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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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discrete time population dynamics, density-dependent population growth, by

the assumption that individuals can occur in two states, and that two evolv-

ing traits are coupled by a trade-off. Individual models differ in the choice

of traits that are presumed to evolve and in the way population regulation

is incorporated. The classification is based on a fitness measure that is sign

equivalent to invasion fitness but algebraically simpler. We classify models

according to curvature properties of the fitness landscape and whether the

evolutionary dynamics can be analysed by means of an optimisation crite-

rion. The first classification allows us to infer whether trait combinations

that are characterised by a zero fitness gradient are susceptible to invasion

by similar trait combinations. The second classification distinguishes models

where evolutionary change is frequency-independent from models that give

rise to frequency dependence. Given certain symmetry assumptions we can

extend the classification in the latter case by splitting selection into a density-

dependent and a frequency-dependent component. We apply our approach

to several simple life-history models and demonstrate how our classification

facilitates an analytical analysis. We conclude by discussing some general

patterns that emerge from our analysis and by hinting at several possible

extensions.

Keywords adaptive dynamics · density dependence · fitness · frequency

dependence · life-history theory · matrix model · optimisation · trade-off



The Evolution of Simple Life-Histories: Steps Towards a Classification 3

1 Introduction

Evolutionary change is guided by two factors. First, constraints delimit the

range of possible mutant phenotypes. Such constraints to evolutionary change

emerge for various reasons. For example, pleiotropy can couple a change in

one trait to a change in another trait and can thereby render certain parts of

the trait-space unattainable (Stearns, 1992; Roff, 2002). Specific trait com-

binations might be physically impossible or they can result in non-viable

organisms, hence individuals with these trait combinations cannot establish

populations and evolve. Either mechanism can have as a consequence that

the evolutionary dynamics are constrained to a subset of the trait space. This

result is called a trade-off when we observe that an improvement in one func-

tion is bought at the expense of deterioration in another function. Second,

whether a given mutant is favoured by selection depends on the topography of

the fitness landscape (Wright, 1931). In case of two-dimensional trait spaces

a fitness landscape can be visualised as a three-dimensional graph or as a

two-dimensional contour plot (Levins, 1962). Evolutionary change driven by

selection can only occur in an upward direction on such a fitness landscape.

The evolutionary dynamics of two quantitative traits that are coupled by

a trade-off can lead to several qualitatively different endpoints. The long term

evolutionary dynamics could lead to an intermediate phenotype in the sense

that the two evolving traits constitute a compromise between conflicting de-

mands. Such phenotypes have been named “generalists” when the trade-off

determines the ability of an organism to exploit different food resources or

habitats (Futuyma and Moreno, 1988). In the context of life-history theory
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such an intermediate phenotype would be an iteroparous organism if it bal-

ances energy allocation between current reproduction and self-maintenance

(Stearns, 1992; Takada, 1995). Alternatively, selection could favour an ex-

treme phenotype that sacrifices one function to achieve maximal performance

in another function. In the context of resource acquisition such a pheno-

type corresponds to a resource or habitat specialist while in the context of

life-history evolution such a phenotype corresponds to an semelparous or-

ganism when it allocates all resources to current reproduction and none to

self-maintenance or to an organism that delays maturation for the opposite

allocation pattern (Heino et al., 1997). In yet another scenario selection can

drive a population towards a point in trait-space where the population expe-

riences disruptive selection. Such points are known as evolutionary branching

points (Metz et al., 1996a; Geritz et al., 1998) where populations experience

selection for increased phenotypic variation (Rueffler et al., 2006a). When

analysing an eco-evolutionary model one usually aims at necessary and suffi-

cient conditions that determine which of the different evolutionary scenarios

is favoured. It is an even stronger result when we can show that such condi-

tions are not only valid for one specific model but for a large class of models.

In this paper we attempt to find such general conditions in terms of prop-

erties of constraints and the fitness landscape for one well defined class of

models.

The class of models analysed in this paper is characterised by a life-cycle

that can be described with two states and where any set of two traits are

allowed to change mutationally while all other parameters are assumed to be
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fixed. We introduce a constraint by assuming that the two evolving traits are

coupled by a trade-off. Density dependence can act on any set of demographic

parameters and different parameters can be affected by different subgroups of

the population. The specific choice of the ecological scenario affects properties

of the fitness landscape. Some specific members of this model family have

been analysed with different techniques (Takada, 1995; Heino et al., 1997;

Diekmann, 2004; Heino, in press). Other authors analysed models closely

related to those investigated here, these are either formulated in continuous

time (Meszéna et al., 1997; Day et al., 2002), allow for evolutionary change

of more than two traits (Kisdi, 2002), incorporate sexual reproduction (Kisdi

and Geritz, 1999), assume a type of density dependence that leads to Levene’s

(1953) ‘soft selection’ model (Geritz et al., 1998; Kisdi and Geritz, 1999)

or involve three instead of two states (Takada and Nakajima, 1992, 1996),

indicating the potential value of such a classification and several directions

for extensions.

2 The Modelling Framework

This section starts with a description of the envisaged life-cycles and the

population dynamics of monomorphic and polymorphic populations. We then

describe the ecology of a population by introducing how population density

feeds back to population growth. In a next step we introduce mutant types

that deviate in two evolving parameters from the resident types. Invasion

fitness will be introduced as a means to determine the long term fate of

mutants. After deriving a sign equivalent fitness proxy, that is algebraically



6 Claus Rueffler et al.

simpler than invasion fitness proper, we briefly describe how evolutionary

dynamics can be inferred. Finally, we establish a link between the population

dynamics and the evolutionary dynamics by explaining the concept of the

evolutionary feedback environment and its implications for optimisation.

2.1 The Life Cycle

We restrict ourselves to life-histories that can be described with two discrete

i-states (i for individual, see Metz and Diekmann (1986)) in a discrete time

framework (fig. 1). Population census takes place just before reproduction

and after a potential transition from one i-state to another. Individuals in

i-state l produce fkl offspring in i-state k surviving until the next census

point. After a potential reproductive event individuals make a transition from

i-state l at time t to state k at time t+1 with probability tkl. The population

projection matrix A is then a two-by-two matrix with components

akl = tkl + fkl. (1)

These matrix components give the total amount of individuals in i-state k at

time t+1 that descend from individuals in i-state l at time t. The population

dynamics of a population is then given by

N t+1 = AN t, (2)

where N t is the p-state at time t (p for population), that is, the vector of

densities in the two i-states. This setting includes i-states such as age, size

or location in a two-patch model but also sex. Individuals can either occur
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in one i-state at birth (e.g. immature, or small) or in two i-states (e.g. birth

in either of two different locations, or as different sexes).

This paper is concerned with the evolution of different matrix compo-

nents. We restrict ourselves to the case where different phenotypes deviate

from each other in only two traits x1, x2 ∈ {t11, f11, t12, f12, t21, f21, t22, f22}

while all other traits are assumed to stay constant. Hence, any possible phe-

notype is uniquely determined by a two-dimensional trait vector. However,

we will assume that within the two-dimensional trait space phenotypes are

confined to a one-dimensional manifold to which we will refer as trade-off

curve x2(x1) (fig. 2). The rationale behind this assumption is as follows. The

dominant eigenvalue of a non-negative matrix, hence long term population

growth, is an increasing function of all matrix components and therefore selec-

tion acts to increase each of the evolving traits. We assume that a constraint

exists that sets upper limits to the value of each trait and that once this limit

is reached, an increase in one trait can only be bought at the expense of a

decrease in another trait. We then make the simplifying assumption that the

evolutionary dynamics are confined to the set of trait combinations (x1, x2)

that constitute the trade-off relationship. We parameterise the trade-off curve

x2(x1) with a coefficient θ that lies between zero and one (fig. 2). Hence, any

phenotype is uniquely determined by the trade-off coefficient θ corresponding

to the trait values x(θ) = (x1(θ), x2(θ)). A community consisting of n types is

characterised by Θ = (θ1, . . . , θn). To denote the population dynamics of the

jth type from a community Θ we rewrite equation (2) as N j
t+1 = A(θj)N j

t .
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For numerical calculations we use the following trade-off parameterisation:

x(θ) = (x1(θ), x2(θ)) = (x1max(1− θ)1/z, x2maxθ
1/z), (3)

where x1max and x2max are positive constants. The parameter z determines

the curvature of the trade-off such that z < 1 correspond to a convex (or

strong) trade-off (d2x2/dx2
1 > 0) while z > 1 corresponds to a concave (or

weak) trade-off (d2x2/dx2
1 < 0). For z = 1 the trade-off is linear.

