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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 121
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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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ABSTRACT 

Frequency-dependent disruptive selection is widely recognized as an important 

source of genetic variation. Its evolutionary consequences have been extensively 

studied using phenotypic evolutionary models, based on quantitative genetics, game 

theory, or adaptive dynamics. However, the genetic assumptions underlying these 

approaches are highly idealized and, even worse, predict different consequences of 

frequency-dependent disruptive selection. Population genetic models, by contrast, 

enable genotypic evolutionary models, but traditionally assume constant fitness 

values. Only a minority of these models thus addresses frequency-dependent 

selection, and only a few of these do so in a multi-locus context. An inherent 

limitation of these remaining studies is that they only investigate the short-term 

maintenance of genetic variation. Consequently, the long-term evolution of multi-

locus characters under frequency-dependent disruptive selection remains poorly 

understood. We aim to bridge this gap between phenotypic and genotypic models by 

studying a multi-locus version of Levene’s soft-selection model. Individual-based 

simulations and deterministic approximations based on adaptive dynamics theory 

provide insights into the underlying evolutionary dynamics. Our analysis uncovers a 

general pattern of polymorphism formation and collapse, likely to apply to a wide 

variety of genetic systems: after convergence to a fitness minimum and the 

subsequent establishment of genetic polymorphism at multiple loci, genetic variation 

becomes increasingly concentrated on a few loci, until eventually only a single 

polymorphic locus remains. This evolutionary process combines features observed in 

quantitative genetics and adaptive dynamics models, and can be explained as a 

consequence of changes in the selection regime that are inherent to frequency-

dependent disruptive selection. Our findings demonstrate that the potential of 

frequency-dependent disruptive selection to maintain polygenic variation is 

considerably smaller than naïvely expected. 

KEYWORDS: maintenance of genetic variation, Levene model, protected 

polymorphism, evolutionary branching, symmetry breaking, 

population genetics, adaptive dynamics. 
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Frequency-dependent selection plays an important role in the origin and maintenance 

of genetic variation (Felsenstein, 1976; Hedrick et al., 1997; Slatkin, 1979). 

Conditions for stable polymorphisms are much relaxed when fitness values are not 

constant but vary with the frequency of different genotypes present in a population. 

Protected polymorphisms can then be established whenever rare genotypes have a 

selective advantage (Lewontin, 1958). This may even lead to situations in which, at 

population genetic equilibrium, the heterozygote resulting from an allelic 

dimorphism experiences a fitness disadvantage (note that this is the exact opposite of 

the situation required for stable polymorphisms to occur with constant fitness 

values). In such a case, the population is caught at a fitness minimum, at which it 

experiences disruptive selection. 

The consequences of such frequency-dependent disruptive selection have most 

extensively been investigated in the context of quantitative genetics (e.g., Slatkin, 

1979; Bulmer, 1980), and in the related frameworks of evolutionary game theory 

(e.g., Maynard Smith, 1982; Hofbauer & Sigmund, 1998) and adaptive dynamics 

(e.g., Metz et al., 1996; Dieckmann & Law, 1996; Geritz et al., 1998; Hofbauer & 

Sigmund, 1998) – see also Abrams (2001) for a comparison of these three methods. 

Although the insights obtained through these different approaches are similar in 

some respects (Taylor, 1996), their predictions for the effects of frequency-

dependent disruptive selection are strikingly different. In quantitative genetics (QG) 

models, the maintenance of genetic variation results from the broadening of 

continuous phenotypic distributions exposed to such selection. In adaptive dynamics 

(AD) models, frequency-dependent disruptive selection can cause evolutionary 

branching (Metz et al., 1996; Geritz et al., 1997, 1998). Such branching processes 

characteristically involve the convergence of a monomorphic population to a fitness 

minimum, followed by the adaptive emergence and further diversification of a 

discrete polymorphism. 

The discordance of these predictions is caused by the different genetic assumptions 

underlying QG and AD models. QG models are often purely phenomenological, but 

when a mechanistic underpinning is given, it is usually assumed that phenotypic 

characters are influenced by a large number of loci, each of which contributes only 

marginally to the phenotype. In every generation, the genetic variation present in the 

parent generation is redistributed among the offspring through recombination and 

segregation, i.e., as a consequence of sexual reproduction. Since many loci are 

involved in this process, the distribution of phenotypes in the population is 
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continuous and normal. AD models, in contrast, usually consider asexual 

reproduction (or single-locus, haploid genetics) and monomorphic populations (see 

Kisdi & Geritz, 1999; Van Dooren, 1999, for exceptions). 

From the viewpoint of population genetics, the assumptions of infinite loci with 

infinitesimal effects (QG) or of asexual reproduction (AD) are both highly idealized. 

It is therefore difficult to predict the effect of frequency-dependent disruptive 

selection for realistic genetic settings. Despite the fact that frequency-dependent 

selection has been included in the theory of population genetics right from its 

conception (Fisher, 1930), most of population genetics theory assumes constant 

fitness values (see, e.g., Clarke, 1972; Cockerham et al. 1972; Cressman, 1992, for 

exceptions); such theory cannot be used to predict the consequences of frequency-

dependent selection. Especially the evolutionary dynamics of multi-locus characters 

under frequency-dependent disruptive selection remains elusive. Recently, however, 

several attempts have been made to bridge the gap between population genetic and 

phenotypic models of frequency-dependent selection, and particularly the integration 

of population genetics with evolutionary game theory has received considerable 

attention (e.g., Cressman, 1992; Hofbauer & Sigmund, 1998). 

As a case in point, Bürger (2002a, 2002b) presents a population genetic analysis of a 

model of intraspecific competition that had previously been analyzed within both the 

QG (e.g., Slatkin, 1979) and the AD framework (e.g., Metz et al., 1996). Bürger 

focused on the dynamics and population genetic equilibria of the frequencies of a 

fixed set of alleles in a multi-locus model with frequency-dependent disruptive 

selection. He investigated the conditions under which disruptive selection on the 

phenotypes can be observed, and quantified the amount of genetic variation that can 

be maintained. The analyzed model exhibits a number of unexpected phenomena, 

which underscore that the population genetics of frequency-dependent disruptive 

selection can be surprisingly complex. 

A complementary approach was initiated by Kisdi & Geritz (1999) and Van Dooren 

(1999), who extended AD models by incorporating diploid genetics and sexual 

reproduction. Focusing on the simplest interesting model, these authors studied the 

evolution of alleles at a single locus under frequency-dependent disruptive selection. 

Unlike models that consider a fixed and limited set of alleles, these analyses 

explicitly considered mutations with small phenotypic effects. Long-term evolution 

can then proceed as a sequence of substitution steps during which existing alleles are 

replaced by novel ones created by mutation. Similar approaches have been developed 
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in the population genetics literature (e.g., Keightley & Hill, 1983; Bürger et al., 

1989). As in asexual AD models, frequency-dependent disruptive selection can cause 

evolutionary branching in diploid sexual populations (this occurs, it is shown, under 

the same conditions as in asexual models), leading to the establishment of a 

polymorphism of alleles (Kisdi & Geritz, 1999). As a consequence of the constraints 

imposed by random mating and segregation, the evolution of dominance-recessivity 

relations between the alleles is selectively favored (Van Dooren, 1999). 

In this paper, we aim to extend the understanding of the long-term consequences of 

frequency-dependent disruptive selection, by analyzing mutations and allele 

substitutions in a multi-locus model. This approach extends the earlier work of 

Bürger (2002a, 2002b), by allowing for long-term evolution by mutations and allele 

substitutions. At the same time, our work extends the analysis by Kisdi & Geritz 

(1999), by allowing for multi-locus genetics. We will consider Levene’s soft-

selection model (Levene, 1953) as a prototypical example of situations generating 

frequency-dependent disruptive selection. Levene’s model is commonly used for 

studying the maintenance of variation in a heterogeneous environment: it is relatively 

simple, its population genetics are well known (Roughgarden, 1979), and it has been 

considered in several related studies (Kisdi & Geritz, 1999; Van Dooren, 1999; 

Spichtig & Kawecki, 2004). 

