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Abstract 7 

Growth and maturation are processes that are tuned to the external environment an 8 

individual is likely to experience, where food availability, the mortality regime, and events 9 

necessary to complete the life cycle are of special importance. Understanding what influences 10 

life history strategies and how changes in life history in turn influence population dynamics 11 

and ecological interactions are crucial to our understanding of marine ecology and 12 

contemporary anthropogenic induced change. We present a state-dependent model that 13 

optimises life-long energy allocation in iteroparous fish. Energy can be allocated to growth or 14 

reproduction, and depends in the individual’s age, body length, stored energy, and the state of 15 

the environment. Allocation and the physiological processes of growth, storing energy, and 16 

reproduction are modelled mechanistically. The model is parameterised for Atlantic cod 17 

(Gadus morhua); more specifically for the Northeast Arctic cod stock. Growth and maturation 18 

predicted by the model fit well with field observations, and based on a further investigation of 19 

cod reproduction in the model we conclude that the model has the ability to recapture 20 

complex life history phenomena, e.g. indeterminate growth and skipped spawning, and 21 

therefore provides an important tool that can improve our understanding of life history 22 

strategies in fish. 23 

Keywords: Life history evolution, energy allocation, state dependence, dynamic 24 

programming, Gadus morhua. 25 
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Introduction 26 

Energy use may be divided into three broad categories – survival, growth, and 27 

reproduction. These interests are often conflicting as they are crucial for fitness in different 28 

ways. When is an individual predicted to grow to increase future reproduction, and when to 29 

reproduce? A large size often means a high reproductive success, but also a low probability of 30 

survival until reproduction can finally take place. When is growth predicted to be determinate, 31 

and when indeterminate? When is survival probability predicted to influence the optimal adult 32 

size? And in the balance between foraging rate and predation risk; when is an individual 33 

predicted to hide and when to feed (Krebs and Davies 1993)? 34 

For an individual, energy is limited, and these questions represent multiple trade-offs in 35 

several dimensions that may be at work simultaneously. Energy allocation – how available 36 

energy is diverted towards alternative uses – is the mechanism that integrates the trade-offs 37 

through shaping the individual’s growth trajectory. This trade-off is the essential core of life 38 

history theory (Fisher 1930). 39 

Fisheries management is moving towards an ecosystem approach because ecological 40 

complexity confounds single-species management. At the same time, human-induced 41 

contemporary evolution is identified as the driving force behind observed changes in many 42 

marine ecosystems (Stokes and Law 2000; Conover and Munch 2002; Olsen et al. 2004). 43 

Because life history theory is an obvious link between ecology and evolution, it provides a 44 

tool to predict growth, maturation, and behaviour as ecological forcing changes. Alterations in 45 

allocation strategies propagate from individual characteristics via population structure to 46 

ecological interactions within and between species. This implies that life history theory 47 

should be highly relevant for fisheries science, and understanding the logic of life history 48 

theory an integral part of ecosystem management.  49 
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Consider as an example stock–recruitment relationships. Allocation to reproduction earlier 50 

or later in life is likely to influence the entire demographic structure and population dynamics. 51 

Both mature biomass and the stock’s overall egg production will be affected, through changes 52 

in maturity-, size-, and fecundity-at-age. Life history theory is, as such, the mechanistic basis 53 

for stock-recruitment relationships, and therefore central not only in disentangling stock-54 

recruitment relationships today, but also when making predictions in light of fisheries-induced 55 

evolution or climate change.  56 

Intuitively, an old individual should perhaps spend its energy differently from a young one, 57 

and being large at a given age harbours different opportunities than being small. Age and 58 

body length are likely  to influence allocation and should therefore be included as states, i.e. 59 

information the individual has about itself and that may influence energy allocation (Houston 60 

and McNamara 1999; Clark and Mangel 2000). It is common knowledge that individual 61 

condition plays a central role both for growth and reproduction in various fishes (Kjesbu et al. 62 

1991; Burton et al. 1997; Lambert and Dutil 2000). Most organisms in fluctuating 63 

environments rely on stores to balance periods when energy is plentiful with periods of 64 

energy shortage. Fish and other animals often use lipid stores, either integrated in the muscle 65 

tissue (for example clupeids) or in the liver (typical for gadoids). Atlantic cod (Gadus 66 

morhua) belongs to the latter category, and the lipid-rich liver constitutes up to 9% of the 67 

body mass among mature fish (Yaragina and Marshall 2000). There is a close relationship 68 

between stored energy in the liver and fecundity, and total liver energy in a cod population 69 

has been shown to be a good proxy for total egg production (Marshall et al. 1999). Thus 70 

individual condition, interpreted as the amount of stored energy, directly affects reproductive 71 

success and survival. 72 

Earlier life-history models investigating energy allocation in fish have used a fixed rule to 73 

describe lifelong allocation patterns: all available energy was allocated to growth up to a 74 
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variable age at sexual maturation, and a fixed proportion of the energy was diverted to 75 

reproduction from then on to maximise reproductive value (Roff 1983; Law and Grey 1989; 76 

but see also Strand et al. 2002). These models have provided great insight into life history 77 

strategies and the evolutionary dynamics of harvested fish stocks, but time is now ripe to 78 

extend the analyses. Here, we investigate state-dependent energy allocation in a 79 

physiologically realistic model based on the Atlantic cod. Using four discretised state 80 

variables (age, length, stored energy, and food availability), our model allows for 81 

approximately 6.4 million independent values to describe a four-dimensional allocation 82 

hypersurface. In the strict sense, this is also a fixed rule, but the rule is so complex that it 83 

specifies what to do in nearly all situations an individual can encounter throughout life. 84 

Our aim is to formulate a flexible life history modelling tool. The high resolution enables 85 

seasonal patterns, as well as optimal size-, age-, and condition-dependent life history 86 

strategies to emerge, and introduces great flexibility with a sound biological basis into models 87 

of fish growth. The model makes very few life-history assumptions, while letting optimisation 88 

tools exhibit the best patterns of growth and reproduction. This would also be the growth 89 

trajectories supposedly favoured by natural selection, assuming no constraints. We show that 90 

the model fits well with field data and experimental work, and that it recaptures much of the 91 

ecological dynamics of the Northeast Arctic cod stock. In a companion paper, we apply the 92 

same model to analyse skipped spawning behaviour of cod (Jørgensen et al. this issue). 93 

Model description 94 

Purpose 95 

We develop a state-dependent model that mechanistically describes energy allocation to 96 

growth and reproduction in fish. Since energy is a restricted resource, the life-long pattern in 97 

this allocation embodies many of the trade-offs that shape life history. The focus on energy 98 

allocation therefore fulfils the purpose of this model, which is to find the optimal life-history 99 
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under varying external forcing (e.g., fishing mortality, migration, and food availability). 100 