2.2 Density Dependence

Since no population shows unbounded growth, population regulation has

to be incorporated in a population dynamical model. Any growing popula-

tion affects its environment negatively, for example, the availability of re-

sources and nesting sites might decrease while the abundance of predators

and parasites might increase. Here we will not model the changing envi-

ronment explicitly but only implicitly via negative density dependence by

assuming that the growth rate of any specific type j depends both on its own

phenotype and on all other phenotypes present in the population and their

densities. Hence, the population projection matrix becomes time dependent:

N j
t+1 = At(θj)N j

t (Caswell, 2001). All demographic parameters tkl or fkl

can be affected by population density and throughout this paper such pa-

rameters will be marked with a tilde, e.g. f̃12. Hence, f̃12 corresponds to the

demographic parameter as we could measure it in the field while f12 corre-

sponds to the hereditary trait-value that could only be measured under stan-

dardised laboratory conditions. In the context of age-structured populations

Charlesworth (1994) coined the term “critical age-group” for the subgroup of
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a population that affects density-dependent demographic parameters. Here

we assume that different parameters can be affected by different subgroups

or “critical state-groups”. We restrict ourselves to functions of population

regulation such that the population dynamics settle on a unique nontrivial

stable equilibrium N̂ j = (N̂ j
1 , N̂

j
2 ) for all j ∈ {1, . . . , n}. Note that at least all

fkl > 1 have to be density regulated for a stable population dynamical equi-

librium to exist. At equilibrium the time index t of the population projection

matrix A can be dropped.

How does population density influence the demography? In this paper we

restrict ourselves to functional forms of density dependence such that we can

write the demographic parameter x̃j
t as a product of the heritable trait xj

and a function of density Dx.

x̃j
t = xjDx(θ1,N1

t , . . . , θ
n,Nn

t ). (4)

The functions of density Dx are scalar-valued functions of the traits and

densities of all types present in the population with co-domain [0, 1]. We

assume that Dx is monotonic decreasing in the Nt’s. Furthermore, we as-

sume that Dx has a property that we call “separability”. Separability is

given whenever Dx is independent of xj for N j
t = 0. In particular, this

means that for a rare mutant characterised by θ′ /∈ Θ we can write x̃(θ′) =

x(θ′)Dx(θ1, N̂1, . . . , θn, N̂n). This allows us to separate the traits that are

affected by a mutation from the effect of the resident population on such a

mutant phenotype. This can be done by factoring out the functions of den-

sity from a sum of several demographic parameters, provided the functions of

density are the same for the different demographic parameters. An example
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for a function of density Dx that allows for separability and that we will use

throughout this paper is a Beverton-Holt type function with the densities of

different states as arguments:

x̃j
t = xjDx = x(θj)/(1 + c1

n∑
j=1

N j
1t + c2

n∑
j=1

N j
2t). (5)

The weighting factors c1, c2 ∈ R ≥ 0 are assumed to be constant and identical

for all types j, however, they are allowed to differ for different demographic

rates x̃, indicating that specific traits can be affected by different critical

state-groups.

2.3 Invasion Fitness

The fate of a rare mutant θ′ occurring in a specific resident community is

given by its invasion fitness, that is, its long term average growth rate in

an environment that is determined by the resident community (Metz et al.,

1992; Rand et al., 1994). We assume that mutations are rare and of small

effect. The first assumption is made to assure that the resident community has

settled on its attractor before a new mutant arises. This means that a resident

population is completely described by the vector Θ = (θ1, . . . , θn) because

these traits determine the unique non-trivial population dynamical equilibria

N̂ j . Hence, at population dynamical equilibrium equation (4) becomes, with

some abuse of notation, x̃ = xDx(Θ). The second assumption assures that

mutants with the ability to invade a resident type, and which cannot be

invaded by the resident when common themselves, go to fixation (Metz et al.,

1996a; Geritz et al., 1998, 2002; Dercole, 2002; Geritz, 2005).
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The dynamics of an initially rare mutant population is described by the

projection matrix A(θ′,Θ) where the entries for the evolving traits are given

by x̃(θ′) = x(θ′)Dx(Θ). We will mark all matrix components ãkl with a

tilde as long as we have not specified which traits are density regulated.

Invasion fitness is then given by the dominant eigenvalue λd(θ′,Θ) of the

mutant’s projection matrix A(θ′,Θ). In the following paragraph we intro-

duce a sign equivalent fitness proxy w for invasion fitness. This fitness proxy

is algebraically simpler than the dominant eigenvalue λd and it will be a

fundamental tool in this paper.

The characteristic polynomial of a mutant’s population projection matrix

equals

P (λ, θ′,Θ) = λ2 − traceA(θ′,Θ)λ+ detA(θ′,Θ).

As A(θ′,Θ) is a non-negative matrix, it has two real eigenvalues with the

dominant one positive. The dominant eigenvalue λd is given by the rightmost

root of P (λ, θ′,Θ). Since λ2 > 0, P (λ, θ′,Θ) is a parabola in λ opening

upward. Therefore, if P (1, θ′,Θ) < 0, then λd > 1. If, however, P (1, θ′,Θ) >

0, we need dP (1, θ′,Θ)/dλ = 2 − traceA(θ′,Θ) < 0 for λd > 1. In this case

both eigenvalues are larger than one. Hence, λd > 1 if

traceA(θ′,Θ)− detA(θ′,Θ) = ã11 + ã22 − ã11ã22 + ã12ã21 > 1

or

traceA(θ′,Θ) = ã11 + ã22 > 2,

and λd < 1 if and only if

traceA(θ′,Θ)− detA(θ′,Θ) < 1 and traceA(θ′,Θ) < 2.
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Note, that for θ′ ∈ Θ we have λd(θ′,Θ) = 1 while the subordinate eigen-

value is less than one. Hence, for any resident type at population dynamical

equilibrium we find traceA(θ,Θ) < 2 and therefore for any mutant type θ′

that differs but slightly from the resident type such that traceA(θ′,Θ) < 2

is still fulfilled, we have

sign[λd(θ′,Θ)−1] = sign[traceA(θ′,Θ)−detA(θ′,Θ)−1] = sign[−P (1, θ′,Θ)].

Therefore 1−P (1, θ′,Θ) = ã11+ ã22− ã11ã22+ ã12ã21 can be used as a fitness

proxy. We denote this fitness proxy as w(θ′,Θ) and, to simplify matters, we

will refer to it as invasion fitness in the remainder of this paper though it

is only sign equivalent to invasion fitness proper. Metz (unpublished) proved

that, given that the trait space is connected, global uninvadability of a singu-

lar trait θ∗ is given when w(θ′, θ∗) ≤ 1 for all possible θ′, that is, the condition

traceA(θ′, θ∗) < 2 becomes superfluous. Note that this fitness proxy describes

the direction of evolutionary change but not its speed (Dieckmann and Law,

1996; Durinx and Metz, 2005). The idea to exploit the characteristic polyno-

mial evaluated at λ = 1 for invasion considerations can be found in Taylor

and Bulmer (1980) and Courteau and Lessard (2000).

Let us briefly note some useful properties of w. First, it equals R0 in

age-structured models with t22 = 0. Second, in models where f12 is the only

fecundity term, for instance, in age-structured models with reproduction only

in the second year, the condition traceA(θ′,Θ) < 2 is fulfilled automatically.

Third, under the assumption of small mutational steps ã11, ã22 < 1. To see

this, we note that at population dynamical equilibrium for all θ ∈ Θ we have

traceA(θ,Θ) − det(θ,Θ) = 1, which can be rewritten as 0 = (1 − ã11)(1 −
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ã22)− ã12ã21. For this equality to hold either ã11, ã22 > 1 or ã11, ã22 < 1. The

first case violates traceA(θ,Θ) < 2 and therefore the second case is proven.

The direction of evolutionary change is given by the fitness gradient, the

first derivative of invasion fitness with respect to the mutant trait. For the

time being we limit ourselves to resident communities that consist of single

type θ. Points θ∗ in trait space where the fitness gradient equals zero, that is

0 =
∂w(θ′, θ∗)

∂θ′

∣∣∣∣
θ′=θ∗

, (6)

are of special interest and were named “evolutionarily singular points” by

Metz and co-workers (Metz et al., 1996a; Geritz et al., 1998). Singular points

can be classified according to two properties: convergence stability and in-

vadability (Metz et al., 1996a; Geritz et al., 1998). Singular points that are

both convergence stable and uninvadable are final stops of evolution and we

refer to them as ”continuously stable strategies” or CSSs (Eshel, 1983). Sin-

gular points that are convergence stable but invadable by nearby mutants

are particularly interesting. Directional selection drives the mean trait value

of a population towards such points and once the mean population trait

value has reached the singular point, selection turns disruptive and favours

an increase in phenotypic variance (Rueffler et al., 2006a). It case of clonal

organisms this increase can be realised by the emergence of two independent

lineages and it is this scenario that earned such points the name ”evolu-

tionary branching points” (Metz et al., 1996a; Geritz et al., 1998). Singular

points that lack convergence stability are evolutionarily repelling. When such

singular points are invadable we refer to them as evolutionary repellers and

when they are immune to invasion by nearby mutants we refer to them as
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”Garden of Eden-points” (Nowak, 1990). In the latter case any perturbation

results in directional selection away from the singular point and no natural

population is ever expected to occupy a Garden of Eden-point.

