(g), i.e., R(g)/k(g) ≡ V . Then their fitness function can be written as

WCL(g) = 1 + V [k(g)−NᾱP (g)]
with ᾱP (g) as in (15), but with a sum over all possible genotypes instead of an
integral. Loeschcke and Christiansen (1984) employed (16) and (17) for k and α,
whereas Christiansen and Loeschcke (1980) used quadratic approximations.
DevelopingWCL into a Taylor series and omitting terms of order two or higher in

1/σ2α and 1/σ
2
k, as well as mixed terms, a polynomial of degree four in g is obtained.

Equating the terms up to order two in g with those of our model [(1), (2), (4)], we
obtain the following relations between our parameters and those of Christiansen and
Loeschcke:

κ =
1

V
, ρ = 1 + V K , (18a)

and

Vs = σ
2
k

1 + V (K −N) + V N(σ2g + ḡ2)/(2σ2α)
VK

(18b)

≈ σ2k
1 + V (K −N)

V K
= σ2k

ρκ−N
κ(ρ− 1) , (18c)
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where the approximation is valid if σ2α is large, i.e., the frequency-dependent effect of
competition is weak. Actually, Christiansen and Loeschcke used a slightly different
notation: the σ2α used here corresponds to their 2W

2, this σ2k to their σ
2 +W 2, and

they set K = 1 or, equivalently, scaled N to N/K.
Importantly, for sufficiently weak stabilizing selection and competition, the two

models become formally equivalent. In the analysis of their two-locus model, Loeschcke
and Christiansen (1984) assumed that competition is stronger than stabilizing se-
lection in the sense that (in their notation) σ > W . In the present notation, this
means σ2k > σ

2
α. In our model, this assumption translates to

c
s
> N
K
= N
κ(ρ−1) (using

[5], [10], [18]), which is typically close to 1 at equilibrium. We shall return to this
observation in the Discussion.
Finally, we note that relations analogous to (18) can be derived for the model of

Slatkin (1979). They read

κ =
K

R
, ρ = 1 +R , (19a)

and

Vs = σ
2
k

1 +R − RN
K

(
1− σ2g+ḡ

2

2σ2α

)
RN
K
(1− σ2g+ḡ

2

2σ2α
)

, (19b)

≈ σ2k
1 +R(1−N/K)

RN/K
= σ2k

ρκ −N
N

, (19c)

which differs from (18c) by the factor N/K. Thus, the condition σ2k > σ
2
α in Slatkin’s

model reads c > s in our model.

Equilibria and Their Stability Properties

For loci of equal effects (e = 0) fairly complete global stability results are proved in
Bürger (2002). For unequal effects, even in the absence of competition such results
are not available. Nevertheless, with stabilizing selection alone (c = 0) the model is
well understood and the possible equilibria and their local stability properties have
been derived (see Gavrilets and Hastings 1993, and Bürger 2000, Chap. VI.2). In
this case, at most one locus can be maintained polymorphic if linkage is loose. This
occurs if the effects of the loci differ by more than a factor of two, i.e., if e > 1

3
. For

tightly linked loci, two types of stable polymorphic equilibria exist. Their stability
conditions are complementary and linkage dependent.
The general case with c > 0 is much more complex, and often equilibria and their

stability properties can be determined only numerically. Three different numerical
methods have been used: numerical solution of the equilibrium conditions gives
all possible equilibria; numerical evaluation of the eigenvalues yields asymptotic
stability results; iteration of the recursion relations yields global stability results.
Yet, some analytic results can be derived. We restrict our attention to positive
recombination rates (r > 0). Therefore, equilibria involving three gametes cannot
exist, nor equilibria at which either only the gametes with large effects, A1B1 and
A2B2, or only the gametes with small effects, A1B2 and A2B1, are present.
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The interaction of stabilizing selection, intraspecific competition, and recombi-
nation leads to a complex equilibrium structure, which is illustrated in figures 1
and 2. The precise conditions for existence and stability may be found in the Ap-
pendix. It may be noted that if (p̂1, p̂2, p̂3, p̂4) is an equilibrium, then (p̂4, p̂3, p̂2, p̂1)
is also an equilibrium, and both have the same stability properties. Thus, all except
symmetric equilibria, which by definition satisfy p̂1 = p̂4 and p̂2 = p̂3, coexist in
pairs.
The six types of equilibria that may be stable are listed in table 4. Our anal-

ysis indicates that stability of one type excludes stability of any other type (see
Appendix). Thus, there are never more than two stable equilibria. Types (d), (e),
and (f) are asymptotically stable whenever they exist. Further equilibria can exist
at the boundary, but they are always unstable (see Appendix).

Table 4. The six types of stable equilibria.

(a) A pair of monomorphic equilibria (p2 = 1 or p3 = 1)
(b) A pair of equilibria for which the locus with the larger effect (the major

locus) is polymorphic, and the minor locus is monomorphic for one or the
other allele

(c) A symmetric equilibrium with D < 0
(d) A symmetric equilibrium with D ≥ 0
(e) A pair of (polymorphic) asymmetric equilibria with D < 0
(f) A pair of polymorphic equilibria with D = 0

Since the stable symmetric equilibrium with D < 0 and that with D ≥ 0 are
maintained in different regions of the parameter space, they are classified as different
types. The symmetric equilibrium exhibits positive linkage disequilibrium if and only
if

c > c2 =
s

1− 5(1 + e2)s . (20)

According to our numerical results it is globally stable in this case. Therefore, posi-
tive linkage disequilibrium occurs if and only if (20) is satisfied, i.e., if the frequency
dependence induced by competition is sufficiently strong relative to stabilizing se-
lection. At the symmetric equilibrium,D = p1− 14 holds, and high (positive) linkage
disequilibrium is maintained only if the loci are tightly linked (results not shown).
For given s = 0.05 and four different values of the disparity e of locus effects,

figure 1 displays the regions of stability of the different types of equilibria as a
function of the coefficient of competition c and of the recombination rate r. Although
r could assume any value between 0 and 0.5, and c could be any nonnegative number,
a restricted parameter range is shown, because a further increase of either r or c
does not alter the equilibrium structure.
Equilibria not existing under pure stabilizing selection (c = 0) occur only if c > c1

(A.5), the value at which the interior equilibria withD = 0 bifurcate from the single-
locus polymorphisms. It is at this value, which is not much less than c2 (20), that
frequency dependence becomes strong enough to dominate frequency-independent
stabilizing selection and induce a markedly different equilibrium structure.
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(c) Symmetric equilibrium, D < 0

(e) Pair of asymmetric equilibria, D < 0
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Figure 1: Regions of stability of the six possible types of stable equilibria for the
four inidicated values of the disparity of locus effects e. In all cases, the strength
of stabilizing selection is s = 0.05, so the fitness of the extreme genotypes under
stabilizing selection alone is 80% of the maximum possible fitness. Note also that
for better visibility, in figure 1A the range of displayed values r is smaller. The
white region (e) extends to r = 0 and c = c1 in all cases but becomes very thin,
thus invisible. The values c0, c1, and c2 are defined in (A.1b), (A.5), and (20),
respectively.

