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Abstract

A General Block-Angular Basis Factorization is developed
to represent the inverse of the basis of block-angular linear
problems in factorized form. This factorization takes advan-
tage of the structure of the matrix and can be efficiently
updated when one column is replaced by another.

Partitioning and Decomposition methods (excluding
Dantzig-Wolfe decomposition) for block-angular linear problems
with coupling constraints, or coupling variables, or both,
are shown to be variants of a Simplex Method using this
General Block-Angular Basis Factorization form of the inverse,
with various criteria as to the vector pair selected to enter
and to leave the basis. By considering other criteria new
algorithms are obtained. 1In particular, algorithms are
presented for which at each iteration only a subset of the
terms in the factorization needs to be used or to be updated.
Preliminary experimental results with such an algorithm for
block-angular linear problems with coupling constraints are
included.

Results are extended tc the case when imbedded in the
block-angular structures there are blocks which themselves
are of block-angular form. Applications to the solution of
dynamic linear programs (staircase structure) are developed.
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CHAPTER 1

GENERAL

1.1. Introduction and Summary

With the growing awareness of the potentialities of the
linear programming approach to both dynamic and static problems
of industry, of the economy, and of applied systems analysis,
the size of the models has increased to the point where the
main obstacles toward full application are the limitations of
current computational computer codes to cope with the size of
the matrix. However, especially in large-scale models, the
matrix usually has special struture, because the system con-
sists of independent subsystems coupled by only a few common
constraints or linking variables.

As an example of such a special structure, consider the
following matrix where non-zeros appear in a block-angular

pattern (shaded areas):




Such a matrix arises in apllications where each small block
of non-zeros (di) represents the technology matrix of an in-
dustry (or sector of the economy), the longer rectangular
block F represents the common constraints imposed on them by
sharing the same resources, and the thin rectangular block E
represents coupling activities.

Many algorithms have been proposed over the years to
take adavantage of the special structure of block-angular
linear systems. Among those not based on the Dantzig-Wolfe
decomposition principle |13]|, we have Dantzig and Van Slyke's
Generalized Upper Bounding |12|, Balas' Infeasibility Pricing
Method |1|, Rosen's Primal Partitioning Method |32|, and the
methods of Kaul |22|, Miiller-Mehrbach |27|, Bennett |4],
Ore¢hard-Hays |29|, Ohse |28, Knowles |23|, Beale |3}, Gass
|15|, Ritter |31|, Hartmann and Lasdon |20|, etc.

Grigoriadis and White |17]|, |19|, shows that many of
the methods for block-angular linear problems with coupling
constraints can be viewed as having a common data handling
structure and differing only in the strategy used as to the
vector pair selected to enter and to leave the basis.

In the following we present a block-angular basis factor-
ization theory that provides a unifying framework for partition-
ing and decomposition methods not based on the Dantzig-Wolfe
decomposition principle, which allows us to view them as spe-

cial instances of the Simplex Method using basis factorization.



In its generality it gives us an additional degree of freedom,
since it can be specialized to any of the previous approaches

or alternatively to-obtain new variants. This, in addition to

a more thorough theoretical understanding, allows us to design
specialized algorithms to take full advantage of a particular
block-angular structure. For block-angular linear problems with
coupling constraints such an algorithm has beeh programmed with
good experimental results (see Appendix A). In addition the
theory gives us a good starting point for developing nested
factorization methods.

In the remainder of this chapter we will clarify the sense
in which we use certain concepts and terminologies and motivate
the development in lafer chapters.

In Chapter 2 we develop and validate the General Block-
Angular Basis Factorization (GBBF) and show how to update the
factorized terms in the representation of the inverse as one
column substitutes for another in the basis.

Chapter 3 i1s devoted to the use of the GBBF in the Simplex
Method. PFirst its use in performing the backward and forward
transformations is analyzed and its implications on the choice
of simplex strategy are discussed. Then some algorithms are
developed that take full advantage of the structure, and some
consideration is given to alternative ways of implementing them
on computer codes.

In Chapter 4 GBBF is used to give a unified presentation
of Partitioning and Decomposition methods not based on the

Dantzig-Wolfe decomposition principle. Existing methods for




block-angular linear problems with coupling constraints, or
coupling variables, or both, are shown to be variants of the
Simplex Method using GBBF with varibus strategies as to the
vector pair to enter and to 1e;ve the basis. Some new
strategies that look promising in conjunction with GBBF are
presented.

Chapter 5 is devoted to nested factorizations that arise
in cases where some of the components of the original factor-
ization have also a block-angular structure that can conveniently
be factorized further. Nested factorization methods to solve
staircase problems are analy ed.

Finally in bﬁép?ér 6 some comments and conclusions are
presented. B

Appendix A contains experimental results of tests with a

Basis Factorization Algorithm for block-angular linear problems

with coupling constraints.

l.2. Concepts, Terminologies and Motivations

It will be convenient to clarify the sense in which we
use certain concepts and terminologies.

Simplex Method: Any LP algorithm that follows a path along

adjacent bésic solutions of the set of linear relations in such
a way that no baéis is repeated.

Accordingly we distinguish two aspects of the Simplex
Method: .
Strategy: . Rules as to how to move iteratively from one basic

solution to the next, i.e. criteria as to the vector pair



selected to enter and leave the basis.

Data-Handling Structure: Tnformation as to what to carry

forward, and in what form, from one iteration to the next.

Improvements in the Simplex Method usually involve
changing one or both of the above. For example the data-
handling structure started in 1947 with the simplex tableau
[10]. This was followed by the revised simplex using the
explicit inverse, and this was soon followed by the product
‘form of the inverse [11].

Each of these data-handling structures can be combined
with any of the selection strategies such as the usual primal,
dual or primal-dual selection criteria [7].

A strategy may be efficient with a given data~handling
structure and not so with a different data-handling structure.
Moreover criteria such as the greatest change in the objective
function [AQ] may be efficient compared to the others if a
tableau simplex structure is used, but some other criteria may
be better if the product form structure is used.

With the above concepts in mind, the advantages of a
general theory become clearer. If we are able to identify or
discover a common body of data-handling structures for general
block-angular systems, it will be much easier to separate the
strategy from the data-handling aspects in the existing
algorithms. In an analogous way, in identifying the strategies,
it will be much easier to get a feeling'for'the convergence
characteristics (efficiency) of the method by first comparing

it with alternative strategies for the general Simplex Method.



Also by studying the original matrix structure and how the
data-handling aspects are treatéd, we may be able to identify
a strategy that makes best use of both.

Other advantages are thét convergence follows from that
of the sSimplex Mesthod and this makes_it possible to conveniently
write one code to test many different methods or strategies.

In the remainder the terminology primal (dual, primal-
dual) strategy will be used to refer to the rules used in the
primal (Dual, Primal-bual) Simplex Method as to how to move

iterativelyfrom one basic solution to the next.

Nice Properties under the Assumption that the Block-

Angular Sub-Matrices are Square and Nonsingular*

To motivate the data-handling aspects, consider the

"sqpare" block-angular basis structure.

Io.;f.u.Ai.....Ak Io mo x mo ldentity
BN = Bi Bi m; X mg nonsingular
O . R
B Be | ™7 M

This basis has certain nice properties. To see this,
consider first a special case, the matrix Bj associated with

block jJ and its inverse:

*The actual basis structure of a block-angular.linear progranm
need not, of course, have square blocks along the diagonal but
later we will associate with it a basis that does.

5
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J A >
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_ Tie| |
where A, = A B-l
J I

We can now express

where the terms forming the products can be

commuted.

(1.3)

Some of these nice properties of the square block-

angular basis are:

1)

R n inver sm atrices i i . .
D X mpm, one ca vert k all matric of dimension ms X m

(i =1,...k).
2)

d "belonging" to block j, we have

i.e.

implies savings in computations and data transfer.

we prove instead d = BNd = Bjd.

6

we need only the inverse associated with the block.

Instead of inverting one big matrix of dimension

1

To represent (in terms of basis) an incoming vector

(1.4)

This

To show (1.4)

Partitioning d and 4, we may



write this out more explicitly

B.d. = 4. i=1,...,k (1.5)
But since 4 is in block j, for i1 # j di = 0, which

implies di =0 for i # j, since the Bi's are nonsingular.

Hence equations (I.5) reduce to

B.d. = 4. . (1.6)

Eut this corresponds to Bjd = d and hence 4 = Bgld.

3) The "price" vector I is defined by IIB,= C (see Ch. 3).
A N

To calculate the partition Hj of T corresponding to block j,

we need only compute

. Ael
0? 0,...,0, Cj’ O,...,O)Bj

(1.7)
implying the same kind of savings as in 2). Relation (1.7)
follows from the structure of BN, which implies HO = CO and
HOAi + HiBi = Ci for i = 1,...,k.

Qur motivation then is to preserve as much of these nice

properties (mentioned above) as we can for the more general case

when the ~lock-angular basis arises from problems having either

coupling constraints or coupling variables or both.

bg



CHAPTER 2

BLOCK-ANGULAR BASIS FACTORIZATION THEORY

2.1. The Problem
Consider the block-angular linear problem with coupling

constraints and variables

max Z(+)
s.t. Uz + DoxO + Dlxl+..........Dkxk + Hoy = bO
Glxl. + Hly = bl
(P) 'kak + Hky = bk

(xo, XqseeesXps y) 20

where U is my x 1, Di is my X ny i=0,1,...,k, Hi is my X Ny

i=0,1,...,k, G; is my x ng i=1,...k, b, is my x 1 i=o0,1,...k,
x; is n; x 1 i=0,1,...k, y is N4y X 1l and z scalar.
(+) We assume that for min {cx: Ax = b, x > 0} we let z = -cx

and solve max {z: (lK)(i) =(g), x > 0 and for max {cx: Ax = b,
x > 0} we let z = cx and max {z: ('lz)(i) = (g), x > 0}. Thus,

both for minimizing and maximizing, we can use a negative
reduced cost criterionto indicate that a non-basic column will
improve the current solution if it replaces one in the basic set.
This will be assumed throughout.

8



We assume that each of the matrices Gi and (UDO) has
rank equal to its row count. This can always be achieved (if
necessary) by augmenting the system with artificial variables
with appropriate coefficient structure.

: k
The constraints Uz + % D.x. + Hy = bg will be called
j=0 71 0
coupling constraints and rows corresponding to them will also
be referred to as common rows. Similarly the y variables will

be called coupling variables.

2.2. Constructive Development of the Block-Angular Basis
Factorization
Let 'Ji = {set of indices (of columns) associated with
activities in block i} i = 1,...,k
I5 = {indices of columns in Dy}
Jk+l = {indices associated with activities y}
AIJ = restriction of matrix A to columns with

indices in set J. -
Let BT be a basis for problem (P) and suppose that M is

the set of indices of basic columns. Let

L. = MN Ji and consider

Let Ki be the indices of a maximum set of linearly



independent columns in GiIL and

By assumption the rank of Gi is equal to its row count,
so that we can augment the columns of Gilk. by including enough
other columns of Gi to form a basis Bi of iinearly independent
columns in Gi' Let Mi be the indices of the set of columns of

G; forming B (i.e. B, = GilM ).

réoAl ....... A
Bl\\ )
By = \\\ where A; = Di[Mi
_ e |

is square block-angular and has the "nice" properties discussed
earlier. We now express the relationship between Bp and By in

the form of a product:

B (2.1)

where

B, = BLIB (2.2)

* For many practical applications it has been observed that the
k
number of elements in XK is close to ¢ m,. It is this that
i=1
makes the factorization scheme which follows efficient in practice.

10




The columns of BA corresponding to K are unit columns
so that it is convenient for discussion pdrposeé here to
permute its rows and columns so that the units form a submatrix
identity I in the lower right partition. -
permuted B, = B, = | " (2.3)
_ Aopa \y 1)
where as we have noted the number of columns in I is’for an
important class of practical applications,close to that of
k
I m..
i=1 %
Columns corresponding to X (or to I above) are called
trivial, the remaining, MK® (where K® is the complement of K)
are called non-trivial. We refer to the upper left matrix as

the "Working Basis" or "WB" for short.

Without loss of generality we assume that
‘B, = P B,P (2.4)

where P is a permutation matrix satisfying PP = I.

We can further factorize pBA into

g, % Y ¥ ¥ ). B ¥ (2.5)

B, = B, P B VP (2.6)

11



or by permuting again the factors pBw and pV (i.e.

Bw = PpBwP and V = PpVP)

B. = B.B V . (2.7)

Lemma 1: Bw’ the Working Basis, is nonsingular.

Proof: Obviously Bw is square. Hence

0 # det BT = det BN det Bw det V .

Since permutations do not change the absolute value of the

determinant
|det §| = |det p§| =1

det Bw £ 0

Moreover, by permuting Bw we get
B *
O # det ( v ): det B, . : [
I

Hence we can work with the following factorized representation

for the inverse

T w N ' (2.8)

* Double slashes will be used for end of proof.

12



For applications it is not necessary to permute the matrices
gw and G to have rows and columns of B, and V (see (2.5)) in
the upper left and lower left corners respectively. However,
for the development of the formulas for updating the factor-
ized representation of the inverse when one column replaces
another in the basis, it will be convenient, for notational

purposes, to work with the permuted matrices. Therefore let

pBT =P By, P and pBN =P By P . (2.9)
Then from (2.6)
B, = B, B _V . (2.10)

pT PpPNPWPD

Notice that expression (2.10) differs from (2.7) only in
that all terms are permuted.  Thus, for simplicity, in what
follows the left subscript p will he dropped when working with

the permuted matrices, since this will be clear from the context.

2.3. Some Properties of the Factorized Representation of the

Inverse

Recalling the nice properties of square block-angular
systems, we see for the general block-angular case that in
addition to the block-inverses we have to carry the inverse of
the Working Basis and the matrix V of G. Hence under the
assumption that the dimension m, of Bw is "small" relative to

mT’ or more precisely that the number of non-zeros in V and B;l

)

(or some representation of B; is "small", the additional



amount of information stored and manipulated will be small. In

particular,with regard to preserving as much as possible of the

nice properties:

1)

2)

3)

Instead of inverting one big My X M matrix we can
still invert and maintain k small m X my matrices

(i =1,...,k). However, in addition an m, X m,
Working Basis will need to be inverted and maintained;
also V will be .needed.