2.4 Feedback Environment

A considerable part of this paper will be concerned with finding conditions

that allow to derive the evolutionary dynamics from an optimisation crite-

rion (Mylius and Diekmann, 1995; Metz et al., 1996b; Dieckmann and Metz,

2006). By this we mean a function from the trait values to the real num-

bers such that a CSS corresponds to a maximum of this function while a

minimum corresponds to an evolutionary repeller. In order to get to grips

with this problem we start from a slightly different perspective. We consider

invasion fitness as a function of the mutant’s trait and of an input I from

the environment. With a slight abuse of notation we therefore denote in-

vasion fitness as w(θ′, I) (Heino et al., 1997, 1998; Diekmann et al., 2003;

Meszéna et al., 2006; Rueffler et al., 2006b). The m-dimensional vector I

characterises the condition of the feedback environment, that is, those as-

pects of the environment that are determined by the resident population and

simultaneously feed back to affect the fitness of individuals in the population.

Each Ij ∈ I channels specific effects of population density and composition

to demographic parameters. On an ecological time scale, the defining prop-

erty of the feedback environment is that individuals become independent of

each other when the feedback is given as a function of time (Diekmann et al.,

2003; Meszéna et al., 2006). The ecological feedback environment of a focal
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population at time t is usually given by the p-state of the population as a

whole. On an evolutionary time scale the trait values of the interacting types

can change. In order to achieve independence between individuals on this

time scale, the feedback environment not only has to account for the equi-

librium densities of the con-specifics but also for their traits, since these can

re-scale density effects.

The dimension of I is of great interest because it imposes an upper

limit to the number of species that can possibly coexist (Diekmann et al.,

2003; Meszéna et al., 2006). To see this consider two coexisting types θ1

and θ2. At population dynamical equilibrium both w(θ1, I(θ1, θ2)) = 1 and

w(θ2, I(θ1, θ2)) = 1. When dim(I) = 2 these two equalities constitute a sys-

tem of two equations in two unknowns which can have a robust solution. If,

however, dim(I) = 1, then we have a system of two equations in one un-

known and no generic solution exists. This proves that in one-dimensional

feedback environments robust coexistence is impossible (Metz et al., 1996b;

Meszéna et al., 2006). If, additionally, invasion fitness w is a monotonic de-

creasing (increasing) function of the interaction variable I for all θ, then I is

an optimisation (pessimisation) criterion and the evolutionary dynamics can

be predicted by maximising (minimising) I (Metz et al., 1996b).

Under the assumption of separability (cf. eq. 4) the interaction variables

Ij ∈ I can be equated with the different functions of density Dxkl
with

xkl ∈ {t11, f11, t12, f12, t21, f21, t22, f22}. In case all transition rates are den-

sity dependent and all functions of density are different, dim(I) can become

as high as eight. However, for some special cases dim(I) will be lower. For
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instance, if we assume that the functions of density Dxkl
only depend on

the population at time t via the summed densities of the different types

but not explicitly via their trait values θj , then the maximum dimension of

I decreases to two. This assumption is realised in the Beverton-Holt type

function (eq. 5) where Dxkl
is a decreasing function of the weighted sum

of the densities in the two states. Then
∑n

j=1 N̂
j
1 and

∑n
j=1 N̂

j
2 are the

arguments of the functions of density Dxkl
and it is sufficient to consider

I = (
∑n

j=1 N̂
j
1 ,

∑n
j=1 N̂

j
2 ) as input from the environment in order to achieve

independence between individuals. This holds true independent of the num-

ber of types present in the community and of the number of traits that are

affected by density dependence.

3 Results

Here we classify the members of the introduced model family with respect

to properties of the fitness landscape and whether or not the evolutionary

analysis can be conducted by analysing an optimisation criterion.

3.1 Invasion Boundaries

Invasion boundaries (IBs) are manifolds in trait space consisting of all trait

combinations that are selectively neutral with respect to a given resident

community Θ. A more complete account of how IBs can be used to infer the

direction of evolutionary change can be found in Rueffler et al. (2004). For

our model class the IBs are implicitly defined by

w((x, y),Θ) = 1. (7)
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Hence, IBs are curves given by all trait combinations (x, y) that have an

invasion fitness equal to one. IBs divide the trait space into two regions.

Trait combinations (x, y) that lie above such a curve are able to invade since

for them w((x, y),Θ) > 1 holds true. Trait combinations that lie below an IB

are characterised by w((x, y),Θ) < 1 and are therefore not able to invade. An

IB necessarily intersects with the trade-off curve at all resident trait values

θj ∈ Θ. At a singular trait value θ∗ (cf. eq. 6) an IB is tangent to the trade-off

curve (Rueffler et al., 2004). When, except for the point of tangency θ∗, the

IB lies below the trade-off curve, then all trait values θ′ in the neighbourhood

of θ∗ have w(θ′, θ∗) > 1 and are therefore able to invade; θ∗ corresponds to

a minimum of the fitness landscape, hence, to either a repeller or branching

point. If the opposite patterns holds true, that is, if the IB, except for the

point of tangency, lies above the trade-off curve, then θ∗ is uninvadable by

all nearby mutants. In this case the singular point has to be either a CSS or

a Garden of Eden-point. From this brief treatment follows that the relative

curvature of the IBs and trade-off curves are an important determinant of the

of the evolutionary dynamics (de Mazancourt and Dieckmann, 2004; Rueffler

et al., 2004; Bowers et al., 2005).

The curvature of the trade-off depends on the morphological, physiological

and genetic constraints of the organism under study. In this paper we show

that the qualitative curvature properties of the IBs, that is, whether the

IBs are convex, linear or concave, depends on the combination of traits that

is considered evolvable. Interestingly, under the assumption of separability,

the qualitative curvature of the IBs is independent of the ecology, that is,
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on the details of the population regulation. However, it is the ecology that

determines whether a singular point is convergence stable (CSS or branching

point) or evolutionary repelling (evolutionary repeller or Garden of Eden-

point). Convergence stability of a singular point can be deduced from the

pattern of intersection of the IBs and the trade-off in the neighbourhood of

a singular point (Rueffler et al., 2004).

To derive the shape of invasion boundaries we have to solve equation (7)

for y. Since the matrix component akl is a linear function of the contributing

parameters tkl and fkl, it is sufficient to solve for the matrix component akl

that depends on y. We can classify trade-offs into four qualitatively different

types:

1. Trade-Off Within One Matrix Component: When evolution occurs in the

two traits tkl and fkl of the same matrix component akl, then the IBs

are linear. This follows from the fact that akl is the sum of the two traits

and that w is linear in akl. As an example we give the equation for the

invasion boundary in case t̃11 and f̃11 are evolving:

f̃11 = 1 +
ã12ã21

1− ã22
− t̃11. (8)

2. Trade-Off Between Diagonal and Off-Diagonal Components: When evolu-

tion affects both a diagonal component akk and an off-diagonal component

akl the IBs are linear again. To see this we rearrange equation (7) to

ã12ã21 = (1− ã11)(1− ã22). (9)

From this equation, linearity follows whenever mutations affect compo-

nents on both the right- and the left-hand side. For instance, if f12 and
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t22 are evolving, then

f̃12 =
(1− t̃11 − f̃11)(1− t̃22 − f̃22)

t̃21 + f̃21
− t̃12.

3. Trade-Off Between Diagonal Components: If evolution occurs in compo-

nents that affect the diagonal components ã11 and ã22, then invasion

boundaries are concave. To see this, we rearrange equation (7) such that

ã22 = 1− ã12ã21

1− ã11
. (10)

The second derivative of equation (10) with respect to ã11 is

d2ã22

dã2
11

= − 2ã12ã21

(1− ã11)3
. (11)

In the previous section we proved that at population dynamical equilib-

rium ã11 < 1 holds. The same argument can be applied to traits that lie

on the IBs. Hence, the left hand side of equation (11) is negative, and

therefore the invasion boundaries are concave.