By way of example we discuss how r and c affect the position of the stable
equilibria. We do this for the case that the effects of the loci are different, but differ
by less than a factor of two. Figure 2 displays the position of the stable equilibria as
a function of the strength of competition as c increases from 0 to 0.1. As indicated,
each panel is for another recombination rate. Since s = 0.05 and e = 0.25, each of
the curves in figure 2 represents the location of the equilibrium along the respective
horizontal line with ordinate r in figure 1B. The arrows in figure 2A indicate the
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Figure 2: Positions of stable equilibria as c increases from 0 to 0.1. In all four cases,
we have s = 0.05 and e = 0.25. For a detailed description see the main text.

direction of increasing c, which is the same in all figures.
In the following we describe the four cases.
r = 0.001 (figure 2A): For c = 0, the symmetric equilibriumwithD < 0 is stable.

It is close to the boundary edge p2 + p3 = 1, hence exhibits strong negative linkage
disequilibrium. As c increases it moves toward the center along the symmetric line
{p1 = p4, p2 = p3}, in direction of the arrow. If c = 0.0562, which is the value
that solves r2(0.05, c, 0.25) = 0.001 (cf. [A.8] and [A.9]), the asymmetric equilibria
bifurcate from the symmetric equilibrium, which becomes unstable but continues
to exist for larger c. The asymmetric equilibria are stable whenever they exist
and move rapidly to the boundary, which they hit if c = 0.0563, the value that
solves r1(0.05, c, 0.25) = 0.001 (cf. [A.6] and [A.9]). They leave the simplex after
exchanging stability with the single-locus polymorphisms, which are unstable for
smaller values of c. For c > 0.0563 the single-locus polymorphisms are stable and
move in direction of increasing p1(p4), but become unstable at c = c1 = 0.0588 (A.5)
when the pair of interior equilibria with D = 0 bifurcates (A.10). As c increases
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further, this pair of stable equilibria moves towards the center of the simplex and,
at the center, merges with the (then still unstable) symmetric equilibrium if c =
c2 = 0.0681 (cf. [20] and [A.7]) and ceases to exist (a pitchfork bifurcation occurs).
For all larger values of c, the symmetric equilibrium (now with D > 0) is globally
stable and moves in direction of increasing p1 + p4(= 2p1). In the limit c→∞ (not
displayed), the coordinate p1 of the symmetric equilibrium converges to a value <

1
2
,

unless r = 0, when p1 + p4 = 1 can be reached.
r = 0.008 (figure 2B): Similar as above, but at c = 0 the symmetric equilibrium

lies further in the interior of the simplex than for r = 0.001, hence shows less
linkage disequilibrium. The asymmetric equilibria bifurcate from the symmetric
equilibrium if c = 0.033 (calculated from [A.8]) and hit the boundary if c = 0.0365
(A.9). Because c1 and c2 are independent of r, the other bifurcation values are the
same as above.
r = 0.011 (figure 2C): For 0 ≤ c ≤ 0.0267, the asymmetric equilibria are stable

and first move toward the interior, but then curve back to the boundary, which
they hit if c = 0.0267. Then the single-locus polymorphisms become stable and the
description from case r = 0.001 applies.
r = 0.013 (figure 2D): For 0 ≤ 0.0103, the value that solves r0(0.05, c, 0.25) =

0.013 (A.1a), the monomorphic equilibria are stable. Then the pair of asymmetric
equilibria bifurcates, moves a little into the interior, and back to the boundary again,
which they hit if c = 0.0193, the value that solves r1(0.05, c, 0.25) = 0.013 (A.6).
Then the single-locus polymorphisms become stable and the description from the
case r = 0.001 applies.
If r ≥ r0,max (A.2), which for the parameters in figure 2 means r ≥ 0.0150,

the bifurcation structure is simpler because for 0 ≤ c ≤ c0 = 0.0103 (A.1b) the
monomorphic equilibria are stable, then the single-locus polymorphisms bifurcate
and are stable if 0.0103 < c ≤ 0.0588. For larger c the description from case
r = 0.001 applies, i.e., if c1 = 0.0588 < c < 0.0681 = c2, the pair of interior
equilibria with D = 0 is stable, and if c > c2 = 0.0681, the symmetric equilibrium
D > 0 is globally stable. The qualitatively identical case of free recombination was
investigated in Bürger (2002). Figure 4 in that article displays the dependence of the
regions of stability of the four possible equilibrium patterns (a,b,d,f) as a function
of c and e.

Maintenance of Genetic Variation

Because the joint transformation y → −y and z → −z preserves the property of
being an equilibrium, equations (7) and (8) inform us that if a pair of equilibria
is stable, then each of them has the same variance but the mean phenotypes have
opposite signs.
For loosely linked loci of similar effects (e < 1

3
, i.e., γ1 < 2γ2), stabilizing selection

alone maintains no genetic variation. Weak frequency dependence (c ≤ c0; [A.1b])
does not change this; cf. figures 1A,B. If both loci have equal effects, then the genetic
variance shows an almost threshold-like behavior (see figure 3 in Bürger 2002). As
figure 3A shows, this extends to loci of very similar effects (e = 0.05), but already
much less so to loci whose effects differ by a factor of 5

3
(e = 0.25). For very different
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Figure 3: Genetic equilibrium variance (V ) relative to the maximum possible vari-
ance (Vmax = 2γ2) as a function of the strength of competition, c. In both figures we
have s = 0.05. Figure 3A displays V/Vmax for free recombination and four different
values of e, as indicated. Figure 3B displays V/Vmax for fixed e = 0.25, but for four
different values of the recombination rate r, as indicated.

effects (e > 1
3
), stabilizing selection alone can maintain much genetic variance in

this two-locus system, because then the major locus displays overdominance and is
responsible for most of the genetic variance that can be maintained in a two-locus
system. In this case competition adds little.
Figure 3A displays the genetic variance (V ) relative to the maximum possible

variance (Vmax = 2γ2) for free recombination and different values of e. The rapid,
almost linear, increase in variance occurs when the pair of interior equilibria with
D = 0 is stable and moves to the center of the simplex. For strong frequency
dependence, the symmetric equilibrium with D > 0 is stable, and the variance
quickly asymptotes.
For tightly linked loci and weak frequency dependence, the situation is much
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more complex because stabilizing selection alone can maintain stable polymor-
phisms. Surprisingly, an increase of competition may lead even to a slight decrease
in genetic variance. This is clearly visible from the curves for the values r = 0.008
and r = 0.011 in figure 3B, and occurs in the range 0.01 ≤ c ≤ 0.04 (cf. figure 1B).
For 0.0588 ≤ c ≤ 0.0681, the pair of interior equilibria with D = 0 exists and is
stable. As they move to the center of the simplex, a marked, almost linear, increase
in variance occurs. For strong competition, i.e., if the symmetric equilibrium with
D > 0 is stable, there is always a high amount of genetic variation maintained; the
tighter the linkage, the higher the variance.
Under stabilizing selection alone the equilibrium mean phenotype does not nec-

essarily coincide with the optimum phenotype, which, in the present model, is at
the midpoint of the range of possible phenotypes. As shown by figure 4, which is
based on the parameters of figure 3B, strong competition is required for the mean
phenotype to coincide with this midpoint, whereas for intermediate values of c the
deviation may be decreased or increased.