Throughout, we model the energy allocation processes as mechanistically correct as feasible, 101 

while retaining flexibility in how allocation can change with time and state. In this way we 102 

can use dynamic programming algorithms to find the optimal allocation pattern under the 103 

constraints given by the realistic and detailed description of physiology and ecology.  104 

Structure 105 

The modelling approach in this paper uses dynamic programming to find optimal 106 

allocation strategies (Houston and McNamara 1999; Clark and Mangel 2000). The result is a 107 

state-dependent energy allocation rule that is a life history strategy. Thereafter, we run 108 

population simulations of many individuals following the life history strategy. During these 109 

population simulations, age and size distributions emerge and we can assess the implications 110 

of the life history strategy on growth, maturation, reproduction etc. The model is 111 

parameterised for the Northeast Arctic cod stock, which is a long-lived species with 112 

iteroparous reproduction. From their feeding grounds in the Barents Sea, the spawners 113 

migrate in spring to the Lofoten area where spawning takes place. The remainder of the year 114 

is used for growth and to rebuild energy stores. The time resolution of the model is months 115 

(discrete steps), and each month net energy intake is allocated between growth (to increase 116 

body size) and reproduction (building energy stores and later gonads). The optimal allocation 117 

is found by dynamic programming and depends on four states: age (in months, thus including 118 

season); body length (cm); size of energy stores (relative scale); and current feeding 119 

conditions. In the model, we consider only female cod. 120 

Processes 121 

Energy allocated to growth irreversibly increases body length, while stored energy can be 122 

used for spawning (migration and egg production) or for metabolism during times when 123 

feeding conditions are poor (Fig. 1). Density-dependence is not included in the model. 124 

Figure 1 
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Concepts 125 

Optimal energy allocation is determined for each state combination with expected 126 

reproductive value as fitness measure. The result is a highly flexible multi-dimensional 127 

hypersurface that defines a life-history strategy, described by 6.4 million independent points 128 

(each point corresponding to a particular combination of the four states). Because rewarding 129 

analyses are virtually impossible on such amounts of data directly, we simulated populations 130 

of fish realising such life-history allocation strategies to let age-, size-, and condition-131 

dependent patterns emerge at the individual and population level. A series of monthly energy 132 

allocations results in e.g. a time-series of growth, an age at sexual maturation, reproductive 133 

episodes with specific fecundities, and skipped spawning seasons (analysed separately in 134 

Jørgensen et al. this issue). There is no interaction between individuals in the simulated 135 

population, and individuals only have information about the four individual states. Food 136 

availability is auto-correlated in time to allow for more extended periods of 137 

advantageous/unfavourable environment. In the forward population simulation, this is 138 

modelled as a stochastic process. Since optimal strategies may use the predictive power of an 139 

auto-correlated environment to fine-tune allocation strategies (e.g., that a favourable 140 

environment is likely to persist for some time), current food availability was included as an 141 

extra state. 142 

Initialisation 143 

Juvenile fish were introduced in the model at age 2 years and body length 25 cm. 144 

Maximum age was set to 25 years, and the model was solved for body lengths up to 250 cm to 145 

avoid artificial boundary effects.  146 

Input 147 

Growth and maturation data from the literature were used to test parameter values and 148 

general properties. 149 
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Submodels 150 

Details of the relationships defining the model are given below, followed by specific 151 

parameter values chosen to represent the Northeast Arctic cod stock. 152 

Individual physiology 153 

Body mass is divided into two compartments: soma and energy stores. Soma Wsoma(L) (g 154 

wet weight) includes systematic structures such as skeleton, internal organs, the neural 155 

system, a minimum amount of muscle mass, and for which growth is irreversible. Additional 156 

energy may be stored above this level for reproduction or to enhance survival during periods 157 

of food shortage. Because weight usually increases with length with an exponent slightly 158 

above 3, the length-specific somatic weight (with no energy stores) can be written as function 159 

of W∝L3+ε where ε for many species falls between 0.1 and 0.4 (Ware 1978): 160 

(Eq. 1) ε
std

ε3
min

soma 100
 )(

L
LKLW

⋅
⋅

=
+

  , 161 

where Kmin is the minimum Fulton’s condition factor K = W·100·L-3, where weight is 162 

measured in g wet weight and length in cm (the resulting number varies around 1.0 and 163 

describes the fatness or body condition of an individual). For a given length, Kmin represents 164 

the minimum body mass required for structures; death by starvation can be incorporated to 165 

occur at Kmin or with increasing probability as Kmin is approached. Similarly, there is a limit 166 

for how spherical the shape of an individual can be, and Kmax is the maximum Fulton’s 167 

condition factor that includes Wsoma and full energy stores. This maximum reflects the 168 

physical limitations imposed by anatomy and the need to maintain other body functions while 169 

carrying stores, and in this model stores cannot be increased above the level set by Kmax. For 170 

ε ≠ 0, Kmin and Kmax must be specified for a given length Lstd (cm).  171 
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Energy is normally stored partly as proteins by increasing muscle mass, and partly as lipids 172 

either embedded in the muscles (common for salmonids) or stored separately in the liver 173 

(typical for gadoids). The average energy density of these energy stores combined, ρΕ (J⋅g-1), 174 

has to be known. We assume that this density is constant, meaning that muscle proteins and 175 

lipids are stored at a constant ratio above the minimum muscle mass included in Wsoma. When 176 

the amount of stored energy E (J) is known, total body mass W (g wet weight) can be 177 

calculated as: 178 

(Eq. 2a) 
E

soma )(),(
ρ

+=
ELWELW   , 179 

where E has to be less than or equal to the maximum energy that can be stored, Emax (J): 180 

(Eq. 2b) ε
std

ε3
E

minmaxmax 100
)(

L
L)-K(KLE
⋅

⋅ρ
⋅=

+

  . 181 

Energy expenditure is calculated according to the bioenergetics model by Hewett and 182 

Johnson (1992). Metabolic rate (MR; J·t-1) is the product of the standard metabolic rate (SMR; 183 

J·t-1) and an activity parameter ActStd to include a routine level of activity: 184 

(Eq. 3) Std1Std
1),( ActELWActSMRMR ⋅⋅κ=⋅= β ,       ActStd > 1  . 185 

Here, κ1 (J·g-β1·t-1) is the coefficient and β1 mass exponent of the allometric function. 186 

Environment 187 

Food intake φ (J⋅t-1) is determined by food availability in the environment and a measure of 188 

body size (body mass W (g) or body length L (cm)). A stochastic function χ and seasonal 189 
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cycles C(t) can be incorporated to account for environmental variability in food availability. 190 

Feeding intake would thus be  191 

(Eq. 4a) 2),()(χ)( 2
β⋅κ⋅⋅=φ ELWtCW   ,  or 192 

(Eq. 4b) 3
3)(χ)( β⋅κ⋅⋅=φ LtCL   . 193 

where 2),(2
β⋅κ ELW  and 3

3
β⋅κ L are average food intake for a given body mass or body 194 

length, respectively. Typical values for the allometric exponents in fish are β2 ~ 0.8 and 195 