The first step in updating a vector from block j
proceeds the same as that described earlier - and

hence the same computational advantages carry through.

1

W and V.

However, in addition we have to use B

Hence if, as we have assumed, the non-zeros in

-1

BW

and V are low relative to those of the block

inverses gi’ i # J, not required in the first step,
we will get savings in the forward transformation
over a direct representation of Bal .

For calculating a Hj the situation is similar to that
of the updates in (2). As will be shown in Chapter 3
there is the additional advantage that when the basic
variables which correspond to columns not in the
Working Basis are feasible, then the G matrix is not

needed in the backward transformation. This is always

the case in Phase 2.

Because no simple statement can be made at this point on

how much work is required to update the factorized representation

of the inverse (after the replacement of one column in the basis

14



by another), we will defer discussion of this to later. In
section 2.4 we show how to do this updating efficiently.
Thus with the additional effort to maintain and to make

1 and V, we can carry over much of the desirable

use of B;
properties of independent square block-angular problems. If the
dimension m, of B is not too large (relatively) and the
additional work in updating the factorized representation of

the inverse is not too excessive, we can expect the block-
angular factorization method to be more efficient than working
directly on the basis Brp using general methods.

We now explore these points more deeply. First we
introduce some notation.” We classify columns as being either
Type A or Type B.

Type A: Those that, except for the common rows, have

non-zeroes in rows corresponding to at most

cne block i1 =0,1,...,k, i.e. those with indices

k
belonging to JA = U

i O

J..
i
i
Type B: Otherwise, i.e. Ig = Ipan
Furthermore, the basic columns of Type A are further
subclassified into
Type Al: Those basic columns associated with block i,
for i = 1,...,k (i.e. Type A columns), that
belong to their own block basis Bi‘
Type A2: Otherwise, i.e. basic columns associated with
block i, for i = 1,...,Kk, that belong to the

Working Basis.

15



Let BwO

Working Basis. - Partition Bwo according to

COmMmMOon I'OWS BOB BOA
Ug Up
BwO =
N ")
Vg Va

rows in WB

type B colurnns-:r 1:type A columns

Let B . BOB
3 -pglyg o " S
wo ~ By Buo = | g
v
R
l.e.
Bog Boa
By =] . .
Ug Ua

partitioned as above.

We call a column that is in BN but not in B

-

Boa

(=5

A

A

v

be the matrix of columns common to BT and the

{(2.11)

(2.12)

a pseudo-

basic column; 1its corresponding variable will be referred to

as pseudobasic also.

Recall from section 2.2 that Ki was chosen to have the

indices of a maximum set of linearly independent columns in

Gi'L- and that MK® contains the indices of column
i

Working Basis (where X° is the complement of K

16
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Observe that:

a) The maximum sets of linearly independent columns
in Gi'L. (i = 1,...,k) need not be unique. If this
is the iase we could choose the indices of columns
in any such set to be in Ki and hence in K. Thus
alternative factorizations are possible that lead
to different Working Basis's of the same dimension.

b) If Ks is not required to contain the indices of a
maximum set, but only of a subset of linearly
independent columns in GilL.’ then the resulting
factorization would have a ;orking Basis of higher
dimension (less indices in XK, more in Kc, i.e.
of columns in WB).

Following the constructive procedure in section 2.2 we

always obtain a Working Basis with the smallest possible

dimension. For the case when one column replaces another in

the basis, we want to obtain the new factorization from the old
one. Therefore it is convenient to establish some easy way to check
conditions for a Working Basis being minimal (i.e. there being

no alternative factorization giving rise to a WB of smaller

dimension).

Theorem 1: The Working Basis is minimal if and only if Uy =0

Proof: Let B, be minimal. Assume (on the contrary) that
Uy £ 0. Pick a non-zero element of Uy and suppose it is on row
J in the partition corresponding to some block i. This non-

zero element is used as a pivot to replace the pseudobasic

17



columns of block basis i associated with row j. The new BN
now includes one more vector previously in the Working Basis.
Thus, the new WB will have one less non trivial vector--z

contradiction !

WB minimal w3 U, = 0

Now suppose SA,= 0 and the Working Basis is not minimal.
Then for at least one block 1 {(for i = 1,...,k) there is a set
of linearly independent columns among those with indices in
M.UL; that constitutes a basis and that does not include at
least one of the pseudobasic variables (i.e. those with indices
in M{WLE where Lg is the complement of Li). Suppose this new

block basis Bgew is partitioned as

A
,B° 283
B 58
W85 8

with superscripts
1 : basic columns that remained
2 : pseudobasic columns that remained
3 : new columns (previously in WB partition) that have

replaced basic columns (possible none)

18



4 : new columns (previously in WB) that have replaced

pseudobasic columns (at least one)
and left subscripts

1 : rows in which basic columns that remain were basic

2 : rows in which pseudobasic columns that remain were
basic

3 : pows in which basic columns replaced were basic

4 : rows in which pseudobasic columns replaced were
basic.

new -1

Then pre-multiplying Bi by Bi

)
0 1B
P %3 where P, and
2 2 1
P2 are permutations

0 3?33 of identities.

0 HB
a3
2B

But has as coefficients those of columns that were

yB” B

in the WB in rows corresponding to the U partition. Thus
they constitute a subset of coefficients of GA and hence they
are all O. But this implies that rows corresponding to left
subscript 4 (at least one) are O and hence that Bgew is

singular, which is a contradiction.

19



. . UA = Q==3»WB minimal

and WB minimal €U, = 0 . I

Lemma 2: The dimension m, of a minimal Working Basis satisfies

My £ Mg * Mg S My + Ny (2.13)
where mg is the number of coupling variables in the basis.

Proof: For B“, a minimal Working Basis UA = 0; thus

Bor  Poa)

U 0]
Suppose UB is mp X mp where mg 1s the number of type B variables

(coupling variables) in the basis. Then

%=mo+mR

Now for B, to be nonsingular Ugp has to have full row rank.

This requires’

and hence

20



2.4, Updating the Factorized Representation of the Inverse

Before presenting a procedure for updating the
representation of the factorized inverse after the replacement
of one column in the basis by another, some results that are
needed later will be developed. It will be convenient to use
* as a superscript to denote a matrix in the updated represen-
tation to distinguish it from the corresponding matrix before
the updating. Also, unless stated otherwise, partitions of
My X Wy matrices will be assumed to have been permuted to
correspond with those of the factorization, i.e. so as to have
rows and columns in the Working Basis in the upper left corner.

2.4-1. Increase or Reduction in the Dimension of the Working

Some of the update situations will involve an increase
or a reduction in the dimension of the Working Basis. 1In
developing the updating formulas for these cases we assume that
the inverse is given in product form.

We want to decrease the dimension of a Working Basis

when it has a structure such as

B c to another with structure

which can substitute for it in applications of a product form

representation.

21



Let

I
E, = s
-V 1

then

B* I B*

BwEv = =

v 1 ~V 1 1
and

p*~1

w
= Byt B;l , (2.14)

and hence it is accomplished by adding an elementary row eta to
the representation of the inverse.

Similarly, to add a row, i.e. to get from

Bw Bw
Bw or to s
1 v 1
-1 -1
Bw w
= EV
v 1 1 (2.15)

which again is accoplished through an elementary row trans-

formation.
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2.4-2 General Updating Formulas

Theorem 2: Let E, EN be the elementary matrices that update

-1 -1 . *~1 -1 *-1 _ -1
BT and BN , 1.e. BT = EBT and BN = ENBN , and let
1.2
E, E E; E
E 12 ana g, =| NN
E, E NCO\ES g
374 N °N

correspond to the partitioning used in .the factorization (which

is assumed not to change). Further suppose E2 = 0 or Ei =0 ,
then
*-1 _ _ -1,.1,-1
B, ~ = (El E2V)Bw (Ey) . (2.16)
Proof: We have
*-] S¥~10*-1 _*=1 _ 1 o=1l5-1_-1
BT = - BN = EBT = EV "B BN
or
sxo] Sx 0-15-1_-1
Bw =V EV B BN BN
But
_1*_ _1
BN BN = EN .
Let
: ~1 =2
T e B
N EB EN N >
N °N
then
87 - vieviisTiE
w N
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and writing this product in partitioned form

*_1v 1
Bw I BN
I v Es Eu g

and now restricting ourselves to the rows and columns in the

[©)

n

RS
Z =2

Working Basis,

o
»*
'
'_l
[
P
&3
’_I
[ea]
n
p g
&
£
[
> w:
£ 1
2 [
ZW
td
=z

o]
*

!

H

'
—
P
m
-
lT]
<
S
=
ro
\l'
/—-\
m e
-

-3

EN
-1 ) -1 =1 ~3
B, (g, - E,VB " EL + E,B]

Since EN is an elementary column matrix we have

2 2, 4.-1 =1 | ,.1,-1
I EN 1 I EN(EN) EN = (EN)
4 J|=E_ " = bi-1 —_— (3 o _ 3ply-1
EN N (EN) EN =0 = EN(EN)
or
EN =
1 1.-1 =1 1.-1
ES (Ey) Ey = (Ey)
N Sp"1 - N > N N
EJ T R EJ(ES)™L 1 EJ = -ES(BL) !
L N N N N ~ NN
Hence in either case we get the same expressions for i; and Eé.

Subsituting above, we obtain
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1

-1
N’

*-1 _ ) -1
B, " = (B - E,V)B,(E

e p3eply-l
W EZEN(EN) .

But under the conditions in the hypothesis E2E£ = 0, so that

l)—l Il

*-1 _
Bw = (E N

-1
1" E2V)Bw (E
As will be seen in section 2.4-3, most of the update

situations can be arranged to satisfy the conditions of the

above theorem and usually (Ei)-1 = I and E, = 0, so that

. -

Bw L. Elel, or under conditions such that it simplifies to
o -

B, 1. (I, - nv)Bwl. The following results will always allow

us to express these updating rélationships as product of elemen-

tary transformation matrices. .

Theorem 3: Let neRm be a column vector and veRm a row vector.
Suppose vn - 1 # 0, then Im - nv is nonsingular. Furthermore

if vp # 0 is a component of v then
(I, - nv) = Eg E, E (2.17)

where ER and ER are the elementary row matrices given by
1 2

Il
E = - v - a - v .
Rl l/VP /VP 2/VP

I,

(2.18)
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(2.19)

a # 0, b # O arbitrary constants, v = (vl’vP’VZ)’ and EC is an

elementary column matrix given by

-1/
I, =(C/ping
Ecl = np (2.20)
=Moo, 1
1 "1
. = . _ _ 1l-vn -
with np = =5 and n=( np |. (2.21)
N2

Proof: Note that if v = O, the theorem is trivially true. If

not then there exists some Vp # 0. It is easy to verify by direct

multiplication that
(Im - nv) = E, E. E

and therefore

det E, * det E, » det E
Rl C1 R2

(5) () -

if (1 - vn) 20 . | |

det(Im - nv)
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Corollary:

n
I Il E% I1
' -1 v 1N v v Vp _V5
(I - nv) =1 eril 2 | -
vP . fg-Gp VP 1/11 a a
: ) "
l2 bn 1 12

Another important point to consider is the possibility
of an alternative minimal basis. Especially of interest is the
case where we can replace a vector in a block basis by a vector

in the Working Basis belonging to the same block.

Theorem 4: Let column b with index in Ji be the basic activity
associated with row r in forming the inverse of block 1. Let

Vp T (VB,VA) be the corresponding row of V. Then if Va # 0, any
one of the columns corresponding to a non-zero component of Vi
say v, (i.e. the j-th column in Bw),can be exchanged with b

to give a new basis for block i and a new Working Basis.

Moreover
B = E.B (2.23)

where ER is an elementary row matrix given by
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*
and if Bw is minimal, so is Bw.

Proof: Recall that by (1.4) for any column from some block P,

and hence by (1.6) 8 can have non-zeros only in the common rows
and in the rows of its own block P. It follows, since all col-
umns in the partition corresponding to v, are of Type A, that
under the conditions of the hypothesis any column correspoﬁdiﬁé
to a non-zero component VA. of vA must beiong to block 1 and can
replace the activity basic in row r of the block basis since its
pivot element is different from O. Recall that Bw minimal im-

plies UA = 0 so that

By Bop Boa Bor Boa
Uy U, | =05 0 ,
\'2 VB VA VB VA

and hence the updated vector j that will be exchanged with b has
zeros in the rows corresponding to the partition (GBGA)' Thus
the eta vector will have zeros there and all the remaining col-
umns will be unchanged in these rows. Also the representation

of the exchanged vector b in terms of the new block basis corres-

*

*
ponds to the eta vector so that UA = 0 and Bw minimal.

The exchange corresponds to a simple permutation of col-

*
umns, so that By = BoE, B 4 simple permutation matrix, for
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i "l _pandar ) =gEpl . Also B.7! = E I with
which E ~ = an r - - EBp - sQ N = EgyBy 1“
I Eg
EN - Eu 3
N

since the pivoting occurs in a row not in the Working Basis.

Thus the updating formula (2.16) becomes

*-1 _ _ -1
B, - = (E; - E;V)B,

Also

30 that E2V has zeros in all rows except row j, and El is an

identity except for row j which is zero. Hence




and

2.4-3 An Updating Procedure
The replacement of one outgoing column (OC) from the
basis by another, the incoming column (IC),gives rise to four

somewhat different updating cases:

1) IC of Type A and OC in Working Basis

N

and OC in Working Basis

A

2) 1IC of Type A and OC in B
3) IC of Type B
B

4) IC of Type B and OC in B

N
In Fig. 1 we give a flow-sheeﬁ of an efficient updating
procedure covering all four cases for the factorized representa-
tion of the inverse after the replacement of one column in the
basis by anothe;. v
We can cbhpactly state some of the important features of-

the updating procedure in the form of a theorem, and then develop

it in greater detail in a constructive way in the proof.

Theorem 5 (Updating Procedure): The flow-sheet in Fig. 1 gives

a valid procedure for updating the factorized representation of
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the inverse after the replacement of one column in the basis

by another. In particular, if the old WOfking Basis was mini-
mal so will be the new one, and (except when a pseudobasic vari-
able is driven out of some block basis to keep the Working Basis
minimal (see ** in Fig. 1)) at most one block inverse needs to
be updated due to the replacement of only one column in it by
another (in the exception at most two columns are replaced in

the block basis's).