Disruptive or Stabilizing Selection?

In the absence of other selective forces, intraspecific competition of the kind consid-
ered in the present model induces disruptive selection by favoring genotypes whose
effect on the trait deviates most from that of the prevailing genotypes. Given the
putative importance of frequency-dependent selection on the one hand and of stabi-
lizing selection on the other hand, it is of interest to identify the conditions for which
frequency dependence leads to detectable disruptive selection on a trait subject to
frequency-independent stabilizing selection. From a theoretical point of view, it is
reasonable to speak of disruptive selection if the fitness function has at least two
distinct maxima. We concentrate on populations in equilibrium.
For loci of equal effects, it was shown analytically that the equilibrium fitnesses of

the phenotypic values exhibit disruptive selection if and only if frequency dependence
is strong enough to maintain both loci polymorphic (Bürger 2002). For loci of
unequal effects, the situation is more complex and we can derive only sufficient
conditions under which disruptive selection occurs. The fitnesses of all genotypes
can be calculated from (11) and tables 2 and 3. At the symmetric equilibrium these
expressions greatly simplify because y = z = 0. If competition is sufficiently strong
that the symmetric equilibrium exhibits D > 0, i.e., if (20) holds, the following
relations between the equilibrium fitnesses are easily derived:
If e < 1

3
, so that γ1 − γ2 < γ2, then

w(0) < w(γ1 − γ2) < w(γ2) < w(γ1) . (21a)

If e > 1
3
, so that γ2 < γ1 − γ2, then

w(0) < w(γ2) < w(γ1 − γ2) < w(γ1) . (21b)

These relations are valid for all admissible parameter values of s and r, provided (20)
holds. Because of the symmetry properties of the equilibrium, the fitness function
is symmetric, i.e., w(−g) = w(g). Therefore, (21) shows that disruptive selection
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Figure 4: Equilibrium mean phenotype relative to the average locus effect γ as a
function of the strength of competition, c. The parameters are the same as in figure
3B.

always occurs if (20) holds. However, the genotypes with the most extreme effects
do not necessarily have the maximum fitness. They do so (i.e., in addition to (21),
w(γ1) < w(γ1 + γ2) holds) for all values of r if and only if

c >
s

1− (7 + 2e + e2)s . (22)

Hence, a sufficient condition for the fitness function to be U-shaped for any choice
of the genetic parameters e and r is

c >
s

1− 10s . (23)

Disruptive selection may actually occur for weaker frequency dependence than
suggested by the above analysis. Numerical results indicate that, as in the case of
loci of equal effects, disruptive selection always occurs if the interior equilibria with
D = 0 are stable; actually, with linked loci it may occur for even smaller values
of c, namely when the single-locus polymorphisms are still stable. An example is
presented in figure 5. It displays the equilibrium fitnesses of the phenotypes (at one
of the at most two stable equilibria) for a sequence of different values of c. The
figure legend contains the information which equilibrium is stable at each of these
values.
Closer examination shows that for the parameter values on which figure 5 is

based, disruptive selection occurs if c > 0.058 and the extreme genotypes have
highest fitness if c > 0.076. As expected, both of these critical values are smaller
than the analytically derived sufficient conditions. Indeed, (20) and (22) give the
respective values 0.068 and 0.080.
The conditions (20) or (22) giving rise to disruptive selection are quantitatively

similar to the condition σ2k > σ
2
α resulting from Slatkin’s (1979) model (cf. the
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Figure 5: Equilibrium fitnesses (at one of the at most two stable equilibria) of the
phenotypes relative to mean fitness for a sequence of different values of c. The fixed
parameters are s = 0.05, e = 0.025, and r = 0.011. The following indicates which
equilibrium is stable for a given c: c = 0.005: the pair of asymmetric equilibria
(D < 0); c = 0.030: the pair of single-locus polymorphisms; c = 0.053: the pair
of single-locus polymorphisms; c = 0.058: the pair of single-locus polymorphisms;
c = 0.062: the pair of interior equilibria with D = 0; c = 0.069: the symmetric
equilibrium (D > 0); c = 0.080: the symmetric equilibrium (D > 0).

section Relations Between the Models) or models of character displacement (e.g.,
Roughgarden 1976, Slatkin 1980, Brown and Vincent 1987). Like the inclusion of
concrete genetics may lead to deviations from this simple condition, so does the
inclusion of spatial resource heterogeneity (Day 2000).
In practice, fitnesses of quantitative traits are often determined by performing a

least-squares approximation to the measured fitnesses by a polynomial of low degree,
typically linear or quadratic. (More precisely, linear or quadratic selection gradients
or differentials are determined; cf. Lande and Arnold 1983, Kingsolver et al. 2001.)
Therefore, we investigated under which conditions disruptive selection can actually
be detected by such a method. This will be the case, if the approximating quadratic
polynomial has a positive leading coefficient. By numerical examples we found
positive leading coefficients whenever the symmetric equilibrium satisfies D > 0,
i.e., if (20) holds. In particular, it is not necessary that the stronger conditions (22)
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or (23) are fulfilled in order to be able to detect disruptive selection. If c is in the
range where the polymorphic equilibria with D = 0 are stable, then the resulting
fitness function is very flat and the approximating polynomial may have positive
or negative leading coefficient. Since the range of c-values for which this occurs
is rather small, we can conclude that disruptive selection should be almost always
detectable if the frequency-dependent fitness effect of competition is strong enough
to maintain both loci polymorphic and in nonnegative linkage disequilibrium. Thus,
it should be almost always detectable if it leads to an equilibrium configuration that
cannot be explained by stabilizing selection alone. A similar conclusion is likely to
hold for the cubic spline technique of Schluter (1988) which should be more sensitve
in detecting disruptive selection.

Non-Maximization of Fitness

It has long been known that mean fitness can decrease in multilocus systems, and
mean fitness is usually not maximized at equilibrium (Kojima and Kelleher 1961,
Ewens 1979). It is also an old hat that under frequency-dependent selection there
may be initial conditions leading to a steady decrease of mean fitness (Wright 1948,
Ewens 1979). Also other optimization criteria may easily fail under frequency- and
density-dependent selection (cf. Nagylaki 1979, Asmussen 1983, Day and Taylor
1996). Often, these facts are more or less ignored. Particularly in ecological mod-
elling and life-history theory, optimization-of-fitness arguments are frequently used
and the evolutionary dynamics is considered as being adaptive. The present model
shows that such an approach may be highly misleading in an ecologically and ge-
netically reasonable context.
Table 5 presents numerical data on the mean fitness (relative to the maximum

possible one) at the single-locus polymorphisms (ω̄bd) and at the symmetric equi-
librium (ω̄sym), as well as the proportion of the state space in which mean fitness
is higher than at the stable equilibrium. In none of the numerical examples does
a stable equilibrium have maximum possible fitness (though sometimes it is very
close to). Actually, this seems to be the case for all parameter combinations, unless
special relations are satisfied. Indeed, for fixed but arbitrary coordinates y and z,
mean fitness w̄ is a monotone increasing function in x if (and only if)

c >
s

2− 11s − e2s . (24)