In case neither a11 nor a22 are density dependent, traits can be re-scaled

such that the invasion boundaries become linear:

ln ã12 + ln ã21 = ln(1− a11) + ln(1− a22). (12)

From this we see that ln(1− a22) is a linear function of ln(1− a11).

4. Trade-Off Between Off-Diagonal Components: If evolution occurs in traits

that affect the off-diagonal components of the projection matrix A, then

the IBs are convex. This can be seen from equation (9). Since the two

off-diagonal components occur in a the product on the left-hand side they

are inversely related to each other and the IBs have to be convex. From

equation (12) we see that if neither a12 nor a21 are density dependent,

then invasion boundaries are linear on a logarithmic scale.
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From this list we can draw three general conclusions. First, if the two evolv-

ing traits affect either the two traits in a single component of the transi-

tion matrix or a diagonal and an off-diagonal component, then all concave

trade-offs give rise to singular points that are uninvadable by nearby mutants

while all convex trade-offs will result in singular points that are invadable.

In these cases invasion boundaries are linear and therefore a singular point

on a convex trade-off has to be a fitness minimum while a singular point

on a concave trade-off has to be a fitness maximum (Rueffler et al., 2004;

de Mazancourt and Dieckmann, 2004; Bowers et al., 2005). Second, if the

two evolving traits affect the two diagonal components of the transition ma-

trix, then only strongly concave trade-offs give rise to singular points that

are uninvadable. Third, if the two evolving traits affect the two off-diagonal

components, then not only all concave trade-offs but also weakly convex

trade-offs give rise to singular points that are uninvadable. Hence, the last

scenario is most conducive to produce evolutionary endpoints that strike a

balance between two negatively correlated life-history parameters.

3.2 Optimisation

Only under some rather restrictive conditions can the course of evolution be

predicted by seeking the extrema of an optimisation criterion (Mylius and

Diekmann, 1995; Metz et al., 1996b; Dieckmann and Metz, 2006). In the

section on the feedback environment we gave necessary and sufficient condi-

tions for one specific criterion: if (i) dim(I) = 1 and if (ii) w is a monotonic

decreasing (increasing) function of I, then I is maximised (minimised). Here
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we assume that all functions of density Dxkl
are monotonic functions of I

that change in the same direction with increasing I. This is for example the

case when all fecundity terms fkl and survival terms tkl decrease with total

population density. Then we can prove that for the considered class of mod-

els condition (ii) follows from condition (i). Since dim(I) = 1 implies that

no two types can coexist, we only need to consider monomorphic resident

populations. Invasion fitness becomes

w(θ′, θ) = (f12Df12 + t12Dt12)(f21Df21 + t21Dt21) + f11Df11 + t11Dt11

−−−−−..+ f22Df22 + t22Dt22 − (f11Df11 + t11Dt11)(f22Df22 + t22Dt22),

where two traits depend on θ′ and all functions Dxkl
depend on θ. To check

for the monotonicity condition (ii) we have to differentiate w with respect to

I. After some simplification we get

dw
dI

= (1− ã11)(f22
dDf22

dI
+ t22

dDt22

dI
)+(1− ã22)(f11

dDf11

dI
+ t11

dDt11

dI
)+Q,

with Q = d(f12Df12 + t12Dt12)(f21Df21 + t21Dt21)/dI. In this equation all

derivatives have the same sign and ã11 < 1, ã22 < 1. Therefore the whole

expression is negative for dDxkl
/dI < 0 and positive for dDxkl

/dI > 0.

Therefore w is monotonic in I, the necessary and sufficient condition for it

to be an optimisation criterion. Note, that this proof holds also if only a

subset of the parameters is density dependent. For the special case that only

a single demographic parameter is density dependent or that all functions

of density Dxkl
(I) are identical such that they can be factored out from

the fitness function, Dxkl
is a pessimisation criterion. Whenever population



22 Claus Rueffler et al.

growth depends on a single resource, consumers will evolve so as to minimise

the resource abundance (e.g. Mylius and Diekmann, 1995).

In most cases optimisation in terms of I can only be done numerically

because analytical expressions for N̂ will only exist for the simplest scenar-

ios of population regulation. Metz et al. (1996b) proved that optimisation is

also possible when a function ψ from the traits to the real numbers and a

function α increasing in its first argument exist such that sign[w(x, I)−1] =

sign[α(ψ(x), I) − 1]. Then ψ is an optimisation criterion. It can often be

analysed analytically because it does not involve any aspects of the popula-

tion dynamics. Metz et al. (1996b) also show that once I is established as

an optimisation criterion a corresponding criterion ψ exists that is related to

I through ψ(θ) = I(θ) and sign[w(θ′, I(θ))] = sign[ψ(θ′) − I(θ)]. Therefore,

whenever I is one-dimensional it is possible to find an optimisation criterion

ψ by solving w(θ, I(θ)) = 1 for I(θ) (see also Dieckmann and Metz (2006)).

For many members of our model family it is possible to find a criterion ψ in

a simpler way than just described. Table 1 gives an overview over all mem-

bers of our model family with a reference to the conditions that allow for

optimisation according to the following list.

1. Whenever population regulation affects only a single trait xkl we are able

to find a simple optimisation criterion ψ by solving w(θ,Dxkl
(θ)) = 1 for

Dxkl
(θ). Since Dxkl

(θ) acts as a pessimisation criterion the function ψ

acts as an optimisation criterion.

2. Population regulation is such that the functions of density can be factored

out from the sum of terms that contain the two evolving parameters. This
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means that all Dxkl
that are factors of an evolving trait are identical and

have the same argument and that Dxkl
does not appear squared as a

factor of an evolving trait. Then the sum of the terms that contain the

evolving traits is the optimisation criterion ψ. Two different scenarios can

lead to this case: (i) Both tkl and fkl of the same matrix component akl

are evolving. (ii) The two evolving traits affect both a diagonal and an

off-diagonal components of the projection matrix A.

3. The two evolving traits occur in a single product in the fitness function

w. This is can only be the case when the evolving traits affect the off-

diagonal components of the projection matrix A and when additionally

each off-diagonal component consists only of a single term, that is, when

a′12a
′
21 ∈ {f ′

12t
′
21, f

′
12f

′
21, t

′
12f

′
21, t

′
12t

′
21}. Then ψ = a′12a

′
21.

4. In the fitness function w none of the evolving characters occurs in a

product with a function Dxkl
. This is the case when both diagonal com-

ponents a11 and a22 are evolving while density dependence only acts

on the off-diagonal components a12 and a21, or vice versa. Then ψ =

a′11 + a′22 − a′11a
′
22 or ψ = a′12a

′
21, respectively. Note that this case can

only apply if the evolving akl’s do not include a fecundity term fkl.

5. When the evolving traits affect both an diagonal and an off-diagonal

component of the fitness function w, an optimisation criterion ψ can exist,

given density regulation affects only one of the two diagonal components.

To see this we note that

sign[w − 1] = sign
[
ã12ã21

1− akk
+ ãll − 1

]
for k, l ∈ {1, 2} and k 6= l.

(13)
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If the numerator of the above fraction can be decomposed into the evolv-

ing trait and a factor containing the functions of density, then ψ =

a′12/(1− a′kk) or ψ = a′21/(1− a′kk).

6. All matrix elements x are density dependent in the same way, that is,

Dxkl
= Dx = Dxmn

for k, l,m, n ∈ {1, 2}. Then it is straightforward to

verify that the dominant Eigenvalue λd(θ′,Θ) of A(θ′,Θ) can be decom-

posed such that λd(θ′,Θ) = Dx(Θ)λd(θ′), where λd(θ′) is the dominant

eigenvalue of the density independent projection matrix. From this fol-

lows immediately that λd(θ′), or, equivalently, the density independent

intrinsic growth rate r(θ′) serve as optimisation criteria for all possible

trade-off relationships. A similar argument has been given earlier (Metz

et al., 1992; Mylius and Diekmann, 1995; Metz et al., 1996b).

Based on this list we can draw two general and important conclusions.

First, in life-cycles where evolutionary change only affects transitions that are

necessary in order to pass through both i-states optimisation is always possi-

ble. Conversely, in these life-cycles phenotypic diversification through evolu-

tionary branching is impossible because selection is frequency-independent.

In these cases the two evolving traits occur in a single product in the fit-

ness function (see 3) in the preceding list). Second, only in life-cycles where

at least one of the evolving traits is not necessary in order to pass through

both i-states can selection be frequency-dependent. This is a prerequisite

for phenotypic diversification through evolutionary branching. In these cases

the two evolving traits affect different summands of the fitness function. The
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items 1,2, 4, and 5 in the preceding list give conditions where even in such

cases optimisation can be possible.