Proof (Validation of the Updating Procedure): Referring to Fig.

we point out that since all tests are of the yes-no type it suf-
fices to show that each path gives a correct updating procedure

for the case it involves.

Case I. Incoming Column of Type B

Case I-a. Outgoing Column in Working Basis

A

Since we start with a minimal ‘Working Basis, Uy = 0.

*
Letting BN = BN’ the updating corresponds to changing one column

in éwo (see (2.11)). If the outgoing column is of Type B, then

A

*
UA = UA = 0 and the new Working Basis is minimal. If the out-
Ak

going column is of Type A2, then after the exchange, UA

to UA without the column corresponding to the outgoing column

is equal
A% Nk

(which is now in UB) and hence UA = 0 and the new Working Basis

is minimal.

1 -1

*_
The elementary column matrix E that updates BT = EBT

has its pivot element in some row in the Working Basis and hence
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FIGURE 1

" Information Flow-Sheet of

Updating Procedure

—Jes

Exchange OC with J
variable in WB as

xchange OC with a
variable in WB as
in theorem 3, i.e.
update WB inverse
by row eta and
block inverse of
OC and appropriate
part of V matrix
by column pivot.

Augment WB to
include OC by
adding approp-
riate row eta
to represent-
ation of its
inverse.

in theorem 3, i.el
update WB inverse
by row eta and
block inverse of
OC and appropriatg
part of V by
column pivot,

Augment WB
include 0OC
update its
inverse by

to
sile.

adding row eta.

]

Replace OC in WB.
Update its inverse
by column eta.
Replace column in V

Feplace OC directly
in its block basis.

Update block inverse
bnd V as usual. If

IV .=0 the WB does not
cgargﬁ. Otherwise up-
Hate its inverse by
pading elementary

Pow, column and row
etas as in proof of

¥

Replace OC direct-
ly in WB. Update
its inverse by

column eta. Re-
place coluymn in ¥

no (**)

ltheorem 5.
|

/

END

32

educe dimension
of WB by making
IC part of BN' WB
inverse is update
by row and column
trans formation.
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*
N BN we have EN = I and the updating formula (2.16)

‘in theorem 2 reduces to

Also, since B

Also V changes only in the column of the outgoing variable,
which is replaced by the partially updated incoming column IC,
i.e. B§1 (IC), restricted to rows not in WB. Notice that all
the necessary information is generated during the first step in

the forward transformation.

Case I-b. Outgoing Column in Some Block Basis

Suppose the outgoing variable belongs to block j and
corresponds to row r of the inverse. Let v, = (VB,vA) be the
corresponding row of V = (VB,VA). ir Va # O pick a component,

say v £ O. By theorem 4 we can assign the outgoing variable

A,
i

to WB and replace it in the block basis by the column correspond-

-1 -1

*
ing to v, , obtaining a new expression for the WB, Bw = ERBw .

A;

Besides the block inverse j and V have to be updated by a simple
column pivot. After this exchange the outgoing variable is in
the Working Basis and we are back to case I-a.

if Vy = 0 the dimension of the Working Basis is increased

by cne to include the pivot row and the outgoing variable. This

corresponds to going from
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. *
As shown in section 2.4-1, the inverse of Bw is obtained from
B;l (see (2.10)) by pre-multiplving by the elementary row matrix

Now the outgoing column is in the WB and we proceed as in case
A%
I-a. Since Uy = VA = O the resulting WB is minimal.
A

Case II. Incoming Column of Type A

Let d be the incoming column and

d

= B& d , d =By d
dg 80
Let d = éA , ad = EA
a, d,

be partitioned as PwO (see also (2.11)).

~

Also let 4, and ar_be the elements of d and d on the pivot row.

Case II-a. OQutgoing Column in Working Basis

Replace the cutgoing column directly in the Working Basis.

1 -1 . g gl

- *
This corresponds to updating as in case I-a. Let Bw = Bw 1B,

A

Then for Ew we have U, = (U,d

A A A)’ i.e. it consists of zeros except
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possibly for the column corresponding to the incoming variable
(i.e. d,). If d, = O the Working Basis is minimal and we finish
by updating V as in case I-a.

Otherwise pick an element d, # 0 and use it as pivot to
r
introduce the incoming column into its block basis, displacing

- .
= B, and

a pseudobasic variable. This corresponds to BT T
*~1 _ -1 .
BN = ENBN , 1.e.
By
E=1and By = {(see theorem 2)
ES I
N
where
1. l/a i=r
* A
1 with r
1 _ n -
By = ny s
1. -d. otherwise, for i
- /"
| | 1 dAr a row index in WB.

where

[

and d is the restriction of d %o rows in the Working Basis.
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These changes corresvond to the following two steps:

1) From Bw to Ew replace one column in Bw (without loss of

generality the last one),

OB BOA

UB 0

0 (2.25)

> >

i.e. B =
W

2) From B to Eéﬁw: pivot on row r (without loss of
W :

generality the last),

(2.26)

where Ur is a unit vector with a unit component on row r. Now we
are in the situation of reducing the size of the WB by pre-multi-
plying it by an elementary row matrix as discussed in section
2.4-1 to obtain a new minimal WB. Letting B; denote the result-
ing WB we have

- _ __1- _ _1..
B, = ER(BW EN) = EgE. B "Ey (2.27)

with

E. = {447 vﬁ/aA ] (see (2.14)). (2.28)
I

A |

Formula (2.27) gives the expression to update the WB in the case

“on dA # O. It is also necessary to update V. This 1s done by
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deleting the column corfesponding to the outgqing'variable and
updating the columns corresponding to type B by applying the
same elementary transformation matrix used to update thé block
inverse when it was modified.

In some computer systems it is inefficient to add new
information (in our case etas) to the beginning and end of a
file (in our case the eta file). To get around this difficulty

we can make use of the following equivalent expression for (2.27).

Proposition 1: Expression (2.27) can also be represented in

product form as

Bl -gEgrp?t (2.29)
W CR™1"w *
where ER and El are as in (2.23) and
l.. - }/6 itr
"1 ) _ r
Ec = ”c , with nci =
1. }/% i#r
. r
"1
L
and, letting Ur be the r~th unit vector:
U= (E.E.B-Hyu. . (2.30)
R 1w r

The proof of proposition 1 will be deferred to the end

of the section in order not to disrupt the presentation of the
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updating procedure.

Case II-b. Outgoing Column not in Working Basis

Sub-case II-b-1. vp # 0

By theorem 4 it is possible to assign the outgoing col-
umn to WB, obtaining a new minimal WB whose inverse differs from
the old one by an elementary row transformation. The exchange
also implies updating the appropriate block inverse because of
the replacement of the outgoing column by its exchange vector
from the WB, and modifying V due to the changes in the block in-

verse. Now we are back to case II-a.

Sub-case II-b-2. vp = O

~

Sub-sub-case II-b-2-a. dp = O

Augment the Working Basis to include the 0C. As seen
before in section 2.4-1, this corresponds to adding an elementary
row transformation to the old Working Basis inverse according to

. (2.15). Since v, = 0, after replacing the OC by the incoming

A
column in the WB, the form of the WB is given by (2.25) and thus

augmenting the Working Basis we fall back to case II-a.

Sub-sub-case II-b-2-h. dr 0

In this case the outgoing column can be replaced in its
block basis directly by the incoming column. This implies up-
dating the block inverse as usual by adding a column eta to its

representation. Columns of V corresponding to Type B variables
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must also be updated by the same elementary column matrix.
As for the WB, since we are pivoting on a row not in

the WB, we have for the elementary matrices in theorem 2

ol
n
Z ==z
we
&3]
i

where the columns of E

)

r

o are 0 except for the pivot column which

with d_ the restriction of d to rows in WB (recall d, is the

pi#ot element). Thus (2.16) reduces to

d
*~1 _ W -1
Bw = (Iw +(§;) Yr)Bw (2.31)
since
aw a.w
E2V = - a v, = - a—r- (V-B’O) . (2.32)

Now there are two possibilities:

A) v, . =0 ,i.e. v_ = (VB,O) =0 , and so

B r
*-1 .
Bw = Bw , 1.e. the WB does not change.
B) Vg # O . Consider

)
1]

d
wy._ -1, _ 5-13-1.-1. _ 5-15-17
()-BTd—V B, By d =V B d
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>
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1
[N

and

>

and since ar is the pivot element it is non-zero and we can divide

by it
d d
l:_r-v _W
- Il- 3
d, d,.
a by
i.e. -l-v,t=-—S4#0 - (2.33)
dI‘ dI‘

Hence, since (2.31), (2.33) and v # 0 satisfy its hypothesis
we can use theorem 3. Choose some column P with Vg # 0, and
b=-1, a = dr # 0. Then for this case, according to relations

(2.17) through (2.21)

*-1 -1
B, = = ER2ECER1BW (2.34)
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with

-d
I, I J/a
E. = v, -V, -V ; E. = r
= bl - bt s -
R, 1 'Bp 2 c }é ]
T ?
1 -d I
/ 2
;dr
Iy
E = -\ -d -
Ry P pod .
B B B
P P P
I
where we have partitioned
Ve T (yl,vBP,vz) and
d1
dW:dP
d2

To show that the Working Basis in (2.34) is minimal, re-
call that the same columns remain in the Working Basis, and only
their representation in terms of BN (see (2.2) and (2.3)) may have
changed due to pivoting on the r-th row of BN' But‘because vy F 0
all type A2 columns have zeros in the pivot row of BN and remain

Nk ~ . . N
unchanged. Thus U, = U, = 0 and the Working Basis in (2.34) is

A
minimal.

This finishes case II-b, and now all four possible update

b1



cases have been convered. By fgllqwing all paths in the Up-
dating Procedure we see that at most one vector is reblacéd
among those in the block basis's, except when reducing the dimen-
sicnality of the Working Basis (seé ** box in lower right corner

of Fig. 1), in which case it could be two. | |

Proof of Proposition 1l: Recall from (2.27) that

*_l _ _1~

Bw = EREIBW EN
Let

_ -1_.-1

A= BwEl ER . (2.35)
Then

I 6

. C EN A - (2.36)

Without loss of generality we take the pivot column to be the

last. Recall that EN and ER pivot on -the same row, which we

again can take to be the last. Then

Bos Boa o
BwEil =|Ug O 4,
Vg 0 ér
Bo Poa 0 |/ To
A = BwEllEél - GB 0 aA I,
vg O ér _vgé 1
r

b2



Bos Poa %o
A=lUg 0O 4, (2.37)
o o 4,

A

and so the r-th row of A is a, = (0,...,0,d). Now E;l pivots
on the last row and reduces the last column of A to the r-th

unit vector. Hence

Bog Boa ©

* -3

Bw= UB 0 0 ;
o o 1

thus B; is obtained from A by replacing the last column in A by

the r-th unit vector. Hence letting

_U.
1 }6 i#r
U=A Ur s Mg, ¥ r
i jL’
ﬁr i#r
and
—
1
- .'l
EQ = nc
1
I 1
we have
*-1 -1
BW = ECA B
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and from (2.35)

= ECEREle

by



CHAPTER 3
USING THE GENERAL BLOCK-ANGULAR BASIS FACTORIZATION (ORRF)

IN THE SIMPLEX METHOD

In a revised Simplex Method (see [2]), a representation

of the inverse is needed for performing two types of calcula-

tions:
1) Solving the system
s BT = Cforl ,
. _ -1
l1.e. I = CBT s (3.1)

which is computed using the backward transformation (BTRAN).in

product form algorithms (see [37]). Here C is the vector of co-
efficients in the objective function of the basic variables for

primal strategies, or the r-th unit vector in dual strategies.

2) Solving the system

BTd =d for d s

i.e. i-n8la : (3.2)
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which is computed using the forward transformation (FTRAN) in
product form algorithms. In the section we show how these cal-
culations can be carried out efficiently using GBBF.

-

3.1. The Backward Transformation (BTRAN)
Using the GBBF representation of the inverse, we can write
for (3.1)

= CV "B,, B

-1 c-12-1-1
T w N * (3-3)

Define 6 = CQ—I and ﬁ = 8%&1. We can consider the backward
transformation as consisting of three steps:

Step 1: Calculate C - CG_I

Step 2: Calculate I = 5%&1

Step 3: Calculate I = ﬁB&l
which we will now analyze separately.

Let the row vectors = (CO,Cl;...,Ck), m = (HO,Hl,.--,Hk),
8 = (60,61,...,6k) and ﬁ = (ﬁo,ﬁl,...,ﬁk) be partitioned accord-
ing to rows in block 0,1,...,k. Similarly let Vi be the restric-
tion of V to rows in block i. Furthermore, for 1 = 1,...,k we
1 A 1 - 20 7

c s 0 20 4 1

= = (C7 . .= . .
partition Ci (Ci,Ci), Ci ( l,bl), Hl (Hl,Hl), where the
subscript O corresponds to rows of block i for which the basic

variable is in the WB, and the superscript 1 to those basic in
0

1 0
V-
i,Vi) where V.

their own bleck. Similarly we partition v, = (v
cerresponds to columns basic in the common rows and V% to the

other columns in the Working Basis.
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For simplicity let also

A

0]
12"

50 and ¢} = (c?,...,c

C. = (C 0

i)

A A

and let Ié be an m x m identity where m is the dimension of Cé.

3.1-1 Step 1
By rearranging rows and columns (if necessary) we can

express C = C vl as

2 A1 41 1, _ 1 .1 1 p
(CusCqsClac--5C) = (C45C55CT5-+5Cy) /IO
1
To
1
I1
<
“ 1
Ik
from which we obtain the following relationships:
~ k
_ 1.0
CO = CO iEl Ci Vi
-~ k
1. .1 1,1
Cy = Cg 121 c; Vi (3.4)
21 1 .
cy = ¢y i=1,...,k

" w we have to consider three cases.
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Case 1 : During Phase 2

" Here C = (1,0,0,...,0) (assuming the objective function
is the first row in the common rows), and hence ¢; = 01 =1,...,k.
Thus from relationships (3.4) we obtain 8 = C and hence Step 1
is not required during Phase 2.