MODEL DESCRIPTION 

Ecological assumptions 

We consider an organism with discrete, non-overlapping generations in a 

heterogeneous environment consisting of two habitats. Individuals are distributed at 

random over the two habitats at the start of each generation. The two habitats differ 

in ecological conditions such that an individual is more or less adapted to a habitat 

depending on its ecological strategy z , a one-dimensional quantitative character. 

Specifically, we assume that an individual’s viability in habitat 1,2i =  is given by 

 ( ) ( )( )2 21
2exp / ,i iv z z µ σ= − −  (1) 

which implies that the optimal phenotype is 1µ  in the first habitat and 2µ  in the 

second. The parameter σ  is an inverse measure of the intensity of local selection and 

determines how rapidly viability declines with the difference between an individual’s 
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ecological strategy and the locally optimal one. Without loss of generality, we set 

1 2µ µ µ= − = . 

We assume ‘soft selection’ (Levene, 1953; see also Ravigné et al., 2004): in each 

generation, a fixed number if N  of randomly chosen adults are recruited from habitat 

i ; throughout, we set 1
1 2 2f f= = . These adults form a single mating population of 

population size N , in which mating occurs at random and offspring are produced at 

the end of each generation. 

Genetic assumptions 

The ecological strategy z  is encoded by L  diploid loci. One or more distinct alleles 

may occur at every locus. We use the index k  to arbitrarily label the different alleles 

that occur within the population at a specified locus l . Correspondingly, lka  denotes 

the thk  allele at the thl  locus, and lkx  denotes its phenotypic effect (allelic effect). 

We initially assume that loci are unlinked and that alleles interact additively at each 

locus and between loci. Hence, for an individual carrying alleles lka ′  and lka ′′  at the 

thl  locus, the phenotypic effect of this locus is given by l lk lky x x′ ′′= + , and the 

individual’s ecological strategy is given by 

 
1

.
=

=∑
L

l
l

z y  (2) 

Later in this study we will also consider non-additive interactions within and 

between loci, as well as genetic linkage between loci. 

Unlike previous models (reviewed in Felsenstein, 1976; Hedrick et al., 1976), which 

were concerned with the short-term evolutionary process of changes in allele 

frequencies, we do not constrain the set of alleles that may be present in the 

population. By allowing new alleles to appear through mutation, we can study the 

long-term evolutionary process of changes in the phenotypic effects of alleles. 

Mutations occur at rate m  per allele per generation and change the phenotypic effect 

of an allele by an amount drawn from a normal distribution with zero mean and 

standard deviation mσ . 

Simulation details 

In addition to analytic approximations, we consider an individual-based model. At 

the start of a simulation, the population is initialized by creating N  identical 

individuals that are homozygous at all loci. Although the initial population exhibits 

no genetic variation, it usually takes just a few generations before mutation has 
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created sufficient genetic variation for adaptive change to occur. The phenotypic 

effects of the alleles used to initialize the population is chosen such that the initial 

phenotype is far away from the average of the optimal phenotypes in the two patches. 

Other choices of the initial phenotype do not lead to different results: the population 

always first converges on the phenotype 0z = , the average of the patch optima, 

before further evolution occurs (see below). 

At regular intervals, we determined the distribution of phenotypes in the population 

and the distributions of the phenotypic effects of alleles at individual loci. 

Environmental variation 

Throughout this paper and as indicated by equation (2), we maintain conceptual 

simplicity by supposing that the ecological strategy is completely genetically 

determined. However, effects of the micro-environment on the phenotype can be 

incorporated into the model straightforwardly by modifying the selection parameter 
2σ  (Bürger, 2000, p. 158-160) – it changes to 2σ + eV , where eV  denotes the variance 

of the environmental component of phenotypic variation. The validity of this 

rescaling argument was confirmed by individual-based simulations (see Figure S-1 in 

the supplementary material available online). 

It should be noted that variation in the environment itself, caused by, for instance, 

variability of the parameters µ  and σ , cannot be dealt with simply by rescaling the 

model. For this reason, we have explored a small number of scenarios by means of 

individual-based simulations (for an example, see Figure S-2 in the supplementary 

material available online); these simulations confirmed the robustness of our 

conclusions. A more comprehensive analysis of the effects of environmental 

variability on the maintenance of polygenic variation in the model analyzed here is 

suggested as an interesting topic of future research. 

INDIVIDUAL-BASED MODEL 

Two selection regimes 

Our investigations of the individual-based model defined above show that, not 

unexpectedly, evolutionary outcomes critically depend on the relative magnitude of 

the parameters µ  and σ . 
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When the optimal strategies in the two habitats are not too different, or when 

viability selection is weak (µ σ< ), long-term evolution of the ecological strategy z  

proceeds towards the generalist strategy * 0z =  (results not shown). Once the 

population has reached this generalist strategy, no further phenotypic evolution takes 

place. Mutation-selection balance maintains only a tiny amount of variation in the 

population. These observations agree with analytical results (Geritz et al., 1998; 

Kisdi & Geritz, 1999) that predict the strategy * 0z =  to be both convergence stable 

and evolutionarily stable for µ σ< . The former implies that evolution through small 

phenotypic steps will proceed towards * 0z = , with each step corresponding to the 

mutation and subsequent substitution of an allele. The latter implies that no allele 

coding for an alternative phenotype will be able to invade once the phenotype * 0z =  

has been established, and, therefore, that the population experiences stabilizing 

selection at * 0z = . 

By contrast, when the difference between the optimal strategies is large, or when 

viability selection is strong (µ σ> ), we observe the emergence of a stable 

phenotypic polymorphism through the process of evolutionary branching (Metz et 

al., 1996; Geritz et al., 1997, 1998). Figure 1 shows a simulation for 1.5µ =  and 

1.0σ =  (we performed simulations for 0.2 2.0µ σ≤ ≤  in steps of 0.2 and 

2.0 5.0µ σ≤ ≤  in steps of 0.5). Other parameters are set to 1000N = , 3L =  (we 

also considered 1 5,10, 20, 50,100, 250= …L ), 2 310mσ
−= , and 410m −= ; unless 

stated otherwise, these parameter values will be used throughout this paper. As 

illustrated in the left panel of Figure 1, directional evolution first converges towards 

the generalist strategy * 0z = , where selection turns disruptive. This is because the 

strategy * 0z =  is convergence stable, but not evolutionarily stable (Geritz et al., 

1998; Kisdi & Geritz, 1999). Therefore, alleles coding for alternative phenotypes can 

invade the generalist population, thus establishing genetic and phenotypic 

polymorphism (middle and right panel). 

A general pattern of polymorphism formation and collapse 

We find that establishment of this polymorphism follows a characteristic sequence of 

steps: 

1. Convergence. During a first phase (Figure 1, left panel; generations 0 to 10,000), 

the evolving population simply converges to the branching point through the 

gradual adjustment of phenotypic effects, without any significant between-locus 

or within-locus variation being built up. This first phase sets the stage for the 
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establishment of the later polymorphism – by bringing about a regime of 

frequency-dependent disruptive selection – without yet itself contributing to that 

process. 