4 Higher-Dimensional Feedback Environments

Whenever dim(I) = 1 the direction of evolutionary change can be derived

from an optimisation criterion. In these cases, convergence stability is tightly

linked to uninvadability: singular points that are uninvadable are also con-

vergence stable and vice versa. In feedback environments with dim(I) > 1

in general an optimisation criterion does not exist and convergence stability

and uninvadability can occur in any combination: in addition to CSSs and

evolutionary repellers, evolutionary branching points and Garden of Eden-

points become possible. We refer to selection in feedback environments with

dim(I) > 1 as frequency-dependent. If the interaction of the evolving pop-

ulation with the feedback environment allows for a rare type advantage,

coexistence of different types becomes possible.

The wider array of possible dynamics makes it more difficult to achieve a

general classification. The difficulty is to infer the direction of evolutionary

change in the neighbourhood of singular points, that is, their convergence sta-

bility, without calculating fitness gradients for each model. Here we present a

classification for models that are characterised by a high degree of symmetry,

for example as when the two i-states correspond to two habitats of equal size

and quality and a trade-off exists between the same measure of performance

in each habitat. In this case we can understand the selective forces that de-
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termine the direction of evolutionary change by splitting invasion fitness into

a density-dependent and a frequency-dependent component.

– Density-Dependent Component (DDC) Invasion fitness in a two-

dimensional feedback environment is given by w(θ′, (I1, I2)). We can cal-

culate invasion fitness as it would result from a homogenous feedback

environment where I1 = I2. Without loss of generality we choose Ī =

(I1 + I2)/2 as reference environment, hence, we consider the function

w(θ′, (Ī , Ī)). This function can account for density dependence but not

for frequency dependence and we therefore refer to it as the density-

dependent component of fitness. In the previous section we have proven

that when population regulation is mediated via a single variable while all

functions of density are monotonic functions of I that change in the same

direction with increasing I, then this variable is maximised in the course

of evolution. Hence, evolution in the reference environment I = (Ī , Ī)

would maximise (I1 + I2)/2. As mentioned in the previous section, under

this condition a function ψ from the evolving traits to the real numbers

exists such that evolution in the reference environment would maximise ψ.

We denote the density-dependent component of w(θ′, θ) by DDC(θ′, θ).

– Frequency-Dependent Component (FDC) We define the frequency-

dependent component of fitness as the difference between invasion fitness

proper and its density-dependent component: FDC(θ′, θ) = w(θ′, θ) −

DDC(θ′, θ). The frequency-dependent component can be visualised by

its effect on invasion boundaries. An invasion boundary in the reference

environment is defined implicitly by w((x, y), (Ī , Ī)) = 1 (cf. eq. 7). Any
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deviation of such an invasion boundary from the real invasion boundary,

implicitly defined by w((x, y), (I1, I2)) = 1, is the result of frequency-

dependent selection.

We are interested in the difference of each of these components between

a mutant and a resident: ∆DDC(θ′, θ) := DDC(θ′, θ) − DDC(θ, θ) and

∆FDC(θ′, θ) := FDC(θ′, θ)−FDC(θ, θ). A mutant benefits from the DDC

when ∆DDC(θ′, θ) > 0 and it benefits from the FDC when ∆FDC(θ′, θ) >

0. These two effects determine the direction of evolutionary change and the

properties of evolutionarily singular points. Whether a mutant benefits from

the DDC depends on whether the mutation corresponds to an increase in the

optimisation criterion ψ. In this case the mutant phenotype is less suscep-

tible to the detrimental effects of competition than the resident phenotype.

Whether a mutant benefits from the FDC depends on the relative differ-

ence between the two interaction variable I1 and I2. Whenever a mutation

directs effort away from demographic parameters that suffer strongly from

density dependence towards demographic parameters that suffer relatively

less from density dependence, the mutant benefits from the differential im-

pact of the resident population on the different environmental components

and ∆FDC(θ′, θ) > 0.

In the following we describe a set of rather restrictive conditions that

allows us to derive conditions for both convergence stability and uninvad-

ability in terms of ∆DDC(θ′, θ) and ∆FDC(θ′, θ). We assume that (i) a θ∗

exists such that I1(θ∗) = I2(θ∗), (ii) dIi(θ)/dθ, evaluated at θ∗, has opposite

signs for i = 1 and i = 2, and (iii) the optimisation criterion Ī has a local
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extremum at θ∗. The first condition means that a resident population with

trait value θ∗ affects both interaction variables equally. The second condi-

tion means that any deviation from θ∗ alters the two interaction variables

in opposite directions. The third condition in combination with the first one

means that θ∗ is a singular point. The example in section 5.3 fulfils above

symmetry conditions.

Under these conditions, which amount to a model with highly symmetric

structure, we have a good understanding of the selective forces driving the

evolutionary dynamics in the neighbourhood of θ∗ (table 2). Under the above

assumptions ∆FDC(θ′, θ∗) equals zero and invadability of θ∗ purely depends

on ∆DDC(θ′, θ∗). If ∆DDC(θ′, θ∗) has a local minimum for θ′ = θ∗, then θ∗

is invadable by nearby mutants. Since selection in the reference environment

is frequency-independent this condition is fulfilled if and only if we can choose

an r ∈ R > 0 such that ∆DDC(θ′, θ) < 0 for all θ′, θ ∈ B = (θ∗ − r, θ∗ + r)

with θ < θ′ < θ∗ or θ > θ′ > θ∗ (left and right column in table 2). Likewise,

if ∆DDC(θ′, θ∗) has a local maximum for θ′ = θ∗ then θ∗ is uninvadable

by nearby mutants. This condition is equivalent to ∆DDC(θ′, θ) > 0 with

θ < θ′ < θ∗ or θ > θ′ > θ∗. Whether ∆DDC(θ′, θ∗) has a local minimum

or maximum at θ∗ is determined by the curvature of the trade-off relative to

that of the invasion boundary at θ∗ (cf. section 3.1).

The singular point θ∗ is convergence stable from within an interval B =

(θ∗ − r, θ∗ + r), where r ∈ R > 0, when for all θ ∈ B\θ∗ a mutational

change in the direction of θ∗ results in an invasion fitness larger than one,

or, equivalently, when ∆DDC(θ′, θ) + ∆FDC(θ′, θ) > 0. This condition is
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fulfilled either when both summands are positive, that is, when DDC and

FDC act in the same direction, or when the two summands have opposite

signs but with the positive summand overruling the negative one (table 2).

From the preceding paragraph follows that a convergence stable singular

point is a CSS when ∆DDC(θ′, θ) > 0 and an evolutionary branching point

when ∆DDC(θ′, θ) < 0 where θ′, θ ∈ B = (θ∗− r, θ∗ + r) with θ < θ′ < θ∗ or

θ > θ′ > θ∗. An analogue distinction can be made for evolutionarily singular

points that lack convergence stability, that is, when either both summands

are negative or when the negative summand is larger in absolute value than

the positive one. When ∆DDC(θ′, θ) > 0 such an evolutionarily repelling

singular point is a Garden of Eden-point. The singular point corresponds to

an evolutionary repeller when ∆DDC(θ′, θ∗) < 0 (table 2).

5 Examples

Here we analyse three examples of evolution in structured populations. For

each case we consider several different types of population regulation. The

purpose of these examples is to show how the results of this paper can be

applied.

5.1 Age-Structured Life-Cycle

Consider an age-structured population where fecundity of yearlings is given

by f11. Yearlings survive with probability t21 to the second year. Once this

age is reached, individuals produce f12 offspring each year and survive with

probability t22 to the next breeding season. First we consider the case where
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mutational change occurs in f11 and t21 which are traded off: individuals that

invest a lot in reproduction when they are young suffer from a decreased

survival to adulthood. For a non-trivial population dynamical equilibrium

to exist reproduction has to be density dependent. In the first scenario we

assume that individuals in both age-groups rely on a common resource for

the production of offspring and therefore the functions of density Df11 and

Df12 have (c1N1 + c2N2) as argument (c1, c2 ∈ R ≥ 0). In a second scenario

we assume that each age-group makes use of a different resource and that

therefore reproduction decreases with the density in the corresponding age-

group such that Df11(N1) and Df12(N2). In both cases invasion fitness is

given by

w(θ′, θ) = f11(θ′)Df11(θ) + t22 − f11(θ′)Df11(θ)t22 + t21(θ′)f12Df12(θ) (14)

For the first scenario it follows from section 3.2 that I = c1N1 + c2N2 is

an optimisation criterion. When both age-groups are equally susceptible to

competition, that is, when Df11 = Df12 the simpler function ψ = f11(θ′) −

f11(θ′)t22+t21(θ′)f12 is an optimisation criterion (see the cell given by the 4th

row and 2nd column in table 1). Since evolution affects a diagonal and an off-

diagonal component, the IBs are linear and we can conclude that a singular

point on a concave trade-off curve corresponds to a CSS while a singular

point on convex trade-off curves corresponds to an evolutionary repeller.

