

Interim Report IR-06-041

The long-term evolution of multi-locus traits under frequency-dependent disruptive selection

G. Sander van Doorn (g.s.van.doorn@rug.nl) Ulf Dieckmann (dieckmann@iiasa.ac.at)

Approved by

Leen Hordijk Director, IIASA

September 2006

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.

IIASA STUDIES IN ADAPTIVE DYNAMICS No. 121

The Evolution and Ecology Program at IIASA fosters the development of new mathematical and conceptual techniques for understanding the evolution of complex adaptive systems.

Focusing on these long-term implications of adaptive processes in systems of limited growth, the Evolution and Ecology Program brings together scientists and institutions from around the world with IIASA acting as the central node.

Scientific progress within the network is collected in the IIASA Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS: *Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly Faithful Reproduction*. IIASA Working Paper WP-95-099 (1995). van Strien SJ, Verduyn Lunel SM (eds): Stochastic and Spatial Structures of Dynamical Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen), North Holland, Amsterdam, pp. 183-231 (1996).

No. 2 Dieckmann U, Law R: *The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes.* IIASA Working Paper WP-96-001 (1996). Journal of Mathematical Biology 34:579-612 (1996).

No. 3 Dieckmann U, Marrow P, Law R: *Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics and the Red Queen.* IIASA Preprint (1995). Journal of Theoretical Biology 176:91-102 (1995).

No. 4 Marrow P, Dieckmann U, Law R: *Evolutionary Dynamics of Predator-Prey Systems: An Ecological Perspective.* IIASA Working Paper WP-96-002 (1996). Journal of Mathematical Biology 34:556-578 (1996).

No. 5 Law R, Marrow P, Dieckmann U: *On Evolution under Asymmetric Competition*. IIASA Working Paper WP-96-003 (1996). Evolutionary Ecology 11:485-501 (1997).

No. 6 Metz JAJ, Mylius SD, Diekmann O: When Does Evolution Optimize? On the Relation Between Types of Density Dependence and Evolutionarily Stable Life History Parameters. IIASA Working Paper WP-96-004 (1996).

No. 7 Ferrière R, Gatto M: Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic Populations. Theoretical Population Biology 48:126-171 (1995).

No. 8 Ferrière R, Fox GA: *Chaos and Evolution*. IIASA Preprint (1996). Trends in Ecology and Evolution 10:480-485 (1995).

No. 9 Ferrière R, Michod RE: *The Evolution of Cooperation in Spatially Heterogeneous Populations*. IIASA Working Paper WP-96-029 (1996). The American Naturalist 147:692-717 (1996).

No. 10 van Dooren TJM, Metz JAJ: *Delayed Maturation in Temporally Structured Populations with Non-Equilibrium Dynamics.* IIASA Working Paper WP-96-070 (1996). Journal of Evolutionary Biology 11:41-62 (1998).

No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: *The Dynamics of Adaptation and Evolutionary Branching*. IIASA Working Paper WP-96-077 (1996). Physical Review Letters 78:2024-2027 (1997).

No. 12 Geritz SAH, Kisdi É, Meszéna G, Metz JAJ: *Evolutionary Singular Strategies and the Adaptive Growth and Branching of the Evolutionary Tree*. IIASA Working Paper WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).

No. 13 Heino M, Metz JAJ, Kaitala V: *Evolution of Mixed Maturation Strategies in Semelparous Life-Histories: The Crucial Role of Dimensionality of Feedback Environment.* IIASA Working Paper WP-96-126 (1996). Philosophical Transactions of the Royal Society of London Series B 352:1647-1655 (1997).

No. 14 Dieckmann U: *Can Adaptive Dynamics Invade?* IIASA Working Paper WP-96-152 (1996). Trends in Ecology and Evolution 12:128-131 (1997).

No. 15 Meszéna G, Czibula I, Geritz SAH: Adaptive Dynamics in a 2-Patch Environment: A Simple Model for Allopatric and Parapatric Speciation. IIASA Interim Report IR-97-001 (1997). Journal of Biological Systems 5:265-284 (1997).

No. 16 Heino M, Metz JAJ, Kaitala V: *The Enigma of Frequency-Dependent Selection*. IIASA Interim Report IR-97-061 (1997). Trends in Ecology and Evolution 13:367-370 (1998).

No. 17 Heino M: *Management of Evolving Fish Stocks*. IIASA Interim Report IR-97-062 (1997). Canadian Journal of Fisheries and Aquatic Sciences 55:1971-1982 (1998).

No. 18 Heino M: *Evolution of Mixed Reproductive Strategies in Simple Life-History Models*. IIASA Interim Report IR-97-063 (1997).

No. 19 Geritz SAH, van der Meijden E, Metz JAJ: *Evolutionary Dynamics of Seed Size and Seedling Competitive Ability.* IIASA Interim Report IR-97-071 (1997). Theoretical Population Biology 55:324-343 (1999).

No. 20 Galis F, Metz JAJ: *Why Are There So Many Cichlid Species? On the Interplay of Speciation and Adaptive Radiation*. IIASA Interim Report IR-97-072 (1997). Trends in Ecology and Evolution 13:1-2 (1998).

No. 21 Boerlijst MC, Nowak MA, Sigmund K: *Equal Pay for all Prisoners/ The Logic of Contrition*. IIASA Interim Report IR-97-073 (1997). American Mathematical Society Monthly 104:303-307 (1997). Journal of Theoretical Biology 185:281-293 (1997).

No. 22 Law R, Dieckmann U: *Symbiosis Without Mutualism and the Merger of Lineages in Evolution*. IIASA Interim Report IR-97-074 (1997). Proceedings of the Royal Society of London Series B 265:1245-1253 (1998).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ: *Sex and Size in Cosexual Plants*. IIASA Interim Report IR-97-078 (1997). Trends in Ecology and Evolution 12:260-265 (1997).

No. 24 Fontana W, Schuster P: *Shaping Space: The Possible and the Attainable in RNA Genotype-Phenotype Mapping.* IIASA Interim Report IR-98-004 (1998). Journal of Theoretical Biology 194:491-515 (1998).

No. 25 Kisdi É, Geritz SAH: Adaptive Dynamics in Allele Space: Evolution of Genetic Polymorphism by Small Mutations in a Heterogeneous Environment. IIASA Interim Report IR-98-038 (1998). Evolution 53:993-1008 (1999).

No. 26 Fontana W, Schuster P: *Continuity in Evolution: On the Nature of Transitions*. IIASA Interim Report IR-98-039 (1998). Science 280:1451-1455 (1998).

No. 27 Nowak MA, Sigmund K: *Evolution of Indirect Reciprocity by Image Scoring/ The Dynamics of Indirect Reciprocity.* IIASA Interim Report IR-98-040 (1998). Nature 393:573-577 (1998). Journal of Theoretical Biology 194:561-574 (1998).

No. 28 Kisdi É: *Evolutionary Branching Under Asymmetric Competition*. IIASA Interim Report IR-98-045 (1998). Journal of Theoretical Biology 197:149-162 (1999).

No. 29 Berger U: *Best Response Adaptation for Role Games*. IIASA Interim Report IR-98-086 (1998).

No. 30 van Dooren TJM: *The Evolutionary Ecology of Dominance-Recessivity.* IIASA Interim Report IR-98-096 (1998). Journal of Theoretical Biology 198:519-532 (1999).

No. 31 Dieckmann U, O'Hara B, Weisser W: *The Evolutionary Ecology of Dispersal*. IIASA Interim Report IR-98-108 (1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 32 Sigmund K: *Complex Adaptive Systems and the Evolution of Reciprocation*. IIASA Interim Report IR-98-100 (1998). Ecosystems 1:444-448 (1998).

No. 33 Posch M, Pichler A, Sigmund K: *The Efficiency of Adapting Aspiration Levels*. IIASA Interim Report IR-98-103 (1998). Proceedings of the Royal Society London Series B 266:1427-1435 (1999).

No. 34 Mathias A, Kisdi É: *Evolutionary Branching and Coexistence of Germination Strategies*. IIASA Interim Report IR-99-014 (1999).

No. 35 Dieckmann U, Doebeli M: *On the Origin of Species by Sympatric Speciation*. IIASA Interim Report IR-99-013 (1999). Nature 400:354-357 (1999).

No. 36 Metz JAJ, Gyllenberg M: *How Should We Define Fitness in Structured Metapopulation Models? Including an Application to the Calculation of Evolutionarily Stable Dispersal Strategies.* IIASA Interim Report IR-99-019 (1999). Proceedings of the Royal Society of London Series B 268:499-508 (2001). No. 37 Gyllenberg M, Metz JAJ: *On Fitness in Structured Metapopulations*. IIASA Interim Report IR-99-037 (1999). Journal of Mathematical Biology 43:545-560 (2001).

No. 38 Meszéna G, Metz JAJ: *Species Diversity and Population Regulation: The Importance of Environmental Feedback Dimensionality.* IIASA Interim Report IR-99-045 (1999).

No. 39 Kisdi É, Geritz SAH: *Evolutionary Branching and Sympatric Speciation in Diploid Populations*. IIASA Interim Report IR-99-048 (1999).

No. 40 Ylikarjula J, Heino M, Dieckmann U: *Ecology and Adaptation of Stunted Growth in Fish*. IIASA Interim Report IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 41 Nowak MA, Sigmund K: *Games on Grids*. IIASA Interim Report IR-99-038 (1999). Dieckmann U, Law R, Metz JAJ (eds): The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, Cambridge, UK, pp. 135-150 (2000).

No. 42 Ferrière R, Michod RE: *Wave Patterns in Spatial Games and the Evolution of Cooperation*. IIASA Interim Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ (eds): The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, Cambridge, UK, pp. 318-332 (2000).

No. 43 Kisdi É, Jacobs FJA, Geritz SAH: *Red Queen Evolution by Cycles of Evolutionary Branching and Extinction*. IIASA Interim Report IR-00-030 (2000). Selection 2:161-176 (2001).

No. 44 Meszéna G, Kisdi É, Dieckmann U, Geritz SAH, Metz JAJ: *Evolutionary Optimisation Models and Matrix Games in the Unified Perspective of Adaptive Dynamics*. IIASA Interim Report IR-00-039 (2000). Selection 2:193-210 (2001).

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ: *Evolution of Dispersal in Metapopulations with Local Density Dependence and Demographic Stochasticity*. IIASA Interim Report IR-00-035 (2000). Journal of Evolutionary Biology 16:143-153 (2003).

No. 46 Doebeli M, Dieckmann U: *Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions*. IIASA Interim Report IR-00-040 (2000). The American Naturalist 156:S77-S101 (2000).

No. 47 Heino M, Hanski I: *Evolution of Migration Rate in a Spatially Realistic Metapopulation Model*. IIASA Interim Report IR-00-044 (2000). The American Naturalist 157:495-511 (2001).

No. 48 Gyllenberg M, Parvinen K, Dieckmann U: *Evolutionary Suicide and Evolution of Dispersal in Structured Metapopulations*. IIASA Interim Report IR-00-056 (2000). Journal of Mathematical Biology 45:79-105 (2002).

No. 49 van Dooren TJM: *The Evolutionary Dynamics of Direct Phenotypic Overdominance: Emergence Possible, Loss Probable.* IIASA Interim Report IR-00-048 (2000). Evolution 54:1899-1914 (2000).

No. 50 Nowak MA, Page KM, Sigmund K: *Fairness Versus Reason in the Ultimatum Game*. IIASA Interim Report IR-00-57 (2000). Science 289:1773-1775 (2000).

No. 51 de Feo O, Ferrière R: *Bifurcation Analysis of Population Invasion: On-Off Intermittency and Basin Riddling.* IIASA Interim Report IR-00-074 (2000). International Journal of Bifurcation and Chaos 10:443-452 (2000). No. 52 Heino M, Laaka-Lindberg S: *Clonal Dynamics and Evolution of Dormancy in the Leafy Hepatic Lophozia Silvicola.* IIASA Interim Report IR-01-018 (2001). Oikos 94:525-532 (2001).