2. Symmetric divergence. In a second phase, which commences right after 

branching (Figure 1, middle panel; generations 10,000 to 30,000), the phenotypic 

differentiation between alleles grows gradually, due to mutations and allelic 

substitutions. Closer inspection reveals that all loci become polymorphic during 

this phase. In particular, we observe two equally frequent, distinct classes of 

alleles with equal but opposite phenotypic effects at each locus. Moreover, the 

differences between the phenotypic effects of these classes of alleles are roughly 

equal for all loci. Consequently, the phenotype segregates as if it were 

determined by L  additive, diallelic, diploid loci, with identical pairs of alleles at 

all loci. Such genetic systems can give rise to 2 1L +  different phenotypes, 

exactly the number of phenotypic classes we observe in our simulations (Figure 

1, inset A; 3L =  loci imply 7 such classes). 

3. Between-locus symmetry breaking. In a third phase (Figure 1, middle panel; 

generations 30,000 to 125,000), phenotypic variation continues to increase until 

the distribution of realized phenotypes approximately covers the range from µ−  

to µ . However, the symmetry between loci is broken during this phase. At some 

loci, the alleles continue to diversify, whereas at other loci the differentiation 

between alleles decreases or alleles are lost altogether (Figure 1, inset B). 

Eventually, only one polymorphic locus remains. This effect was observed to 

occur independently of the number of loci encoding the ecological strategy (see 

Figure 1, inset E, for a simulation with 100L = ) and independently of the 

parameters µ  and σ , as long as µ σ> . At the remaining polymorphic locus, 

two classes of alleles give rise to three distinct classes of phenotypes (two 

homozygotes and a heterozygote; Figure 1, inset D). 

4. Within-locus symmetry breaking. During the fourth phase (Figure 1, generations 

125,000+), phenotypic effects and frequencies at the last polymorphic locus 

become asymmetric. This process has previously been studied by Kisdi & Geritz 

(1999), who showed that within-locus asymmetries evolve under a wide range of 

parameters. During phase 2, and essentially also during phase 3, the distinct 

classes of alleles at each particular locus have equal frequencies and opposite but 

equal effects on the phenotype, such that heterozygotes have phenotypic effects 

close to zero. During phase 4, this symmetry is lost, such that the heterozygote 
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matches one of the two locally optimal phenotypes, with the other locally optimal 

phenotypes being matched by one of the homozygotes ( z µ≈  and z µ≈ − ; 

Figure 1, right panel). The remaining homozygote expresses a poorly adapted 

phenotype ( 3z µ≈ − ; Figure 1, right panel). This makes it evident that the alleles 

carried by the latter homozygote (let us refer to its genotype as aa) have a larger 

phenotypic effect ( 3 2ax µ≈ − ) than the alleles carried by the former 

homozygote (genotype AA; 2Ax µ≈ ). The frequency of the allele a approaches 
1
4 . This is because, at the time of mating, half of the population consists of 

individuals from the first habitat, where only AA-individuals stand a fair chance 

of survival, while the other half consists of individuals from the second habitat, 

where only Aa-individuals survive. In Figure 1, the asymmetry in the phenotype 

distribution primarily grows during phase 4 (inset D), but is already initiated to 

some slight extent during phase 3 (inset C). Beyond these final adjustments, the 

population’s phenotypic and allelic composition remains stable. 

Replicate simulations for the same set of parameters (at least 20 replicates per 

parameter condition) show no variation on the four-phase pattern described above. 

Also quantitatively, Figure 1 gives a representative impression of the timing of the 

different phases. We do observe some variation between replicates in the length of 

the phase of symmetric divergence, though. In about 10% of the replicates, between-

locus symmetry breaking occurs at a premature stage, such that polymorphism may 

already be lost at one locus (or, occasionally, at two loci) before phenotypic 

diversification has come to an end.  

The parameters used for the simulations presented in Figure 1 lead to mutational 

heritabilities, 2 22m mh L mσ= , of 76 10−⋅  (main figure) and 52 10−⋅  (inset E), and 

genomic mutation rates, 2U L m= , of 46 10−⋅  (main figure) and 22 10−⋅  (inset E). 

These values span the lower half of the estimated range of naturally realized values 

(see, e.g., Rifkin et al., 2005). For low values of 2
mh  and U , it takes considerable 

time until polygenic variation is lost. The whole evolutionary process occurs more 

rapidly when the mutational heritability is enlarged through an increase of the 

mutation rate, m , or of the variance of mutational effects, 2
mσ . However, more 

pronounced mutations make it more difficult to single out for further investigation 

the selection-driven component of evolutionary change; for that reason, we have 

typically assumed small values for m  and 2
mσ  (but see Figure 7). 
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As we will demonstrate below, the four-phase pattern illustrated in Figure 1 is 

robustly observed in several variations of our basic model. While phases 1 and 4 

already occur in single-locus models (Kisdi & Geritz, 1999), in this paper we focus 

on the new patterns resulting from the symmetry breaking between loci during phase 

3, and thus on processes that are unique to multi-locus models. 

DETERMINISTIC MODEL 

Derivation of deterministic dynamics 

We further investigate the observed loss of polymorphism at all but one locus by 

analyzing a deterministic approximation of our model. For this purpose we derived 

deterministic equations for the expected rate of evolutionary change in allelic effects, 

assuming that mutations are rare and their incremental effects are small. Directional 

evolution then proceeds by steps involving allelic mutation, invasion, and fixation 

(Metz et al., 1992, 1996; Dieckmann & Law, 1996; Weissing, 1996; Hofbauer & 

Sigmund, 1998; Geritz et al., 2002). The outcome of a single step in this process, i.e., 

whether or not a new mutant allele will be able to invade and substitute an existing 

resident allele, is determined by the invasion fitness of the mutant allele, i.e., by the 

rate at which the frequency of the mutant allele increases when it is still rare (Metz et 

al., 1992, 1996). In a multi-locus context, this quantity will depend on a combination 

of fitness effects of the mutant allele in the different genetic backgrounds created by 

other polymorphic loci (see appendix). Mutant alleles with positive invasion fitness 

have a chance to invade the resident population, and once they have overcome the 

threat of accidental extinction by demographic stochasticity (Metz et al., 1996; 

Dieckmann & Law, 1996) they will go to fixation (except under certain special and 

well-understood circumstances; Geritz et al., 2002). It can be shown that series of 

such substitution events result in gradual evolutionary change at a rate and in a 

direction that is related to the gradient of invasion fitness (Dieckmann & Law, 1996). 

We followed standard procedures for the derivation of invasion fitness and for the 

subsequent derivation of dynamical equations for the evolutionary rate of changes in 

allelic effects (Dieckmann & Law, 1996; Kisdi & Geritz, 1999; details are provided 

in the appendix). 
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Illustration of deterministic dynamics 

Numerical results for the deterministic model are shown in Figure 2. The simulation 

starts with a population located at the evolutionary branching point, just after a 

dimorphism has arisen at two loci. There are two alleles at the first locus, which we 

will refer to as A and a, and two alleles at the second locus, henceforth referred to as 

B and b (this does not imply that the alleles A and B are dominant; as before, alleles 

act additively on the phenotype). 

Until about 51.0 10⋅  generations, the phenotypic effects of the alleles at both loci 

diversify rapidly and symmetrically (corresponding to phase 2 as described above), 

giving rise to five phenotypic classes. The difference between the phenotypic effects 

of alleles B and b then diminishes gradually, until the allele B is suddenly lost at 

about 53.5 10⋅  generations (phase 3), so that only three phenotypic classes remain 

(which of the two loci loses its dimorphism depends on arbitrarily small initial 

asymmetries between them). The difference between the phenotypic effects of alleles 

A and a continues to grow throughout phase 3. Finally (phase 4), the alleles at this 

locus evolve in such a way that one homozygote (AA) and the heterozygote (Aa) 

match the optimal phenotypes, whereas the remaining homozygote (aa) expresses a 

sub-optimal phenotype. The frequency of the allele a then declines to approximately 

0.25 . This is again explained by the fact that 50% of the mating population, i.e., the 

part contributed by one habitat, will consist mainly of AA individuals, whereas the 

remaining 50%, from the other habitat, will mainly consist of Aa individuals. Also 

the alternative outcome is possible, with the matches provided by aa and Aa instead 

(which of these two outcomes is realized depends on arbitrarily small initial 

asymmetries between the allelic effects at the remaining dimorphic locus). 