Case 2 : Phase 1, variables not in WB feasible

Again C% =0 fori=1,...,k and hence ¢ = C and Step 1
is not required.

Case 3 : Phase 1, some variables not in WB infeasible

In this case in general 6 # C and we have to go through
Step 1. However, if we are minimizing an unweighted sum of
infeasibilities, then the components.of C take on values 0, 1 or
-1*, and hence, as can be observed from relations (3.4), no
multiplications or divisions will be necessary, but only additions

or subtractions.

3.1-2 Step 2

~

Recall that T = C B!

This is an ordinary backward
transformation, and hence the number of operations required for
its calculation will be proportional to the number of non-zero

in the representation of the inverse of the Working Basis. -

* The infeasibility form can be expressed as min ( I X; - L X:)
iesl ieS2

where S, = {i : X; > 0 basic and artificial} and

' S, = {1 : X <0 basic}. Thus the components C; take on values

1, -1 or O according to i belonging to Sl’ S, or none of them

(see also [2]).
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3.1-3 Step 3

1 -

Rewriting I = IIB.~ as DBy = I, from the structure

N
of BN (see (1.1)) we see that

Ty = Ty
and

]IOAi + I Bl = I, for i = 1,...,k
or

T, = (1. - N.A. )BT

i i 071771
or

(T1y,0,..,0,1

(3.5)

-1
.,0)B] .

(3.6)

That is, for any i = 1,...,k, calculating Hi is equivalent to

an ordinary backward transformation using the representation

for the inverse of its block basis, and hence the number of

operations is also proportiocnal to the number of non-zeros in

this representation.

3.2 The Forward Transformation (FTRAN)

Using the GBBF we can write for (3.2)

(3.7)

(3.8)



That is, we need only its own block inverse, the Working Basis
inverse and the V matrix to perform the calculations of the

forward transformation.

3.3. Implications for the Choice of Simplex Strategy*

By using the factorized representation of the inverse
and by taking full advantage of the structure, appreciable
savings can be obtained in the number of operations that have
to be performed and in the amount of data required in both the
backward and forward transformations. In particular:

1) Whenever all blocks are feasible the V matrix is not
used in the backward transformation. Hence a good
strategy would be to make all blocks feasible in the
beginning,

2) When using a primal simplex strategy with partial
pricing (see [30]) to coincide with columns in a
block (or in some blocks), only the ,'s corresponding
to that block (or blocks) have to be calculated, with

considerable savings in the backward transformation

with respect to the case when a general representation

is used for B%l. When using a dual simplex strategy

the whole pivot row has to be updated ("priced out™")
and hence partial pricing is not possible. However,
there is one special case when using GBBF which is

formalized in the following lemma.

* Strategy is used here as defined in section 1.2, i.e.. rules

28 to how to move iteratively from one basic solution to the next.
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Lemma 3: If the outgoing variable belongs to block i and
corresponds to row r of its block basis inverse, and if the
corresponding row of V, v, = 0, then the solution to the system

HrBT = Ur’ where Ur is the r-th unit vector, is given by

mnf =o vj;ti

J
and
nt = u Bl
1 1

. r _ -1 _ S-12-1.-1 o-1 _ . _
Proof: II" = URBT = UV "B,"By~. But UrV = U, since v, = 0,
-1 _ R . . . r _ -1
and UrBw = Ur since pivot row 1s not in WB. Thus H' = UrBN
or equivalently HrBN = Ur’ from which the lemma follows because

of the special structure of By (see (1.1)). ||

Hence, for updating the whole pivot row we need in this
case to perform only one backward transformation using only one
block inverse, and to price out only the columns on that block
and the columns of the coupling variaﬁles, since all the others
will price out to O. The above is a generalization of a result
of Ohse [28].

3) Except for the coupling columns the forward transfor-
mation also requires only the ﬁse of one of the block
inverses. Also the updating of the factorized repre-
sentation of the inverse simplifies considerably in
the absence of coupling columns (see Fig. 2 in section
3.4). This suggests a special treatment for coupling
columns.

L) Savings occur also in total time spent in inversions,
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since on the average smaller matrices will be inverted
and the number of inversions, not counting those of the
WOrking Basis, will remain roughly the same.
With these points in mind we first turn to develop an ef-
ficient strategy for the block-angular linear problem with

coupling constraints only.

3.4, A Strategy for Block-Angular Linear Problems with Coupling

Constraints

In contrast to block columns, coupling columns require
the use of ail block inverses both for the backward and for the
forward transformation. They also tend to increase the size of
the Working Basis and to complicate the updating procedure. For
all these reasons they should be treated differently: for in-
stance, to consider them as candidates to enter the basis and to
price them out only when no improvements can be made with block
variables, or to treat them as fixed parameters whenever possible.
Hence the strategy for the special casé of a block-angular
problem with coupling constraints will play an important role in

that of the more general problem P.

3.4-1 Simplifications in the Updating Procedure

Since there are no coupling columns in this case all va-
riables are of Type A and the updating procedure given in Fig. 1
reduces to that in Fig. 2. There are now only three updating
cases which depend exclusively on the position of the outgoing

variable in the basis. Also since the Working Basis includes
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FIGURE 2

Information Flow-gheet of Updating Procedure

~for Block-Angular Linear Problems with

Coupling Constraints

yes

A

Replace OC directly in
its block basis. Update
block inverse an V matriy
in usual way. WB does
not change.

Exchange OC with a
column in WB as in
theorem 3, i.e. update
WB inverse by row eta
and block inverse of OC
and V matrix in the
usual way.

3

Replace OC in WB. Update its
inverse by column eta. Replace
column in V

4/”/////////,

END
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all common rows, and as a consequence of Lemma 2, for this case

we have that the Working Basis will have constant size my x my,.

3.4-2 Strategy Considerations

Dual and parametric strategies for block-angular linear
problems with coupling constraints (sée section 4.1) are based
on the observation that if all blocks:are independently sub-
optimized at the beginning then the resulting solution is dual
feasible for the overall problem. Hence the first step in these
methods is to sub-optimize all blocks.

On the other hand, in order to make full use of the re-
duction in computations and data transfer in the backward trans-
formation for primal strategies when using GBBF, it is necessary
to have all blocks feasible.

Alternatively we could sub~optimize them on the heuristic
that later we could approach feasibility in the common rows
"from above" (in the maximizing case) and could expect to arrive
at the feasible region with a higher vélue of the objective func-
tion, and hence would have fewer iterations in Phase 2. Primal
strategies offer the following advantages during this first step:

1) They do not require a dual feasible solution after

sclving all blocks, allowing ué to stop before reach-
ing optimality if this is considered convenient to
save iterations.

2) Por the same reason they do not require any special

treatment if some block has an unbounded solution or

if the matrix DO # O (see problem P in 2.1).
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After this first step primal strétegies have the advan-
tage of allowing savings in BTRAN if we maké use of partial pric-
ing. Since'forllarge problems partial pricing is desirable to
reduce overall computation time, the added benéfits of reducing
the amounts of data and of computations required in thé backward
transformation make it even more attractive here. We will refer
to the use of the partial pricing technique applied to the col-
umns of a BRlock as the Partial Block Pricing strategy, or PBP
for short.

The above considerations lead to the following two-step

primal strategy:

Step 1: Optimize all block problems (alternatively stop once
feasibility is reached). 1If some block has no feasible solution
STOP, the whole problem is infeasible. Otherwise proceed to

Step 2.

Step 2: Use the partial block-pricing strategy to take advantage
of the savings in BTRAN that are made possible by the factorized
representation of the inverse. This step terminates in one of
the usual primal termination states, i.e. no feasible solution,

unbounded solution or optimal solution.

3,.4-3. Experimental Results

The above two-step strategy for block-angular linear prob-
lems with coupling constraints has been coded in FORTRAN IV in

a program called G-GUB. Preliminary experimental results look
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promising and are reported in [38]. 1In Appendix A we give a
more detailed flow-sheet of the algorithm resulting from the
application of the above two-step strategy and reproduce some
of the results in [38].

In the following we will refer to this algorithm as the
Coupling Constraints Algorithm (or CCA for short). For other
strategles for block-angular linear problems with coupling

constraints see section 4.1.

3.5. A Strategy for the General Problem

Pricing out and updating coupling columns requires in
general the use of k block inverses instead of one. They also
tend to increase the size of the Working Basis and to complicate
the updating of the factorized representation of the inverse.

To amplify these points further::

a) TFrom Lemma 2, if there are m, coupling variables in

B
the basis then my +m is an upper bound on the size

B

of the Working Basis. Thus, the fewer coupling
variables in the basis, the smaller is this upper
bound estimate.

b) When the size of the Working Basis increases,
so does the number of columns in the V matrix.
Moreover, each Type B column (coupling column) can
have non-zeros in all rows of V as compared to Type
A2 columns which can have non-zeros only in rows of

V belonging to their own block. Thus, the higher

the number of coupling variables in the basis,
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the higher the number of operations required to
update a vector.

¢) A comparison aof Figures 1 and 2 shows that the work
to update the factorized representation of the
inverse can be éxﬁectéd to be more substantial when
there are coupling variablés in the basis.

Thus we conclude:

1) Pricing out and updating a coupling column to
introduce it to the basis redﬁi;és more work than
for a block column, since the full N vector is
needed for pricing and hence all block inverses have
to be used during the backward and forward transfor-
mations.

2) Having coupling columns in the basis increases the
work per iteration even when pricing out only block
variables by a), b) and c¢) above.

From fhese considerations evolves the general philosophy

"do not touch the coupling columns until it becomes necessary".
That is, reduce the general problem P to one with only coupling
constraints by considering the coupling variables y fixed at
some value, and use CCA to solve it. Only then relax the
restrictions on y.

The hope is that most of the work can be done without
using the coupling variables and that they will enter the game
only at the end for relatively few iterations. This is probably
the case in many large applications, where from knowledge of the

problem it is possible to specify a value of y for which the
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whole problem has a feasible solution, and then all of Phase 1

and most of Phase 2 can be done uéing CCA.

3.5-1 General Strategy

Repeatedly, in the General Algorithm that will be presented
in 3.5-2, the values of y will be fixed as a parameter to reduce
problem P to one with coupling constraints only. Whenever it is
not possible to keep the values of y fixed any more we will use
the following General Strategy, or GS for short:

Step 1: Relax restrictions on y. If some component of y was
fixed at some feasible value different from its bounds, introduce
it to the basis by increasing its value if this improves the
value of the objective function, or by decreasing it otherwise,
using the usual primal simplex criteria to determine the out-
going variable.

Step 2: Optimize the objective function using the PBP strategy
to select the incoming variable (for this purpose consider

coupling columns as a block k+l).

3.5-2 A General Algorithm

All the previous considerations lead to the following
General Algorithm, whose flow-sheet is given in Figure 3:
Step 0: Fix the coupling variables at a value y = Yo If a
value of y 1s known for which the whole problem is feasible it
can be used as Yo+ Otherwise an arbitary value between 1its
bounds can be taken.

Step 1: Minimize on each block the sum of infeasibilities. If
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all problems get feasible go to Step 3. Else continue to Step 2.
Step 2: Use the General Strategy to minimize the sum of in-
feasibilities for blocks (common row constraints still rélaxed).
If no feasible solution is attained STOP, the whole problem is
infeasible. Else fix y at its current value and continue to
Step 3.

Step 3: Use the Coupling Constraints Algorithm to minimize the
sum of infeasibilities in the common rows. If a feasible
solution is attained go to Step 5. Else continue to Step 4.
Step U4: Use the General Strategy to minimize the sum of in-
feasibilities in the common rows. If no feasible solution is
attained STOP, the whole problem is infeasible. Else fix y

at its current value and continue to Step 5.

Step 5: Use the Coupling Congtraints Algorithm to minimize the
objective function. If an unbounded solution is encountered
STOP, problem unbounded. Else continue to Step 6.

Step 6: Use the General Strategy to minimize the objective
function. If an unbounded solution is encountered STOP, problem

is unbounded. Otherwise the optimal solution is obtained.

3.5-3 Observations
The General Algorithm has been stated in terms of a
General Strategy and the Coupling Constraints Algorithm with the
following ideas in mind:
1) The General Strategy as stated in 3.5-1 is one
sensible strategy that takes advantage of the

structure of the problem by using the partial block
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FIGURE 3-a

" Information Flow-Sheet for General Algorithm

Fix y = Yo

For each 1 = 1,.

..,k obtain
a feasible solution to

G; X3 = b3 = Hy¥o
X, >0
N ..
no

‘Use General Strategy to
minimize sum of in-
feasibilities in blocks

Yes

Fix y at
current value

v

STOP
problem
infeasible

Use CCA to minimize sum of
infeasibilities in common rows

(Continues

in Figure 3-b)
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FIGURE 3-b

(Continuation of Flow-Sheet in Fig. 3-a)

no

y

Use General Strategy to
minimize sum of

infeasibilities in common

yes

urrent

Fix y at

valie

3

STOP
problem

function.

Use CCA to optimize objective

infeasible

no

Use General Strategy to optimize
the objective function

yes

STOP: solution
is unbounded

End:
solution is optimal
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pricing strategy. If it turns out that better
results can be obtained by using a different
strategy, for example pricing out coupling
variables only when block variables do not supply a
céndidate, or every t cycles for t > 1, then it can
be used as General Strategy to thé benéfit of the
General Algorithm without any other modification.

2) Similarly, if an improved strategy is found for the
block-angular linear case with coupling constraints,
it can be adopted for the CCA to the advantage of the
General Algorithm.

3) Notice that if a y is known for which the whole problem
P is feasible, then the method reduces to the Coupling
Constraints Algorithm followed by Step 6. Thus, when
there are no coupling variables it reduces to CCA.

At the end of Chapter 4, after analyzing other partition-

ing and decomposition methods, further strategies are compared.

3.6. Representation for Inverse and V Matrix

So far only some product form representation of the
inverse was assumed in describing the updating of the factorized
representation of the inverse, This assumption was‘not necessary;
it was used only because product form representations have been
found to be the most efficient ones for general large scale
linear problems, and this allowed us to speak of the updating
of an inverse in terms of adding a column eta or a row eta to

its representation, from which it is easy to obtain an intuitive

61



feeling of the relative effort required to maintain and to carry
an inverse.