Therefore, w̄ attains its maximum at the boundary of the simplex and, as shown
by a simple calculation, always at the point p1 = p4 =

1
2
. With recombination,

however, this can never be an equilibrium. If

c <
s

2− s − 3e2s , (25)

then mean fitness is monotone decreasing in x and the maximum is again attained at
the boundary, namely at p2 = p3 =

1
2
. Also this point can never be an equilibrium.
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Table 5. Equilibrium mean fitnesses.1

ω̄bd ω̄sym higher ω̄

c = 0.02 r = 0.001 0.993 1.000 0.003
r = 0.008 0.993 0.997 0.02
r = 0.5 0.993 0.987 0.10

c = 0.03 r = 0.001 0.995 0.997 0.22
r = 0.008 0.995 0.998 0.14
r = 0.5 0.995 1.000 0.31

c = 0.04 r = 0.001 0.974 0.971 0.48
r = 0.0037 0.974 0.974 0.39
r = 0.0063 0.974 0.977 0.34
r = 0.0069 0.974 0.977 0.33
r = 0.008 0.974 0.978 0.30
r = 0.5 0.974 0.988 0.10

c = 0.07 r = 0.001 0.917 0.956 0.13
r = 0.008 0.917 0.953 0.14
r = 0.5 0.917 0.951 0.15

1The column entitled ω̄bd contains the mean fitnesses at the boundary equilibrium (with

the major locus polymorphic) relative to the maximum possible fitness in the simplex (i.e.,

ω̄bd = w̄bd/w̄max). The column ω̄sym contains the (relative) mean fitness at the symmetric

equilibrium, and the column entitled higher ω̄ contains the proportion of the simplex that

has higher mean fitness than the stable equilibrium. Stable equilibria are indicated by

bold numbers. The strength of stabilizing selection is s = 0.05 and the disparity of effects

is e = 0.25.

It is only for intermediate values of c that the maximum mean fitness is attained
in the interior of the simplex; then typically on the symmetric line {p1 = p4, p2 =
p3}. For the parameters of table 5 (s = 0.05, e = 0.25), this range is 0.0256 < c <
0.0346. However, the parameters c, e, and r have to fulfill a specific relation in order
that mean fitness is maximized at the symmetric equilibrium. In the case c = 0.03
of the table, the symmetric equilibrium is very close to, but not at, the position of
maximum fitness. Particularly remarkable is the case c = 0.04 and r = 0.001, in
which mean fitness is maximized if p1 = p4 =

1
2
, but the (globally) stable symmetric

equilibrium has coordinates p1 = p4 = 0.019. Hence, less than 4% instead of all
gametes, as suggested by optimality considerations, have large effects and the stable
equilibrium is not located near the position of maximum mean fitness but at the
opposite end of the state space. As the table also shows, the proportion of the
simplex in which mean fitness is higher than at the stable equilibria may be rather
large.
Even more interestingly, the table shows that for c = 0.02, 0.03, 0.04, equilibria

may be stable at which mean fitness is lower than at other, unstable, equilibria. The
most striking example is that for c = 0.04, when it is only in the range 0.0037 < r <
0.0063 that the stable equilibrium has higher mean fitness than all other equilibria.
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The boundary equilibrium has lower mean fitness than the symmetric equilibrium
whenever it is stable (which is the case if c ≥ 0.0069). In the range 0.0063 < r <
0.0069, the asymmetric equilibria are stable and have mean fitnesses between those
of the symmetric and the boundary equilibria. Thus, changing a parameter in this
model, for instance r, may lead to a switch in the stability properties of equilibria
in the opposite direction of what would be expected, namely an equilibrium with
relatively high mean fitness may loose its stability and an equilibrium with lower
mean fitness may gain it.

Discussion

The interaction of stabilizing selection, intraspecific competition, and recombination
leads to a surprisingly complex equilibrium structure which is illustrated in figures
1 and 2. In the absence of frequency dependence (c = 0), stabilizing selection
alone can maintain one or a pair of stable two-locus polymorphisms if linkage is
sufficiently tight (Gavrilets and Hastings 1993). Such polymorphisms always exhibit
negative linkage disequilibrium. Interestingly, whenever such polymorphisms are
maintained in the absence of, or for weak, frequency dependence and the frequency-
dependent effect of competition (c) increases, then these polymorphisms are driven
to the boundary and for a range of values of c a pair of single-locus polymorphisms
is stable, but no two-locus polymorphism. Thus, for tightly (but not necessarily
very tightly) linked loci, always a loss in the degree of polymorphism occurs. If
c is increased further, then eventually a pair of stable equilibria bifurcates from
the boundary equilibria, which become unstable, moves into the interior and at the
center of the simplex merges with the symmetric equilibrium if c = c2 (20). For all
larger values of c, the symmetric equilibrium is globally stable and exhibits positive
linkage disequilibrium. If linkage is tight and the frequency-dependent effect of
competition strong, then high positive linkage disequilibrium is maintained.
For sufficiently high recombination rates, pure stabilizing selection maintains

both loci monomorphic if their effects are similar, and it maintains the major locus
polymorphic if the effects differ by more than a factor of two. Weak frequency de-
pendence does not lead to a qualitative change. For loci of similar effects, moderate
frequency dependence makes the major locus polymorphic. As in the case of tight
linkage, increasingly strong competition then drives these boundary equilibria into
the interior, and eventually a stable symmetric equilibrium with positive linkage
disequilibrium is maintained. This holds for loci of any effects.
The striking phenomenon that with linked loci, interior equilibria are driven to

the boundary as c increases, and then, at a larger value of c that is independent
of r (at c = c1, [A.5]), another type of equilibria moves inward and merges with
the symmetric equilibrium, which becomes stable thereafter, requires explanation.
Why is there no ‘path’ of stable interior equilibria connecting the stable equilib-
ria with D < 0 and the stable symmetric equilibria with D > 0? If stabilizing
selection maintains a two-locus polymorphism, which requires low recombination,
then negative linkage disequilibrium is maintained because the genotypes closest to
the optimum, in particular the double heterozygotes, are selectively favored. This
leads to an overrepresentation of gametes of small effects. By contrast, competition
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favors the genotypes with the most extreme effects, hence also the gametes with
large effects, and recombination produces the gametes with small effects, which are
selected against. Therefore, competition promotes positive linkage disequilibrium,
and its degree is inversely related to the recombination rate. The genotypes that
are strongest selected against by competition are the double heterozygotes whose
phenotype coincides with the optimum 0. Thus, they are sensitive even to weak com-
petition, when overdominance may still be present but is no longer strong enough
to maintain both loci polymorphic because recombination produces too many geno-
types of low fitness. By contrast, if the single-locus polymorphisms are stable, then
the double heterozygotes are not present in the population. Most interestingly,
there is a large range of parameters for which this latter equilibrium configuration
is stable, but selectively unfavorable, i.e., mean fitness at the (stable) boundary
equilibria is lower than at the (unstable) symmetric equilibrium. Thus, although a
symmetric interior equilibrium would be selectively favored, recombination breaks
up too many genotypes of high fitness, so that under the combined action of selec-
tion and recombination only the single-locus polymorphisms can be stable. Only
for a strong frequency-dependent effect of competition (c > c1, cf. [A.5], [A.10]) are
the genotypes with very large or extreme effects sufficiently much favored that they
are maintained in the population despite stabilizing selection. Under the slightly
stronger, but much simpler, condition c > c2 (20), there is a unique stable two-locus
polymorphism with positive linkage disequilibrium.
The present analysis shows that competition inducing strong frequency depen-