Asymmetries in the initial conditions determine on what timescale symmetry 

breaking within and between loci will occur (asymmetries develop faster when the 

initial asymmetries are larger). Taking into account the expected value of initial 

asymmetries between alleles in the individual-based simulations, we find good 

quantitative agreement between both implementations of our model. Therefore, we 

use the deterministic model for further investigation. 

Comprehensive analysis of deterministic dynamics 

A comprehensive picture of the evolutionary dynamics of our model can be obtained 

by focusing on two-locus diallelic genetics (such as illustrated in Figure 2) to study 
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the underlying dynamics in allele space. Let us therefore denote the phenotypic 

effects of alleles A, a, B, and b as Ax , ax , Bx , and bx , respectively. Without loss of 

generality, we may define 

 1 1

2 2

, ,
, ,

A a

B b

x x x x
x x x x

δ δ
δ δ

= + +∆ = − +∆
= + −∆ = − −∆

 (3) 

such that x  represents the average phenotypic effect of all four alleles, and 1δ  and 

2δ  measure the phenotypic differentiation between alleles at the first and second 

locus, respectively. The quantities x + ∆  and x −∆  then represent the average 

phenotypic effects of the alleles at the first and second locus, respectively. The 

variable x  is indicative of the asymmetry between alleles at polymorphic loci, 

whereas the difference 1 2δ δ−  relates to the asymmetry between loci. Since alleles 

interact additively within and between loci, the coefficient ∆  has no effect at the 

phenotypic level, and hence is not subject to selection. This allows us to represent 

allele space in three dimensions. 

Figure 3 illustrates the different equilibria we find in allele space. Starting from a 

population that is monomorphic at both loci ( 1 2 0δ δ= = ), evolution first converges 

to the evolutionary branching point (indicated as BP in Figure 3). Any slight degree 

of dimorphism developing right at the branching point (or, alternatively, having been 

present initially), takes the population away from this point, towards an equilibrium 

at which a symmetric allelic dimorphism is established at both loci (equilibrium S2). 

This equilibrium is not stable, however. Further evolution proceeds towards an 

equilibrium at which only one locus supports a symmetric allelic dimorphism 

(equilibrium S1). Unless the difference between the patch optima is very large 

relative to the selection parameter σ  (see Kisdi & Geritz, 1999, for the exact 

conditions) this equilibrium is also not stable, such that the final phase of evolution 

involves the transition to an asymmetric allelic dimorphism at a single locus 

(equilibrium A1). 

The sequential approach of an initial condition IC towards the equilibria BP, S2, S1, 

and A1 in Figure 3 can be recognized in the four different phases of the individual-

based dynamics shown in Figure 1: IC→BP (phase 1), BP→S2 (phase 2), S2→S1 

(phase 3), S1→A1 (phase 4). The four different phases are the more pronounced the 

closer trajectories stay to the itinerary IC→BP→S2→S1→A1 (see Figure 3). 

Technically speaking, equilibria like BP, S1, and S2 are called saddle points. Such 

points are notorious for slowing down dynamics when being approached closely. 
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There are several reasons why such approaches dominate the dynamics of our 

system: 

1. Due to combinatorial reasons, it is unlikely that only a single locus is 

polymorphic shortly after branching. As long as mutations have small phenotypic 

effects, one expects the polymorphism to grow initially at the same rate at every 

locus. To see why this is so, suppose that the initial phase of phenotypic 

diversification requires n  mutations. It is much more likely that these mutations 

are more or less uniformly distributed over loci than that all n  mutations 

occurred at the same locus. As long as n  is large relative to the number of loci on 

which the ecological trait is based, it is therefore probable that the initial 

asymmetry between loci is small. This confines trajectories ejected from the 

branching point to the plane 1 2δ δ=  (Figure 3). Since mainly combinatorial 

effects determine the expected direction of evolution from the branching point, 

details of the mutation process can have some impact on the phase of symmetric 

divergence. Divergence will typically occur at the same rate at every locus, if, for 

example, the mutation rate or the mutation step size is higher for some loci than 

for others. Similarly, convergence towards the plane 1 2δ δ=  may either be 

supported or hindered by nonlinearities in the genotype-phenotype mapping. 

2. Selection initially tends to decrease the average phenotypic effect of alleles, x , 

thus selecting for symmetric (i.e., equal but opposite) phenotypic effects. This 

effect is a remnant of the regime of directional selection that drove the 

monomorphic population towards the evolutionary branching point: around 

1 2 0δ δ= = , selection points towards 0x =  (Figure 3). In conjunction with the 

first effect, this means that trajectories are ejected from the branching point in the 

direction 1 2δ δ= , 0x = , i.e., right towards the equilibrium S2. 

3. The closer trajectories pass by S2, the closer they will pass by S1. Since this is a 

derived effect, the transition from phase 3 to phase 4 will usually be less sharp 

than that from phase 2 to phase 3 (see Figure 1). 

Populations are thus expected to spend considerable time in the vicinity of the 

unstable equilibria S2 and S1. This prediction is corroborated by the individual-based 

simulation shown in Figure 1. 
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ROBUSTNESS WITH RESPECT TO GENETIC ASSUMPTIONS 

So far, we have investigated evolution under frequency-dependent disruptive 

selection in an idealized genetic system, characterized by free recombination and 

additive interactions within and between loci. In addition, we have assumed that 

individual mutations have small phenotypic effects. These simplifying genetic 

assumptions are habitually made in phenotypic models of evolution, where the 

details of the underlying genetics are considered to be of secondary importance (see 

also Weissing, 1996), either because the character under study is likely to be encoded 

by many loci, or because its genetic basis is unknown. To overcome these 

limitations, below we investigate the robustness of our results with respect to 

variations of our genetic assumptions. 

Genetic linkage 

First, we consider the effects of genetic linkage between loci. Figure 4 shows 

numerical results for our deterministic model with tight linkage between two diallelic 

loci (the recombination fraction is set to 0.05r = ). 

The two loci initially behave as a single locus with four ‘alleles’ (given by the 

haplotypes AB, Ab, aB, and ab). Based on the results presented in the preceding 

sections, we expect that two haplotypes disappear and that the phenotypic effects of 

the remaining two haplotypes evolve such that one homozygote and the heterozygote 

express the two locally optimal phenotypes. This is indeed the case. In the first phase 

of the simulation shown in Figure 4 (until about 60.5 10⋅  generations), we observe 

the emergence of a polymorphism of five phenotypic classes, but the frequency of 

two of the haplotypes (AB and ab) is much higher than that of the other two 

haplotypes (Ab and aB). This can be inferred from the fact that the frequency of the 

genotypes AAbb and aaBB is much lower than that of the genotype AaBb. After this 

initial phase, the phenotypic effect of haplotype ab becomes strongly negative, 

allowing the homozygote AABB and the heterozygote AaBb to express the two 

locally optimal phenotypes. Due to the tight linkage, asymmetries between the loci 

evolve more slowly than asymmetries between haplotypes. Eventually however, the 

polymorphism at one of the loci is lost. In Figure 4, the allele b disappears shortly 

after 61.5 10⋅  generations. 

These results suggest that linkage between loci does affect the relative rates at which 

asymmetries within and between loci develop, but does not change the partitioning of 
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the evolutionary dynamics into distinguishable phases, the loss of polymorphism at 

all but one locus, and the final pattern of the evolutionary outcome. 