No. 53 Sigmund K, Hauert C, Nowak MA: *Reward and Punishment in Minigames.* IIASA Interim Report IR-01-031 (2001). Proceedings of the National Academy of Sciences of the USA 98:10757-10762 (2001).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauer J: *Oscillations in Optional Public Good Games*. IIASA Interim Report IR-01-036 (2001).

No. 55 Ferrière R, Le Galliard J: *Invasion Fitness and Adaptive Dynamics in Spatial Population Models*. IIASA Interim Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E, Nichols J (eds): Dispersal, Oxford University Press, pp. 57-79 (2001).

No. 56 de Mazancourt C, Loreau M, Dieckmann U: *Can the Evolution of Plant Defense Lead to Plant-Herbivore Mutualism.* IIASA Interim Report IR-01-053 (2001). The American Naturalist 158:109-123 (2001).

No. 57 Claessen D, Dieckmann U: *Ontogenetic Niche Shifts and Evolutionary Branching in Size-Structured Populations*. IIASA Interim Report IR-01-056 (2001). Evolutionary Ecology Research 4:189-217 (2002).

No. 58 Brandt H: *Correlation Analysis of Fitness Landscapes*. IIASA Interim Report IR-01-058 (2001).

No. 59 Dieckmann U: *Adaptive Dynamics of Pathogen-Host Interacations*. IIASA Interim Report IR-02-007 (2002). Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds): Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, Cambridge University Press, Cambridge, UK, pp. 39-59 (2002).

No. 60 Nowak MA, Sigmund K: *Super- and Coinfection: The Two Extremes.* IIASA Interim Report IR-02-008 (2002). Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds): Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, Cambridge University Press, Cambridge, UK, pp. 124-137 (2002).

No. 61 Sabelis MW, Metz JAJ: *Taking Stock: Relating Theory to Experiment*. IIASA Interim Report IR-02-009 (2002). Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds): Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, Cambridge University Press, Cambridge, UK, pp. 379-398 (2002).

No. 62 Cheptou P, Dieckmann U: *The Evolution of Self-Fertilization in Density-Regulated Populations*. IIASA Interim Report IR-02-024 (2002). Proceedings of the Royal Society of London Series B 269:1177-1186 (2002).

No. 63 Bürger R: Additive Genetic Variation Under Intraspecific Competition and Stabilizing Selection: A Two-Locus Study. IIASA Interim Report IR-02-013 (2002). Theoretical Population Biology 61:197-213 (2002).

No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund K: *Volunteering as Red Queen Mechanism for Co-operation in Public Goods Games*. IIASA Interim Report IR-02-041 (2002). Science 296:1129-1132 (2002).

No. 65 Dercole F, Ferrière R, Rinaldi S: *Ecological Bistability and Evolutionary Reversals under Asymmetrical Competition*. IIASA Interim Report IR-02-053 (2002). Evolution 56:1081-1090 (2002).

No. 66 Dercole F, Rinaldi S: *Evolution of Cannibalistic Traits: Scenarios Derived from Adaptive Dynamics*. IIASA Interim Report IR-02-054 (2002). Theoretical Population Biology 62:365-374 (2002).

No. 67 Bürger R, Gimelfarb A: *Fluctuating Environments and the Role of Mutation in Maintaining Quantitative Genetic Variation.* IIASA Interim Report IR-02-058 (2002). Genetical Research 80:31-46 (2002).

No. 68 Bürger R: *On a Genetic Model of Intraspecific Competition and Stabilizing Selection*. IIASA Interim Report IR-02-062 (2002). Amer. Natur. 160:661-682 (2002).

No. 69 Doebeli M, Dieckmann U: *Speciation Along Environmental Gradients*. IIASA Interim Report IR-02-079 (2002). Nature 421:259-264 (2003).

No. 70 Dercole F, Irisson J, Rinaldi S: *Bifurcation Analysis of a Prey-Predator Coevolution Model*. IIASA Interim Report IR-02-078 (2002). SIAM Journal on Applied Mathematics 63:1378-1391 (2003).

No. 71 Le Galliard J, Ferrière R, Dieckmann U: *The Adaptive Dynamics of Altruism in Spatially Heterogeneous Populations*. IIASA Interim Report IR-03-006 (2003). Evolution 57:1-17 (2003).

No. 72 Taborsky B, Dieckmann U, Heino M: Unexpected Discontinuities in Life-History Evolution under Size-Dependent Mortality. IIASA Interim Report IR-03-004 (2003). Proceedings of the Royal Society of London Series B 270:713-721 (2003).

No. 73 Gardmark A, Dieckmann U, Lundberg P: *Life-History Evolution in Harvested Populations: The Role of Natural Predation.* IIASA Interim Report IR-03-008 (2003). Evolutionary Ecology Research 5:239-257 (2003).

No. 74 Mizera F, Meszéna G: *Spatial Niche Packing, Character Displacement and Adaptive Speciation Along an Environmental Gradient*. IIASA Interim Report IR-03-062 (2003). Evolutionary Ecology Research 5:363-382 (2003).

No. 75 Dercole F: *Remarks on Branching-Extinction Evolutionary Cycles.* IIASA Interim Report IR-03-077 (2003). Journal of Mathematical Biology 47:569-580 (2003).

No. 76 Hofbauer J, Sigmund K: *Evolutionary Game Dynamics*. IIASA Interim Report IR-03-078 (2003). Bulletin of the American Mathematical Society 40:479-519 (2003).

No. 77 Ernande B, Dieckmann U, Heino M: *Adaptive Changes in Harvested Populations: Plasticity and Evolution of Age and Size at Maturation.* IIASA Interim Report IR-03-058 (2003). Proceedings of the Royal Society of London Series B-Biological Sciences 271:415-423 (2004).

No. 78 Hanski I, Heino M: *Metapopulation-Level Adaptation* of Insect Host Plant Preference and Extinction-Colonization Dynamics in Heterogeneous Landscapes. IIASA Interim Report IR-03-028 (2003). Theoretical Population Biology 63:309-338 (2003).

No. 79 van Doorn G, Dieckmann U, Weissing FJ: *Sympatric Speciation by Sexual Selection: A Critical Re-Evaluation*. IIASA Interim Report IR-04-003 (2004). American Naturalist 163:709-725 (2004).

No. 80 Egas M, Dieckmann U, Sabelis MW: *Evolution Re*stricts the Coexistence of Specialists and Generalists - the *Role of Trade-off Structure*. IIASA Interim Report IR-04-004 (2004). American Naturalist 163:518-531 (2004). No. 81 Ernande B, Dieckmann U: *The Evolution of Phenotypic Plasticity in Spatially Structured Environments: Implications of Intraspecific Competition, Plasticity Costs, and Environmental Characteristics.* IIASA Interim Report IR-04-006 (2004). Journal of Evolutionary Biology 17:613-628 (2004).

No. 82 Cressman R, Hofbauer J: *Measure Dynamics on a One-Dimensional Continuous Trait Space: Theoretical Foundations for Adaptive Dynamics.* IIASA Interim Report IR-04-016 (2004).

No. 83 Cressman R: *Dynamic Stability of the Replicator Equation with Continuous Strategy Space*. IIASA Interim Report IR-04-017 (2004).

No. 84 Ravigné V, Olivieri I, Dieckmann U: *Implications of Habitat Choice for Protected Polymorphisms*. IIASA Interim Report IR-04-005 (2004). Evolutionary Ecology Research 6:125-145 (2004).

No. 85 Nowak MA, Sigmund K: *Evolutionary Dynamics of Biological Games*. IIASA Interim Report IR-04-013 (2004). Science 303:793-799 (2004).

No. 86 Vukics A, Asbóth J, Meszéna G: *Speciation in Multidimensional Evolutionary Space*. IIASA Interim Report IR-04-028 (2004). Physical Review 68:041-903 (2003).

No. 87 de Mazancourt C, Dieckmann U: *Trade-off Geometries and Frequency-dependent Selection*. IIASA Interim Report IR-04-039 (2004). American Naturalist 164:765-778 (2004).

No. 88 Cadet CR, Metz JAJ, Klinkhamer PGL: *Size and the Not-So-Single Sex: disentangling the effects of size on sex allocation.* IIASA Interim Report IR-04-084 (2004). American Naturalist 164:779-792 (2004).

No. 89 Rueffler C, van Dooren TJM, Metz JAJ: *Adaptive Walks on Changing Landscapes: Levins' Approach Extended.* IIASA Interim Report IR-04-083 (2004). Theoretical Population Biology 65:165-178 (2004).

No. 90 de Mazancourt C, Loreau M, Dieckmann U: *Understanding Mutualism When There is Adaptation to the Partner.* IIASA Interim Report IR-05-016 (2005). Journal of Ecology 93:305-314 (2005).

No. 91 Dieckmann U, Doebeli M: *Pluralism in Evolutionary Theory.* IIASA Interim Report IR-05-017 (2005). Journal of Evolutionary Biology 18:1209-1213 (2005).

No. 92 Doebeli M, Dieckmann U, Metz JAJ, Tautz D: *What We Have Also Learned: Adaptive Speciation is Theoretically Plausible.* IIASA Interim Report IR-05-018 (2005). Evolution 59:691-695 (2005).

No. 93 Egas M, Sabelis MW, Dieckmann U: *Evolution of Specialization and Ecological Character Displacement of Herbivores Along a Gradient of Plant Quality.* IIASA Interim Report IR-05-019 (2005). Evolution 59:507-520 (2005).

No. 94 Le Galliard J, Ferrière R, Dieckmann U: *Adaptive Evolution of Social Traits: Origin, Trajectories, and Correlations of Altruism and Mobility.* IIASA Interim Report IR-05-020 (2005). American Naturalist 165:206-224 (2005).

No. 95 Doebeli M, Dieckmann U: *Adaptive Dynamics as a Mathematical Tool for Studying the Ecology of Speciation Processes.* IIASA Interim Report IR-05-022 (2005). Journal of Evolutionary Biology 18:1194-1200 (2005).

No. 96 Brandt H, Sigmund K: *The Logic of Reprobation: Assessment and Action Rules for Indirect Reciprocity.* IIASA Interim Report IR-04-085 (2004). Journal of Theoretical Biology 231:475-486 (2004).

No. 97 Hauert C, Haiden N, Sigmund K: *The Dynamics of Public Goods*. IIASA Interim Report IR-04-086 (2004). Discrete and Continuous Dynamical Systems - Series B 4:575-587 (2004).

No. 98 Meszéna G, Gyllenberg M, Jacobs FJA, Metz JAJ: *Link Between Population Dynamics and Dynamics of Darwinian Evolution*. IIASA Interim Report IR-05-026 (2005). Physical Review Letters 95:Article 078105 (2005).

No. 99 Meszéna G: *Adaptive Dynamics: The Continuity Argument.* IIASA Interim Report IR-05-032 (2005).

No. 100 Brännström NA, Dieckmann U: *Evolutionary Dynamics of Altruism and Cheating Among Social Amoebas.* IIASA Interim Report IR-05-039 (2005). Proceedings of the Royal Society London Series B 272:1609-1616 (2005).

No. 101 Meszéna G, Gyllenberg M, Pasztor L, Metz JAJ: *Competitive Exclusion and Limiting Similarity: A Unified Theory.* IIASA Interim Report IR-05-040 (2005).

No. 102 Szabo P, Meszéna G: *Limiting Similarity Revisited*. IIASA Interim Report IR-05-050 (2005).

No. 103 Krakauer DC, Sasaki A: *The Greater than Two-Fold Cost of Integration for Retroviruses*. IIASA Interim Report IR-05-069 (2005).

No. 104 Metz JAJ: *Eight Personal Rules for Doing Science*. IIASA Interim Report IR-05-073 (2005). Journal of Evolutionary Biology 18:1178-1181 (2005).