Thus for ‘each basis we can use the representation that
gives the best results for its inverse. For general sparse basis's
and L-U factorization inversion with the use of the Forrest-Tomlin
updating method for the triangular factors (see [14]) seem to
give the most economic representation, and hence it seems to be
the one to use for block inverses.

In certain cases though, some or all of the blocks may
have specilal structure which we can take advantage of. For
instance, if some block corresponds to a network, each basis
will be a tree and we do not have to keep an inverse; it suffices
to keep a set of pointers that allow us to reconstruct the tree
[7]. That is, the GBBF approach not only gives us the advantages
of a reduced BTRAN and FTRAN, but also allows us to take advan-
tage of the special structure of each hlock.

The Working Basis can be expected in general to be more
dense than the original matrix. Also its size may vary from one
iteration to the next and both row and column elementary matrices
may be required to update its inverse. ‘Hence the Forrest-Tomlin
method cannot be used. If the Working Basis is very dense, an
explicit inverse (see [7]) will be best. Otherwise an L-U
factorization followed by product form updates can be used. For
the latter the following conditions will keep the density from
getting too high:

1) A fair proportion of vectors in the Working Basis can

be expected to consist of common row slacks and of
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2)

3)

other columns in Do { see problem P).

Common rows will consist of rows with non-zeros in
more than one block, but not necessarily in all.
Columns belonging to a block having only zeros in a
common row do not contribute in that row a non-zero

to the Working Basis. The same is true if all columns
of a block héving non-zero in a given common row are
non-basic, and even if some are basic, there is a
certain probability that it may still be so.

A~

From Theorem 1 for a minimal Working Basis UA = 0.

Besides these three points there are also some programming

considerations that make it advantageous to use a product form

representation for the Working Basis inverse: it is possible to

use essentially the same INVERT, BTRAN and FTRAN subroutines for

Working Basis and bloeck inverses.

As for the V matrix, from (2.11)

1

Hence it is not mandatory to store V, since in Bﬁ and

Bwo we have all the information needed to carry out the computa-

tions involving V. In BTRAN V is not needed anyhow when all the

variables not in the Working Basis are feasible, and so in this

case it would make no difference whether we have stored V or not. 1In

FTRAN on the contrary all the block inverses would be required

63



in the last part of it which involves V. This 1s only justified
in case the number of non-zeros in all block inverses is
less than that in V. This would probably mean that the size of
the Working Basis is large, since the number of columns in V
equals that in the Working Basis, and the advantages of using
the GBBF approach are reduced with respect to a general method.
Hence for problems where it is advantageous to use the GBBF
approach, i.e. those leading to a Working Basis with a relatively
small size, it is better to store V (i.e. store the non-zeros
of V).

Recall that in updating an incoming column d we calculate

first

where 8w is the restriction of 8 to rows in the Working Basis.
Since this information is already available it seems convenient
to store the whole updated vector 8. This way we also have
avallable the vectors forming the Working Basis and it is not
necessary.to recompute them every time we want to invert it.
All that is required is a flag that tells us which rows are in
the WB and which ones are not.

In cases where storage restrictions do not allow storing
V, in addition to a higher computational effort in FTRAN it

becomes necessary to generate the row of V which correspond to the
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pivot row and which is required in the updating procedure. As
can be readily seen from (2.11) this is equivalent to BTRAN
using the block inverse of the outgoing variable plus pricing

out the columns in the Working Basis with the m7 thus calculated.

3.7. Other Considerations

Up to now we have implicitly assumed the use of the most
negative reduced cost as the criterion for selecting the column
to enter the basis among those that were priced out. Of course
other criteria and techniques widely used in the primal Simplex
Method are also possible here; so for instance multiple pricing
[30], i.e. where at each pricing operation the k columns having
the most negative reduced cost among those priced out are selected
as candidates and updated, and are then used in a sub-
optimization where the greatest change rule is applied to
determine the column to enter the basis.

There are also other criteria which do not look good in
general, but look promising when part of a GBBF approach. These
will be examined in more detail in Chapter 4, especially in

Section 4.1-5.
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CHAPTER 4
A UNIFYING APPROACH TO PARTITIONING
AND DECOMPOSITION METHODS

General Block-Angular Basis Factorization allows us to
unify existing Partitioning and Decomposition methods (ndt
based on the Dantzig-Wolfe decomposition principle) for solving
block-angular linear problems. In essence all of them can be
viewed as the Simplex Method using the GBBF representation for
the inverse, and differing on the strategy as to the vector
pair selected to enter and to leave the basis.

For each method we will refer to the appropriate place
idfthé literature for its detailed description, and state it ‘
here only in terms of the pivdt strategy it uses. When necessary
we will expand somewhat on alternative ways of implementing them.’
We will first consider block-angular linear problems with
coupling constraints, then those with coupling variables and

finally those with both coupling constraints and variables.

b.1. Block-Angular Lingar Problems with Coupling Constraints

As was discussed in 3.4-1, in this case the Working
Basis is always of constant size my X My, and the updating

procedure for the factorized representation of the inverse
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simplifies to that in Figure 2 because of the absence of Type B
variables. Many "Partitioning" or "Deéomﬁosition" methods have
been proposed over the years for this class of problem. We
will now analyze them to identify their strategy in the Simplex
Method using GBBF (but not necessarily in the order in which
they were first presented). At the end of the section we look
at some new strategies which can be implemented efficiently

when using the GBBF approach in the Simplex Method.

4,1-1 Primal Simplex Strategy: Methods of Kaul [221,

Bennett [4] and Milller-Mehrbach [27].

All three authors proposed their methods independently
about the same time. Kaul's method is better known as General-
ized GUB (short for Generalized Generalized Upper Bounding {22]),
and Mliller-Mehrbach's as the Method of Direct Decomposition [27].
There are slight variations in their methods, but ali correspond
to the GBBF Simplex Method using the usual primal strategy of
introducing into the basis the column with the most negative
reduced cost, and hence leading "to the same solution path as

the Simplex Method" [22], [27].

4.1-2 Rosen's Primal Partitioning Method [37]

We can distinguish three steps in the overall strategy
of Rosen's method:
Step 1: Solve all block problems to optimality. If some block
is infeasible STOP, the whole problem is infeasible. Else go

to Step 2.
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Step 2: Relax the non-negativity constraints on variables in

the block basis's. Solve the relaxed problem. If the solution is
infeasible STOP, the problem is infeasible. Else go to Step 3.
Step 3: Check whether the relaxed non-negativity constraints are
satisfied. If so STOP, the solution is optimal. Else rearrange
variables between blocks and Working Basis as shown in Rosen

[}2] for at least one block having a variable not satisfying

the non-negativity constraints. This way at least one infeasible
variable is exchanged to the Working Basis. Return to Step 2.
Observations:

1) The validity of the above strategy was proven by
Rosen in [32]. It follows also from the relaxation
strategy in Geoffrion [16] (see also Lasdon [24]),
of which this is a special case.

2) Notice that the relaxed problem in Step 2 could
be unbounded even though the whole problem is not.

To avoid this a bounding row making the sum of all
variables less or equal to a very large number is
added to the common rows. If this constraint is
binding in an optimal solution the whole problem is
declared to be unbounded.

3) Notice that at the end of Step 2 the solution is dual
feasible for the whole problem, and after returning
from Step 3 at least one previously violated non-
negativity constraint is enforced. Thus the solutions
in Step 2 form a non-decreasing sequence of lower

bounds to the problem (assuming we are minimizing).
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)

5)

6)

Rosen [32] suggests using a primal strategy in
Step 2. In this case we can tﬁke advantage of the
savings in BTRAN with the PBP strategy. A primal
approach also allows us to handle the situation
when some block problem is unbounded without adding
a bounding constraint to it. Other authors have
suggested using a dual approach (see Grigoriadis
[17]), in which case PBP could not be used, and a
bounding row would have to be added to any un-
bounded problem.

Notice that all the pivoting in Step 2 occurs in

the common rows, i.e. the outgoing column always
belongs to the WB, leadipng to the easiest update
situation (see Fig. 2). This is a consequence of
relaxing the non-negativity constraints on variables
in the block basis;s. It also implies that it is not
necessafy to completely update.the incoming column
on these rows. That is, the V matrix is not
required in the forward transformation.

The dual form of Rosen's method is known as Gass'

Dualplex Method (see 4.2.2).

4.1-3 Primal-Dual Strategy: Balas [1], Knowles [23]

In this approach all block problems are first optimized.

This solution is then dual feasible for the whole problem, and
primal feasible except possibly in the common rows. The primal-

dual strategy is then employed to reduce the sum of
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infeasibilities in the common rows, maintaining a dual feasible
solution for the whole problem.

This strategy is intuitively appealing. Its computational
advantages will depend on how many non-basic columns there are
on each restricted primal, since if there is only one, the effort
per iteration is essentially the same aslin a dual method. On
the other hand, if there are many, most of the work can be
expected to be on the primal iterations of the restricted problem,
and in this case we can take advantage of the savings in BTRAN
with PBP.

Balas first presented this algorithm as "An Infeasibility
Pricing Decomposition Method for Linear Programs (Version A)"
[1]. EKnowles [23] later wrote a FORTRAN code for a version of
the Algorithm. He obtained encouraging preliminary experimental

results.

4.1-4 Dual and Parametric Strategies: Ohse [28],

Orchard-Hays [29]

Again all blocks are optimized first in order to obtain
a dual feasible solution to the whole problem which is primal
infeasible only in the common rows. A constraint bounding the
sum of the variables to be less or equal to a very large number
has to be added in case of unbounded subproblems.

Ohse's Dual Method [28] then uses the usual dual strategy (see

[fT), taking advantage of the reduction in computations when
using the factorized representation of the inverse whenever the

outgoing variable is basic in some block and V, = O (see Lemma 3.
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Any dual partial pricing scheme to select the outgoing variable
can be used. This allows some leverage as to what variable to
select to leave the basicbset. Recall that the computational
effort to update the factorized representation of the inverse
depends exclusively on the position of the outgoing variable

(see 3.4-1), and hence in this method we can exert some influence
to fall into the easier cases.

Orchard-Hays Block-Product Algorithm [29] is a parametric method.

It modifies the right hand side of the common rows to make the
dual feasible solution obtained after solving all block problems
also primal feasible. Then the right hand side of the common
rows 1s varied parametrically to its original wvalue.

Besides adding bounding constraints to handle unbounded
blocks, Orchard-Hays also shows how to get a dual feasible
solution when having non-unit vectors in Dy (see [29]). This
same approach can be applied to the Primal-Dual and Dual methods

when necessary.

4.1-5 OQther Strategies

Among many other possible strategies we would like to
mention two variations on primal strategies.

The Partial Block Pricing (PBP) Primal Strategy: referred to

already in section 3.4-2 and useﬁ in the Coupling Constraints
Algorithm which has given encouraging results on some test
problems (see Appendix A). All block problems are first
optimized (or made feasible). Then the PBP primal Strategy is

used to take advantage of the savings in the backward
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transformation that it makes possible when using the GBBF
method.

PBP with a Ratio Pricing Criteria: Ratio pricing was proposed

originally by Markowitz (see Dantzig [7]). It requires taking
for each non-basic column a ratio of its updated coefficients

in the objective row and in the infeasibility row. Thus in the
usual product form methods two backward transformations, one

to obtain the prices on the objective row, the other those on the
infeasibility row, and two pricing operations, one to update

the coefficients in the objective row, the other those in the
infeasibility row, are necessary. This makes the compufational
requirements excessive.

In this context a somewhat modified ratio pricing rule is
propbsed, which can be implemented efficiently on block-angular
problems when the GBBF approach is used.

Suppose that in Phase 1, for column jJ, dj is the reduced
cost for the minimization of the sum of infeasibilities, and
¢, for the objective function. Then define

8D = {j :d. < - 8} (4.1)
i.e. the set of columns that would decrease the sum of in-
feasibilities if introduced to the basis (8§ is the O tolerance
for the reduced cost in the computer).

The ratio pricing criterion suggested by Markowitz is:

c

C .
choose Eg = min {ai : j e SD} (4.2)

q J
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i.e. choose that column to enter the basis which gives the
maximum improvement in the objéctive funcfion per unit decrease
in the sum of infeasibilities.

When solving block-angular linear problems with coupling
constraints, after optimizing all block problems, we then have
a solution which is dual feasible (unless some block gives an
unbounded solution) for the overall problem and primal in-
feasible only in the common rows. Thus the objective function
will have a value below the optimum (minimizing case). Hence

we modify the ratio pricing criterion. Herewith define

SM = {j : c5 < -6 , j e SD} (h.3)
SO = {j :|cj| < & , J e sD} (L. 4)
SP = {j : c5 > § , J e sSp} . (4.5)

Then in Phase 1, if SD is empty the problem is infeasible.
Qtherwise use the

Ratio Pricing Criterion

Rule 1: If SM is empty use rule 2. OQtherwise select the in-

coming variable so that

d d.
Eg = max {E% 1 j e sM} o, (4.6)
q J

i.e. maximize the reduction in the sum of infeasibilities per
unit improvement in the objective function.
Rule 2: If SO is empty use rule 3. Otherwise select the in-

coming variable so that
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dq = min {dj 1 j e S0} . (4.7)

Rule 3: Select the incoming variable so that

;9 = max {2% : j e SP} . (4.8)
q J

That is, if possible we select, using rule 1, the column
that gives the largest decrease in the sum of infeasibilities
per unit improvement in the objective function. If there is no
columﬁ which improves both objectives then by rule 2 we select
the one that gives the greatest decrease in the sum of in-
feasibilities without affecting the objective function value.
If this set is empty we fall back on rule 3 and select to enter
the basis the column that gives the minimum increase in the
objective function (minimizing case) per unit decrease in the
sum of infeasibilities.

Observe that these pricing criteria have many points in
common with the primal-dual strategy, but they do not require
keeping a dual feasible solution and hence allow the use of
partial pricing.