dence (c > c2) is a potent force to maintain high levels of additive genetic variation.
It only partially confirms the results of Bulmer (1974, 1980) and Slatkin (1979)
of a threshold-like dependence of the genetic variance on the strength of competi-
tion. Their analyses were based on various much simpler genetic models assuming
a Gaussian phenotype distribution. In the present model a threshold-like depen-
dence occurs only if the loci have similar effects and are loosely linked. However, for
moderately or tightly linked loci a new phenomenon is observed. There is always
an intermediate range of values c, for which stronger frequency dependence leads
to a loss in the degree of polymorphism, i.e., stable interior equilibria are driven
to the boundary. During this process also additive genetic variance is lost but the
effect may be too weak to be of practical importance. In contrast to the models of
Bulmer and Slatkin, in our model the mean equilibrium phenotype does in general
not coincide with the fitness optimum of stabilizing selection, but may deviate sub-
stantially from it (figure 4). Also the distribution of genotypic values is bimodal in
our model if the frequency dependence is strong enough to induce positive linkage
disequilibrium (c > c2).
It is yet unknown to what extent these phenomenona occur in multilocus systems.

A study of pure stabilizing selection has shown that with four or more additive loci
the probability of a stable polymorphism involving two or more loci is very low
if the effects of the loci and the recombination rates are drawn randomly from
uniform distributions (Bürger and Gimelfarb 1999). If one, two, or perhaps three
linked loci of major effect contribute to a trait, and if these loci are assisted by a
number of loci of minor effect, then phenomena such as those discovered here might
well be common. For weak frequency dependence the equilibrium structure will be
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determined mainly by stabilizing selection. But as the frequency-dependent effect
of competition increases, genotypes with extremer values will be selectively favored,
i.e., genotypes consisting of an increasing number of either plus or minus alleles.
Eventually, the two most extreme genotypes will have the highest fitness, and they
are composed of either only plus or minus alleles. Recombination will produce all
other genotypes. Thus, it seems likely that a cascade of bifurcations will occur as the
frequency-dependent effect of competition increases, during which more and more
loci become polymorphic and linkage disequilibrium increases. The extension of the
present model to multiple loci, and its analysis, will be the subject of future study.
Let us now briefly discuss the relation to the work of Loeschcke and Christiansen

(1984). Their model is rather similar to the present one, except that they use a
Lotka-Volterra-like functional form for fitness, that stabilizing selection is modeled
by a Gaussian function not a quadratic, and that they restrict their attention to
strong competition relative to stabilizing selection (i.e., σ > W in their notation;
cf. the section Relations Between the Models). Although this assumption of strong
competition is quantitatively slightly different from our assumption c > c2, in their
model it restricts the parameter range to the one for which in the present model
the symmetric equilibrium with positive linkage disequilibrium is (globally) stable.
Thus, they do not study the parameter range corresponding to our c < c2 on which
most of the present focus has been. Because Loeschcke and Christiansen assume a
Gaussian fitness function, they observe a richer equilibrium structure in that case.
The reason is that, even in the absence of frequency dependence, i.e., for pure sta-
bilizing selection, the model with a quadratic fitness function may have different
equilibrium patterns than the model with a Gaussian fitness function, because in
the first model the range of admissible phenotypes is restricted by the requirement
of positive fitness. Thus, for quadratic selection the fitness function is concave on
the range of phenotypic values, but not for Gaussian selection. Indeed, for a Gaus-
sian fitness function and with strong selection (so that there are phenotypes in the
‘tails’ of the Gaussian function), up to three symmetric equilibria can exist, two
of which may be simultaneously stable: one with negative, the other with posi-
tive linkage disequilibrium (Gavrilets and Hastings 1994, Gimelfarb 1996). This
is markedly different from quadratic selection, where an equilibrium with positive
linkage disequilibrium never exists. Even if recombination is strong relative to se-
lection, the Gaussian model has a more complex equilibrium structure than the
quadratic (Nagylaki 1989). A comprehensive analysis of the two-locus model with
Gaussian stabilizing selection has been performed only recently (Willensdorfer 2002,
Willensdorfer and Bürger, unpublished). This complex equilibrium structure under
strong Gaussian selection persists if intraspecific competition is added, and most of
the article of Loeschcke and Christiansen (1984) is devoted to study this interac-
tion. Their use of the Lotka-Volterra approach instead of the present one apparently
makes little difference.
In one aspect the work of Loeschcke and Christiansen (1984) is more general than

ours: they also explore the case where the fitness optimum is displaced from the
middle of the phenotypic range. Depending on the magnitude of this displacement,
this may lead to directional selection. In this case they show that intraspecific
competition has little influence on the equilibrium structure. It is very likely that
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this general conclusion will be also valid for the present model.
It has long been known that in multilocus models mean fitness is in general

not maximized at a stable equilibrium and evolution is not necessarily adaptive
(e.g., Kojima and Kelleher 1961, Moran 1964, Ewens 1979). However, often this
phenomenon has been ignored or considered as being irrelevant. Here we have
shown that in an ecologically important context maximization of mean fitness at
equilibrium almost always fails. For a broad range of parameters stable equilibria are
far away from the location in the state space at which mean fitness is maximized, and
their fitness may be substantially lower. For instance, whenever c > s/(2−11s−e2s)
(24), mean fitness is maximized on the boundary of the simplex at p1 = p4 =

1
2
.

Thus, it would be selectively most favorable to have only the extreme gametes in
the population, both at the same frequency. However, if c < c2 (20), then the stable
equilibria satisfy p1+p4 <

1
2
, hence the actual proportion of extreme gametes is less

than 50%. If in addition linkage is tight, p1+p4 may become extremely small at the
(unique) stable equilibrium, which then is located near the boundary of the state
space opposite to where mean fitness is maximized. In such a case, the mean fitness
may be higher than at the stable equilibrium on nearly 50% of the state space.
As expected, the stable equilibrium is in general not a critical point of the fitness
function. There is also a remarkably large range of parameters in which equilibria
are stable that have lower mean fitness than other, unstable, equilibria.
Therefore, this simple model shows that the evolutionary dynamics in ecologi-

cal systems with frequency-dependent selection acting on a genetically determined
trait may be highly nonadaptive, and critical points of the fitness surface bear little
relevant information about the dynamics or equilibrium properties of the model.
However, even if a stable polymorphism coincides with a critical point of the fitness
surface, methods relying on the invasion analysis of a rare mutant in a monomor-
phic population may be insufficient for deriving the correct evolutionary properties
of this equilibrium (Christiansen 1991). It should be also kept in mind that the
genetics in this model is very simple, because the trait is assumed to be determined
additively, i.e., without dominance or epistasis in gene effects. The inclusion of such
(biologically likely) genetic complications, as well as the consideration of more loci,
could easily lead to more complex behavior.
Disruptive selection is generally considered as being an important agent in pro-