No. 105 Beltman JB, Metz JAJ: *Speciation: More Likely Through a Genetic or Through a Learned Habitat Preference?* IIASA Interim Report IR-05-072 (2005). Proceedings of the Royal Society of London Series B 272:1455-1463 (2005).

No. 106 Durinx M, Metz JAJ: *Multi-type Branching Processes and Adaptive Dynamics of Structured Populations*. IIASA Interim Report IR-05-074 (2005). Haccou P, Jager P, Vatutin V (eds): Branching Processes: Variation, Growth and Extinction of Populations, Cambridge University Press, Cambridge, UK, pp. 266-278 (2005).

No. 107 Brandt H, Sigmund K: *The Good, the Bad and the Discriminator - Errors in Direct and Indirect Reciprocity.* IIASA Interim Report IR-05-070 (2005). Journal of Theoretical Biology 239:183-194 (2006).

No. 108 Brandt H, Hauert C, Sigmund K: *Punishing and Abstaining for Public Goods*. IIASA Interim Report IR-05-071 (2005). Proceedings of the National Academy of Sciences of the United States of America 103:495-497 (2006).

No. 109 Ohtsuki A, Sasaki A: *Epidemiology and Disease-Control Under Gene-for-Gene Plant-Pathogen Interaction*. IIASA Interim Report IR-05-068 (2005).

No. 110 Brandt H, Sigmund K: *Indirect Reciprocity, Image-Scoring, and Moral Hazard*. IIASA Interim Report IR-05-078 (2005). Proceedings of the National Academy of Sciences of the United States of America 102:2666-2670 (2005).

No. 111 Nowak MA, Sigmund K: *Evolution of Indirect Reciprocity*. IIASA Interim Report IR-05-079 (2005). Nature 437:1292-1298 (2005).

No. 112 Kamo M, Sasaki A: *Evolution Towards Multi-Year Periodicity in Epidemics*. IIASA Interim Report IR-05-080 (2005). Ecology Letters 8:378-385 (2005). No. 113 Dercole F, Ferrière R, Gragnani A, Rinaldi S: *Co-evolution of Slow-fast Populations: Evolutionary Sliding, Evolutionoary Pseudo-equilibria, and Complex Red Queen Dy-namics.* IIASA Interim Report IR-06-006 (2006). Proceedings of the Royal Society B-Biological Sciences 273:983-990 (2006).

No. 114 Dercole F: *Border Collision Bifurcations in the Evolution of Mutualistic Interactions*. IIASA Interim Report IR-05-083 (2005). International Journal of Bifurcation and Chaos 15:2179-2190 (2005).

No. 115 Taborsky B: *The influence of juvenile and adult environments on life-history trajectories.* IIASA Interim Report IR-06-033 (2006). Proceedings of the Royal Society B-Biological Sciences 273 :741-750 (2006).

No. 116 Taborsky B: *Mothers determine offspring size in response to own juvenile growth conditions*. IIASA Interim Report IR-06-034 (2006). No. 117 Dieckmann U, Heino M, Parvinen K: *The Adaptive Dynamics of Function-Valued Traits*. IIASA Interim Report IR-06-036 (2006). Journal of Theoretical Biology 241:370-389 (2006).

No. 118 Dieckmann U, Metz JAJ: *Surprising Evolutionary Predictions from Enhanced Ecological Realism*. IIASA Interim Report IR-06-037 (2006). Theoretical Population Biology 69:263-281 (2006).

No. 119 Dieckmann U, Brännström NA, HilleRisLambers R, Ito H: *The Adaptive Dynamics of Community Structure*. IIASA Interim Report IR-06-038 (2006).

No. 120 Gardmark A, Dieckmann U: *Disparate maturation adaptations to size-dependent mortality*. IIASA Interim Report IR-06-039 (2006).

No. 121 van Doorn G, Dieckmann U: *The long-term evolution of multi-locus traits under frequency-dependent disruptive selection.* IIASA Interim Report IR-06-041 (2006).

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained at www.iiasa.ac.at/Research/EEP/Series.html or by writing to eep@iiasa.ac.at.

Contents

Abstract
Model description
Ecological assumptions 5
Genetic assumptions
Simulation details
Environmental variation7
Individual-based model
Two selection regimes7
A general pattern of polymorphism formation and collapse
Deterministic model 11
Derivation of deterministic dynamics11
Illustration of deterministic dynamics 12
Comprehensive analysis of deterministic dynamics12
Robustness with respect to genetic assumptions 15
Genetic linkage
Non-additive interactions
Large mutations
Discussion
Acknowledgements
Literature cited
Appendix: Derivation of deterministic approximation
Figure legends
Figure legends for the figures in the online supplementary material 33
Table 1
Figures

The long-term evolution of multi-locus traits under frequency-dependent disruptive selection

G. Sander van Doorn^{*} and Ulf Dieckmann^{†‡}

 * Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
 * Evolution and Ecology Program, International Institute for Applied Systems Analysis, Schlossplatz 1, 2361 Laxenburg, Austria.
 * Section Theoretical Biology, Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.

LRH:VAN DOORN AND DIECKMANNRRH:EVOLUTIONARY BRANCHING OF MULTI-LOCUS TRAITS

manuscript 06-291, version 3 - 03-07-2006

Corresponding author: G. Sander van Doorn Centre for Ecological and Evolutionary Studies University of Groningen P.O. Box 14 9750 AA Haren The Netherlands Phone: +31-50-3638085 Fax: +31-50-3633400 Email: g.s.van.doorn@rug.nl

Abstract

Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic assumptions underlying these approaches are highly idealized and, even worse, predict different consequences of frequency-dependent disruptive selection. Population genetic models, by contrast, enable genotypic evolutionary models, but traditionally assume constant fitness values. Only a minority of these models thus addresses frequency-dependent selection, and only a few of these do so in a multi-locus context. An inherent limitation of these remaining studies is that they only investigate the short-term maintenance of genetic variation. Consequently, the long-term evolution of multilocus characters under frequency-dependent disruptive selection remains poorly understood. We aim to bridge this gap between phenotypic and genotypic models by studying a multi-locus version of Levene's soft-selection model. Individual-based simulations and deterministic approximations based on adaptive dynamics theory provide insights into the underlying evolutionary dynamics. Our analysis uncovers a general pattern of polymorphism formation and collapse, likely to apply to a wide variety of genetic systems: after convergence to a fitness minimum and the subsequent establishment of genetic polymorphism at multiple loci, genetic variation becomes increasingly concentrated on a few loci, until eventually only a single polymorphic locus remains. This evolutionary process combines features observed in quantitative genetics and adaptive dynamics models, and can be explained as a consequence of changes in the selection regime that are inherent to frequencydependent disruptive selection. Our findings demonstrate that the potential of frequency-dependent disruptive selection to maintain polygenic variation is considerably smaller than naïvely expected.

KEYWORDS: maintenance of genetic variation, Levene model, protected polymorphism, evolutionary branching, symmetry breaking, population genetics, adaptive dynamics. Frequency-dependent selection plays an important role in the origin and maintenance of genetic variation (Felsenstein, 1976; Hedrick et al., 1997; Slatkin, 1979). Conditions for stable polymorphisms are much relaxed when fitness values are not constant but vary with the frequency of different genotypes present in a population. Protected polymorphisms can then be established whenever rare genotypes have a selective advantage (Lewontin, 1958). This may even lead to situations in which, at population genetic equilibrium, the heterozygote resulting from an allelic dimorphism experiences a fitness disadvantage (note that this is the exact opposite of the situation required for stable polymorphisms to occur with constant fitness values). In such a case, the population is caught at a fitness minimum, at which it experiences disruptive selection.

The consequences of such frequency-dependent disruptive selection have most extensively been investigated in the context of quantitative genetics (e.g., Slatkin, 1979; Bulmer, 1980), and in the related frameworks of evolutionary game theory (e.g., Maynard Smith, 1982; Hofbauer & Sigmund, 1998) and adaptive dynamics (e.g., Metz et al., 1996; Dieckmann & Law, 1996; Geritz et al., 1998; Hofbauer & Sigmund, 1998) – see also Abrams (2001) for a comparison of these three methods. Although the insights obtained through these different approaches are similar in some respects (Taylor, 1996), their predictions for the effects of frequencydependent disruptive selection are strikingly different. In quantitative genetics (OG) models, the maintenance of genetic variation results from the broadening of continuous phenotypic distributions exposed to such selection. In adaptive dynamics (AD) models, frequency-dependent disruptive selection can cause evolutionary branching (Metz et al., 1996; Geritz et al., 1997, 1998). Such branching processes characteristically involve the convergence of a monomorphic population to a fitness minimum, followed by the adaptive emergence and further diversification of a discrete polymorphism.

The discordance of these predictions is caused by the different genetic assumptions underlying QG and AD models. QG models are often purely phenomenological, but when a mechanistic underpinning is given, it is usually assumed that phenotypic characters are influenced by a large number of loci, each of which contributes only marginally to the phenotype. In every generation, the genetic variation present in the parent generation is redistributed among the offspring through recombination and segregation, i.e., as a consequence of sexual reproduction. Since many loci are involved in this process, the distribution of phenotypes in the population is continuous and normal. AD models, in contrast, usually consider asexual reproduction (or single-locus, haploid genetics) and monomorphic populations (see Kisdi & Geritz, 1999; Van Dooren, 1999, for exceptions).

From the viewpoint of population genetics, the assumptions of infinite loci with infinitesimal effects (QG) or of asexual reproduction (AD) are both highly idealized. It is therefore difficult to predict the effect of frequency-dependent disruptive selection for realistic genetic settings. Despite the fact that frequency-dependent selection has been included in the theory of population genetics right from its conception (Fisher, 1930), most of population genetics theory assumes constant fitness values (see, e.g., Clarke, 1972; Cockerham et al. 1972; Cressman, 1992, for exceptions); such theory cannot be used to predict the consequences of frequency-dependent selection. Especially the evolutionary dynamics of multi-locus characters under frequency-dependent disruptive selection remains elusive. Recently, however, several attempts have been made to bridge the gap between population genetic and phenotypic models of frequency-dependent selection, and particularly the integration of population genetics with evolutionary game theory has received considerable attention (e.g., Cressman, 1992; Hofbauer & Sigmund, 1998).

As a case in point, Bürger (2002a, 2002b) presents a population genetic analysis of a model of intraspecific competition that had previously been analyzed within both the QG (e.g., Slatkin, 1979) and the AD framework (e.g., Metz et al., 1996). Bürger focused on the dynamics and population genetic equilibria of the frequencies of a fixed set of alleles in a multi-locus model with frequency-dependent disruptive selection. He investigated the conditions under which disruptive selection on the phenotypes can be observed, and quantified the amount of genetic variation that can be maintained. The analyzed model exhibits a number of unexpected phenomena, which underscore that the population genetics of frequency-dependent disruptive selection can be surprisingly complex.

A complementary approach was initiated by Kisdi & Geritz (1999) and Van Dooren (1999), who extended AD models by incorporating diploid genetics and sexual reproduction. Focusing on the simplest interesting model, these authors studied the evolution of alleles at a single locus under frequency-dependent disruptive selection. Unlike models that consider a fixed and limited set of alleles, these analyses explicitly considered mutations with small phenotypic effects. Long-term evolution can then proceed as a sequence of substitution steps during which existing alleles are replaced by novel ones created by mutation. Similar approaches have been developed

in the population genetics literature (e.g., Keightley & Hill, 1983; Bürger et al., 1989). As in asexual AD models, frequency-dependent disruptive selection can cause evolutionary branching in diploid sexual populations (this occurs, it is shown, under the same conditions as in asexual models), leading to the establishment of a polymorphism of alleles (Kisdi & Geritz, 1999). As a consequence of the constraints imposed by random mating and segregation, the evolution of dominance-recessivity relations between the alleles is selectively favored (Van Dooren, 1999). In this paper, we aim to extend the understanding of the long-term consequences of frequency-dependent disruptive selection, by analyzing mutations and allele substitutions in a multi-locus model. This approach extends the earlier work of Bürger (2002a, 2002b), by allowing for long-term evolution by mutations and allele substitutions. At the same time, our work extends the analysis by Kisdi & Geritz (1999). by allowing for multi-locus genetics. We will consider Levene's softselection model (Levene, 1953) as a prototypical example of situations generating frequency-dependent disruptive selection. Levene's model is commonly used for studying the maintenance of variation in a heterogeneous environment: it is relatively simple, its population genetics are well known (Roughgarden, 1979), and it has been considered in several related studies (Kisdi & Geritz, 1999; Van Dooren, 1999; Spichtig & Kawecki, 2004).