Figure 3a shows a numerically calculated bifurcation diagram confirming our

qualitative predictions.

Heino et al. (1997) analysed a similar model (see also Diekmann, 2004)

resulting in an equivalent fitness function. In their model yearlings either
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reproduce and die or postpone reproduction to the second year and die then.

The probability to adopt one life-cycle or the other is assumed to be evolu-

tionary labile, resulting in a linear trade-off. Hence, the optimisation criterion

ψ is a monotonic decreasing or increasing function of θ. Depending on pa-

rameters, selection favours either an annual or a biennial organism (compare

fig. 3a for z = 1).

If f̃11 and f̃12 are decreasing functions of N1 and N2, respectively, then

dim(I) = 2 and selection is frequency-dependent. Since the IBs are linear

we can predict that all singular points will be invadable for convex trade-offs

(characterised by z < 1, see eq. [3]) and uninvadable for concave trade-offs

(characterised by z > 1). However, we cannot predict whether a singular

point is convergence stable because we cannot sensibly assume the symme-

try conditions that are necessary to apply the results of section 4. In figure

3 we show numerical results. Figure 3b shows the bifurcation of singular

points based on the same parameter-values as in the previous case. This fig-

ure shows that the change in population regulation affects the results only

quantitatively. For figure 3c we assumed that two-year old individuals die

after reproduction (t22 = 0) and that fecundity in the second year is lower

than in the first year. For this set of parameters we find a bifurcation pat-

tern that shows evolutionary branching for moderately strong trade-offs. The

special case where the trade-off is constrained to be linear is dealt with in

Heino et al. (1997) and Diekmann (2004).

In our last example of an age-structured model we assume a different

trade-off. Individuals that increase their chance to survive to adulthood t21
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suffer from decreased future fecundity f12. As mentioned in section 3.1 such

cases give rise to convex IBs. Since each off-diagonal component of the tran-

sition matrix consists of only a single trait this is a case where evolutionary

change affects two traits that are both necessary to complete the life-cycle.

The conditions for t21∗f12 to be an optimisation criterion are met for all pos-

sible scenarios of density regulation (cf. table 1, 4th column). For the trade-off

parameterisation given by equation (3) it is easy to prove that θ∗ = 0.5 is a

unique maximum of the optimisation criterion for all values of z.

5.2 Size-Structured Life-Cycle

Assume that individuals can be categorised as either small or large with

only the latter capable of reproduction. In this model we assume a trade-

off between survival of mature individuals t22 and their reproductive output

f12. The model therefore addresses the question whether selection favours

a single large reproductive event (semelparity, t22 = 0) or a compromise

between reproduction and survival that results in several reproductive events

(iteroparity, t22 > 0). Invasion fitness is given by

w(θ′, θ) = t11 + t22(θ′)− t11t22(θ′) + t21f12(θ′). (15)

We investigate three alternative scenarios with respect to population reg-

ulation. In the first case only fecundity is a decreasing function of total pop-

ulation density; the function of density Df12 has c1N1 + c2N2 as argument.

This model was analysed by Takada (1995). From section 3.2 follows that se-

lection maximises c1N̂1 + c2N̂2. From the first row in table 1 we can see that

an optimisation criterion ψ can be derived. By applying the first recipe given
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in the list in section 3.2 we find that ψ = f12(θ′)/(1− t22(θ′)) is maximised.

Since evolution occurs in a diagonal and an off-diagonal element of the transi-

tion matrix, invasion boundaries are linear (see section 3.1). Hence, singular

points correspond to evolutionary repellers in the case of strong trade-offs

and to CSSs in the case of weak trade-offs (see fig. 4a).

For the second ecological scenario we assume that fecundity of mature

individuals and survival of small individuals are density-regulated according

to f̃12 = f12Df12(N2) and t̃11 = t11Dt11(N1). From table 1 we can see that

the case at hand is described by the cell given by the 5th row and 2nd column.

Applying equation (13) we find the same optimisation criterion as in the first

ecological scenario: ψ = f12(θ′)/(1−t22(θ′)); the properties of singular points

as a function of z are again given by figure 4a.

In the last ecological scenario we assume that the two evolving traits are

density dependent according to f̃12 = f12Df12(N1) and t̃22 = t22Dt22(N2).

This case corresponds to the cell given by 2nd column and the 4th row in

table 1. However, the conditions for optimisation are not met and selection

is frequency-dependent. Because of the inherent asymmetry in this model we

cannot make use of the results of section 4. Based on the linearity of the inva-

sion boundaries we know that singular points are invadable in combination

with strong trade-offs (z < 1) and uninvadable in combination with weak

trade-offs (z > 1). Figure 4b shows that the change in ecology has merely a

quantitative effect on the evolutionary dynamics.
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5.3 Spatially Structured Population with Juvenile Dispersal

Assume an iteroparous population which occupies two different habitats.

New-borns disperse and settle in one of the two habitats where they stay for

the rest of their life. Mutational change occurs in the habitat specific adult

survival probabilities t11 and t22, which are assumed to be traded off. We dis-

tinguish two scenarios of population regulation. (i) Adult fertility depends

on one common resource (e.g., freely floating plankton) and therefore the

offspring number decreases with increasing total population size N1 + N2.

(ii) Adult fertility depends on a local resource (e.g., space within each habi-

tat) and therefore habitat specific fecundities decrease with local population

densities. Invasion fitness is given by

w(θ′, θ) = f11Df11(θ) + t11(θ′) + f22Df22(θ) + t22(θ′)− (16)

(f11Df11(θ) + t11(θ′))(f22Df22(θ) + t22(θ′)) + f12Df12(θ)f21Df21(θ).

First we consider the case with global competition. From section 3.2 we

know that I = N̂1 + N̂2 is an optimisation criterion. An optimisation cri-

terion ψ can be found by solving w(θ, I(θ)) = 1 for I(θ). However, both

N̂1 + N̂2 and ψ are lengthy expressions that do not allow for an analytical

treatment. Nevertheless, we can make the following general statements. Since

evolution affects the diagonal components a11 and a22 the IBs are concave.

Therefore, any singular point on a convex trade-off is necessarily a repeller.

Conversely, for a singular point to be a CSS the trade-off curve has to be

more strongly concave than the IB. With symmetric parameter-values the

habitat generalist, characterised by θ = 0.5, is a singular point. For this gen-
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eralist the bifurcation from a repeller to a CSS has to occur for some z > 1.

Figure 5a shows a numerically calculated bifurcation diagram confirming our

qualitative predictions.

Next we analyse the case where fecundities are decreasing functions of lo-

cal densities: Df11(N1), Df21(N1), Df22(N2), Df12(N2). In this case the feed-

back environment is given by I = (N̂1, N̂2) and selection is frequency-

dependent. Given symmetric parameter-values we can apply the results of

section 4. Assume that adults have equal fecundity in both patches (f11 +

f21 = f22 + f12) and that juveniles are equally likely to settle in either

patch, hence: f11 = f12 = f21 = f22. Furthermore, we assume that the

trade-off is symmetric, that is, t11max = t22max (cf. eq. 3) and that all ju-

veniles are equally susceptible to crowding: Df11 = Df12 = Df21 = Df22 .

From these symmetries follows that the habitat generalist with θ∗ = 0.5 is

a singular point. From section 4 we can conclude that a threshold zt > 1

exists such that for all z > zt we can find an r ∈ R > 0 such that for all

θ′, θ ∈ B = (0.5−r, 0.5+r) with θ ≶ θ′ ≶ 0.5 we find ∆DDC(θ′, θ) > 0. This

means that the singular point at θ∗ = 0.5 is locally uninvadable for z > zt

(table 2). Conversely, for z < zt the singular point θ∗ = 0.5 is locally invad-

able because we can find a neighbourhood of θ∗ where ∆DDC(θ′, θ) < 0 for

θ ≶ θ′ ≶ 0.5. In order to understand the convergence properties of θ∗ we

have to investigate ∆FDC(θ′, θ). Under the given symmetry assumptions

we can prove that a neighbourhood B of θ∗ exists such that for θ′, θ ∈ B

we find θ ≶ θ′ ≶ 0.5 ⇒ ∆FDC(θ′, θ) > 0 for all values of z (Appendix

A). From table 2 we conclude that for z > zt the generalist θ∗ is a CSS. If
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z is slightly smaller than zt, then ∆DDC(θ′, θ) becomes negative, however,

∆DDC(θ′, θ) +∆FDC(θ′, θ) stays positive and θ∗ turns into an evolution-

ary branching point. When z becomes small enough such that the negative

∆DDC(θ′, θ) overrules the positive ∆FDC(θ′, θ) the singular trait-value θ∗

turns into an evolutionary repeller. Figure 5b shows a numerically calculated

bifurcation diagram of singular points that confirms our qualitative predic-

tions concerning the habitat generalist.