moting genetic variation and a necessary prerequisite for evolutionary diversifica-
tion such as character divergence or speciation. Although disruptive selection on
quantitative traits is observed in nature, its frequency in relation to stabilizing or
directional selection has not yet been firmly established (Endler 1986, Kingsolver
et al. 2001). A well documented example is that of disruptive selection on bill
characters in the African finch Pyrenestes (Smith 1990, 1993), where two morphs
differ substantially in lower mandible width and, to a lesser extent, in some related
characters. Apparently, these morphs are randomly breeding with respect to these
traits. Disruptive selection is probably related to seed quality, because large morphs
feed more efficiently on a hard-seeded species of sedge and small morphs on a soft-
seeded species. The trait(s) under putative disruptive selection (as determined by
the cubic spline technique of Schluter, 1988) shows a distinct bimodal distribution.
However, it is unlikely that this case of disruptive selection can be explained in terms
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of a model like the present one, because there is no continuous resource spectrum,
but there simply are two very different types of seed available. Hence, there is no
competition between similar phenotypes that would induce frequency-dependent fit-
nesses. Therefore, and because the environment in which these finches live appears
to be rather constant over many years, it seems likely that a model with a fixed,
frequency-independent bimodal fitness function is appropriate for describing selec-
tion. There is also evidence that the bill-size polymorphism is caused by a single
autosomal diallelic locus with complete dominance for large-bill. This could not be
explained by the present model in which no or only very weak disruptive selection
occurs if a single locus is polymorphic and the distribution of the trait is unimodal.
Extension of the model to include dominance at the major locus could lead to a
different behavior.
For the present model, which involves a conflict of selective forces – stabiliz-

ing versus disruptive selection caused by frequency dependence – we have shown
that empirically detectable disruptive selection on the phenotypic level occurs if
the frequency-dependent effect of competition is strong enough to maintain a stable
polymorphism, in particular, whenever positive linkage disequilibrium is maintained.
As disruptive selection may occur for a wider parameter range, the conditions to
observe disruptive selection, even if counterbalanced by stabilizing selection, are not
restrictive as long as competition has an appreciable frequency-dependent effect on
fitness. This suggests that intraspecific competition is an important factor in main-
taining genetic variation of a quantitative trait only if disruptive selection is actually
observed.
It has been shown for purely ecological models that different assumptions about

competition or the inclusion of spatial heterogeneity may influence the conditions
giving rise to disruptive selection (Brown and Pavlovic 1992, Day 2000). The extent
to which multilocus genetics would affect our conclusion remains to be explored.
However, as the above example suggests, the sole observation of disruptive selection
should not be taken as evidence for the action of frequency-dependent selection. Of
course, our findings and conclusions do not question the possibility that frequency-
dependent selection may be responsible for the high genetic variability of some
ecologically important traits. More studies, both empirical, to determine the fre-
quency and the causes of disruptive selection in nature, and theoretical, to explore
the generality of the present results, would be needed.

25



References

Abrams, P.A., Harada, Y., and H. Matsuda. 1993. On the relationship between
quantitative genetic and ESS models. Evolution 47:982-985.

Asmussen, M.A. 1983. Density-dependent selection incorporating intraspecific com-
petition. II. A diploid model. Genetics 103:335-350.

Brown, J.S., and N.B. Pavlovic. 1992. Evolution in heterogeneous environments:
effects of migration on habitat specialization. Evolutionary Ecology 6:360-382.

Brown, J.S., and T. Vincent. 1987. Coevolution as an evolutionary game. Evolution
41:66-79.

Bulmer, M.G. 1974. Density-dependent selection and character displacement. Amer-
ican Naturalist 108:45-58

Bulmer, M.G. 1980. The Mathematical Theory of Quantitative Genetics. Clarendon
Press, Oxford, UK.

Bürger, R. 2000. The Mathematical Theory of Selection, Recombination, and Mu-
tation. Wiley, Chichester.

Bürger, R. 2002. Additive genetic variation under intraspecific competition and
stabilizing selection: A two-locus study. Theoretical Population Biology, in
press.

Bürger, R., and Gimelfarb, A. 1999. Genetic variation maintained in multilocus
models of additive quantitative traits under stabilizing selection. Genetics
152:807-820.

Charlesworth, B. 1993. Natural selection on multivariate traits in age-structured
populations. Proceedings of the Royal Society of London B 251:47-52.

Christiansen, F.B. 1991. On conditions for evolutionary stability for a continuously
varying character. American Naturalist 138:37-50.

Christiansen, F.B., and T.M. Fenchel. 1977. Theories of Populations in Biological
Communities. Springer Verlag, Berlin Heidelberg New York.

Christiansen, F.B., and V. Loeschcke. 1980. Evolution and intraspecific exploitative
competition. II. One-locus theory for small additive gene effects. Theoretical
Population Biology 18:297-313.

Clark, B. 1972. Frequency-dependent selection. American Naturalist 106:1-13.

Cockerham, C.C., Burrows, P.M., Young, S.S., and T. Prout. 1972. Frequency-
dependent selection in randomly mating populations. American Naturalist
106:493-515.

Day, T. 2000. Competition and the effect of spatial resource heterogeneity on evo-
lutiionary diversification. American Naturalist 155:790-803.

Day, T., and P.D. Taylor. 1996. Evolutionary stable versus fitness maximizing
life histories under frequency-dependent selection. Proceedings of the Royal
Society of London B 263: 333-338.

26



Dieckmann, U. 1997. Can adaptive dynamics invade? Trends in Ecology and Evo-
lution 12:128-131.

Endler, J.A. 1986. Natural Selection in the Wild. Princeton University Press.

Ewens, W.J. 1979. Mathematical Population Genetics. Springer Verlag, Berlin
Heidelberg New York.

Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon
Press.

Gavrilets, S., and A. Hastings. 1993. Maintenance of genetic variability under
strong stabilizing selection: a two-locus model. Genetics 134: 377-386.

Gavrilets, S., and A. Hastings. 1994. Maintenance of multilocus variability under
strong stabilizing selection. Journal of Mathematical Biology 32:287-302.

Gimelfarb, A. 1996. Some additional results about polymorphisms in models of an
additive quantitative trait under stabilizing selection. Journal of Mathematical
Biology 35:88-96.

Hill, W.G., and P. Keightley. 1988. Interrelations of mutation, population size,
artificial and natural selection. Pages 57-70 in Weir, B.S., Eisen, E.J., Good-
man, M.M., and Namkoong, G. (eds.) Proceedings of the Second International
Conference on Quantitative Genetics. Sinauer, Sunderland, MA.

Hofbauer, J., and K. Sigmund. 1998. Evolutionary Games and Population Dynam-
ics. Cambridge University Press.

Iwasa, Y., Pomiankowsi, A., and S. Nee. 1991. The evolution of costly mate prefer-
ences. II. The “handicap” principle. Evolution 45:1431-1442.

Karlin, S., and M.W. Feldman. 1970. Linkage and selection: two locus symmetric
viability model. Theoretical Population Biology 1:39-71.

Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E.
Hill, A. Hoang, P. Gibert, and P. Beerli. 2001. The strength of phenotypic
selection in natural populations. American Naturalist 157:245-261.

Kojima, K., and T.M. Kelleher. 1961. Changes of mean fitness in random-mating
populations when epistasis and linkage are present. Genetics 36:527-540.

Lande, R. 1975. The maintenance of genetic variability by mutation in a polygenic
character with linked loci. Genetical Research 26:221-235.

Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution.
Evolution 30:314-334.

Lande, R., S.J. Arnold. 1983. The measurement of selection on correlated charac-
ters. Evolution 37:1210-1226.

Loeschcke, V., and F.B. Christiansen. 1984. Evolution and intraspecific exploitative
competition. II. A two-locus model for additive gene effects. Theoretical
Population Biology 26:228-264.

Lynch, M., and B. Walsh. 1998. Genetics and Analysis of Quantitative Traits.
Sinauer, Sunderland, Mass.

27



MacArthur, R., and R. Levins. 1967. The limiting similarity, convergence, and
divergence of coexisting species. American Naturalist 101: 377-385.

Matessi, C., and M. Gatto. 1984. Does K-selection imply prudent predation?
Theoretical Population Biology 25:347-363.

Matessi, C., and S.D. Jayakar. 1976. Models of density-frequency dependent se-
lection for exploitation of resources. Pages 707-712 in S. Karlin and E. Nevo,
eds. Population Genetics and Ecology. Academic Press, New York.

Matessi, C., and S.D. Jayakar. 1981. Coevolution of species in competition: a
theoretical study. Proceedings of the National Academy of Sciences of the
USA 78:1081-1084.

Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge Univer-
sity Press.

Moran, P.A.P. 1964. On the nonexistence of adaptive topographies. Annals of
Human Genetics 27:383-393.

Mousseau, T.A., and D.A. Roff. 1987. Natural selection and the heritability of
fitness components. Heredity 58:181-197.

Nagylaki, T. 1979. Dynamics of density- and frequency-dependent selection. Pro-
ceedings of the National Academy of Sciences of the USA 76:438-441.

Nagylaki, T. 1989. The maintenance of genetic variability in two-locus models of
stabilizing selection. Genetics 122:235-248.

Robertson, A. 1967. The nature of quantitative genetic variation. Pages 265-280 in
Brink, R.A. (ed.) Heritage from Mendel. Madison: University of Wisconsin
Press.

Roughgarden, J. 1976. Resource partitioning among competing species–a coevolu-
tionary approach. Theoretical Population Biology 9:388-424.

Roughgarden, J. 1972. Evolution of niche width. American Naturalist 106: 683-718.

Schluter, D. 1988. Estimating the form of natural selection on a quantitative trait.
Evolution 42:849-861.

Slatkin, M. 1979. Frequency- and density-dependent selection on a quantitative
character. Genetics 93:755-771.

Slatkin, M. 1980. Ecological character displacement. Ecology 61:163-177.

Taper, M.L., and T.J. Case. 1992. Models of character displacement and the theo-
retical robustness of taxon cycles. Evolution 46:317-333.

Taylor, P.D., and T. Day. 1997. Evolutionary stability under the replicator and the
gradient dynamics. Evolutionary Ecology 11:579-590.

Turelli, M. 1988. Population genetic models for polygenic variation and evolution.
Pages 601-618 in Weir, B.S., Eisen, E.J., Goodman, M.M., and Namkoong,
G. (eds.) Proceedings of the Second International Conference on Quantitative
Genetics. Sinauer, Sunderland, MA.

Willensdorfer, M. 2002. A Two-Locus Model of Gaussian Stabilizing Selection.
Master thesis, University of Vienna.

28



Wilson, D.S., and M. Turelli. 1989. Stable underdominance and the evolutionary
invasion of empty niches. American Naturalist 127:835-850.

Wolfram, S. 1996. Mathematica, 3rd ed. Cambridge University Press.

Wright, S. 1935. Evolution in populations in approximate equilibrium. Journal of
Genetics 30:243-256.

Wright, S. 1948. On the role of directed and random changes in gene frequency in
the genetics of populations. Evolution 2:279-294.

29



A Appendix: Conditions for the Existence and

Stability of Equilibria

It is straightforward to show that if (p̂1, p̂2, p̂3, p̂4) is an equilibrium, then (p̂4, p̂3, p̂2, p̂1)
is also an equilibrium, and both have the same stability properties. In terms of the
coordinates (x, y, z) this means that the simultaneous transformation y → −y and
z → −z preserves the property of being an equilibrium, as well as the stability
properties of this equilibrium. Thus, all, except symmetric (y = z = 0), equilibria
coexist in pairs.

Monomorphic Equilibria

There always exist the four corner equilibria at which both loci are monomorphic. Of
these, the equilibria p̂1 = 1 and p̂4 = 1, i.e., fixation of one of the gametes with large
genotypic effect (A1B1, A2B2), are always unstable. Analytical computation of the
eigenvalues shows that the equilibria p̂2 = 1 (fixation of A1B2) and p̂3 = 1 (fixation
of A2B1) are locally asymptotically stable if and only if the following conditions are
satisfied:

r ≥ r0 = 4e
2(c+ s)

4e2c+ 1
(A.1a)

and

c ≤ c0 = s(1− 3e)
(1 + e)[1− s(1− e)2] . (A.1b)

It may be noted that r0 = r0(s, c, e) is an increasing function in each of the variables
s, c, and e (in c, because 4e2s ≤ 1 holds by assumption). For 0 ≤ e ≤ 1

3
, c0 =

c0(s, c, e) is increasing in s and decreasing in e.
Condition (A.1b) shows that the monomorphic equilibria can never be stable if

e > 1
3
nor if c > s/(1 − s), where the latter inequality is obtained by setting e = 0

(recall that e > 1
3
if the effects of the loci differ by more than a factor of two). In

figures 1A and 1B, condition (A.1a) determines the lower boundary of the region of
stability of the monomorphic equilibria, and (A.1b) determines the right boundary.
Because r0 is increasing in c, it attains its maximum at c = c0. Hence validity of
(A.1b) implies (A.1a) if

r ≥ r0(s, c0, e) = r0,max = 4e2s(1− e)[2− s(1− e2)]
1− s+ e+ es(1 + 5e− 13e2) . (A.2)

Evaluation of r0 at c = 0 informs us that the monomorphic equilibria are never
stable if r < 4e2s.
Numerical iteration of the recursion relations suggest that each of the two monomor-

phic equilibria is globally attractive for half of the state space whenever it is asymp-
totically stable. For equal effects (e = 0) this was proved in Bürger (2002).
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Single-Locus Polymorphisms

There may exist up to four equilibria with one locus polymorphic and one locus
monomorphic. Only the equilibria with the major locus (the A locus) polymorphic
can be asymptotically stable. They are located on the edges p1+p3 = 1 or p2+p4 = 1
of the simplex, and exist if and only if

c > c0 =
s(1− 3e)

(1 + e)[1− s(1− e)2] , (A.3)

cf. (A.1b). Thus, they exist only if the monomorphic equilibria are unstable. If (A.3)
is fulfilled, which is always the case if e > 1

3
, then there is a uniquely determined

equilibrium on p1 + p3 = 1 with 0 < p1 < 1. It is the unique solution in (0, 1) of the
third-order equation

4cs(1 + e)3p31 − 6cs(3− e)(1 + e)2p21 + 2(1 + e)[s+ c+ 2cs(3 + 2e− 3e2)]p1
+ s(1− 3e)− c(1 + e)[1− (1− e)2s] = 0 .