MODEL DESCRIPTION

Ecological assumptions

We consider an organism with discrete, non-overlapping generations in a heterogeneous environment consisting of two habitats. Individuals are distributed at random over the two habitats at the start of each generation. The two habitats differ in ecological conditions such that an individual is more or less adapted to a habitat depending on its ecological strategy z, a one-dimensional quantitative character. Specifically, we assume that an individual's viability in habitat i = 1, 2 is given by

$$v_i(z) = \exp\left(-\frac{1}{2}(z-\mu_i)^2/\sigma^2\right),$$
 (1)

which implies that the optimal phenotype is μ_1 in the first habitat and μ_2 in the second. The parameter σ is an inverse measure of the intensity of local selection and determines how rapidly viability declines with the difference between an individual's

ecological strategy and the locally optimal one. Without loss of generality, we set $\mu_1 = -\mu_2 = \mu$.

We assume 'soft selection' (Levene, 1953; see also Ravigné et al., 2004): in each generation, a fixed number f_iN of randomly chosen adults are recruited from habitat *i*; throughout, we set $f_1 = f_2 = \frac{1}{2}$. These adults form a single mating population of population size N, in which mating occurs at random and offspring are produced at the end of each generation.

Genetic assumptions

The ecological strategy z is encoded by L diploid loci. One or more distinct alleles may occur at every locus. We use the index k to arbitrarily label the different alleles that occur within the population at a specified locus l. Correspondingly, a_{lk} denotes the *k*th allele at the *l*th locus, and x_{lk} denotes its phenotypic effect (allelic effect). We initially assume that loci are unlinked and that alleles interact additively at each locus and between loci. Hence, for an individual carrying alleles $a_{lk'}$ and $a_{lk''}$ at the *l*th locus, the phenotypic effect of this locus is given by $y_l = x_{lk'} + x_{lk''}$, and the individual's ecological strategy is given by

$$z = \sum_{l=1}^{L} y_l \,. \tag{2}$$

Later in this study we will also consider non-additive interactions within and between loci, as well as genetic linkage between loci.

Unlike previous models (reviewed in Felsenstein, 1976; Hedrick et al., 1976), which were concerned with the short-term evolutionary process of changes in allele frequencies, we do not constrain the set of alleles that may be present in the population. By allowing new alleles to appear through mutation, we can study the long-term evolutionary process of changes in the phenotypic effects of alleles. Mutations occur at rate m per allele per generation and change the phenotypic effect of an allele by an amount drawn from a normal distribution with zero mean and standard deviation σ_m .

Simulation details

In addition to analytic approximations, we consider an individual-based model. At the start of a simulation, the population is initialized by creating N identical individuals that are homozygous at all loci. Although the initial population exhibits no genetic variation, it usually takes just a few generations before mutation has

created sufficient genetic variation for adaptive change to occur. The phenotypic effects of the alleles used to initialize the population is chosen such that the initial phenotype is far away from the average of the optimal phenotypes in the two patches. Other choices of the initial phenotype do not lead to different results: the population always first converges on the phenotype z = 0, the average of the patch optima, before further evolution occurs (see below).

At regular intervals, we determined the distribution of phenotypes in the population and the distributions of the phenotypic effects of alleles at individual loci.

Environmental variation

Throughout this paper and as indicated by equation (2), we maintain conceptual simplicity by supposing that the ecological strategy is completely genetically determined. However, effects of the micro-environment on the phenotype can be incorporated into the model straightforwardly by modifying the selection parameter σ^2 (Bürger, 2000, p. 158-160) – it changes to $\sigma^2 + V_e$, where V_e denotes the variance of the environmental component of phenotypic variation. The validity of this rescaling argument was confirmed by individual-based simulations (see Figure S-1 in the supplementary material available online).

It should be noted that variation in the environment itself, caused by, for instance, variability of the parameters μ and σ , cannot be dealt with simply by rescaling the model. For this reason, we have explored a small number of scenarios by means of individual-based simulations (for an example, see Figure S-2 in the supplementary material available online); these simulations confirmed the robustness of our conclusions. A more comprehensive analysis of the effects of environmental variability on the maintenance of polygenic variation in the model analyzed here is suggested as an interesting topic of future research.

INDIVIDUAL-BASED MODEL

Two selection regimes

Our investigations of the individual-based model defined above show that, not unexpectedly, evolutionary outcomes critically depend on the relative magnitude of the parameters μ and σ .

When the optimal strategies in the two habitats are not too different, or when viability selection is weak ($\mu < \sigma$), long-term evolution of the ecological strategy z proceeds towards the generalist strategy $z^* = 0$ (results not shown). Once the population has reached this generalist strategy, no further phenotypic evolution takes place. Mutation-selection balance maintains only a tiny amount of variation in the population. These observations agree with analytical results (Geritz et al., 1998; Kisdi & Geritz, 1999) that predict the strategy $z^* = 0$ to be both convergence stable and evolutionarily stable for $\mu < \sigma$. The former implies that evolution through small phenotypic steps will proceed towards $z^* = 0$, with each step corresponding to the mutation and subsequent substitution of an allele. The latter implies that no allele coding for an alternative phenotype will be able to invade once the phenotype $z^* = 0$ has been established, and, therefore, that the population experiences stabilizing selection at $z^* = 0$.

By contrast, when the difference between the optimal strategies is large, or when viability selection is strong ($\mu > \sigma$), we observe the emergence of a stable phenotypic polymorphism through the process of evolutionary branching (Metz et al., 1996; Geritz et al., 1997, 1998). Figure 1 shows a simulation for $\mu = 1.5$ and $\sigma = 1.0$ (we performed simulations for $0.2 \le \mu/\sigma \le 2.0$ in steps of 0.2 and $2.0 \le \mu/\sigma \le 5.0$ in steps of 0.5). Other parameters are set to N = 1000, L = 3 (we also considered L = 1...5, 10, 20, 50, 100, 250), $\sigma_m^2 = 10^{-3}$, and $m = 10^{-4}$; unless stated otherwise, these parameter values will be used throughout this paper. As illustrated in the left panel of Figure 1, directional evolution first converges towards the generalist strategy $z^* = 0$, where selection turns disruptive. This is because the strategy $z^* = 0$ is convergence stable, but not evolutionarily stable (Geritz et al., 1998; Kisdi & Geritz, 1999). Therefore, alleles coding for alternative phenotypes can invade the generalist population, thus establishing genetic and phenotypic polymorphism (middle and right panel).

A general pattern of polymorphism formation and collapse

We find that establishment of this polymorphism follows a characteristic sequence of steps:

1. *Convergence*. During a first phase (Figure 1, left panel; generations 0 to 10,000), the evolving population simply converges to the branching point through the gradual adjustment of phenotypic effects, without any significant between-locus or within-locus variation being built up. This first phase sets the stage for the

establishment of the later polymorphism – by bringing about a regime of frequency-dependent disruptive selection – without yet itself contributing to that process.

- Symmetric divergence. In a second phase, which commences right after branching (Figure 1, middle panel; generations 10,000 to 30,000), the phenotypic differentiation between alleles grows gradually, due to mutations and allelic substitutions. Closer inspection reveals that all loci become polymorphic during this phase. In particular, we observe two equally frequent, distinct classes of alleles with equal but opposite phenotypic effects at each locus. Moreover, the differences between the phenotypic effects of these classes of alleles are roughly equal for all loci. Consequently, the phenotype segregates as if it were determined by *L* additive, diallelic, diploid loci, with identical pairs of alleles at all loci. Such genetic systems can give rise to 2*L* +1 different phenotypes, exactly the number of phenotypic classes we observe in our simulations (Figure 1, inset A; *L* = 3 loci imply 7 such classes).
- 3. Between-locus symmetry breaking. In a third phase (Figure 1, middle panel; generations 30,000 to 125,000), phenotypic variation continues to increase until the distribution of realized phenotypes approximately covers the range from -μ to μ. However, the symmetry between loci is broken during this phase. At some loci, the alleles continue to diversify, whereas at other loci the differentiation between alleles decreases or alleles are lost altogether (Figure 1, inset B). Eventually, only one polymorphic locus remains. This effect was observed to occur independently of the number of loci encoding the ecological strategy (see Figure 1, inset E, for a simulation with L = 100) and independently of the parameters μ and σ, as long as μ > σ. At the remaining polymorphic locus, two classes of alleles give rise to three distinct classes of phenotypes (two homozygotes and a heterozygote; Figure 1, inset D).
- 4. Within-locus symmetry breaking. During the fourth phase (Figure 1, generations 125,000+), phenotypic effects and frequencies at the last polymorphic locus become asymmetric. This process has previously been studied by Kisdi & Geritz (1999), who showed that within-locus asymmetries evolve under a wide range of parameters. During phase 2, and essentially also during phase 3, the distinct classes of alleles at each particular locus have equal frequencies and opposite but equal effects on the phenotype, such that heterozygotes have phenotypic effects close to zero. During phase 4, this symmetry is lost, such that the heterozygote

matches one of the two locally optimal phenotypes, with the other locally optimal phenotypes being matched by one of the homozygotes ($z \approx \mu$ and $z \approx -\mu$; Figure 1, right panel). The remaining homozygote expresses a poorly adapted phenotype ($z \approx -3\mu$; Figure 1, right panel). This makes it evident that the alleles carried by the latter homozygote (let us refer to its genotype as *aa*) have a larger phenotypic effect ($x_a \approx -3\mu/2$) than the alleles carried by the former homozygote (genotype *AA*; $x_A \approx \mu/2$). The frequency of the allele *a* approaches $\frac{1}{4}$. This is because, at the time of mating, half of the population consists of individuals from the first habitat, where only *AA*-individuals stand a fair chance of survival, while the other half consists of individuals from the second habitat, where only *Aa*-individuals survive. In Figure 1, the asymmetry in the phenotype distribution primarily grows during phase 4 (inset D), but is already initiated to some slight extent during phase 3 (inset C). Beyond these final adjustments, the population's phenotypic and allelic composition remains stable.

Replicate simulations for the same set of parameters (at least 20 replicates per parameter condition) show no variation on the four-phase pattern described above. Also quantitatively, Figure 1 gives a representative impression of the timing of the different phases. We do observe some variation between replicates in the length of the phase of symmetric divergence, though. In about 10% of the replicates, between-locus symmetry breaking occurs at a premature stage, such that polymorphism may already be lost at one locus (or, occasionally, at two loci) before phenotypic diversification has come to an end.

The parameters used for the simulations presented in Figure 1 lead to mutational heritabilities, $h_m^2 = 2Lm\sigma_m^2$, of $6 \cdot 10^{-7}$ (main figure) and $2 \cdot 10^{-5}$ (inset E), and genomic mutation rates, U = 2Lm, of $6 \cdot 10^{-4}$ (main figure) and $2 \cdot 10^{-2}$ (inset E). These values span the lower half of the estimated range of naturally realized values (see, e.g., Rifkin et al., 2005). For low values of h_m^2 and U, it takes considerable time until polygenic variation is lost. The whole evolutionary process occurs more rapidly when the mutational heritability is enlarged through an increase of the mutation rate, m, or of the variance of mutational effects, σ_m^2 . However, more pronounced mutations make it more difficult to single out for further investigation the selection-driven component of evolutionary change; for that reason, we have typically assumed small values for m and σ_m^2 (but see Figure 7).