Non-additive interactions 

Second, we consider the effects of non-additive interactions between alleles and 

between loci. We could relax our assumption of additive genetics by simply 

imposing fixed, non-additive interactions (e.g., antagonistic or synergistic 

interactions). We consider this option less than ideal, since it would still constrain the 

evolutionary process. Instead, we allow for evolutionary change in dominance-

recessivity relations and in the relative impacts of the different loci on the phenotype 

(we will refer to these relative impacts as the weights of individual loci). In this 

extended approach, the extent to which alleles and loci contribute to the phenotype is 

flexible and can be shaped by evolution. 

Following the modeling framework introduced by Van Dooren (1999), we 

implemented this flexibility by assuming that an individual’s phenotype is 

determined by the phenotypic effects of the alleles it carries (more precisely, the 

gene products of the alleles) and by so-called allelic parameters, which determine the 

extent to which the alleles are expressed, much like regulatory elements in the 

promotor region of a gene. In addition, we consider modifier loci (e.g., loci coding 

for transcription factors) that affect the level of expression of all alleles at a given 

locus. Dominance interactions between alleles derive from the allelic parameters, 

whereas the weights of individual loci derive from the expression patterns at the 

modifier loci. An allele’s contribution to the phenotype now depends on its weight 

relative to the weight of the other allele on the same locus, and on the weight of the 

locus relative to the weights of the other loci. This is illustrated in Table 1 for a 

specific example with two loci. Our approach can easily be extended to allow also 

for complex epistatic interactions between loci, but, for the sake of conciseness, we 

refrain from illustrating this here. We allowed both the phenotypic effects of alleles 

and the allelic parameters to evolve through mutations with small incremental 

effects. In addition, we allowed the weights of loci to evolve through mutations 

(again with small incremental effects) of the alleles at modifier loci (one modifier 

locus for each ecological trait locus). We assumed free recombination between all 

loci. 

Figure 5 shows numerical results for the extended individual-based model: we again 

observe rapid convergence to the evolutionary branching point, followed by a phase 
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of phenotypic diversification. Initially, three out of four loci become polymorphic, 

but eventually only one polymorphic locus remains. Insets A-C in Figure 5 show the 

relative weights (on the vertical axis) of the four different loci (on the horizontal 

axis) at three moments during the simulation. Grey bars are used for monomorphic 

loci; black and white bars are used for polymorphic loci. The subdivision in a white 

and black part represents the relative weights of the two different alleles that occur 

on a polymorphic locus. During the initial phase of differentiation (corresponding to 

phase 2 as described above), the alleles at all polymorphic loci diversify 

symmetrically (inset A, at 43.0 10⋅  generations). As long as selection favors further 

diversification, there is directional selection to increase the weight of polymorphic 

loci, which contribute to population-level phenotypic diversity, relative to the weight 

of the one monomorphic locus (locus 2), which does not. At this time, selection on 

the allelic parameters (i.e., on dominance) is still virtually absent. Later on, however, 

the asymmetries between loci grow (corresponding to phase 3 as described above), 

until only one polymorphic locus remains (locus 1). During this phase, selection on 

the relative weights of polymorphic loci is disruptive and acts alongside selection on 

allelic effects (which is stabilizing for some loci but diversifying for other loci), such 

that the locus with the largest differentiation between alleles eventually contributes to 

the phenotype with the largest relative weight (inset B, at 48.0 10⋅  generations). All 

along, the interaction between alleles at a single locus has remained additive, i.e., the 

alleles at polymorphic loci have equal relative weights. However, selection for 

dominance-recessivity interactions between alleles arises as soon as asymmetries 

evolve between alleles at the remaining polymorphic locus (corresponding to phase 4 

as described above). The relative weight of one of the alleles increases, such that, 

eventually, the phenotype of the (otherwise) maladapted homozygote coincides with 

the locally optimal phenotype matched by the heterozygote (inset C, at 57.0 10⋅  

generations). 

These results show that the evolution of non-additive interactions between alleles and 

the evolution of locus weights are expected to act alongside the evolution of allelic 

effects, representing alternative pathways along which the symmetry between and 

within loci can be broken. The relative contributions of the evolution of allelic 

effects (the evolution of the gene products), versus the evolution of the weights of 

alleles and loci (the evolution of gene regulation), will depend on factors like the 

relative mutation rates of the phenotypic effects, the allelic parameters, and the 

modifier alleles. All key predictions of our preceding analysis are corroborated even 
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in this extended model. In particular, the characteristic phasing of dynamics from the 

initial diversification to the final outcome is robustly recovered. 

Large mutations 

As a third check on the robustness of our results, we explore the effects of large 

mutational step sizes. Figure 6 shows numerical results for our original individual-

based model, with all parameters except the mutational step size σm  and the 

mutation rate m  chosen exactly as in Figure 1. In Figure 6, the variance of 

mutational effects 2
mσ  was set 100 times larger than in Figure 1, and the mutation 

rate was set 100 times smaller, such that the expected rate of directional evolution, 

which scales with 2
mmσ  (Dieckmann & Law, 1996; see also the appendix), was 

identical for both simulations. 

These results show that with large mutational steps the whole evolutionary process – 

of convergence to the branching point, loss of polymorphism on all-but-one locus, 

and asymmetric differentiation of alleles at the remaining polymorphic locus – is 

reduced to only a small number of allele substitution events (which can be 

recognized individually as discontinuities in Figure 6). Consequently, the 

stochasticity of the mutation process is much more pronounced, and the variation 

between replicate simulations is larger. Yet, the average behavior of replicates does 

not deviate qualitatively from the predictions of our deterministic model. Also the 

diminished phasing of the evolutionary process is just as predicted, since smaller 

mutational steps make it easier for the genetic system to track the saddle connections 

that lie at the heart of the process. Figure 6 shows that we can still recognize the 

different phases discussed before, even when mutation effects are not small. It is 

clear that the weaker selection and the larger the mutational step size, the more 

strongly the stochasticity of the mutation process will blur the selection-driven, 

deterministic component of evolutionary change. 

DISCUSSION 

Our results show that frequency-dependent disruptive selection is less powerful in 

maintaining polygenic variation than one would naïvely expect. Frequency-

dependent disruptive selection does not lead to the establishment of genetic 

polymorphism at a large number of loci. Instead, genetic variation is concentrated at 

a single locus with large phenotypic effect. We observed this outcome in individual-
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based simulations and in an analytical model, under a range of genetic assumptions, 

which gives confidence in the robustness of the results. The identified pattern of 

polymorphism formation and collapse is likely to be widely applicable. 

The dynamics observed in our model suggest a conceptual link between the different 

effects of frequency-dependent disruptive selection observed in quantitative genetics 

(QG) and adaptive dynamics (AD) models. In the initial phase of diversification, all 

loci are polymorphic, and the phenotypic differentiation of alleles at each locus is 

small. Hence, a large number of loci contribute to the genetic variation, and each 

locus has a small effect on the phenotype. Not surprisingly, the dynamics shortly 

after evolutionary branching therefore much resembles the maintenance of variation 

as observed in QG models, where disruptive selection leads to the gradual 

broadening of a continuous phenotype distribution. Eventually, however, genetic 

variation becomes concentrated at a single locus, which contributes increasingly 

strongly to phenotypic variation. In this situation QG methods become inaccurate: 

we observe the emergence of discrete clusters of phenotypes that create a situation 

better analyzed by AD methods, or by classical population genetics. 

The phenomena of polymorphism formation and collapse observed in our model are 

a straightforward consequence of the fact that frequency-dependent selection 

generates a dynamic selection regime. It is a defining feature of frequency 

dependence that the intensity and direction of selection changes as evolution 

proceeds, a consequence of the feedback between a population and its environment. 