β3 ~ 2.5 (Schmidt-Nielsen 1984).  196 

Energy allocation 197 

For every time-step, a proportion u(a,L,E,φ) of net energy intake will be allocated to 198 

storage. The variable u is the core of this model, and when optimised over the entire life span 199 

it represents optimal life history strategies. As such, u balances the trade-off between growth 200 

and reproduction, and as such also integrates the effects of natural and fishing mortalities and 201 

the environment. Given u, the new state value of the energy stores in the next time-step is 202 

(Eq. 5) store)()()|1( δ⋅−φ⋅+=+ MRutEutE   ,    E ≤ Emax  . 203 

Here, δstore is the assimilation efficiency for the conversion of ingested energy to stores. 204 

The concept of the metabolic rate and the relationship between stored energy and spawned 205 

eggs embody energy losses at later steps; therefore this value is commonly higher than the 206 

assimilation efficiency for growth of somatic structures (δgrowth) below. The proportion (1 – u) 207 

is allocated to somatic growth to a new length L(t+1| u) 208 
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(Eq. 6)  ( )
ε+ε

ε+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ρ⋅
⋅⋅⋅−φ⋅−

+=+
3

1

Smin

stdgrowth3 100δ)()1(
)(|1

K
LMRu

tLutL ,   209 

                                                                                 L(t+1) – L(t) ≤ ∆Lmax   , 210 

where δgrowth is the efficiency with which available energy is assimilated into somatic 211 

structures, and ρS (J⋅g-1) is the energy density of somatic tissues and typically lower than the 212 

energy density of stores. The equation basically states that growth is allometric with the 213 

exponent (3+ε), and new tissue is laid down according to available food, assimilation 214 

efficiency and the energy density of somatic tissue. The constraint on maximum theoretical 215 

growth rate, ∆Lmax (cm⋅t-1), acts as an upper physiological limit for length increment per time 216 

and can be parameterized from growth studies in food-unlimited immature fish. 217 

Reproduction and migration 218 

Feeding behaviour may be altered during reproduction and possibly also during the 219 

migration to and from the spawning grounds. Therefore, the duration of these events must be 220 

explicitly incorporated into the time-structure of the model. The time required for the 221 

migration TM (t) is the migration distance DM (m) divided by the swimming speed through the 222 

water masses: 223 

(Eq. 7) 
)( CS

M
M UU

DT
+

=   ,  224 

where US (m⋅t-1) is the average or typical swimming speed during the migration and UC 225 

(m⋅t-1) the speed of possible currents that have to be taken into consideration. If UC ≠0 or the 226 

migration route differs to and from the spawning grounds, TM and the energetic cost of 227 
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migration EM (J) have to be calculated separately for each direction. For species migrating in 228 

groups or schools, US will often be identical for smaller and larger individuals.  229 

The energetic costs of migration EM (J) can then be found from:  230 

(Eq. 8) Mstd

1.5
S4

M 1)(),( TAct
L
UWSMRLWE ⋅⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⋅κ
⋅= ,        EM ≥ 0  , 231 

The expression )1( 15.1
S4 +⋅⋅κ −LU  determines an activity parameter similar to Actstd from 232 

swimming speed and body size. Other formulations can be used, but a function on this form 233 

proved to capture the dynamics of both body length and swimming speed in empirical data for 234 

Atlantic cod (Strand et al. 2005) and other fish species (Nøttestad et al. 1999).  235 

Stored energy is eventually spawned, and total egg production b is proportional to invested 236 

energy (Marshall et al. 1999). If migration takes place, energy to fuel migration from 237 

spawning grounds back to feeding areas has to be retained, although this constraint may be 238 

modified to allow for semelparous life history strategies.  239 

(Eq. 9) ( )M5)( EEEb −⋅κ=   . 240 

Mortality 241 

A flexible mortality regime incorporating length-, size-, or age-specific natural mortality 242 

M, size- or stage-selective fisheries mortality F and additional mortality during migration and 243 

spawning MS can be specified. Mortality rates (t-1) are summed and survival probability S 244 

over a discrete time interval T (t) is then given by: 245 

(Eq. 10) )( SMFMTeS ++−=   . 246 
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If death by starvation is included, the above equation will apply for E > 0, while S = 0 247 

when E ≤ 0. Details of the mortality regime used for calculations in this paper are given below 248 

under the heading Parameters for the Northeast Arctic cod stock. 249 

Optimisation algorithm 250 

Optimal life-history strategies were optimized using dynamic programming (Houston and 251 

McNamara 1999; Clark and Mangel 2000). Models of this type optimise a fitness function by 252 

backward iteration through an individual’s life history, starting at the maximum age and 253 

constantly assuming that the individual acts optimally at every decision point in its future life. 254 

A central point is that such models separate between the information available to the 255 

individual (here its states) although other factors may affect its success (for instance the 256 

development in food availability). Dynamic programming then finds the best response, 257 

conditional on the information known by the individual, and averaged over possible 258 

outcomes. The optimisation problem considered here is thus to find the allocation to 259 

reproduction u(a,L,E,φ) that maximises future expected reproductive value V(a,L,E,φ) 260 

discounted by survival probability S for every combination of the four states (age a, body 261 

length L, energy store E, and environment φ): 262 

(Eq. 11) 263 

( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧

++φ+++⋅φ+φ⋅=φ ∑
+φ

)()1(),|1(),|1(,1()(|)1(max),,,(
)1(

EbtutEutLaVttPSELaV
t

u
  . 264 

Here P(φ(t+1)|φ(t)) is the conditional probability of food availability in the next time step 265 

given food availability in this time step. To find mean expected fitness one has to take the 266 

sum over all possible states of food availability at time t+1. During the spawning season, 267 

fitness values for both migrating and non-migrating individuals were calculated, and the 268 
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option yielding the highest fitness value was stored. 269 

Parameters for the Northeast Arctic cod stock 270 

The parameters below are selected to describe the physiology and ecology of the Northeast 271 

Arctic cod stock (summarised in Tab. 1). The time resolution is months to allow for seasonal 272 

variations in allocation patterns.  273 

Metabolic rate and food intake 274 

The equations for metabolic rate have been parameterised for Atlantic cod by Hansson et 275 

al. (1996). At an ambient temperature of 5 ºC, and with a standard activity level set to 276 

ActStd = 1.25 (Hansson et al. 1996), monthly metabolic rate MR (J⋅month-1) was: 277 

(Eq. 12) MR = SMR·ActStd = 2116·W(t)0.828
 , 278 

where SMR is the standard monthly metabolic rate (J⋅month-1). 279 

Food intake at 5 ºC was calculated according to Jobling (1988):  280 

(Eq. 13a) 408.2276)χ()( LtL ⋅⋅=φ   , 281 

by introducing additional stochasticity of the environment χ(t), auto-correlated in time and 282 

given by:  283 

(Eq. 13b) ( ) 2
121 1)1()( CNCtCt −⋅⋅+χ−−χ⋅+χ=χ   , 284 

where N is a random number drawn from a standard normal distribution N(0,1), C1 = 0.9 is 285 

the auto-correlation coefficient, C2 = 0.15 scales the variance, and χ  = 0.75 is the mean of the 286 
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stochastic distribution. The feeding equation 13a was obtained in farmed cod fed to satiation 287 