As we will demonstrate below, the four-phase pattern illustrated in Figure 1 is robustly observed in several variations of our basic model. While phases 1 and 4 already occur in single-locus models (Kisdi & Geritz, 1999), in this paper we focus on the new patterns resulting from the symmetry breaking between loci during phase 3, and thus on processes that are unique to multi-locus models.

DETERMINISTIC MODEL

Derivation of deterministic dynamics

We further investigate the observed loss of polymorphism at all but one locus by analyzing a deterministic approximation of our model. For this purpose we derived deterministic equations for the expected rate of evolutionary change in allelic effects, assuming that mutations are rare and their incremental effects are small. Directional evolution then proceeds by steps involving allelic mutation, invasion, and fixation (Metz et al., 1992, 1996; Dieckmann & Law, 1996; Weissing, 1996; Hofbauer & Sigmund, 1998; Geritz et al., 2002). The outcome of a single step in this process, i.e., whether or not a new mutant allele will be able to invade and substitute an existing resident allele, is determined by the invasion fitness of the mutant allele, i.e., by the rate at which the frequency of the mutant allele increases when it is still rare (Metz et al., 1992, 1996). In a multi-locus context, this quantity will depend on a combination of fitness effects of the mutant allele in the different genetic backgrounds created by other polymorphic loci (see appendix). Mutant alleles with positive invasion fitness have a chance to invade the resident population, and once they have overcome the threat of accidental extinction by demographic stochasticity (Metz et al., 1996; Dieckmann & Law, 1996) they will go to fixation (except under certain special and well-understood circumstances; Geritz et al., 2002). It can be shown that series of such substitution events result in gradual evolutionary change at a rate and in a direction that is related to the gradient of invasion fitness (Dieckmann & Law, 1996). We followed standard procedures for the derivation of invasion fitness and for the subsequent derivation of dynamical equations for the evolutionary rate of changes in allelic effects (Dieckmann & Law, 1996; Kisdi & Geritz, 1999; details are provided in the appendix).

Illustration of deterministic dynamics

Numerical results for the deterministic model are shown in Figure 2. The simulation starts with a population located at the evolutionary branching point, just after a dimorphism has arisen at two loci. There are two alleles at the first locus, which we will refer to as A and a, and two alleles at the second locus, henceforth referred to as B and b (this does not imply that the alleles A and B are dominant; as before, alleles act additively on the phenotype).

Until about $1.0 \cdot 10^5$ generations, the phenotypic effects of the alleles at both loci diversify rapidly and symmetrically (corresponding to phase 2 as described above), giving rise to five phenotypic classes. The difference between the phenotypic effects of alleles B and b then diminishes gradually, until the allele B is suddenly lost at about $3.5 \cdot 10^5$ generations (phase 3), so that only three phenotypic classes remain (which of the two loci loses its dimorphism depends on arbitrarily small initial asymmetries between them). The difference between the phenotypic effects of alleles A and a continues to grow throughout phase 3. Finally (phase 4), the alleles at this locus evolve in such a way that one homozygote (AA) and the heterozygote (Aa) match the optimal phenotypes, whereas the remaining homozygote (aa) expresses a sub-optimal phenotype. The frequency of the allele *a* then declines to approximately 0.25. This is again explained by the fact that 50% of the mating population, i.e., the part contributed by one habitat, will consist mainly of AA individuals, whereas the remaining 50%, from the other habitat, will mainly consist of *Aa* individuals. Also the alternative outcome is possible, with the matches provided by *aa* and *Aa* instead (which of these two outcomes is realized depends on arbitrarily small initial asymmetries between the allelic effects at the remaining dimorphic locus). Asymmetries in the initial conditions determine on what timescale symmetry breaking within and between loci will occur (asymmetries develop faster when the initial asymmetries are larger). Taking into account the expected value of initial asymmetries between alleles in the individual-based simulations, we find good quantitative agreement between both implementations of our model. Therefore, we use the deterministic model for further investigation.

Comprehensive analysis of deterministic dynamics

A comprehensive picture of the evolutionary dynamics of our model can be obtained by focusing on two-locus diallelic genetics (such as illustrated in Figure 2) to study the underlying dynamics in allele space. Let us therefore denote the phenotypic effects of alleles A, a, B, and b as x_A , x_a , x_B , and x_b , respectively. Without loss of generality, we may define

$$\begin{aligned} x_A &= \overline{x} + \delta_1 + \Delta , \quad x_a = \overline{x} - \delta_1 + \Delta , \\ x_B &= \overline{x} + \delta_2 - \Delta , \quad x_b = \overline{x} - \delta_2 - \Delta , \end{aligned} \tag{3}$$

such that \overline{x} represents the average phenotypic effect of all four alleles, and δ_1 and δ_2 measure the phenotypic differentiation between alleles at the first and second locus, respectively. The quantities $\overline{x} + \Delta$ and $\overline{x} - \Delta$ then represent the average phenotypic effects of the alleles at the first and second locus, respectively. The variable \overline{x} is indicative of the asymmetry between alleles at polymorphic loci, whereas the difference $\delta_1 - \delta_2$ relates to the asymmetry between loci. Since alleles interact additively within and between loci, the coefficient Δ has no effect at the phenotypic level, and hence is not subject to selection. This allows us to represent allele space in three dimensions.

Figure 3 illustrates the different equilibria we find in allele space. Starting from a population that is monomorphic at both loci ($\delta_1 = \delta_2 = 0$), evolution first converges to the evolutionary branching point (indicated as BP in Figure 3). Any slight degree of dimorphism developing right at the branching point (or, alternatively, having been present initially), takes the population away from this point, towards an equilibrium at which a symmetric allelic dimorphism is established at both loci (equilibrium S2). This equilibrium is not stable, however. Further evolution proceeds towards an equilibrium at which only one locus supports a symmetric allelic dimorphism (equilibrium S1). Unless the difference between the patch optima is very large relative to the selection parameter σ (see Kisdi & Geritz, 1999, for the exact conditions) this equilibrium is also not stable, such that the final phase of evolution involves the transition to an asymmetric allelic dimorphism at a single locus (equilibrium A1).

The sequential approach of an initial condition IC towards the equilibria BP, S2, S1, and A1 in Figure 3 can be recognized in the four different phases of the individualbased dynamics shown in Figure 1: IC \rightarrow BP (phase 1), BP \rightarrow S2 (phase 2), S2 \rightarrow S1 (phase 3), S1 \rightarrow A1 (phase 4). The four different phases are the more pronounced the closer trajectories stay to the itinerary IC \rightarrow BP \rightarrow S2 \rightarrow S1 \rightarrow A1 (see Figure 3). Technically speaking, equilibria like BP, S1, and S2 are called saddle points. Such points are notorious for slowing down dynamics when being approached closely. There are several reasons why such approaches dominate the dynamics of our system:

- 1. Due to combinatorial reasons, it is unlikely that only a single locus is polymorphic shortly after branching. As long as mutations have small phenotypic effects, one expects the polymorphism to grow initially at the same rate at every locus. To see why this is so, suppose that the initial phase of phenotypic diversification requires n mutations. It is much more likely that these mutations are more or less uniformly distributed over loci than that all n mutations occurred at the same locus. As long as n is large relative to the number of loci on which the ecological trait is based, it is therefore probable that the initial asymmetry between loci is small. This confines trajectories ejected from the branching point to the plane $\delta_1 = \delta_2$ (Figure 3). Since mainly combinatorial effects determine the expected direction of evolution from the branching point, details of the mutation process can have some impact on the phase of symmetric divergence. Divergence will typically occur at the same rate at every locus, if, for example, the mutation rate or the mutation step size is higher for some loci than for others. Similarly, convergence towards the plane $\delta_1 = \delta_2$ may either be supported or hindered by nonlinearities in the genotype-phenotype mapping.
- 2. Selection initially tends to decrease the average phenotypic effect of alleles, $|\overline{x}|$, thus selecting for symmetric (i.e., equal but opposite) phenotypic effects. This effect is a remnant of the regime of directional selection that drove the monomorphic population towards the evolutionary branching point: around $\delta_1 = \delta_2 = 0$, selection points towards $\overline{x} = 0$ (Figure 3). In conjunction with the first effect, this means that trajectories are ejected from the branching point in the direction $\delta_1 = \delta_2$, $\overline{x} = 0$, i.e., right towards the equilibrium S2.
- 3. The closer trajectories pass by S2, the closer they will pass by S1. Since this is a derived effect, the transition from phase 3 to phase 4 will usually be less sharp than that from phase 2 to phase 3 (see Figure 1).

Populations are thus expected to spend considerable time in the vicinity of the unstable equilibria S2 and S1. This prediction is corroborated by the individual-based simulation shown in Figure 1.

ROBUSTNESS WITH RESPECT TO GENETIC ASSUMPTIONS

So far, we have investigated evolution under frequency-dependent disruptive selection in an idealized genetic system, characterized by free recombination and additive interactions within and between loci. In addition, we have assumed that individual mutations have small phenotypic effects. These simplifying genetic assumptions are habitually made in phenotypic models of evolution, where the details of the underlying genetics are considered to be of secondary importance (see also Weissing, 1996), either because the character under study is likely to be encoded by many loci, or because its genetic basis is unknown. To overcome these limitations, below we investigate the robustness of our results with respect to variations of our genetic assumptions.

Genetic linkage

First, we consider the effects of genetic linkage between loci. Figure 4 shows numerical results for our deterministic model with tight linkage between two diallelic loci (the recombination fraction is set to r = 0.05).

The two loci initially behave as a single locus with four 'alleles' (given by the haplotypes AB, Ab, aB, and ab). Based on the results presented in the preceding sections, we expect that two haplotypes disappear and that the phenotypic effects of the remaining two haplotypes evolve such that one homozygote and the heterozygote express the two locally optimal phenotypes. This is indeed the case. In the first phase of the simulation shown in Figure 4 (until about $0.5 \cdot 10^6$ generations), we observe the emergence of a polymorphism of five phenotypic classes, but the frequency of two of the haplotypes (AB and ab) is much higher than that of the other two haplotypes (Ab and aB). This can be inferred from the fact that the frequency of the genotypes AAbb and aaBB is much lower than that of the genotype AaBb. After this initial phase, the phenotypic effect of haplotype *ab* becomes strongly negative, allowing the homozygote AABB and the heterozygote AaBb to express the two locally optimal phenotypes. Due to the tight linkage, asymmetries between the loci evolve more slowly than asymmetries between haplotypes. Eventually however, the polymorphism at one of the loci is lost. In Figure 4, the allele b disappears shortly after $1.5 \cdot 10^6$ generations.

These results suggest that linkage between loci does affect the relative rates at which asymmetries within and between loci develop, but does not change the partitioning of

the evolutionary dynamics into distinguishable phases, the loss of polymorphism at all but one locus, and the final pattern of the evolutionary outcome.

Non-additive interactions

Second, we consider the effects of non-additive interactions between alleles and between loci. We could relax our assumption of additive genetics by simply imposing fixed, non-additive interactions (e.g., antagonistic or synergistic interactions). We consider this option less than ideal, since it would still constrain the evolutionary process. Instead, we allow for evolutionary change in dominancerecessivity relations and in the relative impacts of the different loci on the phenotype (we will refer to these relative impacts as the weights of individual loci). In this extended approach, the extent to which alleles and loci contribute to the phenotype is flexible and can be shaped by evolution.