In the context of our model, the population first experiences directional selection 

towards the evolutionary branching point, then disruptive selection at the branching 

point (leading to diversification at all loci), and subsequently again a type of 

stabilizing selection (favoring two discrete phenotypes at the patch optima). 

Selection turns from disruptive to stabilizing as soon as the phenotypic variation in 

the population has become large enough for the optimal phenotypes in the two 

patches to occur at appreciable frequencies. At that point, there is no further selection 

for diversification. Yet, intermediate phenotypes remain at a selective disadvantage. 

It is an unavoidable consequence of sexual reproduction – at least, as long as 

individuals mate at random – that such intermediate phenotypes are generated, but, 

for combinatorial reasons, their frequency is lowest when all genetic variation is 

concentrated at a single locus. This explains why all loci, except one, eventually 

become monomorphic. Subsequent evolution, involving symmetry breaking between 
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alleles at the remaining polymorphic locus, increases population mean fitness by 

further reducing the frequency of maladapted individuals. 

Although here we have analyzed only Levene’s soft-selection model, we expect that 

our conclusions apply to a broad class of systems subject to frequency-dependent 

disruptive selection. Adaptive dynamics theory has revealed the generic shape of 

fitness landscapes around evolutionary branching points (e.g., Geritz et al., 1997), 

and adaptive dynamics models have shown that such branching points can be created 

by a plethora of different ecological mechanisms, including all three fundamental 

types of ecological interaction (e.g., Doebeli & Dieckmann, 2000). In particular, we 

expect to observe similar evolutionary phenomena in all cases where the coexistence 

of an arbitrarily large number of replicators is precluded by a competitive exclusion 

principle (Gyllenberg & Meszéna, 2005). Such systems must, at some level of 

diversity, exhibit a transition from disruptive to stabilizing selection favoring the 

evolution of a discrete, limited set of phenotypes. In our Levene-type model, the 

number of coexisting replicators is bounded by the number of different habitats, and 

this sets an upper limit on the number of loci expected to remain polymorphic in 

long-term evolution. In a two-niche environment, at most one locus remains 

polymorphic. In environments with more than two habitats, polymorphism might be 

maintained at more than one locus (or more that two alleles might segregate at a 

single locus), but the number of polymorphic loci is always smaller than the number 

of habitat types (data available from the authors). 

In a somewhat different context, Spichtig and Kawecki (2004), who recently also 

analyzed a multi-locus version of Levene’s model, came to a conclusion similar to 

ours. While their analysis addresses the dynamics and the equilibrium frequencies of 

a fixed set of alleles, other aspects of the two models are similar, allowing for a 

detailed comparison of results. Also Spichtig and Kawecki (2004) argue that the 

capacity of soft selection to maintain polygenic variation is smaller than one would 

expect based on single-locus models. Their conclusion, however, applies to 

parameter regimes for which evolutionary branching does not occur since the fitness 

of intermediate phenotypes is high. Under these conditions, polygenic variation is not 

maintained, due to the fact that the average phenotype of a polygenic character can 

be accurately matched with the optimal phenotype without requiring a polymorphism 

of alleles at individual loci (i.e., with all loci being homozygous, and, hence, with the 

population being monomorphic). This conclusion does not apply to a single locus, 

where the realization of an intermediary phenotype typically requires a heterozygous 



Van Doorn & Dieckmann Evolutionary branching of multi-locus traits  21 

genotype (and, hence, a polymorphic population). Unlike for single-locus characters, 

the variation of polygenic characters can therefore be low, irrespective of the mean 

phenotype. 

In contrast, our conclusion applies to the maintenance of polygenic variation after 

evolutionary branching; that is to say, it concerns a complementary parameter 

regime. In this case, the explanation for the loss of polygenic variation is different 

and stems from the fact that a single-locus polymorphism allows for a maximal level 

of phenotypic variation: given a certain degree of overall differentiation between 

alleles, the phenotypic variance in the population is highest when the polymorphism 

is concentrated at a single locus. Under conditions that allow for evolutionary 

branching, a polymorphism of differentiated alleles at a single locus is therefore the 

most favorable configuration that can be attained within the limits set by sexual 

reproduction. It allows for the lowest possible frequency of the intermediate 

phenotypes that are at selective disadvantage in the parameter regime considered 

here. 

Obviously, a single-locus polymorphism will only be favored over polygenic 

variation when the phenotypic effects of individual alleles are considerable, such that 

a polymorphism at a single locus can give rise to substantial phenotypic variation. In 

our model, the phenotypic effects of individual alleles can become arbitrarily large, 

as a cumulative result of many mutations with small phenotypic effects. In models 

that do not incorporate mutation, where the set of alleles is kept fixed and the 

phenotypic effects of individual alleles are limited, a polymorphism of alleles at a 

single locus can only give rise to a modest level of phenotypic variation. In such a 

situation, we would expect variation to be maintained at multiple loci, since this is 

the only way to maintain sufficient genetic variation (an expectation confirmed by 

Bürger, 2002a, 2002b; Spichtig & Kawecki, 2004).  

This highlights another contrast between our analysis and studies of frequency-

dependent disruptive selection that investigate allele-frequency changes and the 

stability properties of population genetic equilibria of a predefined set of alleles. The 

latter yield conditions for the short-term maintenance of genetic variation, but do not 

provide insights about long-term evolution, which occurs through the substitution of 

the existing alleles by novel, mutant alleles (Eshel, 1996). This process is explicitly 

considered in our model. However, we have largely neglected potential constraints 

on the evolution of allelic effects; in the absence of knowledge that warrants more 

specific assumptions, we have merely assumed the mutational step size to be small. 
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The mechanistic details of the mutation process, of the development of the 

phenotype, and so on, will be important to calibrate the different time scales of short-

term and long-term evolution relative to one another. Such calibration is necessary to 

interpret observed patterns of polymorphism of quantitative traits in empirical 

systems. Conversely, a detailed comparison of these patterns to the evolutionary 

predictions made by short- and long-term evolution models, may give insights in the 

importance and nature of evolutionary constraints on polygenic variation. 
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Appendix: Derivation of deterministic approximation 

Here we derive an analytical deterministic approximation that captures the dynamics 

in our individual-based stochastic simulation model. To enable this complementary 

treatment, we assume that (a) mutations occur rarely, such that mutant alleles arise in 

a resident population that is close to its population genetic equilibrium. 

Consequently, a mutant allele interacts only with the currently predominant resident 

alleles, which were successful at ousting previous mutant alleles. We also assume 

that (b) the population is sufficiently large, such that we may neglect stochasticity in 

the dynamics of the frequencies of resident alleles, and that (c) changes in the 

phenotypic effects of alleles caused by individual mutations are typically small, such 

that it is meaningful to approximate the long-term dynamics of phenotypic effects 

deterministically. 

The invasion fitness λ  specifies the geometric rate of increase of the abundance of a 

mutant allele while it is rare (e.g., just after it has arisen by mutation; Metz et al., 

1992, 1996). When a mutant arises in an otherwise genetically monomorphic resident 

population, all resident individuals have the same phenotype ẑ  and all individuals 

that carry a mutant allele have the same phenotype z . This greatly simplifies the 

derivation of invasion fitness in our model (see, e.g., Kisdi & Geritz, 1999), which 

under such conditions is given by 

 ( ) ( ) ( ) ( )1
1 1 2 22 ˆ ˆ .v z v z v z v zλ ⎡ ⎤= +⎣ ⎦  (4) 

The first and second term in the square bracket represent, respectively, the relative 

viabilities of mutant individuals in the first and second habitat, and the factor 1 2  

simply reflects the assumption that half of the individuals in the mating population 

are recruited from either habitat. 