(Jobling 1988) and χ  = 1 would correspond to the same feeding level in the model; by setting 288 

χ  = 0.75 the mean feeding intake in the model is 25% less than for the farmed cod. Cod 289 

utilise many different prey species and can switch during unfavourable periods; there is also a 290 

maximum feeding rate that sets an upper limit for energy intake; for these reasons χ(t) was 291 

constrained to fall between 0.3 and 1.5.  292 

Growth 293 

We used ε = 0.065, which was found from a log-log regression between mean length and 294 

weight for Northeast Arctic cod age-classes 1-12 measured in the field over the period 1978-295 

2000 (ICES 2003). Maximum and minimum condition factors were set to Kmin = 0.75 and 296 

Kmax = 1.25 for a standard length of Lstd = 70 cm; see Appendix 1 for justification. Maximum 297 

length increment was set to ∆Lmax = 18 cm·year-1 and is a constant independent of length in 298 

this model, since field and experimental data show that length-growth is typically linear with 299 

time for food-unlimited immature cod, and decreases thereafter as a result of allocation to 300 

reproduction (e.g. Jørgensen 1992; Michalsen et al. 1998). 301 

Energy stores 302 

Together, muscle and liver stores vary between Kmin and Kmax, and the average energy 303 

density of full stores can be calculated provided that we know the energy content and relative 304 

contribution of each tissue type. Lipids are stored primarily in the liver, and the liver 305 

condition index (LCI) is liver weight expressed as percentage of total body mass. LCI reaches 306 

maximum values just prior to spawning; maximum monthly mean values for the Northeast 307 

Arctic cod stock are typically 7-8 % in early winter if food is abundant (Yaragina and 308 

Marshall 2000). A maximum value that can be obtained by the most successful individuals 309 

may exceed the average and was therefore set to LCImax = 9%. Total liver energy density 310 
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(LEC; J⋅g-1) of full lipid stores in the liver is then given by (Lambert and Dutil 1997; Marshall 311 

et al. 1999): 312 

(Eq. 14) ( ))48.0(52.04 max110477.2 −−−⋅⋅= LCIeLEC   . 313 

The remainder of the weight increase due to storage is increased white muscle mass, which 314 

has an energy density of 4130 J·g-1 (Holdway and Beamish 1984, their table V). The average 315 

energy density of full stores can then be calculated to be ρΕ = 8700 J·g-1. For comparison, 316 

whole body energy density, which includes all tissue types and not only the lipid-rich energy 317 

stores, peaked at 7000 J⋅g-1 in a study of the chemical composition of cod (Holdway and 318 

Beamish 1984). The energy density of somatic tissues was furthermore calculated to 319 

be ρS = 4000 J⋅g-1 from whole body energy content minus the liver for cod reared at 5 ºC in a 320 

study on chemical composition analysis of Atlantic cod (Holdway and Beamish 1984, their 321 

tables II, III and VI).  322 

It is difficult to estimate energy loss in metabolic reactions, especially when the ingested 323 

molecules are only moderately rearranged before e.g. becoming part of the animal’s stores. In 324 

general, half the energy in food can be made available as ATP (adenosine triphosphate), and 325 

maximum muscle efficiency (energy in ATP versus physical work done) is around 0.45 326 

(Alexander 2003), but we have not been able to find more exact determinations of overall 327 

metabolic pathways of relevance to this model. We set the proportion of ingested energy that 328 

was preserved when stored to δstore = 0.4. This value is relatively high because lipid and 329 

protein storage requires few biochemical rearrangements compared to somatic growth 330 

processes, and δstore accounts only for energy lost from ingestion to storage; energy losses 331 

during metabolism and production of eggs is taken into account in the empirical relationships 332 

in eqs. 9 and 12. Assuming further that the efficiency in converting energy from stores to eggs 333 
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is also 0.4, and that growing somatic structures such as bones and neural tissue is only half as 334 

efficient as the entire process from ingestion to egg production, we ended up with 335 

δgrowth = 0.08 of the energy being preserved when used for somatic growth. These parameters 336 

were chosen also based on predicted growth patterns in terms of length and weight in the 337 

model.  338 

Migration and spawning 339 

Each January fish can either start migration in order to spawn, which occupies January 340 

through May, or stay at the feeding grounds. Atlantic cod eat little or nothing during the 341 

spawning season (Fordham and Trippel 1999). This has been simplified in the model, where 342 

there is no net gain in energy for spawning fish (φ(W) = SMR·ActStd). For calculations of 343 

energy consumption during spawning migrations, we used κ4 = 320 cm·s1.5·m-1.5 (Strand et al. 344 

2005), US = 0.3 m·s-1 (Brander 1994), and UC = 0.1 m·s-1 (Brander 1994). Because the current 345 

flows north along the Norwegian coast, (US + UC) was used for estimating required time for 346 

the southward migration, while (US – UC) was used for the migration north. The migration 347 

distance DM = 7.8·105 m was measured on a nautical map. The required energy for migration 348 

was subtracted from the balance in one month, although the migration may take longer. 349 

Stored energy was, for simplicity, spawned in one batch in March. Although there are 350 

indications that cod may adjust their spawning intensity between years to compensate for 351 

previous reproductive investments (Kjesbu et al. 1996), all stored energy except that required 352 

for the northbound migration was used for egg production in this model. Introducing a 353 

variable spawning intensity would mean to include one more trait in the model; deemed too 354 

complicated at present it suggests a potential direction in the future. In eq. 9, κ5 was set to 355 

0.407⋅Plipids (Marshall et al. 1999), where Plipids = 0.63 is the proportion of total energy stored 356 

that is stored as lipids in the liver and can be derived from the considerations on energy 357 

densities in different tissues above. 358 
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Mortality 359 

Growth and maturation in the model are very sensitive to the choice of mortality regime. 360 

The mortalities in the spawner and the feeder fisheries were chosen to lie between the historic 361 

situation (before the onset of trawling), and the current harvesting regime. In evolutionary 362 

terms, this would imply that the resulting life history is partly adapted to the new and higher 363 

fisheries mortalities (either through contemporary evolution or through phenotypic plasticity 364 

that has evolved in response to variable mortality patterns in the past). The simulations in this 365 

paper used the following mortalities (all rates per year): natural mortality M = 0.25, increased 366 

mortality during the spawning/migration period MS = 0.1, spawner fisheries mortality 367 