Herewith we change SD to
Sby = {j :d; < -8 column j in block i} (4.9)

in (4.3) through (4.5). Then if we are in Phase 1 and SDi is

not empty we use the ratio pricing criterion. "If SDi is empty
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we proceed to another block. If it is empty for all blocks i
then the problem is infeasible. Now we can state the

PBP Algorithm using the Ratio Pricing Criterion

Step 1: Optimize each block problem (or make feasible). If
some problem is infeasible STOP, the overall problem is in-
feasible.

Step 2: Minimize the sum of infeasibilities in the common rows
using the partial block pricing strategy with the above ratio
pricing criterion to select the incoming column among those
priced. If the minimum is not O STOP, the problem is infeasible.
Step 3: Use the Coupling Constraints Algorithm to obtain the
optimum.

The difference from the Coupling Constraints Algorithm
lies in Step 2, which can be implemented efficiently using the
GBBF method. Hopefully when achieving feasibility in the
common rows at the end of Step 2 the problem will be optimal
or near optimal, requiring only a few Phase 2 iterations in
Step 3.

Implementation

Let II = (HO, nl,...,nk) be the dual prices associated
with the objective function for the current basis, and let
o = (oo, 01,...,0k) be the dual prices associated with the sum
of infeasibilities for the current basis. Then when pricing out

a non-basic column in block i, we need to compute

_ i i
dj = 0, Dj + 04 Gj (4.10)

i i
and . =T. D, + II. G, 4,11
©; o D; i G ( )
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where D3 is the restriction of column j to common rows and
G; its restriction to rows in its own block i. Thus we only

have to calculate 0gs © II. and Hi and hence the number of

i* 70

operations in the two backward transformations will be pro-
portional to two times the number of non-zeros in the represen-
tation of the Working Basis and in that of the inverse of block
i. If the number of non-zerocs in the representation of the
'WOrking Basis is less than in any one of the block inverses,
then probably for problems with 3 or more blocks this would
still be less than the number of operations in one backward
transformation using a general representation for the problem
inverse.

The pricing can also be done at only a small additional
cost. For each non-basic column in block i, first compute dj by
(4.10). 1Ir dj > -§ then J ¢ SD; and it is not necessary to
compute Cj' Otherwise <5 is computed and we see which of the
three rules applies.

Thus the pricing effort increases by the percentage of
columns that have a negative reduced cost for the sum of in-
feasibilities. GEspecially in the later stages these can be
expected to constitute a small fraction of the total number of

non--asic columns.

4.1-6 Some Comments

Extensive experimental tests and comparisons in a
systematic way are necessary to determine which of the above

strategies will perform better for block-angular linear problems
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with coupling constraints when using the GBBF Simplex Method.
Up to now there are only a few experimentél results (see [231,
[38]) and no comparisons available, which stresses the need for
systems optimization laboratories (see Dantzig [6]) to remedy
this situation

FProm practical considerations primal strategies have
the advantage (besides the savings in BTRAN when using GBBF)
that they can be used in conjunction with almost all combinations
of pricing and pivoting criteria used in current production
codes; so for instance besides pricing out at each pricing
operation only a subset of the non-basic variables (partial
pricing), several candidates may be selected and updated
(multiple pricing) using greatest change criteria in a sub-
optimization involving only these candidates to determine which

ones are to be introduced to the basis and in what order.

h.2. Block-Angular Linear Problems with Coupling Variables

This is the special case of the general block-angular
problem P when there are no coupling constraints., It 1is the
dual problem to the block-angular problem with coupling
constraints analysed in ﬁ.l. Of course one solution strategy
could be to dualize and then use any one of the methods in 4.1.
It is however of interest to have methods that solve it directly,
since this structure arises often in applications involving
uncertainty (see [25]).

Also for block-angular linear problems with coupling

variables there are some methods that have beeh around for a
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long time and for which no experimental results are available.

4,2-1 Beale's Pseudobasic Variables Method [3]

Beale's method uses a primal strategy..  The central idea
is to treat the coupling vafiables as parameéefs in order to
preserve a square block-angular structure for the basis. After
a closer look it becomes apparent that they are only treated as
parameters in the first part of the algorithm, where they are
fixed at a value for which the system is assumed to have a
solution. Later on they are really treated as basic variables;
however, the alpgebra of the Simplex Method has been modified so
that the values of the incoming variable and of the other basic
variables are expressed as a function of one of the coupling
variables which is then allowed to change value until one of
the basic variables leaveg the basic set. The values of the
"linking parameters" are modified in this process exactly as all
the other basic variables. Using GBBF Beale's method is equival-
ent to the specialization of the General Algorithm to the case

when there are no coupling constraints.

4.2-2 Gass' Dualplex Method [15]

As has been pointed out before, this method can be viewed
as the dual of Rosen's algorithm (see 4.1-2). It assumes that
for a given Y = Yo fixed all block problems have a feasible
solution. 1Its strategy expressed in terms of the GBBF Simplex
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Method is:

Step 1: Set k = 0. Optimize each block problem for Y = YO‘

If any problem is unbounded STOP, the whole problem is un-
bounded. Otherwise go to Step 2.

Step 2: Set k = k + 1. Solve a restricted problem where only
coupling variables are allowed to enter the basic set. If an
unbounded solution is encountered STOP, the problem is unbounded.
Otherwise continue to Step 3.

Step 3: Let Yk and Hk be the values for the Y variables and

for the dual prices in the optimal solution at the end of Step 2.
Fix Yk as a parameter. For each block use Hk to price out non-
basic block variables. If all price out optimal STOP, the
current solution is optimal. Otherwise exchange as many pseudo-
basic variables as possible with non-tasic variables that price
out non-optimal. (Observe that when fixing Yk as a parameter

BN becomes the true basis, with all previously pseudobasic
variables at value O. Since we pivot only in rows of pseudo-
basic variables the value of the solution does not change, and
hence at the end the solution from Step 2 is still feasible,

but not basic any more.) Return Lo Step 2.

4.2-3 OQther Strategies

Both Beale and Gass assume the knowledge of an initial
Y = YO for which each block problem has a feasible solution.
If this is not the case the problem can be set up in the usual
way, a Phase 1 procedure to minimize the sum of infeasibilities.

If this minimum is greater than zero the problem is infeasible.

79



Otherwise the value of Y in the first feasible solution is used

as YO to start either method in Phase 2. With this added

feature Beale's method is equivalent to the specialization of
the General Algorithm in section 3.5-2 for the case when there
are no coupling constraints.

Alternatively the PBP strategy with the ratio pricing
criterion to select the incoming variable could be used in
Phase 1.

h.3, Block-Angular Linear Problems with Coupling Constraints

and Variables

Only a few algorithms have been proposed in the literature
for the general problem P. They usually were worked out as
extensions of algorithms for the block-angular linear case with
coupling constraints, as for instance the Generalized GUB
method (see 4.1-1) and Rosen's algorithm (see 4.1-2). Extensions
of the dual and primal dual strategies have not been presented,
probably because of the requirement of having a dual feasible

solution at hand to start the procedures.

4.3-1 Primal Strategy: Hartman and Lasdon's Method [20]

Hartman and Lasdon use the usual primal simplex strategy.
They develop a basis factorization scheme in which a column
corresponding to a block variable that becomes pseudobasic is
dropped from the block basis together with the row in which it
was basic, thus reducing the size of the block basis. Hence all

basis's may vary in size. Besides they do not require the Working
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Basis to be minimal. To avoid it increasing too much, checks
are made which require doing some computation.

They present some computational results of their method
for a special class of production and inventory problems. For
a given problem, the smaller the size of the Working Basis, the
faster the iterations. 1In particular, overall solution time is
smallest if coupling columns are not introduced into the basis
in Phase 1 (unless necessary), to keep the Working Basis small.

These observations agree with our analysis in 3.5.

4.3-2 Ritter's Method [31]

Ritter's method amounts to a generalization of Rosen's
method to problems having also coupling variables. It uses the
same relaxation strategy as Rosen's (see also Geoffrion [16]
and 4.1-2) with a slightly different criterion as to which
variables to relax and which violated relaxed variables to
enforce to account for the presence of the coupling variables.
All comments on Rosen's method (see U4.1-2) apply also here (with
some slight modifications in some cases). We state his method
under the assumption that a YO is known for which all blocks
have a feasible solution.

Step 1: For Y = YO fixed, optimize all blocks.

Step 2: Relax non-negativity constraints on variables correspon-
ding to the block basis's. Solve the relaxed problem (no restric-
tions on coupling variables). If the relaxed problem has no
solution STOP, the problem is infeasible.

Step 3: Check whether the relaxed non-negativity constraints are
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satisfied. If so STOP, the solution is optimal. Otherwise
rearrange variables between blocks and Working Basis as in
Rosen's algorithm for at least one block having a variable not
satisfying the non-negativity constraints. Whenever according
to this rule a coupling variable associated with the Working
Basis has to be switched with a block basic variable in its own
block, the size of the Working Basis is instead increased by
adding the block basic~column and its pivot row to it. This
‘way at least one column associated with an infeasible variable
is introduced to the Working Basis. Return to Step 2.

Observe that when using the GBBF approach, besides Step 1,
also $tep 2 is the same as Rosen's and Ritter's algorithms, i.e.
relax non-negativity constraints on basic variables not in the
Working Basis.

Only the rearrangement procedure in Step 3 1s more general
in Ritter's method to account for the coupling variables. Thus
the five observations which we presented earlier in k. 1-2 after

Rosen's method apply here.

4.3-3 Other Strategies

The General Algorithm presented in 3.5 is another example
of a primal strategy, more refined than the usual simplex
strategy to get the most out of the structure of the problem.
The ratio-pricing technique described in 4.1-5 is another
possibility that looks promising and can be extended directly
to problems with coupling variables and constraints because it

does not require dual feasibility. It was not incorporated into
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the General Algorithm because it is still untested, as compared
to the partial block pricing stratégy with the most negative
reduced gradient criterion used in CCA. TIf tests later show that
partial block pricing with the ratio pricing criterion is.more
efficient, it should be incorporated into the General Algorithm.
Of the strategies for block-angular linear problems with
coupling constraints that require dual feasibility, the easiest
to exteﬁd is Orchard-Hays' parametric strategy (see L4.1-4),
Recall that in this approach, after solving all block problems,
the right hand side in the common rows is changed to force the
current solution to be both dual and primal feasible. For
problems with coupling constraints and variables the same thing
can be done also to the cost coefficients in the coupling con-
straints to force them dual feasible after all block problems
havebbeen optimized. After this, both the modified cost co-
efficients of the coupling variables and the modified right hand
side of the common rows are forced back to their old values using

a parametric technique.

b oy, Specializations of the General Algorithm

To end this chapter we want to mention the specializations
of the General Algorithm for some special cases.

For block-angular linear problems with coupling constraints
it reduces to the CCA method described in 3.4. Furthermore, if
each block corresponds to a GUB set, then the CCA method in turn
reduces to the GUB algorithm (see [12]), in which for each GUB

set we initially select as key variable the one making the GUB
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set feasible and giving the best value for the objective function.
For block-angular problems with coupling variables the
General Algorithm specializes to the same strategy as Beale's

Pseudobasic Variables Method (see 4.2-1).
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CHAPTER 5

NESTED FACTORIZATION

5.1. General

Imbedded in block-angular structures are blocks which
themselves are of block—anguiar form etc: recursively. Thus
the application of GBBF in the Simplex Method could lead to many
levels of representation of inverses in factorized form. In the
following the special case of block-angular structures with cou-
pling constraints will be considered to show how the basis fac-
torization approach developed so fér lends itself naturally to
negted applications. Later these results will be applied to the

solution of staircase problems.

5.2. Notation and Concepts

Recall

from (2.7) B, = B, B .V

=

o >

from (1.3)

o
"
= B4

j=1 *
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and from (1.2)

. -
1,0...04:0...0
I
B, = B
B i
1,
- .

G I A
0 0 J
I 0
B. = "-B. a1, 1
% %. X i (5.1)
1, 1,
and hence
- = ~ -
%I -A; %I
_ 1 1
A_l . - _l
B." = 1. X "B .2)
J J J (5
"Iy Iy

In the nested factorizations that will be considered
here, at least for one j Bj has the structure of a block-angular

problem with coupling constraints, i.e. of the type:
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Y,
7.

/ (5.3)
%

and we can represent its inverse in factorized form. Again
some of the blocks in Bj could have the block-angular structure
(5.3) and so.on, and hence we could have many levels of factor-
ization.

The basis factorization developed in Chapter 2 will be
referred to as a 1 level factorization (or the level 1 facto-
ization), and accofdingly its Working Basis will be called the
level 1 Working Basis and its block basis's the level 1 block
basis's. If one or more of the block basis's are factorized again,
then each one of them gives rise to a level 2 Working Basis and
to level 2 block basis's. To simplify this process we would like
to represent it in the following by a tree-like diagram (which

will be called the "associated tree"):

(5.4)




Here a directed arc represents a basis. If an arc
does not end in a node it means that a general representation
is used for the inverse of the basis it represents. Otherwise
a factorized representation is used and we associate the Work-
ing Basis and V matrix of the factorization with the node, and
each one of the block basis's with an outgoing arc.

For example, for a block-angular basis B,, with three

T
blocks

would be the associated tree if

factorization is not used;

if we factorize.

Further, if block 2 has also a block-angular structure with two

blocks, then

would be the associated tree of

this 2 level factorization.

Notice that the level of a basis corresponds to the
number of nodes in the path starting from the origin that -leads
to it.

As with the basis, we can use the associated tree to
represent the classification of the columns of the problem.
That is, all columns in a matrix correspond to an arc. If it
does not lead to a node the columns are not subdivided further.

Otherwise we associate with each outgoing arc the sub-matrix
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of columns belonging to the block whose basis it represents.

For simplicity we assume that at any level of the factorization
all columns in a block-angular matrix belong to some block (i.e.
D, = 0 (see 2.1)). This way each path cofresponds to a subset

0.
of the problem columns having a particular structure.

5.3. A Nested Updating Procedure
Let IC be the incoming column,
ocC the outgoing column, and

EC the column in the Working Basis that is
exchanged with the OC in some block (when-
ever the case arises).

It will be convenient to modify the Information Flow-
Sheet of the Updating Procedure for Block-Angular Linear Prob-
lems with Coupling Constraints (see Figure 2), so that the up-
dating of the inverse of a block basis is done as a last step
(when the case arises). This modified Information Flow-Sheet
is shown in Figure 4.