Following the modeling framework introduced by Van Dooren (1999), we implemented this flexibility by assuming that an individual's phenotype is determined by the phenotypic effects of the alleles it carries (more precisely, the gene products of the alleles) and by so-called allelic parameters, which determine the extent to which the alleles are expressed, much like regulatory elements in the promotor region of a gene. In addition, we consider modifier loci (e.g., loci coding for transcription factors) that affect the level of expression of all alleles at a given locus. Dominance interactions between alleles derive from the allelic parameters, whereas the weights of individual loci derive from the expression patterns at the modifier loci. An allele's contribution to the phenotype now depends on its weight relative to the weight of the other allele on the same locus, and on the weight of the locus relative to the weights of the other loci. This is illustrated in Table 1 for a specific example with two loci. Our approach can easily be extended to allow also for complex epistatic interactions between loci, but, for the sake of conciseness, we refrain from illustrating this here. We allowed both the phenotypic effects of alleles and the allelic parameters to evolve through mutations with small incremental effects. In addition, we allowed the weights of loci to evolve through mutations (again with small incremental effects) of the alleles at modifier loci (one modifier locus for each ecological trait locus). We assumed free recombination between all loci

Figure 5 shows numerical results for the extended individual-based model: we again observe rapid convergence to the evolutionary branching point, followed by a phase

of phenotypic diversification. Initially, three out of four loci become polymorphic, but eventually only one polymorphic locus remains. Insets A-C in Figure 5 show the relative weights (on the vertical axis) of the four different loci (on the horizontal axis) at three moments during the simulation. Grey bars are used for monomorphic loci; black and white bars are used for polymorphic loci. The subdivision in a white and black part represents the relative weights of the two different alleles that occur on a polymorphic locus. During the initial phase of differentiation (corresponding to phase 2 as described above), the alleles at all polymorphic loci diversify symmetrically (inset A, at $3.0 \cdot 10^4$ generations). As long as selection favors further diversification, there is directional selection to increase the weight of polymorphic loci, which contribute to population-level phenotypic diversity, relative to the weight of the one monomorphic locus (locus 2), which does not. At this time, selection on the allelic parameters (i.e., on dominance) is still virtually absent. Later on, however, the asymmetries between loci grow (corresponding to phase 3 as described above), until only one polymorphic locus remains (locus 1). During this phase, selection on the relative weights of polymorphic loci is disruptive and acts alongside selection on allelic effects (which is stabilizing for some loci but diversifying for other loci), such that the locus with the largest differentiation between alleles eventually contributes to the phenotype with the largest relative weight (inset B, at $8.0 \cdot 10^4$ generations). All along, the interaction between alleles at a single locus has remained additive, i.e., the alleles at polymorphic loci have equal relative weights. However, selection for dominance-recessivity interactions between alleles arises as soon as asymmetries evolve between alleles at the remaining polymorphic locus (corresponding to phase 4 as described above). The relative weight of one of the alleles increases, such that, eventually, the phenotype of the (otherwise) maladapted homozygote coincides with the locally optimal phenotype matched by the heterozygote (inset C, at $7.0 \cdot 10^{\circ}$ generations).

These results show that the evolution of non-additive interactions between alleles and the evolution of locus weights are expected to act alongside the evolution of allelic effects, representing alternative pathways along which the symmetry between and within loci can be broken. The relative contributions of the evolution of allelic effects (the evolution of the gene products), versus the evolution of the weights of alleles and loci (the evolution of gene regulation), will depend on factors like the relative mutation rates of the phenotypic effects, the allelic parameters, and the modifier alleles. All key predictions of our preceding analysis are corroborated even in this extended model. In particular, the characteristic phasing of dynamics from the initial diversification to the final outcome is robustly recovered.

Large mutations

As a third check on the robustness of our results, we explore the effects of large mutational step sizes. Figure 6 shows numerical results for our original individualbased model, with all parameters except the mutational step size σ_m and the mutation rate *m* chosen exactly as in Figure 1. In Figure 6, the variance of mutational effects σ_m^2 was set 100 times larger than in Figure 1, and the mutation rate was set 100 times smaller, such that the expected rate of directional evolution, which scales with $m \sigma_m^2$ (Dieckmann & Law, 1996; see also the appendix), was identical for both simulations.

These results show that with large mutational steps the whole evolutionary process – of convergence to the branching point, loss of polymorphism on all-but-one locus, and asymmetric differentiation of alleles at the remaining polymorphic locus – is reduced to only a small number of allele substitution events (which can be recognized individually as discontinuities in Figure 6). Consequently, the stochasticity of the mutation process is much more pronounced, and the variation between replicate simulations is larger. Yet, the average behavior of replicates does not deviate qualitatively from the predictions of our deterministic model. Also the diminished phasing of the evolutionary process is just as predicted, since smaller mutational steps make it easier for the genetic system to track the saddle connections that lie at the heart of the process. Figure 6 shows that we can still recognize the different phases discussed before, even when mutation effects are not small. It is clear that the weaker selection and the larger the mutational step size, the more strongly the stochasticity of the mutation process will blur the selection-driven, deterministic component of evolutionary change.

DISCUSSION

Our results show that frequency-dependent disruptive selection is less powerful in maintaining polygenic variation than one would naïvely expect. Frequency-dependent disruptive selection does not lead to the establishment of genetic polymorphism at a large number of loci. Instead, genetic variation is concentrated at a single locus with large phenotypic effect. We observed this outcome in individual-

based simulations and in an analytical model, under a range of genetic assumptions, which gives confidence in the robustness of the results. The identified pattern of polymorphism formation and collapse is likely to be widely applicable. The dynamics observed in our model suggest a conceptual link between the different effects of frequency-dependent disruptive selection observed in quantitative genetics (QG) and adaptive dynamics (AD) models. In the initial phase of diversification, all loci are polymorphic, and the phenotypic differentiation of alleles at each locus is small. Hence, a large number of loci contribute to the genetic variation, and each locus has a small effect on the phenotype. Not surprisingly, the dynamics shortly after evolutionary branching therefore much resembles the maintenance of variation as observed in QG models, where disruptive selection leads to the gradual broadening of a continuous phenotype distribution. Eventually, however, genetic variation becomes concentrated at a single locus, which contributes increasingly strongly to phenotypic variation. In this situation QG methods become inaccurate: we observe the emergence of discrete clusters of phenotypes that create a situation better analyzed by AD methods, or by classical population genetics. The phenomena of polymorphism formation and collapse observed in our model are a straightforward consequence of the fact that frequency-dependent selection generates a dynamic selection regime. It is a defining feature of frequency dependence that the intensity and direction of selection changes as evolution proceeds, a consequence of the feedback between a population and its environment. In the context of our model, the population first experiences directional selection towards the evolutionary branching point, then disruptive selection at the branching point (leading to diversification at all loci), and subsequently again a type of stabilizing selection (favoring two discrete phenotypes at the patch optima). Selection turns from disruptive to stabilizing as soon as the phenotypic variation in the population has become large enough for the optimal phenotypes in the two patches to occur at appreciable frequencies. At that point, there is no further selection for diversification. Yet, intermediate phenotypes remain at a selective disadvantage. It is an unavoidable consequence of sexual reproduction – at least, as long as individuals mate at random - that such intermediate phenotypes are generated, but, for combinatorial reasons, their frequency is lowest when all genetic variation is concentrated at a single locus. This explains why all loci, except one, eventually become monomorphic. Subsequent evolution, involving symmetry breaking between

alleles at the remaining polymorphic locus, increases population mean fitness by further reducing the frequency of maladapted individuals.

Although here we have analyzed only Levene's soft-selection model, we expect that our conclusions apply to a broad class of systems subject to frequency-dependent disruptive selection. Adaptive dynamics theory has revealed the generic shape of fitness landscapes around evolutionary branching points (e.g., Geritz et al., 1997), and adaptive dynamics models have shown that such branching points can be created by a plethora of different ecological mechanisms, including all three fundamental types of ecological interaction (e.g., Doebeli & Dieckmann, 2000). In particular, we expect to observe similar evolutionary phenomena in all cases where the coexistence of an arbitrarily large number of replicators is precluded by a competitive exclusion principle (Gyllenberg & Meszéna, 2005). Such systems must, at some level of diversity, exhibit a transition from disruptive to stabilizing selection favoring the evolution of a discrete, limited set of phenotypes. In our Levene-type model, the number of coexisting replicators is bounded by the number of different habitats, and this sets an upper limit on the number of loci expected to remain polymorphic in long-term evolution. In a two-niche environment, at most one locus remains polymorphic. In environments with more than two habitats, polymorphism might be maintained at more than one locus (or more that two alleles might segregate at a single locus), but the number of polymorphic loci is always smaller than the number of habitat types (data available from the authors).

In a somewhat different context, Spichtig and Kawecki (2004), who recently also analyzed a multi-locus version of Levene's model, came to a conclusion similar to ours. While their analysis addresses the dynamics and the equilibrium frequencies of a *fixed* set of alleles, other aspects of the two models are similar, allowing for a detailed comparison of results. Also Spichtig and Kawecki (2004) argue that the capacity of soft selection to maintain polygenic variation is smaller than one would expect based on single-locus models. Their conclusion, however, applies to parameter regimes for which evolutionary branching does *not* occur since the fitness of intermediate phenotypes is high. Under these conditions, polygenic variation is not maintained, due to the fact that the average phenotype of a polygenic character can be accurately matched with the optimal phenotype without requiring a polymorphism of alleles at individual loci (i.e., with all loci being homozygous, and, hence, with the population being monomorphic). This conclusion does not apply to a single locus, where the realization of an intermediary phenotype typically requires a heterozygous genotype (and, hence, a polymorphic population). Unlike for single-locus characters, the variation of polygenic characters can therefore be low, irrespective of the mean phenotype.

In contrast, our conclusion applies to the maintenance of polygenic variation after evolutionary branching; that is to say, it concerns a complementary parameter regime. In this case, the explanation for the loss of polygenic variation is different and stems from the fact that a single-locus polymorphism allows for a maximal level of phenotypic variation: given a certain degree of overall differentiation between alleles, the phenotypic variance in the population is highest when the polymorphism is concentrated at a single locus. Under conditions that allow for evolutionary branching, a polymorphism of differentiated alleles at a single locus is therefore the most favorable configuration that can be attained within the limits set by sexual reproduction. It allows for the lowest possible frequency of the intermediate phenotypes that are at selective disadvantage in the parameter regime considered here.

Obviously, a single-locus polymorphism will only be favored over polygenic variation when the phenotypic effects of individual alleles are considerable, such that a polymorphism at a single locus can give rise to substantial phenotypic variation. In our model, the phenotypic effects of individual alleles can become arbitrarily large, as a cumulative result of many mutations with small phenotypic effects. In models that do not incorporate mutation, where the set of alleles is kept fixed and the phenotypic effects of individual alleles are limited, a polymorphism of alleles at a single locus can only give rise to a modest level of phenotypic variation. In such a situation, we would expect variation to be maintained at multiple loci, since this is the only way to maintain sufficient genetic variation (an expectation confirmed by Bürger, 2002a, 2002b; Spichtig & Kawecki, 2004).

This highlights another contrast between our analysis and studies of frequencydependent disruptive selection that investigate allele-frequency changes and the stability properties of population genetic equilibria of a predefined set of alleles. The latter yield conditions for the short-term maintenance of genetic variation, but do not provide insights about long-term evolution, which occurs through the substitution of the existing alleles by novel, mutant alleles (Eshel, 1996). This process is explicitly considered in our model. However, we have largely neglected potential constraints on the evolution of allelic effects; in the absence of knowledge that warrants more specific assumptions, we have merely assumed the mutational step size to be small. The mechanistic details of the mutation process, of the development of the phenotype, and so on, will be important to calibrate the different time scales of short-term and long-term evolution relative to one another. Such calibration is necessary to interpret observed patterns of polymorphism of quantitative traits in empirical systems. Conversely, a detailed comparison of these patterns to the evolutionary predictions made by short- and long-term evolution models, may give insights in the importance and nature of evolutionary constraints on polygenic variation.