FS = 0.22, and feeder fisheries mortality FF = 0.20. The spawning season lasts five months in 368 

this model, so annual mortality rates affecting only spawning individuals was spread evenly 369 

over these five months. The probability of surviving the next month was thus 370 

[ ]5/)(12/ SS FMMeS ++−=  when at the spawning grounds and 12/)( FFMeS +−=  when in the Barents 371 

Sea (from Eq. 10). The sensitivity to and effects of different mortality regimes are analysed 372 

together with skipped spawning in a companion paper (Jørgensen et al. this issue). We have 373 

not specified any size-dependent mortality. 374 

Initialisation and constraints 375 

The model starts from cod age 2, at which individuals were initiated with a length 376 

Lmin = 25 cm (Helle et al. 2002) and 30% energy stores in the forward simulation model. 377 

Maximum length had to be defined for the dynamic programming and was set to Lmax = 250 378 

cm (Brander 1994; Svåsand et al. 1996); this is only a technical limit that has to be well above 379 

maximum lengths observed in cod to avoid boundary effects. The model does not incorporate 380 

age-specific rates of mortality (i.e. aging) apart from a maximum age of 25 years.  381 

Many of the parameter values above can be used for other cod stocks. Mortalities and 382 

details regarding the spawning migration vary between stocks and have to be changed. The 383 

Table 1 
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physiology remains the same, except for the temperature dependence of food intake (Jobling 384 

1988) and metabolic rate (Hansson et al. 1996).  385 

Results 386 

Comparisons with field data 387 

We illustrate how growth in the model compares with field data from the Barents Sea and 388 

the Lofoten area for the period 1978-2000 (Fig. 2; ICES 2003). To obtain the model’s 389 

prediction of growth, a life history strategy was first found by optimisation using a 390 

representative set of parameters including natural and fisheries mortalities. The life history 391 

strategy was then simulated in an artificial population where population dynamics as well as 392 

patterns of growth and reproduction emerge. The desired individual and stock properties were 393 

recorded from the simulation; in this case weight- and length-at-age. For all ages, mean 394 

weight- and length-at-age predicted by the model fall within the range of observed mean 395 

weight- and length-at-age from field data, and there is no systematic bias. 396 

The model also predicted the proportion of the stock that would be mature-at-length and -397 

age (Fig. 3a and 3b, respectively). Mean length at 50% maturation was 78 cm and the 398 

corresponding age 7.5 years. For comparison, field data on the proportion mature-at-age from 399 

Lofoten and the Barents Sea combined (ICES 2003, their table 3.5) is also shown (Fig. 3b) 400 

and does not deviate notably from the model’s predictions. The correspondence between the 401 

model and field data in terms of growth and reproduction forms the basis for further 402 

comparisons between the model and the Northeast Arctic cod stock. 403 

Individual trajectories of growth, allocation, and reproduction 404 

We provide a more detailed picture of how allocation between growth and reproduction 405 

shapes the life history of cod, by showing growth trajectories in terms of length- and weight-406 

at-age, energy allocation, condition, food availability, survival probability, and the temporal 407 

Figure 2 

Figure 3 
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pattern of reproduction for one particular individual cod (Fig. 4). As immature, this individual 408 

prioritised growth, and length growth was almost linear with time (Fig. 4a). Allocation to 409 

stores was low, and only minor energy reserves were kept to balance the risk of starvation 410 

(Figs. 4b-c). In anticipation of reproduction, allocation shifted from growth to stores at age 7, 411 

approximately one year prior to the first spawning migration (Fig. 4b). The energy stored 412 

during this period prior to reproduction is later used for spawning migration and gonad 413 

development. As a consequence of increased allocation to stores, length growth slowed down 414 

and the condition factor increased rapidly. Egg production during the spawning season is also 415 

shown (Fig. 4d). Repeated reproductive events lead to similar patterns throughout the 416 

individual’s life-time: allocation to stores prior to reproduction, rapid weight increase and no 417 

length growth, followed by reproduction. Curiously, this cod invested all its energy in growth 418 

also in some of the years after sexual maturation (e.g., at age 9 and partially at age 13), and 419 

skipped spawning entirely in those years. The phenomenon of skipped reproduction is studied 420 

more closely in Jørgensen et al. (this issue). Food availability (Fig. 4e) also influenced growth 421 

and reproduction. The variable food availability this cod experienced while immature lead to 422 

concomitant variations in growth rate (visible in Fig. 4a). Poor food availability also 423 

coincided with skipped spawning at age 13 and age 19. Survival probability until a given age 424 

dropped faster when at the spawning grounds since the combined mortality from fishing and 425 

reproduction is higher than the fishing mortality at the feeding grounds (Fig. 4f; note the 426 

logarithmic axis). 427 

Fecundity will vary with the individual’s size, its stored energy, and the size-dependent 428 

energetic cost of migration. Some relations with fecundity are shown to visualise these effects 429 

(Fig. 5). Maximum and average fecundity were increasing with age, but older individuals 430 

were also showing a higher variance (Fig. 5a). This is due to two reasons. First, a higher age 431 

will per se reduce the importance of growth and will tend to favour reproduction. Because of 432 

Figure 4 

Figure 5 
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the terminal age in the model, the expected future lifespan is lower at higher ages. This 433 

reduces the value of the future component of reproduction relative to the present, meaning 434 

that energy would best be used for reproduction. In economic terms, reproduction is low-risk 435 

instantaneous liquidation of available capital (stored energy), while growth is an investment in 436 

the future, subjected to a pay-off that is becoming increasingly more risky with higher age (or, 437 

in terms of the strategy, the devaluation rate is increasing with senescence). Second, older 438 

individuals are usually larger and will thus spend relatively less energy for the migration. This 439 

gives them more leeway than smaller fish, and while small fish were forced to have full 440 

energy stores to spawn, spawning fish of larger size would show higher variance in their 441 

stored energy. 442 

The relationship between weight and fecundity was also highly variable (Fig. 5b), although 443 

less so for small fish (up to 7 kg) and for the very few large fish that were realised in the 444 

simulated population. The same trend was visible for the relationship between fecundity and 445 

length (Fig. 5c). It thus seems that age, weight, and length are all poor predictors of fecundity 446 

when used alone. Liver weight turned out to be a better predictor of individual fecundity (Fig. 447 

5d). The variance around this relationship was highest when liver weight was low, because 448 

small individuals with lipid-rich livers and a starved larger individual can have the same liver 449 

weight. In the model, liver energy content is the proximate mechanism that determines egg 450 

production; the variance around the relationships results because individuals in the population 451 

differ in age, size and stored energy (Fig. 5a-d).  452 

Stock and recruitment 453 

The picture looked somewhat different for egg production at the population level (Fig. 6), 454 

since variation at the individual level may cancel out or become amplified by correlations 455 

between individual states in the population. Variance was highest when plotted against total 456 

biomass of all sexually mature individuals (coefficient of variation for linear regression 457 