When the resident population is polymorphic at one or more loci, the derivation of 

invasion fitness becomes more complicated, since we then need to keep track of the 

frequencies of the different resident genotypes. The mutant allele may then also 

occur in different genetic backgrounds, consisting of different combinations of 

resident alleles. To keep the analysis tractable, we will restrict ourselves here to the 

simplest interesting case, by considering a resident population that is polymorphic at 

two loci ( 2L = ). We denote the alleles at the first locus by A  and a , and the alleles 

at the second locus by B  and b  (as mentioned in the main text, this notation does 

not imply that the alleles A  and B  are dominant). The phenotypic effects of the 

alleles are denoted by Ax , ax , Bx , and bx . If A ax x=  or B bx x= , the resident 
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population is monomorphic at the corresponding locus. We also consider a mutant 

allele M , with phenotypic effect Mx , that has arisen through mutation of the allele 

A  at the first locus (other mutant alleles are dealt with analogously). 

We choose to describe the dynamics of the resident and mutant allele frequencies in 

terms of the frequencies of the haploid gametes in which they occur: gf  denotes the 

frequency of the gamete g  ( , , , , , org AB Ab aB ab MB Mb= ) in adults at the 

moment of reproduction, i.e., after viability selection has occurred. We follow the 

life cycle of our model to determine its effect on these gamete frequencies: 

1. Random mating. We first compute the frequency ggF ′′  of the genotype gg′  in the 

offspring before viability selection. Since mating is random, the frequency of 

offspring carrying the genotype gg′ , which arises from the combination of 

gametes g  and g′ , is given by the product of the corresponding gamete 

frequencies in the parents, i.e., ggg gF f f′ ′′ = . 

2. Viability selection. Viability selection changes the genotype frequencies in the 

offspring, such that the frequency ggF ′  of the genotype gg′  after viability 

selection is, similarly to equation (4), 

 ( ) ( )1
1 1 2 22 ,gg gg gg ggF F v z v v z v′ ′ ′ ′

⎡ ⎤′= +⎢ ⎥⎣ ⎦  (5) 

where ggz ′  denotes the phenotype encoded by the genotype gg′  (for example, 

2ABAb A B bz x x x= + +  and 2abMb a M bz x x x= + + ) and iv  is the average viability in 

habitat i . While the mutant allele is rare, average viabilities do not depend on the 

mutant’s genotype frequencies, 

 ( )
, , , ,

.i igg gg
g g AB Ab aB ab

v F v z′ ′
′=

′= ∑  (6) 

3. Gamete production. After viability selection, the next generation is produced 

through sexual reproduction. The frequencies of the different resident gametes 

are determined straightforwardly from the resident genotype frequencies after 

viability selection. For example, 

 ( ) ( )( ) ( )1 1 1
2 2 2

,

1 ,AB ABAB ABg gAB ABab abAB AbaB aBAb
g Ab aB

f F F F r F F r F F
=

= + + + − + + +∑  (7) 

where r  is the coefficient of recombination between the two loci. The mutant’s 

genotype frequencies do not appear in equation (7), since the frequency of the 

mutant allele is initially negligible. 

Equations (4) to (7) define a recurrence relation for the resident gamete frequencies. 

This recurrence relation can be iterated until these frequencies converge to a stable 
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equilibrium (reflecting our assumption that resident populations attain their 

population genetic equilibrium by the time a mutant arises). 

For the mutant gamete frequencies we obtain, analogously to equation (7), 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1
2 2 2

, , ,

1 1 1
2 2 2

, , ,

1 ,

1 .

MB MBg gMB MBg gMB Mbg gMb
g AB aB g Ab ab g AB aB

Mb Mbg gMb Mbg gMb MBg gMB
g Ab ab g AB aB g Ab ab

f F F r F F r F F

f F F r F F r F F
= = =

= = =

= + + − + + +

= + + − + + +

∑ ∑ ∑

∑ ∑ ∑
 (8) 

Here we again use the fact that the mutant allele is rare initially, which allows us to 

neglect the frequency of individuals that are homozygous for the mutant allele. 

For mutant alleles M  that differ only slightly from the resident allele A , M Ax x−  is 

small, and we may use first-order Taylor expansions to approximate the viabilities of 

phenotypes affected by the mutant allele. For example, 

 ( ) ( )( ) ( )( ) ( )2 2 21
2exp 1 .i MBg MBg i M A ABg i i ABgv z z x x z v zµ σ µ σ⎡ ⎤= − − ≈ − − −⎢ ⎥⎣ ⎦  (9) 

Using these approximations and equation (5), we rewrite the mutant genotype 

frequencies. For the mutant genotype frequencies MBgF , for example, this yields 

 ( ) ,= + − ABMB
MBg ABg MB M A g

AB

fF F f x x W
f

 (10) 

where 

 ( ) ( ) ( ) ( )21
1 1 1 2 2 22 .g

g g gg gg gg ggW f z v z v z v z vσ µ µ′ −
′ ′ ′ ′

⎡ ⎤=− − + −⎢ ⎥⎣ ⎦  (11) 

We substitute equation (10) and analogous expressions for the genotype frequencies 

gMBF , MbgF  and gMbF  into equations (8), to obtain, after some rearrangement, the 

following recurrence relation for the change of mutant gamete frequencies from one 

generation to the next, 

 ( ) ,MB MB
M A

Mb Mb

f f
x x

f f
F W

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎡ ⎤⎟ ⎟→ + −⎜ ⎜⎟ ⎟⎣ ⎦⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 (12) 

where the matrices F  and W  are defined as 

 
( ) ( )
( ) ( )

1 1

1 1

1
,

1
AB ABAb AbaB Ab ABAb AbaB

AB ABAb ABab Ab ABAb ABab

r f F F r f F F
r f F F r f F F

F
− −

− −

⎛ ⎞− + + ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ + − +⎝ ⎠
 (13) 

( )

( )
, , ,

, , ,

1
.

1

AB AB Ab
g g g

g AB aB g Ab ab g AB aB

AB Ab Ab
g g g

g Ab ab g Ab ab g AB aB

W r W r W

r W W r W
W = = =

= = =

⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

∑ ∑ ∑
∑ ∑ ∑

 (14) 
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The invasion fitness λ  of the mutant allele in the considered polymorphic resident 

background is now given by the geometric rate of increase of the mutant allele 

frequency, which equals the dominant eigenvalue of the matrix ( )M Ax xF W+ − . 

For small M Ax x−  it can be shown (e.g., Caswell, 1989; Taylor, 1996) that 

 ( )1 .M A
v ux x

vu
Wλ= + −  (15) 

The term ( )v u vuW , which represents the fitness gradient, varies with the vectors 

 ( ), and ,AB
ABAb ABab ABAb AbaB

Ab

f
v F F F F u

f
⎛ ⎞⎟⎜ ⎟= + + = ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (16) 

which are the dominant left and right eigenvectors of the matrix F , respectively.  