Observe that when the OC is in the Working Basis only
its inverse is updated and a column is replaced in the V matrix,
independently of the representation used for the block inverses.
In the other cases, due to the replacement of one column by an-
other in some block basis, the representation of its inverse
has to be updated as a last step using the appropriate updating
Procedure. If a factorized representation is used for it, then
we can use again the scheme in Figure 4.

In general then, whenever a block basis has to be up-

8¢
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FIGURE 4

Modified Information Flow-Sheet of Updating

Procedure for Block-Angular Linear Problems

with Coupling Constraints

Va £ 0

A
oC
no in
WB
?
yes

yes

Determine EC as in
theorem 3. Update WB
inverse by row eta.
Update V to account
for the exchange.

!

Replace OC in WB.
Update its inverse by
column eta. Replace
column in V.

Replace OC in WB.
Update its inverse by
column eta. Replace
column in V.

v

Set IC = EC

Replace OC by IC in block basig
and update its inverse.

END
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dated, a check is made to determine whether a factorized re-
presentation is used for its inverse. If not we proceed as be-
fore. Otherwise first the OC is replaced by the IC in the Aj
matrix (see (5.2)), and then the procedure in Figure 4 is used
to update its factorized representation. The resulting nested
updating procedure is shown in Figure 5. For simplicity indices
have been omitted except to indicate the level of factorization,
since the position of the 0C uniquely determines the path that
is taken.

Recall from section 2.3 that

Thus, knowing the pivot row and having the representa-
tion of the IC in terms of its block basis we can update the
V matrix before updating the block inverse. In the nested fac-
torization case, however,‘it may turn out that in order to up-
date the latter a pair of columns has to be exchanged between
its Working Basis and one of its block basis's. This permutation
requires the switching of the rows of V corresponding to the
pivot rows of the exchanged columns. This is included as the
last step in Figure 5. All it requires is storing the informa-
tion about the pivot rows of columns that have been exchanged
(at most a pair for each level of factorization), and the actual
switching of the rows (or the switching of the row indices of
its non-zero coefficients) in the affected V matrices can be post-

poned until they are needed for the first time for a backward
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FIGURE 5
Nested Updating Procedure
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Vo #0 Update its inverse by
column eta. Replace
column in V(2).
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theorem 3. Update
inverse of WB(L) by row
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account for exchange.

v
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Update its inverse by
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)
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or a forward transformation. Some properties of the nested up-

dating procedure are summarized in the following.

Proposition 2: If Lmax is the maximum level of factorization,

then to update the factorized representation of the inverse

after the replacement of one column by another in the basis, at
most Lmax + 1 of the WB's and block inverses and Lmax of the

V matrices have to be updated. Moreover,

a) 1if the outgoing variable is in a level k WB, at most k of the
WB inverses and k - 1 of the V matrices have to be updated, and
b) 1if the outgoing variable is in a level k block basis that

is not factorized further, then at most k + 1 of the WB and

block inverses and k of the V matrices have to be updated.

Proof: Suppose the OC is on a level k basis. Then for levels

£ =1,2,...,k - 1 we cycle on the loop in Figure 5 and each time
we have to update at most one WB inverse and one V matrix (if

VA # 0), i.e. k = 1 in all. For & = k if the OC is in the WB
we update its inverse and finish (except possible for switching
rows on V matrices already,modified) which shows a). If the OC
is in a block basis that is not factorized further, then it

may be necessary to update the k-th level WB and V matrix be-
side 'the block inverse of the OC, and hence b). The first part
follows from b) with k = L___. |

max

5.4, Nested Factorization in the Simplex Method

As was discussed earlier (see section 3) a representa-
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tion of the inverse is needed in a revised Simplex Method to
perform two kinds of calculations: the backward and the for-

ward transformations.

5.4-1 Backward Transformation

In section 3.1 the backward transformation for the 1

level factorization
(3.3) I=CcCV~ -8, B

is considered as consisting of three steps:

Step 1: Calculate C = CV.1
Step 2: Calculate 1 = 6%@1
Step 3: Calculate I = IIB;‘1

In particular, when all level 1 blocks are feasible,

Step 1 is not required. For Step 3 we had

and

=
I

(ﬁi - qui)Bgl , 1= ...k (relation (3.5))

If a factorized representation is used for'Bi, i.e.
-1 5-1 a-1 -1

Bi = Vi By~ By , then by letting

. 1
1

C; = (ni - HoAi) (5.5)
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we obtain

C o=l L a-12-1 -1
I; = C,B;” = C;V] BwiBNi (5.6)

i.e. the same relationship as in (3.3). Thus it is possible to

use the above three steps for the calculation of Hi. "Notice though

by (5.5) that now all components of Ci may be non-zero and Step 1 has’

to be performed no matter whether in Phase 1 or in Phase 2. Other-
wise everything is as before and the same approach can be extended

to higher levels of factorization.

Proposition 3: If k is the number of arés in a path of the as-

sociated tree, then to calculate the components of the price vec-
tor I needed to price out the coiumns corresponding to that path,
only the k inverses and k - 1 V matrices associated to it are re-

quired in the backward transformation.

Proof: By induction. It is true for k =1 and k = 2, i.e. no fac-
torization and level 1 factorization. Assume it is true for
k =1,...,2, £ > 2. Let a subindex O denote the common rows and a
subindex i the rows in block i for the level 1 factorization.

Partition a column d according to this into

Then if 4 belongs to block 1 di =0

for j = 1,...,k , § #1

and hence th =11, d, + Hi d.
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Thus to compute th for columns associated with an arc
of length k = 2 + 1 we have to compute Hodo and nidi. To com-
pute Hodo, n, is required, for whose calculation only the level
1 WB inverse is needed. To compute nidi is equivalent to priec-
ing out the columns associated with a path of length k - 1 = £
in the associated tree of the block basis Bi’ and hence by the in-
guctive assumption only & inverses and £ - 1 V matrices are

needed to calculate the components of the ni vector required for

it. Thus it is also true for k = £ + 1. |

5.4-2 Forward Transformation

As discussed in section 3.2 the forward transformation for

a column d from block i can be expressed as

- A-17-17-1
(3.8) d=971B]'B{Ma .
Let d = B;ld . Then by (1.6) and (5.2)
A~
a; = B;lq,
dg = do - Ajdy (5.7
dj =0 j=1,...,k , J #1

d; = By d, | (5.8)

1

has to be calculated. 1If B; is represented in a factorized

form
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Yoo -l. _ 5-15-1-1
d; = ByTd; = VsTBy By dg
1 1
- vtlag,lst%d. (5.9)

i 171
1 1J

where gij is the basis of the J-th block in the factorization of
Bi’ to which di is assumed to beloneg. But this is the same re-

lation as for the level 1 forward transformation and hence it is
possible to continue on the same lines for higher levels of fac-

torization.

Proposition 4: To update a column corresponding to a path of length

k, only the k inverses and k - 1 V matrices associated with that path

are required in the forward transformation.

Proof: By induction. From the no factorization and the 1 level
factorization it is true for k = 1 and k = 2. Assume it is true
for x = 1,...,&4 , 2 > 2. Then for k = £ + 1, by relations (3.8)
and (5.7) a column d can be updated from knowledge of the level

1 WB inverse, V matrix and one block inverse. The latter is uéed

S -1
to calculate di = Bi

di (see (5.8)). But this corresponds to up-
dating a column associated with a path of length k = 1 = £ in the
associated tree of the block basis Bi’ and hence by the inductive
assumption only & inverses and £ - 1 of the V matrices are required.
Thus together with the level 1 WB and V matrix a total of £ + 1 in-
verses and £ V matrices are used. .°'. True for L —» true for

L+ 1. ||

5.4-3 Observations

Consider a multilevel basis factorization where for L
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levels each level £ block basis can in turn be factorized giv-
ing rise to two or more level £ + 1 block basis's. ,Then-the num-
ber of arcs in the associated tree, and hence the number of in-
verses and matrices in the total factorized representation, in-
creases exponentially with L. But according to propositions 2
and 4 the effort to update the total factorized representation
of the inverse, as well as that to update an incoming column in
terms of a basis, increases only linearly, since it involves only
the terms associated with one path. By proposition 3 the same

is also true for éhe work on the backward transformation when
pricing out only the columns associated with one path.

Observe that the advantages of factorization do not stem
from its giving a more economic representation for the inverse
(which is certainly not the case) but from the fact that only a'
fraction of the total information needs to be used on any itera-
tion. Thus, if this fraction involves a smaller number of non-
zeros than a general representation it will be of advantage to

use the factorized representation.

5.5. The General Algorithm Using Nested Factorization

Recall the Coupling Constraints Algorithm developed in
3.4-2. In Step 1 all block problems are optimized. Then in
Step 2 the PBP strategy is used to take advantage of the reduc-
tions in BTRAN that are made possible by the use of a factorized
representation of the inverse (i.e. to price out columns asso-
ciated with one path only). In a generalization to nested fac-

torization both steps require or allow modifications.
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For Step 1 notice that in the nested case each block
problem is a block-angular linear problem with coupling con-
straints and can be solved by using the Coupling Constraints
Algorithm. A

For Step 2 it is possible to specialize the PBP strategy
to pricing out columns in only one path, or in some subset of
the paths. Although pricing out columns in only one path at a
time would minimize time per iteration, it could tend to increase
the number of iterations if there are too many paths, because
the candidate is selected from a small subset of the non-basic
columns, and hence is likely to be dropped later on.

Probably the best would be to select a set of complete
paths whose set of arcs and nodes form a subtree, and to price
out non-basic columns associated with it. As a straight exten-
sion of Proposition 3 it is possible to show that only the in-
verses and V matrices associated with that subtree will be re-
quired in the backward transformation. Moreover, if suitable
criteria exist for what constitutes a "good" candidate (not only
an improving one) it is possible to start pricing out columns
on one path and calculate only the components of the II's needed
for it, and continue with columns on other paths, one path at a
time, calculating I components when needed, and stopping when-
ever a "good" candidate is found. Based on limited experience
with GUB there is evidence that the standard simplex criteria
when applied to the above restricted set of columns will select
good candidates for the full problem.

In the following the use of such a PBP strategy is as-
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sumed. Then the General Algorithm for the nested case can be

stated in terms of the next two steps.

Step 1: On each path solve the block problems associated
with its last arc (i.e. those that are not factorized further).
If one such problem is infeasible STOP, the whole problem is in-
feasible. Otherwise set & = Lmax and go to Step 2-a.

Step 2: 2-a) Solve each level % blockangular block prob-
lem using the PBP strategy. If some problem is infeasible 3TOP,
the whole problem is infeasible. Otherwise go to 2-b.

2-b) If 2 > 1 set £ = 2 - 1 and return to 2-a. Other-

wise the solution is optimal (or unbounded, if the problem is

unbounded).

5.6. Application to Staircase Problems

5.6-1 The Staircase Problem

Consider the problem

max Z
=0
s.t. Z + clxl + 02X2 + C3X3 + e + Can
A1X1 = bl
(sp) DX, + ASX, = b,
DX, + A_X = b

2%2 T A3 3
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where for i = 1,...,n

, 1 . X n. trix
Al 1ls a my n; ma
X. is an, x 1 matrix
i i
.1 . X matrix
bl i1s a my 1
. 1is X n. matri
C1 is a 1 n; matrix
and for i = 1,...,n - 1
D. is a m. X N, trix
1 i1+1 1 ma

The above problem is called a Staircase Problem (SP),
because of the staircase pattern of the non-zeros in its matrix.

The SP can be expressed more compactly as

i
min C.X,
iz 4
st A%y =0y
Di—lxi—l + AiXi = by i=2,...,n
X, >0 i=1,...,n
Relations Di-lxi—l + AiXi = by will be referred to as the

i-th "stage" or "time period"; Alxl = b, as the first stage

(or time period).

5.6-2 Nested Factorization for the Staircase Problem

Observe that for any stage (except the first and the last),
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the variables with non-zero coefficients can only have non-zero
coefficients in the preceding and the following stage. Hence
if one stage is removed, say the k-th, then problem SP reduces

to two smaller independent staircase problems, i.e.

k-1
min izl CiX;
s.t =
A%y =By
Dy 1% * AyX; = by i=2,...,k-1
(SP,) X 20 i=1,...,k-1
and
]
min C.X
izg *+t
s.t. Di—lxi-l + Aixi = by i=k+1,...,n
(sP,) X; >0 i = K,...yn .

Instead stage k together with the objective row can be
considered as the common rows (coupling constraints) of a block-
angular linear problem with coupling constraints which has two
blocks; the first block is formed using stages 1 through k - 1
and the second using stages k + 1 through n. Each of these, in
turn, has a staircase structure of lower dimensionality, which
can also be treated in the same way, leading to an application of
nested factorization.

In particular, by choosing at each level of factorizaticn
the stage in the "middle" of the staircase as the coupling stage,

it can be ensured that each resulting block problem will have
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a stalircase structure with at most half the number of stages.

Proposition 5: Let i for iI <ic< iF be the indices of the

stages of a staircase problem, where i_ is the index ‘of the

I

first stage and i_ the index of the last stage. Then if the

F
stage with index i, = i; + [(ig - i; + 1)/2] is removed (where

|X| stands for integer value of X), each one of the two resulting
staircase problems with indices'ilvf'i_g i1l and 1, +'1°< 1<ig

has at most half the number of stages in the original one.

Proof: If (iF - iI + 1), the number of stages in the staircase,

is even then [(iF -i_+1)/2] = (iy - iI +1)/2

I F

and

i.e. half the number of stages of the old one. The second must
have one stage less and hence also less than half those of the

old one. IF (iF - i, + 1) is odd, then the number of stages in

I
the first resulting staircase is

(ik -1 - iI + 1) = [(iF - iI +1)/2] < (iF - iI + 1)/2
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and in the second

(iF - (ik + 1) +1) = (iF - ik) = (iF -.(iI + [kiF - iI +1)/2]))

but iF - iI is even, so
i, -1
) PR F~ 1
= (1F - i (1F 1I)/2) = 5
<1F-lI+1. ||
2

Proposition 6: If N is the total number of stages of a stair-

case problem which is factorized, using the rule in Proposition
5 to choose the coupling stage, until in all branches there are
single stage block problems, then the maximum level of factor-

ization is given by

Comment: A staircase problem with N = 31 time periods would
have four levels of factorization.