Figure 6 
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r2 = 0.897; Fig. 6a). Removing sexually mature individuals that did not engage in spawning 458 

removed a lot of the variance (Fig. 6b; r2 = 0.995). Liver weight was an even better predictor 459 

of egg production at the population level compared to its predictive ability for individual cod 460 

(Fig. 6c; r2 = 0.986). When the population’s total egg production was plotted against total 461 

liver weight of only the individuals that were actually spawning, the points fell more or less 462 

onto a straight line (Fig. 6d; r2 = 0.998). 463 

Maturity and fecundity relationships were also influenced by past food availability (Fig. 7; 464 

all values were from January, just prior to the spawning migration in the simulations). As 465 

predictor of mature biomass (defined as all fish that spawned for the first time this year or had 466 

spawned previously), the tightest relationship was obtained by averaging food availability 467 

over the last two years (Fig. 7a). For the stock’s total egg production, the best relationship 468 

was obtained when mean food availability was averaged over the last year (Fig. 7b). The 469 

difference in time scales between these two relationships reflect that building gonads is a 470 

faster process than increasing mature biomass, which relies on both maturation and growth. 471 

Discussion 472 

We present here a model for energy allocation, parameterised for the Northeast Arctic cod. 473 

Since ingested energy can only be used once, the allocation pattern integrates trade-offs 474 

between life-history components and environmental factors and result in individual growth 475 

trajectories and maturation patterns. The model is complex but realistic. It adequately predicts 476 

complex life history phenomena such as indeterminate growth, skipped spawning and 477 

variability in age and size at maturation. 478 

We make three assumptions: (i) that energy can only be used once; (ii) energy allocation is 479 

optimal at every point in life in the sense that it maximises fitness; and (iii) the fitness of an 480 

individual is approximated by its expected future reproductive value (true when density 481 

dependence acts early in life and the population is in equilibrium, Mylius and Diekmann 482 

Figure 7 
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1995). This model makes predictions about life histories from first principles by finding 483 

optimal phenotypes. When compared with data, a fit between the predicted life histories and 484 

those realised in nature makes it likely that the most important assumptions are built into the 485 

optimality model, and that the model turn can be used to formulate or test hypotheses under a 486 

variety of ecological conditions (Sutherland 2005). The model provides a level of detail and 487 

realism that can readily be compared with field and experimental data, and the fit in terms of 488 

both growth and maturation are promising for further comparisons with field observations.  489 

Abstract versus complex models 490 

Models with many parameters, such as the one presented here, are sometimes accused of 491 

being overly complex. Models can be complex in many ways, however. Although our model 492 

is rich in mathematical and mechanistic detail, it has a low level of abstraction. Abstract 493 

assumptions are replaced by a detailed and realistic formulation of energy allocation. We have 494 

aimed at parameters with sound biological meaning and included extensive arguments for the 495 

choice of parameter values. Species- and stock-specific parameters are required to make 496 

predictions about real-world scenarios. The results presented here are quite robust, as the 497 

patterns and results reported in this paper and Jørgensen et al. (this issue) are consistent 498 

throughout a wide range of parameter combinations.  499 

Some of the properties of this model that resemble real-world dynamics, such as 500 

indeterminate growth, variation in age and size at maturation, and skipped spawning, do not 501 

occur if we switch off for instance the temporal variability in food intake. In a life history 502 

model for the Müller’s pearlside (Maurolicus muelleri) stochasticity in the environment also 503 

lead to bet-hedging strategies and a two-year life cycle in stead of reproduction within one 504 

year only (Strand et al. 2002). Environmental variability is inherent in biological systems, and 505 

the observation that several real-world phenomena only occur when sufficient stochasticity is 506 

part of a model suggests that they are adaptations to a variable environment. Furthermore, 507 
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these adaptations affect population dynamics and ecological interactions. This basic insight is 508 

an argument for including stochasticity in models, especially where adaptations are 509 

concerned. Much of the rest of the complexity in this model is built around this stochasticity: 510 

size has to be included as a state because the variable environment will lead to temporal 511 

variations in size-at-age, and storing energy is a means of buffering environmental variation.  512 

Life history optimisation models 513 

This model aptly recaptures complex life history phenomena. Optimisation models have 514 

traditionally predicted determinate growth, where allocation should shift abruptly from 515 

growth to reproduction at a fixed point in life (e.g., Taborsky et al. 2003). The gradually 516 

increasing allocation to reproduction, as seen in the decelerating growth for individuals in our 517 

model, is common in nature but only rarely reproducible in models (but see Kozlowski and 518 

Teriokhin 1999; indeterminate growth is reviewed by Heino and Kaitala 1996). Our model 519 

also shows that cod may skip reproduction in some years, and this phenomenon of skipped 520 

reproduction has to our knowledge not previously been reproduced in models (Jørgensen et al. 521 

this issue). Growth in the model also fits well with observed growth patterns both in terms of 522 

length and weight at age when representative parameter values are used. In sum, we feel 523 

confident that the model behaves well and predicts reasonable and realistic growth and 524 

maturation patterns, and therefore that the results increase our understanding of the evolution 525 

of life history strategies in fish. 526 

In principle, the model (as is typical for dynamic programming models) does not separate 527 

between phenotypic plasticity and evolutionary change – it simply finds the optimal life 528 

history strategies for a given set of parameters. The reaction norm concept describes the 529 

interaction between gene and environment, and is relevant for maturation processes since a 530 

fixed, genetically determined reaction norm can cause maturation to occur over a range of 531 

sizes and ages as the environment changes (Stearns and Koella 1986). The concept has been 532 
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extended to the probabilistic maturation reaction norm as a method to analyse maturation data 533 

(Heino et al. 2002). The rationale behind the reaction norm approach is that size at age, which 534 

naturally reflects past growth rate, should mean more for the timing of sexual maturation than 535 

size or age alone. Since age and length are states, our model includes the phenotypic plasticity 536 

described by the maturation reaction norm concept, and also uses stored energy as an 537 

additional dimension to fine-tune maturation dynamics. 538 

Stock and recruitment 539 

Finding promising proxies for recruitment is essential to successful management of our 540 

marine fish stocks. The exercise undertaken in this paper is a good illustration of how 541 

different proxies behave in a modelled stock where everything is in principle known. 542 

Fecundity is modelled strictly mechanistically, and is proportional to the amount of stored 543 

energy in the liver (Marshall et al. 1998; Marshall et al. 1999). Even though this is a 544 

deterministic relationship with no noise added, various measurable individual characteristics 545 

perform rather poorly as predictors of fecundity. The best predictor at the individual level – 546 

not surprising given the direct link between liver energy stores and fecundity – is liver weight.  547 