Under suitable assumptions (Dieckmann & Law, 1996; Weissing, 1996; Hofbauer & 

Sigmund, 1998), the invasion fitness can be used to describe the long-term rate and 

direction of a series of allelic substitution events. Indeed, using equation (14) and 

following the derivation scheme employed by Dieckmann & Law (1996), it can be 

shown that the expected evolutionary rate of change of the phenotypic effect of the 

currently resident allele A  at the first locus satisfies 

 ( ) ( ) ( ) ( )2 | max 0, ,A
AB Ab M A M A M A M

dx v uN m f f M x x x x x x dx
dt vu

α
⎛ ⎞⎟⎜= + ⋅ ⋅ − ⋅ −⎟⎜ ⎟⎟⎜⎝ ⎠∫ W  (17) 

where t  measures evolutionary time in generations. The first factor in the integrand 

above is the rate at which new mutant alleles arise: the frequency of allele A  is given 

by AB Abf f+ , the total number of alleles in a diploid population of size N  is 2N , 

and m  equals the mutation rate per generation. The second factor is the probability 

density according to which a mutation changes the phenotypic effect at the first locus 

from Ax  to Mx . The third factor is the probability that the mutant allele will 

successfully invade. This probability is zero when the mutant allele has a geometric 

rate of increase below that of the resident allele and otherwise is proportional to the 

fitness advantage s  of the mutant allele, as long as s  is small. This explains the 

function max(0, )sα , with α  denoting the constant of proportionality, and with 

( )( ) ( )M As x x v u vuW= −  following from equation (15). For offspring numbers 

varying according to a Poisson distribution, we obtain 2α= . If the mutant allele 

succeeds to invade, this causes a change of the resident allele: away from the 

evolutionary branching point (and from population dynamical bifurcation points), 

successful invasion of the mutant allele implies that it will eventually replace the 

resident allele (Geritz et al., 2002). Successful invasion thus means that the 
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phenotypic effect of the currently resident allele will change by an amount M Ax x− , 

which explains the integrand’s fourth factor. 

Collecting all terms that are independent of Mx  in front of the integral, and realizing 

that the integrand above vanishes along half its range since only mutant alleles with 

either M Ax x>  or M Ax x<  can successfully invade, we can rewrite equation (17) as 

 ( ) ( ) ( )21
22 | .A

AB Ab M A M A M
dx v uN m f f x x M x x dx
dt vu

α= + ⋅ −∫W  (18) 

Denoting the variance of mutational effects by 2
mσ , we therefore finally obtain 

 ( )2 .A
m AB Ab

d x v uN m f f
dt vu

Wασ= +  (19) 

Equations for the rate of change in the phenotypic effects of the alleles a , B , and b , 

are derived analogously. 
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Figure legends 

Figure 1. Evolution in individual-based model 

The three panels of this figure show the distribution of phenotypes during the rapid 

convergence to the evolutionary branching point (left panel), the subsequent phase of 

diversification at several loci (middle panel), and the final phase of evolution at a 

single locus (right panel). Small insets A-D show the frequency distribution 

(frequency is on the vertical axes) of phenotypes (on the horizontal axes) at four 

moments during the simulation (indicated by dashed lines). We also ran simulations 

with more than three loci: inset E shows an example for 100L =  loci (time, on the 

horizontal axis, extends to 500,000 generations; phenotype, on the vertical axis, 

ranges from -5.0 to 5.0). Grayscales in the main figure and inset E indicate the 

frequency of phenotypes. At any moment in time, the most common phenotype is 

shown in black, while less common phenotypes are shown in lighter shades of gray. 

Note the different scales of the time axis in the three panels. Parameters as listed in 

the text. 

Figure 2. Evolution in deterministic model 

The deterministic approximation of our model tracks the phenotypic differentiation 

of alleles at two polymorphic loci. With two alleles at each locus (A and a at the first, 

B and b at the second locus), at most nine different classes of genotypes (indicated by 

the labels AABB, …, aabb) are present within the population at any moment in time. 

Individuals within the same class of genotypes have identical phenotypes. The 

phenotypes associated with each class of genotypes, and their frequencies, change 

over time, due to evolutionary change in the phenotypic effects of alleles. The time 

scale of this process may vary with parameters such as the mutation rate, the 

mutational variance, and the population size (see appendix). Parameters as in Figure 

1. 

Figure 3. Evolution in allele space 

Simulations of the deterministic approximation of our model, started from various 

initial conditions, are represented as trajectories in allele space (black lines with 

arrows). The location of equilibria is indicated by gray circles. The location of 

equilibria and their stability properties were calculated numerically. The thick gray 

trajectory highlights how evolution proceeds towards the equilibrium A1 via the 

equilibria BP, S2, and S1 (for details see the main text). Notice that in this depiction 
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trajectories may intersect with other trajectories, since there exist multiple population 

genetic equilibria for some combinations of alleles. Parameters as in Figure 1. 

Figure 4. Evolution with tight linkage between loci 

Two tightly linked loci ( 0.05r = ), each with two alleles, behave much like a single 

locus with four ‘alleles’ (i.e., combinations of alleles). Consequently, differentiation 

between loci occurs more slowly than differentiation between combinations of 

alleles. Parameters as in Figure 1, except for 0.05r = . 

Figure 5. Evolution with variable weights for alleles and loci 

Three panels show the distribution of phenotypes in an individual-based simulation 

as in Figure 1. The insets A-C, however, do not show frequency distributions, but the 

average relative weights of loci and alleles (i.e., the extent to which an allele at a 

specific locus contributes to the phenotype), at three moments during the simulation 

(indicated by dashed lines). The height of the bars represents the weight of a locus 

(in this simulation we kept track of four loci). For polymorphic loci, bars consist of a 

black and white part, indicating the weights of the different alleles that occur at this 

locus. Grey bars are used for monomorphic loci. Parameters as in Figure 1, except 

for 4L = . 

Figure 6. Evolution with large mutational steps 

Even when the whole evolutionary process is reduced to only a small number of 

allele substitution events, its predicted phasing is still recognizable. Parameters as in 

Figure 1, except for 2 0.1mσ =  and 610m −= . 
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Figure legends for the figures in the online supplementary material 

Figure S-1. Evolution with an environmental component of phenotypic variation 

We performed simulations in which both genetic and environmental variation 

contributed to the phenotypic variation of the ecological strategy. The phenotype of 

an individual, z , depended on a genetic component gz  (determined by the 

phenotypic effects of the alleles it carried) and an environmental component ez , 

drawn for a normal distribution with width e eVσ = , such that g ez z z= + . We set 

3 5eσ = , 4 5σ =  and all other parameters as in Figure 1. Note that 2 2 1eσ σ+ = , 

such that we would expect the evolutionary dynamics to unfold as in Figure 1. The 

figure does indeed show a highly comparable outcome. 

Figure S-2. Evolution with variability in environmental conditions 

To investigate whether variability of the environmental conditions would affect our 

conclusions regarding the long-term maintenance of polymorphism at multiple loci, 

we explored the effects of long-term fluctuations of 1µ  and 2µ , the optimal 

phenotypes in the two habitats. We took ( ) ( )sin 1000i it i tµ µ π= +  ( 1or 2=i ), 

where t  is the time (in generations), and where we used 1 2 1µ µ= − =  for the average 

habitat optima. Note that the periods of the fluctuations do not match (2000 

generations for habitat 1; 1000 generations for habitat 2). This causes both the 

direction of selection and its disruptiveness to vary. Other parameters are as in Figure 

1, except for 100L = . 
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Table 1. Dependence of the phenotype on allelic effects, allelic parameters 

(dominance) and modifier loci for the model variant with non-additive 

interactions. 

 Locus 1 Locus 2 

 Allele 1 Allele 2 Allele 1 Allele 2 

Phenotypic effect 11x  12x  21x  22x  

Allelic parameter 11u  12u  21u  22u  

Weight of alleles 11
11

11 12

uU
u u

=
+

12
12

11 12

uU
u u

=
+

 21
21

21 22

uU
u u

=
+

 22
22

21 22

uU
u u

=
+

 

Alleles at modifier locus 11w  12w  21w  22w  

Weight of loci 11 12
1

11 12 21 22

w wW
w w w w

+
=

+ + +
 21 22

2
11 12 21 22

w wW
w w w w

+
=

+ + +
 

Phenotype ( ) ( )1 11 11 12 12 2 21 21 22 22z W U x U x W U x U x= + + +  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure S-1 

(to appear in the online supplementary material only)  
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Figure S-2 

(to appear in the online supplementary material only) 
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