ACKNOWLEDGEMENTS

GSvD thanks Franjo Weissing for useful suggestions and gratefully acknowledges support by the International Institute for Applied Systems Analysis (IIASA) and the Center for Ecological and Evolutionary Studies (CEES) enabling several visits to IIASA. UD gratefully acknowledges financial support by the Austrian Science Fund (FWF); by the Austrian Federal Ministry of Education, Science, and Cultural Affairs (bm:bwk); and by the Vienna Science and Technology Fund (WWTF). The authors thank Thomas F. Hansen, Reinhard Bürger, Michael Kopp, and an anonymous referee for their helpful comments on an earlier version of the manuscript.

LITERATURE CITED

- Abrams, P. A. 2001. Modeling the adaptive dynamics of traits involved in inter- and intraspecific competition: An assessment of three methods. Ecology Letters 4: 166–175.
- Bulmer, M. 1980. The Mathematical Theory of Quantitative Genetics. Clarendon Press, Oxford, UK.
- Bürger, R., G. P. Wagner & F. Stettinger. 1989. How much heritable variation can be maintained in finite populations by mutation-selection balance? Evolution 43: 1748–1766.
- Bürger, R. 2000. The Mathematical Theory of Selection, Recombination and Mutation. John Wiley & Sons, Chicester, UK.
- Bürger, R. 2002a. Additive genetic variation under intraspecific competition and stabilizing selection. J. Theor. Pop. Biol. 61: 197-213.
- Bürger, R. 2002b. On a genetic model of intraspecific competition and stabilizing selection. Am. Nat. 160: 661-682.
- Caswell, H. 1989. Matrix Population Models. Sinauer Associates Inc., Sunderland, MA.
- Clarke, B. 1972. Density-dependent selection. Am. Nat. 106: 1-13.
- Cockerham, C. C., P. M. Burrows, S. S. Young & T. Prout. 1972. Frequencydependent selection in randomly mating populations. Am. Nat. 106: 493-515.
- Cressman, R. 1992. The Stability Concept of Evolutionary Game Theory A Dynamic Approach. Springer-Verlag, Berlin, Germany.
- Dieckmann, U. & R. Law. 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34: 579-612.
- Doebeli, M. & U. Dieckmann. 2000. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156: S77-S101.

- Eshel, I. 1996. On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34: 485-510.
- Felsenstein, J. 1976. The theoretical population genetics of variable selection and migration. Ann. Rev. Genet. 10: 253-280.
- Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford, UK.
- Geritz, S.A.H., J.A.J. Metz, É. Kisdi & G. Meszéna. 1997. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78: 2024-2027.
- Geritz, S.A.H., É. Kisdi, G. Meszéna & J.A.J. Metz. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35-57.
- Geritz, S.A.H., M. Gyllenberg, F.J.A.Jacobs & K. Parvinen. 2002. Invasion dynamics and attractor inheritance. J. Math. Biol. 44: 548-560.
- Gyllenberg, M. & G. Meszéna (2005). On the impossibility of coexistence of infinitely many strategies. J. Math. Biol. 50: 133-160.
- Hedrick, P.W., M.E. Ginevan & E.P. Ewing. 1976. Genetic polymorphism in heterogeneous environments. Ann. Rev. Ecol. Syst. 7: 1-32.
- Hofbauer, J. & K. Sigmund. 1998. Evolutionary Games and Population Dynamics, chapter 9: Adaptive Dynamics. Cambridge University Press, Cambridge, UK.
- Keightley, P.D. & W.G. Hill. 1983. Effects of linkage on response to directional selection from new mutations. Genet. Res. 42: 193-206.
- Kisdi, É. & S.A.H. Geritz. 1999. Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53: 993-1008.
- Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87: 331-333.
- Lewontin, R. 1958. A general method for investigating the equilibrium of gene frequency in a population. Genetics 43: 419-434.
- Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK.

Metz, J.A.J., R.M. Nisbet & S.A.H. Geritz. 1992. How should we define 'fitness' for general ecological scenarios? Trends Ecol. Evol. 7: 198-202.

- Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs & J.S. van Heerwaarden.
 1996. Adaptive dynamics, a geometrical study of the consequences of nearly
 faithful reproduction, pp 183-231 in: S.J. van Strien & S.M. Verduyn Lunel (eds.),
 Stochastic and Spatial Structures of Dynamical Systems, Elsevier, North Holland.
- Ravigné, V., I. Olivieri & U. Dieckmann. 2004. Implications of habitat choice for protected polymorphisms. Evol. Ecol. Res. 6: 125-145.
- Rifkin, S. A., D. Houle, J. Kim & K. P. White (2005). A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438: 220-223.
- Roughgarden, J. 1979. Theory of Population Genetics and Evolutionary Ecology: an Introduction. MacMillan, New York, NY.
- Slatkin, M. 1979. Frequency- and density-dependent selection on a quantitative character. Genetics 93: 755-771.
- Spichtig, M. & T. J. Kawecki. 2004. The maintenance (or not) of polygenic variation by soft selection in heterogeneous environments. Am. Nat. 164: 70-84.
- Taylor, P.D. 1996. Inclusive fitness arguments in genetic models of behaviour. J. Math. Biol. 34: 654-674.
- Van Dooren, T.J.M. 1999. The evolutionary ecology of dominance-recessivity. J. Theor. Biol. 198: 519-532.
- Weissing, F.J. 1996. Genetic versus phenotypic models of selection: can genetics be neglected in a long-term perspective? J. Math. Biol. 34: 533-555.

Appendix: Derivation of deterministic approximation

Here we derive an analytical deterministic approximation that captures the dynamics in our individual-based stochastic simulation model. To enable this complementary treatment, we assume that (a) mutations occur rarely, such that mutant alleles arise in a resident population that is close to its population genetic equilibrium. Consequently, a mutant allele interacts only with the currently predominant resident alleles, which were successful at ousting previous mutant alleles. We also assume that (b) the population is sufficiently large, such that we may neglect stochasticity in the dynamics of the frequencies of resident alleles, and that (c) changes in the phenotypic effects of alleles caused by individual mutations are typically small, such that it is meaningful to approximate the long-term dynamics of phenotypic effects deterministically.

The invasion fitness λ specifies the geometric rate of increase of the abundance of a mutant allele while it is rare (e.g., just after it has arisen by mutation; Metz et al., 1992, 1996). When a mutant arises in an otherwise genetically monomorphic resident population, all resident individuals have the same phenotype \hat{z} and all individuals that carry a mutant allele have the same phenotype z. This greatly simplifies the derivation of invasion fitness in our model (see, e.g., Kisdi & Geritz, 1999), which under such conditions is given by

$$\lambda = \frac{1}{2} \left[v_1(z) / v_1(\hat{z}) + v_2(z) / v_2(\hat{z}) \right]. \tag{4}$$

The first and second term in the square bracket represent, respectively, the relative viabilities of mutant individuals in the first and second habitat, and the factor 1/2 simply reflects the assumption that half of the individuals in the mating population are recruited from either habitat.

When the resident population is polymorphic at one or more loci, the derivation of invasion fitness becomes more complicated, since we then need to keep track of the frequencies of the different resident genotypes. The mutant allele may then also occur in different genetic backgrounds, consisting of different combinations of resident alleles. To keep the analysis tractable, we will restrict ourselves here to the simplest interesting case, by considering a resident population that is polymorphic at two loci (L = 2). We denote the alleles at the first locus by A and a, and the alleles at the second locus by B and b (as mentioned in the main text, this notation does not imply that the alleles A and B are dominant). The phenotypic effects of the alleles are denoted by x_A , x_a , x_B , and x_b . If $x_A = x_a$ or $x_B = x_b$, the resident

population is monomorphic at the corresponding locus. We also consider a mutant allele M, with phenotypic effect x_M , that has arisen through mutation of the allele A at the first locus (other mutant alleles are dealt with analogously).

We choose to describe the dynamics of the resident and mutant allele frequencies in terms of the frequencies of the haploid gametes in which they occur: f_g denotes the frequency of the gamete g (g = AB, Ab, aB, ab, MB, or Mb) in adults at the moment of reproduction, i.e., after viability selection has occurred. We follow the life cycle of our model to determine its effect on these gamete frequencies:

- 1. Random mating. We first compute the frequency $F'_{gg'}$ of the genotype gg' in the offspring before viability selection. Since mating is random, the frequency of offspring carrying the genotype gg', which arises from the combination of gametes g and g', is given by the product of the corresponding gamete frequencies in the parents, i.e., $F'_{gg'} = f_g f_{g'}$.
- 2. *Viability selection*. Viability selection changes the genotype frequencies in the offspring, such that the frequency $F_{gg'}$ of the genotype gg' after viability selection is, similarly to equation (4),

$$F_{gg'} = F_{gg'}^{\prime} \frac{1}{2} \Big[v_1 \Big(z_{gg'} \Big) \Big/ \overline{v}_1 + v_2 \Big(z_{gg'} \Big) \Big/ \overline{v}_2 \Big],$$
(5)

where $z_{gg'}$ denotes the phenotype encoded by the genotype gg' (for example, $z_{ABAb} = 2x_A + x_B + x_b$ and $z_{abMb} = x_a + x_M + 2x_b$) and \overline{v}_i is the average viability in habitat *i*. While the mutant allele is rare, average viabilities do not depend on the mutant's genotype frequencies,

$$\overline{v}_i = \sum_{g,g'=AB,Ab,aB,ab} F'_{gg'} v_i \Big(z_{gg'} \Big).$$
(6)

3. *Gamete production*. After viability selection, the next generation is produced through sexual reproduction. The frequencies of the different resident gametes are determined straightforwardly from the resident genotype frequencies after viability selection. For example,

$$f_{AB} = F_{ABAB} + \frac{1}{2} \sum_{g=Ab, aB} \left(F_{ABg} + F_{gAB} \right) + \frac{1}{2} (1 - r) \left(F_{ABab} + F_{abAB} \right) + \frac{1}{2} r \left(F_{AbaB} + F_{aBAb} \right), \quad (7)$$

where r is the coefficient of recombination between the two loci. The mutant's genotype frequencies do not appear in equation (7), since the frequency of the mutant allele is initially negligible.

Equations (4) to (7) define a recurrence relation for the resident gamete frequencies. This recurrence relation can be iterated until these frequencies converge to a stable equilibrium (reflecting our assumption that resident populations attain their

population genetic equilibrium by the time a mutant arises).