The strict upper limit in all the graphs showing fecundity is due to a constraint specified in 548 

the model: individual condition factor could not exceed Kmax. The lower limit of fecundity is 549 

more variable, and emerges from trade-offs between many factors, e.g., at what combination 550 

of age and size should one mature, should one spawn although energy stores are not 551 

completely full, would these considerations be modified by the current availability of food 552 

etc. These trade-offs can be solved by the life history approach taken in this paper, and the 553 

result is that the lower limit of fecundity or total egg production resembles the variance one 554 

can see in real data. 555 

In nature, similar trade-offs determine the maximum fecundity (i.e., the upper limit). For 556 

example, how does a bulging belly influence swimming efficiency or feeding (is there room 557 
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for digestion)? Will large gonads impair the functionality of the swim bladder (Ona 1990)? If 558 

so, what are the potential consequences? To what degree will activity level at the spawning 559 

grounds influence reproductive success? These trade-offs are harder to model because we 560 

know less about them.  561 

By comparing Figures 5 and 6, it is promising to note that proxies at the population level 562 

are better predictors of the stock’s total egg production than individual characteristics. In 563 

other words, the variable demography of the fish stock removes some of the variation inherent 564 

in relationships between individual characteristics and fecundity. A likely explanation for this 565 

is that reproduction is normally determined by a few abundant cohorts (e.g., first-, second- 566 

and third-time spawners). Over time, the variability of these cohorts between years is less than 567 

the total variation between individuals in the population as a whole, and this will tend to 568 

reduce the variance when egg production is plotted as a function of population-level 569 

characteristics.  570 

At the individual level, liver weight was the best proxy, and this proxy performed well also 571 

at the population level. However, excluding the non-spawning part of the population provided 572 

even better predictions than using the total liver weight of the mature population. Skipped 573 

spawners will contribute to the stock’s total liver weight without producing any eggs, and will 574 

therefore be the source of much of the variation. This goes for both the mature biomass–egg 575 

production relationship, as well as the relationship between total liver weight and egg 576 

production. The phenomenon of skipped spawning is studied in greater detail in Jørgensen et 577 

al. (this issue), providing an example application of this model to more complex questions of 578 

ecology and life history. 579 

The influence of density dependence 580 

With the optimisation technique used in this paper, dynamic programming, it is not 581 

straightforward to find optimal life history strategies when a population is regulated by 582 
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density dependence (Clark and Mangel 2000; Houston and McNamara 1999). The model can 583 

be turned into a dynamic game, but this would require a much more complex model 584 

(McNamara et al. 1997). Simulations of population dynamics, however, require that some 585 

regulatory mechanism controls population abundance, otherwise the population would go 586 

extinct or grow exponentially and infinitely. As a consequence, life history allocation 587 

strategies are found by optimisation without density dependence in this model, and the 588 

strategy thereafter simulated in a population where density dependence acts on juvenile 589 

survival. Before we can compare predictions from this model with results from density-590 

dependent optimisation, we cannot with certainty conclude what the effects of density 591 

dependence are. The fit between the model’s predictions and field data suggests that the 592 

model recaptures much of the ecological realism for this stock, even without adaptation to 593 

density dependence. 594 

Alternatively, the life history problem outlined in our model could be solved using 595 

evolutionary modelling techniques that work also under density dependence. Adaptive 596 

dynamics is such a technique (Dieckmann and Law 1996). In practice, making assumptions 597 

about how an evolutionary change in one allocation value would incur correlated changes also 598 

in other values is exceedingly difficult for more than two or a few traits (compared to the 6.4 599 

million values in our model). With this, adaptive dynamics often got stuck in local optima that 600 

prevented further evolution (C. Jørgensen, B. Ernande and U. Dieckmann, pers. obs.). A 601 

second alternative is simulations of evolving population using genetic algorithms and 602 

artificial neural networks to approximate the allocation hypersurface (Huse et al. 1999). These 603 

models are, however, hard to trace: it is hard to ascertain when the neural network formulation 604 

allows sufficient detail in the allocation hypersurface, and whether globally optimal solutions 605 

are indeed found or not. We feel these uncertainties would be harder to accept than any 606 
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potential effects of density dependence, partly also because there is a weak tradition for 607 

including density dependence in models. 608 

In conclusion, there is a promising agreement between field data and the model prediction 609 

of growth and maturation. In addition, the model gives a very realistic appearance of 610 

reproduction and other ecological interactions. Modelling tools such as this one can therefore 611 

be used for large-scale experiments that are logistically impossible or awkward in the field or 612 

lab. Because the entire population – structured by age, size and stored energy – is available 613 

throughout the stochastic simulation of population dynamics, a large array of various data can 614 

be explored in a more experiment-like way (Peck 2004). For instance, the model can be used 615 

to study effects of increased fishery mortalities: is the increasing mortality imposed by 616 

fisheries sufficient to induce life history evolution (e.g., Law and Grey 1989; Heino 1998; 617 

Olsen et al. 2004)? Another example, to which this model has already been applied, is skipped 618 

reproduction in fish (Jørgensen et al. this issue). The life history model suggests that the 619 

counter-intuitive phenomenon of skipped spawning may be more common than previously 620 

believed, and gives us the opportunity to study the underlying logic. The model provides a 621 

tool for large-scale investigations of the life history of cod in different ecological settings. 622 

Life history models, such as the one presented here, is a powerful tool for investigating both 623 

driving forces behind instantiated life history strategies, as well as assessing and predicting 624 

potential changes derived from altered external forcing such as fisheries and climate change. 625 
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Appendix 1 743 

Justification for choice of minimum and maximum condition factors 744 

Growth in the model was sensitive to the choice of minimum and maximum condition 745 

factors. The following reasons for choosing Kmin and Kmax were therefore tightly coupled with 746 

sensitivity tests and comparisons with growth data. In an experiment following individual cod 747 

throughout the spawning season (length 56-87 cm; only females considered here), mean pre-748 

spawning condition factor was 1.39 (range 1.19-1.75), while the average for spent cod was 749 

0.97 (range 0.81-1.13) (Fordham and Trippel 1999). Using these condition factors for Kmin 750 

and Kmax in the model, however, gives higher condition factors and weight-at-age than is 751 

observed for the Northeast Arctic cod stock. This can be partly because eggs swell prior to 752 

spawning by taking up water (Tyler and Sumpter 1996; Fordham and Trippel 1999), which 753 

may artificially inflate condition factors for pre-spawning cod so that they no longer reflect 754 

the true size of energy stores. The extent of water uptake can be illustrated by the fact that 755 

total volume of eggs spawned was on average 150% of post-spawning body volume in the 756 

same study (Fordham and Trippel 1999). Also, cod were fed ad libitum throughout the 757 

spawning period in that study, and the easy access to food compared to natural conditions 758 

may have improved final condition. A somewhat lower maximum value, Kmax = 1.25, was 759 

therefore selected. In a starvation experiment, cod died when condition factors reached 0.44 760 

(range 0.36-0.56; length 31-55 cm), although liver energy stores were depleted before this 761 

(Dutil and Lambert 2000). The Kmin in this model should, however, reflect the condition at 762 

which routine energy stores are depleted, not the level to which severe food stress can atrophy 763 

muscle mass before death occurs. A value of Kmin = 0.75 was therefore chosen through 764 

thorough testing since it reproduced appropriate weight-at-length compared to field data (e.g. 765 