Proof: Consider the values of N for which ok <N < 2%*1 for
k = 1,2... . For different values of k this covers all N > 2,
which are of interest here. For k = 1, 2 < N < 3, Lmax =1

and it is true. Assume it is true for k = 1, 2,...,4, & > 1.
. 241 L+2
Then for & + 1 consider the values of N such that 2 < N <2 .

Selecting a coupling stage as in Proposition 5, each resulting
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block has Ni < 2£+1,‘i = 1,2, and by inductive hypothesis these

can be factorized giving a maximum level of factorization of 2,
and hence a total of £ + 1 is obtained for k = & + 1. .'. true

for k < L==ptrue for k < £ + 1. ||

5.6~3 Observations

From the developmenf in section 5.6-2 it is apparent that
the algorithm in 5.5 can be applied to solve staircase problems.
Observe that: ‘

1) The Working Basis has, for each factorization,
the same number of rows as that associated with the time period.
Thus in the overall-factorization of the inverse there will be
one inverse associated with each time period. About half of
this inverse will correspond to block basis's in the final level
of factorization and the rest to Working Basis's at all levels.

2) The maximum level of factorization is given by
Lmax = [1g N/1g 2] ( by Proposition 6). Thus to price out the
columns of any time period, only [lg N/lg 2] inverses will be
required for the backward transformation (by Proposition 3).
Similarly for the forward transformation by Proposition 4.

3) To update the factorized representation of the prob-
lem inverse after the replacement of one basic column by another,
at most [1g N/1g 2] + 1 inverses (each of the dimension of a
stage) and [lg N/lg 2] V matrices have to be updated (by Proposi-
tion 2).

4) By the mechanics of the general algorithm, the solu-

tion of an N-stage staircase problem reduces tc the solution of
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about N/2 independent one-stage problems as a first step. As a
second step the PBP strategy is used on the block-angular prob-
lems resulting from linking at each level 2 problems from the

previous level through a coupling stage.

5.6~4 Other Nested Factorization Approaches for Staircase

Problems

Dantzig [5] suggests that every other stage be considered
as blocks of a block-angular problem and the femaining ones as
the common rows; then the Working Basis when formed will have a
staircase structure with only half the number of stages. He
suggests factorizing the WB further along the same lines in a
nested way until only one stage is left. Since in the GBBF
method a WB inverse may be updated by both elementary column
and elementary row matrices, it becomes necessary to develop
formulas to update the factorized representation of the inverse
when a row matrix updates the unfactorized representatioh.
Especially when there are many levels of factorization, it is
necessary to follow the implications of one such update for alf
terms and quantities related to all higher levels of the fac-
torization. Thus the nested updating procedure in this case
can be expected to be more complex than in the approach taken
in 5.6-2.

Observe also that if the first stage in an N-stage stair-
case problem is taken as the common rows, then the resulting
block-angular problem with coupling constraints has only one

block, whose structure is staircase with N - 1 stages. This
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approach leads to a nested factorization with an N - 1 level

of factorization. By the results in propbsition 2, 3 and 4 the
effort for updating the representation of the inverse, or for a
backward transformation or a forward transformation, depends on
the maximum level of factorization, which in this case grows
linearly with N instead of logarithmically as in the approach
taken in 5.6-2. Hence it appears to be less prbmising and will
not be pursued further.

On the other hand, by considering the laét stage of a
staircase basis as a block problem in a block-angular basis fac-
torization, a WB with an N - 1 stage staircase is obtained. By
treating each such resulting staircase WB in the same way this
leads to an N - 1 level factorization. A nested factorization
along these lines was proposed by Saigal [34] for staircase

problems.

5.6-5 Efficiency Considerations

Observe that, as was pointed out in 5.4-3, the advantages
of factorization do not derive from a more economic representa-
tion for the inverse (for, in general, this will not be the case)
but from the fact that only a fraction of the total information
needs to be used on any given iteration, and if this fraction
happens to involve a smaller number of non-zeros (than would a
general representation) it will be of advantage to use the fac-
torized representation of the inverse.

These advantages can be expected to be independent of the

level of factorization whenever only the information correspond-
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ing to one path in the associated tree is required, as for in-
stance for the forward transformation and for updating the inverse;
and also for the backward transformation when only columns
associated with one path are priced out. As the level of fac-
torization increases the number of paths in the associated tree
can be expected to increase exponentially with it, and the col-
umns associated with any one path are likely to constitute a
small fraction of the total. In this case,. although pricing out
the columns corresponding to only one path would be best as re-
gards time per iteration, it may increase too much the total
number of iterations to solve the problem, because the candidate
is selected from a small subset of the non-basic columns, and
there is high probability of the selected column being dropped
later from the basis.

But if columns associated with more than one path are
priced out, for example those corresponding to some subtree,
then from some level on, say level k, all the terms in the fac-
torized representation of a level k block inverse are required
for the backward transformation. In this case a general repre-
sentation may be more economic fof the block inverses at level
k, limiting the maximum level of factorization to k.

Only extensive experimental tests on a variety of real
problems can show whether or not this limitation is outweighed
by the possible advantages in the forward transformation and in

the updating of the representation of the inverse.
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CHAPTER 6
CONCLUSIONS

A General Block-Angular Basis Factorization (GBBF)
method has been presented together with an efficient procedure
to update the factorized representation of the inverse after
one column replaces another in the basis.

The use of this representation of the inverse in a
revised 'Simplex Method for block-angular linear problems has
the advantage that, though the total number of non-zeroes in
the factorized representation may be higher than for a general
representation of the inverse, only a fraction of these terms
need to be used and updated on any given iteration.

It also allows unifying existing Partitioning and De-
composition methods (not based on the Dantzig-Wolfe decomposition
principle) as variants of a revised Simplex Method using the
GBBF form of the inverse, differing from each other with respect
to the criteria used to select the vector pair to enter and to
leave the basis. This opens the way to extensive testing to
compare these methods on practical problems since only one
computer program has to be written, having the different strategy
options to select the vector pair to enter and leave the bas:is.

The approach is easily extended to nested applications
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and can be applied in particular to the solution of staircase

problems.
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APPENDIX
EXPERIMENTAL RESULTS WITH THE COUPLING

CONSTRAINTS ALGORITHM

In Figures Al and A2 a more detailed information flow-
sheet for the two step Coupling Constraints Algorithm is given
(see section 3.4-2). This algorithm was implemented in a
FORTRAN computer code under the name G-GUB. G-GUB in turn was
developed as an extension of LPM1l, an all in-core FORTRAN linear
programming code written at Stanford by J.A. Tomlin. LPMl stores
the problem matrix by columns packed in a vector of non-zeroes,
a vector of the same dimensions giving for each non-zero co-
efficient its row index, and a vector giving for each column the
position of its first non-zero element in the two above vectors.
The eta file is stored according to the same principle. It uses

an L-U factorization for inverting the basis, followed by product-

form updates.

The G-GUB FORTRAN Code

G-GUB was conceived as an out-of-core code, where at each
time data for one block, matrix and eta file, is held in core in
the form required by LPM1l, while in the meantime the data for
all other blocks is kept on a disk. The working basis inverse,

DO and V are stored in the same way as a block O. Whenever we
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need the data for another block, the one in core is written
out to disk (unless it has not cﬁanged) and the new one is read
in. Due to the packing scheme used by LPM1l, which was designed
as an in-core code, the I-0 operations for G-GUB are somewhat
inefficient. From the viewpoint of anlyzing experimental
results, however, this 1s not serious. For an experimental code
such as G-GUB the time spent on I-0 can be measured, which allows
us to make comparisons on computation times alone, or to have
an estimate of the effect of inefficiencies due to I-0. Because
of this, it was felt that the time involved in coding could be
considerably shortened by adapting an existing LP-code instead
of writing a new one with superior I-0 facilities.
- Other computational characteristics of G-GUB are:

1) Block inverses were inverted whenever N1 new etas
had been added to it since its last inversion, and the same for
the Working Basis. (For tests N1 = 30.)

2) Every N2 iterations the solution‘was recomputed by
lgﬁlBﬁlb. A first step for this is to calculate

1

for each i = 1,...,k, By = B; b,. When doing this the accuracy

-

solving XB

of the computed 81 was checked. If the maximum row error
exceeded a tolerance, the corresponding block basis was re-
inverted even though it was not necessary by the criterion in
(1). At the same time the corresponding Vi = BEICi was re-
computed using the new representation for the inverse. After
this step the Working Basis was reinverted with its recomputed

columns. The accuracy of the Xp thus recomputed was always

found to be good. (For tests N2 = 60.)
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3) All computations were performed on an IBM 360/91 at

the Stanford Linear Acceleration Center (SLAC).

times reported are CPU seconds.

Description of Problems

Three problems were available.

The computing

They are described in

Table 1.
Table 1. Description of Problems
Problem FIXMAR FORESTRY DINAMICO
Total number of rows 325 4ok 417
Total number of columns 452 603 527
Total density 1.8% 1.6% 1.8%
Number of blocks b 6 3
Common rows 18 11 56
Block 1 rows/column/dens'lty 92/11“/6'0% 73/103/6'1% 117/177/3‘9%
. . .
Block 2 730987 2 * w1117 127 1087260/ 2
. 8. 4,
Block 3 57/125/° 9% 69/109/% 9% | 136/192/% 5%
8. .
Block & 85/118/ 7 72/1311/5 7%
12.1%
Block 5 63/89/ ’
.4
Block 6 69/97/ 7
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First Runs

The first experiments, with an early version of the code,
were done to compare solution times of G-GUB and MPS-360. The
results with the two problems available at that time are given
in Table 2. Note that the solution time; of the experimental

first version G-GUB is comparable with that of the commercial

MPS-360 system.

Table 2. Solution Times Using G-GUB and MPS-360

Code G-GUB G-GUB
making first | making first
Problem blocks feasible|blocks optimal MPS—}GO
FIXMAR 22 21 36
DINAMICO 126 113 112

Second Runs

The above times for G-GUB were considered encouraging.
It was felt that for later tests LPM1 should be used as the
standard LP since then the times would not be affected by
differences in the codes and would be directly comparable.
Besides, if G-GUB performed better, it was important to determine
to what degree this was due to the Step 1 procedure, to the

GBBF representation, or to the partial pricing strategy used in
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conjunction with this latter one.

Therefore some slight modifications were introduced to
the code, which allowed us to test different options. These
options were

A) Basis representation using GBBF or the standard

LPM1 LU factorization with product form updates
for the basis of the whole problem.
B) Step 1: Here we considered three options: (1) solving
blocks to optimality, (2) making blocks feasible, or
(3) using standard Phase 1 without treating blocks first.
C) Prieing: (1) Partial Block Pricing (PBP) or (2)
total pricing at each iteration (total).

By a combination of these options the following strategies could

be tested:
Basis s
Strategy Representation Step 1 Pricing
-1 GBBF feasibility PBP
GBBF optimality PBP
1 GBBF optimality total
2 GBBF no PBP
3 GBBF no - total
5 LPM1 no total
5a LPM1 no PBP

Using problem FIXMAR these strategies were compared. The

results are given in Table 3,
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Table 3.

Comparison of Strategies on Problem FIXMAR

Strategy| -1 0 1 2 3 5 5a
|
Total CPU sec 22.12 |21.04 ;25.“5 38.52 | 38.70 | 35.02] 47.65
Core used 156k 156k 5156k 156k 156k 200k 200k
I/0 CPU sec b, 30 2.98 : 4,35 110.99 |10.53 | ~-- --
Total-I/0 i
CPU sec 17.82 [18.06 [21.10 |27.53 [28.17 |35.02| 47.65
Comp. time/ %
Step 2 iter. 3.35 3,46 | 4.42 3.40 4,41 [-- --
Comp. time/ :
LMP1 iter. -- - - -- ~-- 5.15 5.30
Third Run

By this time strategies O and 5 were compared on problem

FORESTRY. The results are given in Table 4.

Table 4. Comparison of Strategies O and 5 on
Problem FORESTRY
Strategy 0 5
Total CPU sec 60.52 91.22
Core used 158k 270k
I/0 11.82 --
Total - Z/0
CPU sec 48.70 91.22
Comp. time/
Step 2 iteration 9.30 --
Comp. time/
LPM] iteration -- 10.1




Analysis of Results

1) With respect to comparable general LP's, the CCA
algorithm can produce substantial reductions in overall computaticn
time for block-angular linear problems with coupling constraints,
as can be seen by comparing the total solution times
for problems FIXMAR and FORESTRY using strategies O (CCA
algorithm) and 5 (general LP).

2) If FPIXMAR is any indication then each one of the three
options in the CCA algorithm helps in reducing the overall
solution time. The best results are obtained when all three
are in effect; in this case we get a reduction by approximately
a factor of 2.

3) Note that strategies 1 and 3 differ only in that
1 makes use of the Step 1 option and this gives about a 25%
reduction»in computation times. This would mean, if it were
true in general for block-angular problems with coupling
constraints, that general LP's could be made more efficient for
-this type of problem by using this strategy.

4) The mean time per iteration was seen to increase
with the number of block vectors in the Working Basis. This
relationship is plotted on Fig. A3 for DINAMICO, for which the
effect is more pronounced dhe to the large number of common
rows. Notice that the mean time per iteration with 45 block
vectors in the Working Basis is about three times that with O.
This effect is due mainly to longer transformation times,
especially in FTRAN, as the number of non-zeroes in the WB

and in the V matrices increases linearly with the number of
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block vectors in the Working Basis, and to an increase in the
frequency of the more expénsive typé 3 updatés. (The more
block vectors in WB the smaller the probability of v, = 0.)
This suggests a strategy modification to reduce the mean
time per iteration. At the end of Phase 1, all block variables
in the Working Basis are treated as paraméters fixed at their
current value. Thus there are no block vectors in the Working
Baslis and V = 0 and we get faster iterations because of the
reduced transformation time. When the number of block vectors
in the Working Basis has again increased to a level similar to
that at the end of Phase 1, the variables treated as parameters
are considered as candidates and their values modified in the
direction to improve the objective function until they reach

their bounds or displace a basic variable.
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