6 Discussion

In this article we classify a family of simple life-history models with respect to

criteria driving the evolution in two traits that are connected by a trade-off.

Our main tools are a sign-equivalent and algebraically simpler expression for

invasion fitness, curvature properties of invasion boundaries, the dimension

of the feedback environment and the decomposition of invasion fitness into a

density-dependent and a frequency-dependent component.

The results we present are not primarily motivated by questions about

the evolution of specific life-cycles but rather by a desire to understand the

mechanisms that govern the evolutionary dynamics in a larger class of mod-

els. Our aim is to formulate principles of a more general nature that are

independent of a specific model and it is these principles that we consider

the most valuable result of our work. For the presented class of models the

following conclusions can be drawn: (i) Trade-offs between an off-diagonal

and a diagonal matrix component as well as between the two traits within a

single matrix components correspond to linear invasion boundaries. In these
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cases all singular points on trade-offs parameterised by z < 1 are suscep-

tible to invasion by nearby mutants while the opposite holds true for sin-

gular points on trade-offs parameterised by z > 1. (ii) Trade-offs between

two diagonal components of the projection matrix A correspond to concave

IBs. As a result, trade-off curves parameterised by z ∈ (0, zt) with zt > 1

give rise to singular points where populations experience disruptive selection.

Populations with mean trait-values equal to the singular trait-value are sus-

ceptible to invasion by mutants with both smaller and larger trait-values. In

models with frequency dependence this can lead to disruptive selection and

phenotypic diversification. (iii) Trade-offs between two off-diagonal compo-

nents correspond to convex IBs. As a result, trade-off curves parameterised

by z ∈ (0, zt) with zt < 1 give rise to singular points where populations

experience disruptive selection. Trade-off curves parameterised by z > zt

give rise to singular points where populations are not invadable by nearby

mutants and experience stabilising selection. Hence, for a wide range of z-

values such trade-offs favour the evolution of intermediate phenotypes. (iv)

Trade-offs between traits that are both necessary to pass through both i-

states result in frequency-independent selection. This scenario applies when

both off-diagonal components of the population projection matrix consist of

only a single term, that is, a transition from one i-state to the other is ei-

ther only possible in terms of tkl or in terms of fkl. Under this condition

the two evolving traits occur in a single product in the fitness function and

it is this product that is maximised by selection. From (iii) we see that the

majority of trade-off curvatures leads to intermediate phenotypes that strike
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a balance between the conflicting traits. (v) Trade-offs between traits that

are not both necessary to pass through both i-states are a prerequisite for

frequency-dependent selection. Such traits affect different summands of the

fitness function. Selection becomes frequency-dependent when each evolving

trait occurs in a product with a function of density such that the traits are

affected by differently weighted sums of the total population size c1N1+c2N2.

In the extreme case one evolving trait decreases with an increasing number

of individual in i-state one while the other decreases with increasing N2.

Such trade-offs give rise to either linear IBs (in case of a diagonal and an

off-diagonal component or in case of two traits that affect a single matrix

component) or concave IBs (in case of two diagonal components). From (i)

and (ii) we see that in this case either all convex trade-off or all convex plus

weakly concave trade-offs give rise to disruptive selection, facilitating the

occurrence of evolutionary branching points.

6.1 Open Questions and Extensions

The analysed family of model represents only a fraction of eco-evolutionary

scenarios. In the following we describe some extensions to our model family

and point out some remaining unresolved questions within the model family.

Our approach allows us to identify models that show frequency-dependent

selection. However, once one has decided that frequency dependence does act

in a specific model, further analysis is only possible when several symmetry

assumptions are met. Though moderate deviations from symmetric condi-

tions will only lead to small quantitative changes in the bifurcation pattern
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of singular points, we have to admit that we lack strong analytical tools for

the general case. Developing such tools seems to be a most challenging and

rewarding extension. Further steps in this direction might be possible using

techniques presented in the work by de Mazancourt and Dieckmann (2004)

and Bowers et al. (2005). These authors give conditions for convergence sta-

bility that do not rely on the pattern of intersection of invasion boundaries

and the trade-off curve in the neighbourhood of a singular point. However,

since their method involves differentiating the fitness function with respect

to the trait of the resident, analytical results can only be obtained when the

population dynamical equilibria can be solved explicitly. This will only be

possible for the simplest cases of population regulation.

In our model class we allow only for the simultaneous evolution of two

traits. However, it is possible that one trade-off affects more than two matrix

components. This is the case in a model analysed by Kisdi (2002) who studies

the evolution of habitat specific fecundity in a two-patch model. Relaxing this

assumption makes the derivation of invasion boundaries more complicated

and the existence of optimisation criteria will be more restricted.

Another possible route to extend our results is to allow for non-equilibrium

attractors. Especially for simple attractors like 2-cycles it might be possible

to extend the logic of our approach. The population dynamics for a large

class of two-state models has been described by Neubert and Caswell (2000).

The described model structure becomes considerably more complex when

we drop the “separability”-assumption. Separability is not given when the ef-

fect of a resident type with trait-value θ on a focal individual with trait-value
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θ′ depends on the trait-values of both types as it is for example the case when

competition is mediated by coefficients such as α(θ′−θ) = exp[−(θ−θ′)2/2σ]

with σ being the width of the competition kernel (e.g. Roughgarden, 1979;

Doebeli and Dieckmann, 2000). The interpretation is that inter-specific inter-

actions are mediated by quantitative traits like body size that determine the

outcome of competition. In this particular case the dimension of the feedback

environment becomes potentially infinite. When the feedback is mediated

through competition coefficients of the above form the tools developed here

do not work. Firstly, the equation for invasion boundaries lose their simple

form and in some cases it will even be impossible to find explicit expressions.

Secondly, optimisation becomes impossible.

Finally, the presented classification for the evolution of organisms with

two i-states can be extended to models with more states. The fitness proxy

w can be derived for models with more i-states in an analogous manner. We

expect that the general results given in list at the beginning of the discussion

are not restricted to two-state models but apply for any number of states.
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A Appendix:

Spatially-Structured Population with Local Density Dependence

Given f := f11 = f12 = f21 = f22, Df := Df11 = Df12 = Df21 = Df22 and

t11max = t22max we prove in this appendix that for all combinations of mutant θ′

and resident θ with θ ≶ θ′ ≶ 0.5 we find ∆FDC(θ′, θ) > 0. First we note that at

population dynamical equilibrium

N̂1 = (t11(θ) + f̃11)N̂1 + f̃12N̂2 ⇔ 1 = t11(θ) + f̃11 + f̃12N̂2/N̂1

N̂2 = (t22(θ) + f̃22)N̂2 + f̃21N̂1 ⇔ 1 = t22(θ) + f̃22 + f̃21N̂1/N̂2.

For a resident specialised for habitat type 1 (θ < 0.5 ⇐⇒ t11 > t22) it follows

f̃22 + f̃21N̂1/N̂2 > f̃11 + f̃12N̂2/N̂1.

Given the above symmetries we can rewrite the last inequality as

fDf (N̂2)

 
1− N̂2

N̂1

!
> fDf (N̂1)

 
1− N̂1

N̂2

!
,

which can only hold when N̂1 > N̂2. An analogous reasoning holds for θ > 0.5.

Next we calculate the frequency-dependent component of invasion fitness (eq.