(A.4)

The equilibrium coordinate p̂1 is an increasing function of c and always satisfies
p̂1 <

1
2
.

Numerical computations show that this equilibrium is asymptotically stable if

c ≤ c1 , (A.5a)

where c1 = c1(s, e) is the unique positive solution of

c3[(1− e2)2s3(1− 12e+ e2) + 7(1− e)2s2(9 + 14e+ 9e2)− 16s(3− 16e+ 3e2)− 16]
+ c2s[(1− e)2s2(61 + 94e + 61e2) + 4s(13 + 94e+ 13e2)− 32]
+ 12cs2[2s(4 + 7e+ 4e2) + 1] + 36s3 = 0 (A.5b)

(this condition being explained below [A.10]), and if

r ≥ r1 = r1(s, c, e) , (A.6)

where r1 can be determined by numerical evaluation of the eigenvalues. Apparently,
r1 decreases as c increases and determines the lower boundary of the region of sta-
bility of this pair of single-locus polymorphisms (see figure 1). At the left boundary,
i.e., at c = c0, we have r1(s, c0, e) = r0,max (A.2) if e ≤ 1

3
, and r1(s, 0, e) =

4
3
es if

e > 1
3
(cf. Bürger 2000, p. 205). It may be noted that if e ≥ 0, then c1 ≥ c0 and

equality holds if and only if e = 0.
By symmetry, analogous results are valid for the equilibrium at the edge p2+p4 =

1 which is obtained from (A.4) by substituting p4 for p1.
The single-locus polymorphic equilibria at the edges p1+ p2 = 1 and p3+ p4 = 1

exist if and only if

c >
1 + 3e

(1− e)[(1− s(1 + e)2)] .

The right-hand side coincides with c0 (A.1b) if e = 0. For e > 0, these equilibria
exist only for larger values than those at the other two edges and are always unstable.

31



Two-Locus Polymorphisms

Analytically explicit determination of all interior equilibria seems to be impossible.
Analytical calculations combined with numerical searches revealed that three classes
of interior equilibria may exist and be stable: a symmetric equilibrium, a pair of
asymmetric equilibria satisfying D < 0, and a pair of equilibria with D = 0.

Symmetric equilibria

There always exists one symmetric equilibrium, p̂1 = p̂4 and p̂2 = p̂3. It is the
uniquely determined solution of the equation

32cs(1− e2)2p31 + 2(1− e2)[s− c(1 + 2r + 7s− 17e2s)]p21
− [r + s− e2s− c(1 + r − s+ e2(1 + 3r + 8s) − 9e4s)]p1 + 14r(1 + 2ce2) = 0

such that 0 ≤ p1 ≤ 1
2
.

If

c < c2 =
s

1− 5s(1 + e2) , (A.7)

then the coordinate p̂1 of the equilibrium satisfies 0 < p̂1 <
1
4
, hence D < 0. In this

case, the symmetric equilibrium is asymptotically stable if and only if

r ≤ r2 = r2(s, c, e) , (A.8)

where r2 can be determined by numerical evaluation of the eigenvalues (see figure
1). Iteration of the recursion relations suggests that then the symmetric equilibrium
is globally stable. Because of the constraint r ≥ 0, (A.8) can be satisfied only if
0 ≤ c ≤ c1; cf. (A.5b).
If c = 0, then r2 can be determined explicitly, i.e.,

r2(s, 0, e) =
2
3
s(−1− e2 +√1 + 14e2 + e4) ,

and the symmetric equilibrium can be proved to be asymptotically stable (see Bürger
2000, pp. 205–207, where a different notation is used). By continuity, this extends to
small (positive) values of c. Apparently, r2 is decreasing as a function of c, whence
the symmetric equilibrium with D < 0 can be stable only if r ≤ r2(s, 0, e).
If c ≥ c2, cf. (20), then p̂1 ≥ 1

4
, hence D ≥ 0, and apparently the symmetric

equilibrium is globally asymptotically stable. It is important to note that c1 ≤ c2
always holds, and equality is obtained if and only if e = 1.
It can be shown that the position p̂1 of the symmetric equilibrium, and therefore

the amount of linkage disequilibrium D̂ = p̂1− 14 , is an increasing function of c. The
absolute value of D̂ increases with decreasing r. If c > c2, then for every s ≥ 0 and
r > 0, p̂1 approaches an upper limit <

1
2
as c→∞.

Asymmetric equilibria

In the absence of competition (c = 0), asymmetric interior equilibria exist and are
asymptotically stable if e > 0 and

r2(s, 0, e) < r <

{
r0(s, 0, e) = 4e2s if e ≤ 1

3
,

r1(s, 0, e) =
4
3
es if e > 1

3
.
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They can be calculated explicitly (e.g., Bürger 2000, p. 205). Because of continuity,
they also exist for sufficiently small c > 0. Unfortunately, for c > 0 their explicit
calculation seems to be impossible. Numerical iteration of the recursion relations and
numerical solution of the equilibrium conditions suggest that they are asymptotically
stable whenever they exist, which is the case if and only if

r2(s, c, e) < r <

{
r0(s, c, e) if c < c0 and e ≤ 1

3
,

r1(s, c, e) otherwise ,
(A.9)

is satisfied. Here, r0, r1, and r2 are as in (A.1a), (A.6) and (A.8), respectively.

Equilibria with D = 0

If

c1 < c < c2 , (A.10)

then numerical calculations show that for arbitrary r a pair of interior equilibria
exists that satisfy D = 0 (recall that c1 and c2 depend only on s and e). They are
asymptotically stable whenever they exist. Since D = 0, their position is indepen-
dent of r. For e = 0 the exact location of these equilibria can be computed and
their asymptotic stability was proved in Bürger (2002). Because c1 = c1(s, e) is an
increasing function in e with c1(s, 0) = c0(s, 0) and c1(s, 1) = c2(s, 1), the range of
values c for which these equilibria exist decreases to 0 as e increases to 1.
Using c as a bifurcation parameter, they enter the simplex if c = c1 through the

single-locus polymorphisms on the edges p1 + p3 = 1 and p2 + p4 = 1, apparently
by an exchange of stability bifurcation (cf. the description of the bifurcations in
figure 2A in the main text). This lower bound c1 for their range of existence can
be computed as follows: Because D = 0, the conditions for their existence can be
reduced to two polynomial equations in y and z, one of degree three, the other of
degree four. The equilibria are located on the boundary if and only if z = y − 1
(for one of them). Comparing the resulting equation with the defining equation
of that boundary equilibrium, the coordinate y at which the bifurcation from the
single-locus polymorphisms occurs can be calculated by solving a quadratic equation.
Then simple algebra yields the condition (A.5b) for the corresponding c.
Apparently, none of the above described types of equilibria can be simultaenously

stable, hence there are never more than two stable equilibria.
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