For the mutant gamete frequencies we obtain, analogously to equation (7),

$$f_{MB} = \frac{1}{2} \sum_{g=AB, aB} \left(F_{MBg} + F_{gMB} \right) + \frac{1}{2} (1-r) \sum_{g=AB, ab} \left(F_{MBg} + F_{gMB} \right) + \frac{1}{2} r \sum_{g=AB, aB} \left(F_{Mbg} + F_{gMb} \right),$$

$$f_{Mb} = \frac{1}{2} \sum_{g=Ab, ab} \left(F_{Mbg} + F_{gMb} \right) + \frac{1}{2} (1-r) \sum_{g=AB, aB} \left(F_{Mbg} + F_{gMb} \right) + \frac{1}{2} r \sum_{g=Ab, ab} \left(F_{MBg} + F_{gMB} \right).$$
(8)

Here we again use the fact that the mutant allele is rare initially, which allows us to neglect the frequency of individuals that are homozygous for the mutant allele. For mutant alleles M that differ only slightly from the resident allele A, $|x_M - x_A|$ is small, and we may use first-order Taylor expansions to approximate the viabilities of phenotypes affected by the mutant allele. For example,

$$v_{i}(z_{MBg}) = \exp\left(-\frac{1}{2}(z_{MBg} - \mu_{i})^{2} / \sigma^{2}\right) \approx \left[1 - (x_{M} - x_{A})(z_{ABg} - \mu_{i}) / \sigma^{2}\right] v_{i}(z_{ABg}).$$
(9)

Using these approximations and equation (5), we rewrite the mutant genotype frequencies. For the mutant genotype frequencies F_{MBg} , for example, this yields

$$F_{MBg} = \frac{f_{MB}}{f_{AB}} F_{ABg} + f_{MB} \left(x_M - x_A \right) W_g^{AB} , \qquad (10)$$

where

$$W_{g}^{g'} = -\frac{1}{2} f_{g} \sigma^{-2} \Big[\Big(z_{gg'} - \mu_{1} \Big) v_{1} \Big(z_{gg'} \Big) \Big/ \overline{v}_{1} + \Big(z_{gg'} - \mu_{2} \Big) v_{2} \Big(z_{gg'} \Big) \Big/ \overline{v}_{2} \Big].$$
(11)

We substitute equation (10) and analogous expressions for the genotype frequencies F_{gMB} , F_{Mbg} and F_{gMb} into equations (8), to obtain, after some rearrangement, the following recurrence relation for the change of mutant gamete frequencies from one generation to the next,

$$\begin{pmatrix} f_{MB} \\ f_{Mb} \end{pmatrix} \rightarrow \left[\mathbf{F} + (x_M - x_A) \mathbf{W} \right] \begin{pmatrix} f_{MB} \\ f_{Mb} \end{pmatrix},$$
(12)

where the matrices F and W are defined as

$$\mathbf{F} = \begin{pmatrix} 1 - r f_{AB}^{-1} (F_{ABAb} + F_{AbaB}) & r f_{Ab}^{-1} (F_{ABAb} + F_{AbaB}) \\ r f_{AB}^{-1} (F_{ABAb} + F_{ABab}) & 1 - r f_{Ab}^{-1} (F_{ABAb} + F_{ABab}) \end{pmatrix},$$
(13)

$$\mathbf{W} = \begin{pmatrix} \sum_{g=AB, aB} W_g^{AB} + (1-r) \sum_{g=Ab, ab} W_g^{AB} & r \sum_{g=AB, aB} W_g^{Ab} \\ r \sum_{g=Ab, ab} W_g^{AB} & \sum_{g=Ab, ab} W_g^{Ab} + (1-r) \sum_{g=AB, aB} W_g^{Ab} \end{pmatrix}.$$
 (14)

The invasion fitness λ of the mutant allele in the considered polymorphic resident background is now given by the geometric rate of increase of the mutant allele frequency, which equals the dominant eigenvalue of the matrix $\mathbf{F} + (x_M - x_A)\mathbf{W}$. For small $|x_M - x_A|$ it can be shown (e.g., Caswell, 1989; Taylor, 1996) that

$$\lambda = 1 + (x_M - x_A) \frac{v \mathbf{W} u}{v u}.$$
⁽¹⁵⁾

The term v W u / (v u), which represents the fitness gradient, varies with the vectors

$$v = \left(F_{ABAb} + F_{ABab}, F_{ABAb} + F_{AbaB}\right) \text{ and } u = \begin{pmatrix} f_{AB} \\ f_{Ab} \end{pmatrix}, \tag{16}$$

which are the dominant left and right eigenvectors of the matrix **F**, respectively. Under suitable assumptions (Dieckmann & Law, 1996; Weissing, 1996; Hofbauer & Sigmund, 1998), the invasion fitness can be used to describe the long-term rate and direction of a series of allelic substitution events. Indeed, using equation (14) and following the derivation scheme employed by Dieckmann & Law (1996), it can be shown that the expected evolutionary rate of change of the phenotypic effect of the currently resident allele A at the first locus satisfies

$$\frac{dx_A}{dt} = \int 2Nm(f_{AB} + f_{Ab}) \cdot M(x_M \mid x_A) \cdot \alpha \max\left(0, (x_M - x_A)\frac{v \mathbf{W}u}{vu}\right) \cdot (x_M - x_A) dx_M, \quad (17)$$

where t measures evolutionary time in generations. The first factor in the integrand above is the rate at which new mutant alleles arise: the frequency of allele A is given by $f_{AB} + f_{Ab}$, the total number of alleles in a diploid population of size N is 2N, and m equals the mutation rate per generation. The second factor is the probability density according to which a mutation changes the phenotypic effect at the first locus from x_A to x_M . The third factor is the probability that the mutant allele will successfully invade. This probability is zero when the mutant allele has a geometric rate of increase below that of the resident allele and otherwise is proportional to the fitness advantage s of the mutant allele, as long as s is small. This explains the function $\alpha \max(0,s)$, with α denoting the constant of proportionality, and with $s = (x_M - x_A)(v \mathbf{W} u)/(vu)$ following from equation (15). For offspring numbers varying according to a Poisson distribution, we obtain $\alpha = 2$. If the mutant allele succeeds to invade, this causes a change of the resident allele: away from the evolutionary branching point (and from population dynamical bifurcation points), successful invasion of the mutant allele implies that it will eventually replace the resident allele (Geritz et al., 2002). Successful invasion thus means that the

phenotypic effect of the currently resident allele will change by an amount $x_M - x_A$, which explains the integrand's fourth factor.

Collecting all terms that are independent of x_M in front of the integral, and realizing that the integrand above vanishes along half its range since only mutant alleles with either $x_M > x_A$ or $x_M < x_A$ can successfully invade, we can rewrite equation (17) as

$$\frac{dx_A}{dt} = 2Nm(f_{AB} + f_{Ab})\alpha \frac{v \mathbf{W}u}{vu} \cdot \frac{1}{2} \int (x_M - x_A)^2 M(x_M \mid x_A) dx_M.$$
(18)

Denoting the variance of mutational effects by σ_m^2 , we therefore finally obtain

$$\frac{dx_A}{dt} = N \, m \, \alpha \, \sigma_m^2 \left(f_{AB} + f_{Ab} \right) \frac{v \, \mathbf{W} \, u}{v u} \,. \tag{19}$$

Equations for the rate of change in the phenotypic effects of the alleles a, B, and b, are derived analogously.

Figure legends

Figure 1. Evolution in individual-based model

The three panels of this figure show the distribution of phenotypes during the rapid convergence to the evolutionary branching point (left panel), the subsequent phase of diversification at several loci (middle panel), and the final phase of evolution at a single locus (right panel). Small insets A-D show the frequency distribution (frequency is on the vertical axes) of phenotypes (on the horizontal axes) at four moments during the simulation (indicated by dashed lines). We also ran simulations with more than three loci: inset E shows an example for L = 100 loci (time, on the horizontal axis, extends to 500,000 generations; phenotype, on the vertical axis, ranges from -5.0 to 5.0). Grayscales in the main figure and inset E indicate the frequency of phenotypes. At any moment in time, the most common phenotype is shown in black, while less common phenotypes are shown in lighter shades of gray. Note the different scales of the time axis in the three panels. Parameters as listed in the text.

Figure 2. Evolution in deterministic model

The deterministic approximation of our model tracks the phenotypic differentiation of alleles at two polymorphic loci. With two alleles at each locus (*A* and *a* at the first, *B* and *b* at the second locus), at most nine different classes of genotypes (indicated by the labels *AABB*, ..., *aabb*) are present within the population at any moment in time. Individuals within the same class of genotypes have identical phenotypes. The phenotypes associated with each class of genotypes, and their frequencies, change over time, due to evolutionary change in the phenotypic effects of alleles. The time scale of this process may vary with parameters such as the mutation rate, the mutational variance, and the population size (see appendix). Parameters as in Figure 1.

Figure 3. Evolution in allele space

Simulations of the deterministic approximation of our model, started from various initial conditions, are represented as trajectories in allele space (black lines with arrows). The location of equilibria is indicated by gray circles. The location of equilibria and their stability properties were calculated numerically. The thick gray trajectory highlights how evolution proceeds towards the equilibrium A1 via the equilibria BP, S2, and S1 (for details see the main text). Notice that in this depiction

trajectories may intersect with other trajectories, since there exist multiple population genetic equilibria for some combinations of alleles. Parameters as in Figure 1.

Figure 4. Evolution with tight linkage between loci

Two tightly linked loci (r = 0.05), each with two alleles, behave much like a single locus with four 'alleles' (i.e., combinations of alleles). Consequently, differentiation between loci occurs more slowly than differentiation between combinations of alleles. Parameters as in Figure 1, except for r = 0.05.

Figure 5. Evolution with variable weights for alleles and loci

Three panels show the distribution of phenotypes in an individual-based simulation as in Figure 1. The insets A-C, however, do not show frequency distributions, but the average relative weights of loci and alleles (i.e., the extent to which an allele at a specific locus contributes to the phenotype), at three moments during the simulation (indicated by dashed lines). The height of the bars represents the weight of a locus (in this simulation we kept track of four loci). For polymorphic loci, bars consist of a black and white part, indicating the weights of the different alleles that occur at this locus. Grey bars are used for monomorphic loci. Parameters as in Figure 1, except for L = 4.

Figure 6. Evolution with large mutational steps

Even when the whole evolutionary process is reduced to only a small number of allele substitution events, its predicted phasing is still recognizable. Parameters as in Figure 1, except for $\sigma_m^2 = 0.1$ and $m = 10^{-6}$.

Figure legends for the figures in the online supplementary material

Figure S-1. Evolution with an environmental component of phenotypic variation We performed simulations in which both genetic and environmental variation contributed to the phenotypic variation of the ecological strategy. The phenotype of an individual, z, depended on a genetic component z_g (determined by the phenotypic effects of the alleles it carried) and an environmental component z_e , drawn for a normal distribution with width $\sigma_e = \sqrt{V_e}$, such that $z = z_g + z_e$. We set $\sigma_e = 3/5$, $\sigma = 4/5$ and all other parameters as in Figure 1. Note that $\sigma_e^2 + \sigma^2 = 1$, such that we would expect the evolutionary dynamics to unfold as in Figure 1. The figure does indeed show a highly comparable outcome.

Figure S-2. Evolution with variability in environmental conditions

To investigate whether variability of the environmental conditions would affect our conclusions regarding the long-term maintenance of polymorphism at multiple loci, we explored the effects of long-term fluctuations of μ_1 and μ_2 , the optimal phenotypes in the two habitats. We took $\mu_i(t) = \overline{\mu}_i + \sin(\pi i t/1000)$ (i = 1 or 2), where t is the time (in generations), and where we used $\overline{\mu}_1 = -\overline{\mu}_2 = 1$ for the average habitat optima. Note that the periods of the fluctuations do not match (2000 generations for habitat 1; 1000 generations for habitat 2). This causes both the direction of selection and its disruptiveness to vary. Other parameters are as in Figure 1, except for L = 100.

Table 1. Dependence of the phenotype on allelic effects, allelic parameters(dominance) and modifier loci for the model variant with non-additiveinteractions.

	Locus 1		Locus 2	
	Allele 1	Allele 2	Allele 1	Allele 2
Phenotypic effect	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₂₁	<i>x</i> ₂₂
Allelic parameter	<i>u</i> ₁₁	<i>u</i> ₁₂	<i>u</i> ₂₁	<i>u</i> ₂₂
Weight of alleles	$U_{11} = \frac{u_{11}}{u_{11} + u_{12}}$	$U_{12} = \frac{u_{12}}{u_{11} + u_{12}}$	$U_{21} = \frac{u_{21}}{u_{21} + u_{22}}$	$U_{22} = \frac{u_{22}}{u_{21} + u_{22}}$
Alleles at modifier locus	<i>w</i> ₁₁	<i>W</i> ₁₂	<i>W</i> ₂₁	<i>W</i> ₂₂
Weight of loci	$W_1 = \frac{w_{11} + w_{12}}{w_{11} + w_{12} + w_{21} + w_{22}}$		$W_2 = \frac{w_{21} + w_{22}}{w_{11} + w_{12} + w_{21} + w_{22}}$	
Phenotype	$z = W_1 \left(U_{11} x_{11} + U_{12} x_{12} \right) + W_2 \left(U_{21} x_{21} + U_{22} x_{22} \right)$			

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure S-1

(to appear in the online supplementary material only)

Figure S-2

(to appear in the online supplementary material only)