16) for both a mutant θ′ and a resident θ with respect to the reference environment

Ī = (N̂1 + N̂2)/2 as determined by the resident θ:

FDC(θ′, θ) = w(θ′, [I1(θ), I2(θ)])− w(θ′, [Ī(θ), Ī(θ)])

= f(Df (Ī)t22(θ
′)−Df (N̂1)t22(θ

′) + Df (Ī)t11(θ
′)−Df (N̂2)t11(θ

′))

FDC(θ, θ) = w(θ, [I1(θ), I2(θ)])− w(θ, [Ī(θ), Ī(θ)])

= f(Df (Ī)t22(θ)−Df (N̂1)t22(θ) + Df (Ī)t11(θ)−Df (N̂2)t11(θ))

The fitness benefit for a mutant compared to that of the resident is given by the

difference of the two frequency-dependent components:

∆FDC(θ′, θ) = FDC(θ′, θ)− FDC(θ, θ)

= f [(t11(θ)− t11(θ
′))(Df (N̂2)−Df (Ī)) + (t22(θ)− t22(θ

′))(Df (N̂1)−Df (Ī))].
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From the first paragraph follows

θ ≶ 0.5 ⇐⇒ [N̂1(θ) ≷ Ī(θ) ∧ N̂2(θ) ≶ Ī(θ)]

and from our trade-off parameterisation equation (3) we know

θ ≶ θ′ ⇐⇒ [t11(θ) ≷ t11(θ
′) ∧ t22(θ) ≶ t22(θ

′)].

From these equivalencies follows θ ≶ θ′ ≶ 0.5 ⇐⇒ ∆FDC(θ′, θ) > 0.



The Evolution of Simple Life-Histories: Steps Towards a Classification 43

References

Bowers, R. G., Hoyle, A., White, A., and Boots, M. 2005. The geometric theory of

adaptive evolution: Trade-off and invasion plots. Journal of Theoretical Biology

233:363–377.

Caswell, H., 2001. Matrix Population Models. Sinauer, 2nd edition.

Charlesworth, B., 1994. Evolution in Age-Structured Populations. Cambridge

University Press, Cambridge, U. K., 2nd edition.

Courteau, J. and Lessard, S. 2000. Optimal sex ratios in structured populations.

Journal of Theoretical Biology 207:159–175.

Day, T., Abrams, P. A., and Chase, J. M. 2002. The role of size-specific predation

in the evolution and diversification of prey life histories. Evolution 56:877–887.

de Mazancourt, C. and Dieckmann, U. 2004. Trade-off geometries and frequency-

dependent selection. The American Naturalist 164:765–778.

Dercole, F., 2002. Evolutionary dynamics through bifurcation analysis: methods

and applications. Ph.D. thesis, Department of Electronics and Information, Po-

litecnico di Milano.

Dieckmann, U. and Law, R. 1996. The dynamical theory of coevolution: A

derivation from stochastic ecological processes. Journal of Mathematical Biology

34:579–612.

Dieckmann, U. and Metz, J. A. J. 2006. Surprising evolutionary predictions from

enhanced ecological realism. Theoretical Population Biology 69:263–381.

Diekmann, O., 2004. A beginners guide to adaptive dynamics. Pages 47–86 in

R. Rudnicki, ed. Mathematical Modelling of Population Dynamics, volume 63 of

Banach Center Publications. Polish Academy of Sciences, Warszawa.

Diekmann, O., Gyllenberg, M., and Metz, J. A. J. 2003. Steady state analysis of

structured population models. Theoretical Population Biology 63:309–338.

Doebeli, M. and Dieckmann, U. 2000. Evolutionary branching and sympatric

speciation caused by different types of ecological interactions. The American

Naturalist 156:S77–S101.



44 Claus Rueffler et al.

Durinx, M. and Metz, J. A. J., 2005. Multi-type branching processes and adaptive

dynamics of structured populations. Pages 266–277 in P. Haccou and V. A.

Jagers, P. Vatutin, eds. Branching Processes: Variation, Growth, and Extinction

of Populations. Cambridge University Press.

Eshel, I. 1983. Evolutionary and continuous stability. Journal of Theoretical

Biology 103:99–111.

Futuyma, D. J. and Moreno, D. 1988. The evolution of ecological specialization.

Annual Reviews in Ecology and Systematics 19:207–233.

Geritz, S. A. H. 2005. Resident-invader dynamics and the coexistence of similar

strategies. Journal of Mathematical Biology 50:67–82.

Geritz, S. A. H., Gyllenberg, M., Jacobs, F. J. A., and Parvinen, K. 2002. Invasion

dynamics and attractor inheritance. Journal of Mathematical Biology 44:548–

560.
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Table 1 Combinations of evolving traits (columns) and density regulated traits
(rows) for which we found an optimisation criterion based on traits, where
k, l, m, n, p, q ∈ {1, 2} with k 6= l, m 6= n and p 6= q. The numbers in the cells
of the table refer to the numbered list in section 3.2 where necessary conditions for
optimisation are stated. If the conditions are not met, then dim(I) > 1 and opti-
misation is not possible. A “7” indicates that under sufficient symmetry conditions
the results from section 4 can be applied.

evolving

traits

regulated

traits

@
@

@
@

@
@@

t′kl & f ′
kl a′

kk & a′
pq a′

11 & a′
22 a′

12 & a′
21

single 1 1, 4, 5 1, 4 1, 3, 4

all 2, 6 2, 6 6, 7 3, 6, 7

ãkl, ã11 & ã22 2 - - 3

ãkk & ãmn 2 2 - 3

ãll & ãmn 2 5 - 3

ã12 & ã21 2 5 4 3, 7

ã11 & ã22 2 - 7 4

Table 2 Classification of evolutionarily singular traits θ∗ with I1 = I2. The given
signs of the frequency-dependent and frequency-independent component have to
hold for all mutant and resident trait values from within some neighbourhood
B = (θ∗ − r, θ∗ + r), with r ∈ R > 0 and θ < θ′ < θ∗ or θ∗ < θ′ < θ. See section 4
for details.

∆DDC(θ′, θ) > 0 ∆DDC(θ′, θ) < 0

∆DDC(θ′,θ)+∆FDC(θ′,θ)>0

Branching Point

∆DDC(θ′,θ)+∆FDC(θ′,θ)<0

∆FDC(θ′, θ) > 0 CSS

Repeller

∆DDC(θ′,θ)+∆FDC(θ′,θ)>0

CSS

∆DDC(θ′,θ)+∆FDC(θ′,θ)<0

∆FDC(θ′, θ) < 0

Garden of Eden

Repeller
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Fig. 1 Life-cycle with two states. The parameters tkl indicate the transition prob-
ability of individuals in state l at time t to state k at time t + 1. The terms fkl

indicate the number of surviving offspring that enter state k and are born to an
individual in state l.

Fig. 2 Trade-off curves illustrating the relationship between two traits that are
traded-off. Parameterisation according to equation (3). The number next to each
curve is the parameter z determining the curvature (strength) of the trade-off. The
trade-off curve is parameterised in the coefficient θ that lies between zero and one.
Filled circles half way on the trade-off curve correspond to θ = 0.5.

Fig. 3 Bifurcation of singular points for the example of an age-structured pop-
ulation with bifurcation parameter z. Trade-off between f11 and t12 where f11 is
decreasing in θ while t12 is increasing in θ. Solid black lines: CSS; hatched lines:
evolutionary repeller. (a) Fecundities decrease in N1 + N2 (Df11 = 1/(1 + N1 +

N2) = Df12), (b) & (c) f̃11 is decreasing in N1 while f̃12 is decreasing in N2

(Df11 = 1/(1+N1), Df12 = 1/(1+N2)). Other parameter-values: (a-c) f11max = 5,
t21max = 0.8, (a) & (b) f12 = 10, t22 = 0.5, (c) f12 = 3, t22 = 0.

Fig. 4 Bifurcation of singular points for the example of a size-structured popu-
lation with bifurcation parameter z. Trade-off between f12 and t22 where f12 is
decreasing in θ while t22 is increasing in θ. (a) Fecundity decreases with total
population size (Df12 = 1/(1 + N1 + N2)), (b) new-born survival decreases with
density of small individuals (Df12 = 1/(1 + N1)) and survival of large individuals
decreases with density in this size class (Dt22 = 1/(1+N2). Other parameter-values:
f12max = 10, t22max = 0.8, t11 = 0.5, t21 = 0.5.

Fig. 5 Bifurcation of singular points for the example of a spatially structured
population with bifurcation parameter z. Trade-off between t11 and t22 where t11
is decreasing in θ while t22 is increasing in θ. Solid grey lines: evolutionary branching
point. (a) All fecundities decrease in N1 + N2 (Dfkl = 1/(1 + N1 + N2) for i, j ∈
{1, 2}), (b) f̃11 and f̃12 are decreasing functions of N1 (Df11 = 1/(1 + N1) = Df12)

while f̃22 and f̃21 are decreasing functions of N2 (Df22 = 1/(1+N2) = Df21). Other
parameter-values: t11max = 0.7 = t22max, f11 = f22 = f21 = f12 = 10.
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Figure (3)
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Figure (4)
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Figure (5)
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