Fig. 4.). Conditions factors in the model are given relative to a standard length Lstd = 70 cm, 766 
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which means that realised Kmin is in the range 0.71-0.74 for the lengths used in Dutil and 767 

Lambert (2000).  768 
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Table 1. Parameters used for Northeast Arctic cod (Gadus morhua) in a model for state-769 

dependent energy allocation. 770 

Para-

meter 

 

Value and unit 

 

Biological interpretation 

ε 0.065 Value of coefficient above 3 for allometric scaling 

between body mass and length 

Kmin 0.75 g·cm-3 Minimum condition factor at standard length Lstd 

Kmax 1.25 g·cm-3 Maximum condition factor at standard length Lstd 

Lstd 70 cm Length for which Kmin and Kmax are defined 

ρE 8700 J·g-1 Energy density of muscle and liver energy stores 

ρS 4000 J·g-1 Energy density of somatic tissue 

ActStd 1.25 Proportional increase in metabolic rate due to activity 

κ1 1693 

J·g-β1·month-1 

Coefficient of allometric metabolic function 

β1 0.828 Exponent of allometric metabolic function 

κ2 276 

J·cm-β2·month-1 

Coefficient of allometric feeding function (of length) 

β2 2.408 Exponent of allometric feeding function (of length) 

χ  0.75 Mean food intake relative to feeding function 

C1 0.9 Auto-correlation coefficient for environmental 

stochasticity 

C2 0.15 Scaling of environmental stochasticity 

∆Lmax 18 cm·year-1 Maximum growth rate 

DM 7.8·105 m Distance for spawning migration 
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US 0.3 m·s-1 Swimming speed during spawning migration 

UC 0.1 m·s-1 Speed of northwards current during spawning 

migration 

κ4 320 cm·s1.5·m-1.5 Coefficient for empirical cost of swimming function 

Plipids 0.63 Proportion of total energy stored as lipids in liver 

LCImax 9% Maximum weight of liver relative to body weight 

δstore 0.4 Efficiency of storing ingested energy 

δgrowth 0.08 Efficiency of building somatic body mass from 

ingested energy 

κ5 0.256 eggs·J-1 Conversion between stored energy and spawned eggs 

M 0.25 year-1 Natural mortality 

MS 0.1 year-1 Increased mortality during spawning and migration 

FF 0.20 year-1 Feeder fisheries mortality 

FS 0.22 year-1 Spawner fisheries mortality 

amax 25 years Maximum age 

amin 2 years Age at which recruits are introduced in the model 

Lmin 25 cm Length of recruits 
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Figure captions 771 

Figure 1. Schematic overview over a life-history energy allocation model for the Northeast 772 

Arctic cod (Gadus morhua). Energy allocation and the states influencing it are shaded in grey. 773 

Black arrows indicate energy flow. The dotted line indicates that energy stores are drained in 774 

periods when food intake cannot sustain metabolic demands. 775 

Figure 2. Predicted length and weight at age from a life history model for the Northeast 776 

Arctic cod (Gadus morhua) compared to field data. Grey points are data from the Barents Sea 777 

(mostly immature fish), while black open circles are from the Lofoten area (mostly mature 778 

fish). (a) Length (cm) at age (years). (b) Weight (kg) at age (years). 779 

Figure 3. Maturity ogives from a life history model for the Northeast Arctic stock of 780 

Atlantic cod (Gadus morhua). (a) Proportion mature as a function of body length in cm. The 781 

equation for the logistic regression is y = 1/[1+exp(-0.45·(x-77.6))]. (b) Proportion mature as 782 

a function of age in years (black circles). Grey squares are field data for the Northeast Arctic 783 

cod stock for comparison (from ICES 2003). The equation for the logistic regression is 784 

y = 1/[1+exp(-1.7·(x-7.5))]. 785 

Figure 4. Growth trajectory and physiology for one individual female cod from a life 786 

history model for the Northeast Arctic cod Gadus morhua, simulated in a stochastic 787 

environment. The x-axis shows age and is common for all the graphs. Only one individual’s 788 

life trajectory is shown in this figure. A population of individuals, each with a corresponding 789 

life trajectory, was simulated for the remaining results in this paper. This individual diverted 790 

energy towards stores at age 7, approximately one year prior to first spawning to prepare for 791 

sexual maturation. (a) Length (black line, left axis) and weight (grey line, right axis). (b) 792 

Allocation of available energy between energy stores (1) and growth (0). The line shows gaps 793 

because no energy is available for allocation during spawning migrations. (c) Fulton’s 794 

condition factor (black line). The grey lines represent minimum and maximum condition 795 
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factors attainable at that length; these increase because body mass is proportional to length to 796 

the power of 3.065. (d) Number of eggs spawned (in millions). (e) Food availability in the 797 

stochastic environment measured relative to the mean. (f) Probability of survival until age 798 

(note the logarithmic y-axis). 799 

Figure 5. Fecundity in relation to various individual characteristics. The y-axis is common 800 

for all graphs and show fecundity in million eggs. The results are from population simulation 801 

in a stochastic environment for 1000 years. (a) Fecundity vs. age (years). (b) Fecundity vs. 802 

body mass (kg). (c) Fecundity vs. body length (cm). (d) Fecundity vs. liver weight (g). 803 

Figure 6. Comparison of population-level predictors of total egg production in the 804 

population. The y-axis is common for all the plots and shows the total egg production in the 805 

population. All axes are normalised to the mean, and the results are from population 806 

simulation in a stochastic environment for 1000 years. Coefficients of variation r2 are given 807 

for linear regressions on each data set. (a) Biomass of all sexually mature individuals 808 

(individuals that do not spawn but that have spawned previously are included) (r2 = 0.897). 809 

(b) Biomass of spawners only (r2 = 0.995). (c) Total liver weight of all sexually mature 810 

individuals (individuals that do not spawn but have spawned previously are included) 811 

(r2 = 0.986). (d) Total liver weight of spawners only (r2 = 0.998). 812 

Figure 7. The influence of mean food availability on population characteristics in January 813 

(just before spawning season) in a life history model for the Northeast Arctic cod. All axes 814 

show values relative to the mean. Each point represents one year from 1000 years simulation 815 

of population dynamics. (a) In general, mature biomass was higher when mean food 816 

availability last two years was higher. Mature biomass includes effects of increased numbers 817 

of fish, increased proportion of mature fish, and increased condition. (b) Total egg production 818 

for the stock also showed a tendency to increase with increasing food availability. 819 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 821 

Figure 1 822 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 824 

Figure 2 825 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 827 

Figure 3 828 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 830 

Figure 4 831 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 833 

Figure 5 834 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 836 

Figure 6 837 
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Jørgensen and Fiksen. State-dependent energy allocation in cod (Gadus morhua) 839 

Figure 7  840 
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