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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

I7. +the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population
forecasting;

III. the analysis and design of migration and settle-
ment policy;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the tenth in the spatial population dynamics
series, deals with a concept which is currently receiving
great interest in the demographic literature: the reproductive
value. It reformulates the notion of reproductive value and
generalizes it to multiregional demographic systems. The
usefulness of this concept for demographic analysis is demon-
strated in the applications.

Related papers and other publications of the migration
and settlement study are given on the back page of this report.

Andreil Rogers
Chairman
Human Settlement & Services Area

January 1977
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Abstract

What is important for population growth is not the
number of people, but the biological potential. This
observation led Fisher in 1929 to the development of
the concept of reproductive value as part of a theory
of natural selection. Recently, mathematical demogra-
phers have explored this concept and shown how it
provides solutions to problems of population dynamics
that are governed by fertility and mortality. This
paper reformulates the theory of reproductive value, and
generalizes it to multiregional population systems,
the dynamics of which are determined by fertility,
mortality, and migration. Births are considered as
investments in lives or individuals by the society.

The growth of the population depends on the number of
investments (births), and on when and where they take
place. A number of applications of the spatial repro-
ductive value concept are indicated. The computations
of the stable birth trajectory and population growth
path are discussed in detail. Numerical illustrations
are used throughout the paper.
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The Spatial Reproductive Value:

Theory and Applications

It is not uncommon in science that an old and almost forgot-
ten concept is picked up decades later and is then received with
interest. The concept of reproductive value was developed in
1929 by R.A. Fisher. Recently Goodman (1967, 1971) and Keyfitz
(1975) have studied the concept and have indicated a wide field
of application.

It is the purpose of this paper to generalize the idea of
reproductive value to a multiregional population system which
includes internal migration. The introduction of the spatial
reproductive value in the analysis enables us to solve in an
elegant way problems of multiregional stable and stationary
populations, problems which previously could not be solved at

all or only in a complicated manner.

1. THE THEORY OF SPATIAL REPRODUCTIVE VALUE

Fisher (1929, p. 27) regarded birth as a loan of life to a
child. 1In the course of this life, the individual must pay back
this debt with interest by producing new life, i.e., offspring.
The interest rate to be paid has a simple and particularly use-
ful demographic interpretation. It is the intrinsic growth rate
of the population, i.e., the growth rate at stability or steady
state equilibrium.

In this section we propose a slightly different conceptual
approach to the reproductive value. By doing so the concept of
spatial reproductive value becomes more meaningful, and the
demographic characteristics underlying the notion itself as
considered by Rogers (1975), are given a broader interpretation
(see also Rogers and Willekens, 1976b).



1.1 The Multiregional Characteristic Matrix

Consider a multiregional female population. Suppose that
the probability that a girl, born in region i, will survive
to age a and be in region j at that time is i@j(a). The chance
of her having a child in region j hetween ages a and a + da is
m. (a) da. The expected number of births in region j during this

small interval, to a woman born in region i a years ago is

mj(a) iSLj(a) da . (1.1)

For the multiregional system, we may express (1.1) in matrix

notation as
m(a) §<a) da (1.2)

where m(a) is a diagonal matrix of age-specific regional fertility

rates, and

This quantity summed over all reproductive ages is the net

reproduction matrix R(0) (Rogers, 1975, p. 106), defined as

~

B ~
R(0) = f m(a) &(a) da , (1.3)
a

where o is the youngest age of childbearing and B the oldest.
The matrix R(0) represents the expected number and spatial distri-
bution of children, by which a girl child in each region will be

replaced in the stationary population. It is the multiregional



analogue of the Net Reproduction Rate. An element iRj(O)
denotes the expected number of offspring born in region j of a
woman who is herself born in region i. The value of this
element is determined not only by the fertility and mortality
behavior of the woman born in i, but also by her migration
behavior.

By way of illustration, consider the two-region system of

1

Slovenia and the rest of Yugoslavia. The matrix R(0) is

numerically evaluated by the formula
R(0) = ] M(a) L(a) ,

where @(a) is the diagonal matrix of average annual fertility
rates of the age group a to a + 4, and L(a) is the matrix of
the person-years lived between ages a and a + 5 by the life

table population. For the year 1961, R(0) was

0.961876 0.010687
R(0) =

0.122364 1.174812

1.084240 1.185499

The total number of female offspring of a woman born in
Slovenia is 1.08 on the average. A part of them, namely 0.96,
will be born in Slovenia. The rest, 0.12, will be born in the
rest of Yugoslavia. On the other hand, a girl born in the rest
of Yugoslavia is expected to be replaced by 1.19 daughters, 0.01
of them born in Slovenia.

1The numerical results in this paper deviate from the illus-
trations in Rogers and Willekens (1976b) due to a slightly
different approach to the computation of the multiregional life
table. The life table probabilities have been computed using
the Rogers-Ledent method (Rogers and Ledent, 1976).




To enable the comparison of the demographic benefits and
costs of life, the expected number of offspring of a girl child
must be discounted back to the time of her birth. The value at

-ra .
; ¥ being

birth of an offspring born to a woman of age a is e
the rate of discount. For positive r, an offspring is worth
more if it comes at a young age a. Introducing the discounting

therefore adds a time preference to the fact of having children.

The exact demographic interpretation of r will be explored in
the next section.
The expected number of offspring, discounted at the time of

birth of the mother at a rate r, is given by the multiregional

characteristic matrix f(r) (Rogers, 1975, p. 93), defined as

B _ ~
Y(r) = f e *¥ m(a) L(a) da (1.4)
a
where
1¥q () ¥4 (T)
Y(r) = v
1Y, (1) o ¥, (r)

An element i‘Pj(r) denotes the discounted number of daughters

born in region j to a mother born in region i. Note that
f(r) = R(0) if the discount rate is zero. 1In fact, ¥(r) may be

thought of as the Net Reproduction Matrix with discounting.

For the Slovenia-rest of Yugoslavia example, the expected
number of offspring, discounted at a rate r = 0.006099 is

0.813686 0.008942
¥(0.0061) = .

0.102414 0.994966

0.916100 1.003908

The discounted number of offspring of a woman born in Slovenia

is less than unity. At first glance, this would mean that she



does not pay back all of her debt, while a woman born in the
rest of Yugoslavia pays back more than her debt. However, this

is not so as will be shown in the following section.

1.2 The Concept of the Spatial Reproductive Value

To derive an interpretation for the discount rate r and for

the reproductive value, it is useful to consider life and birth

as a societal investment in individuals. The ultimate demo-

graphic objective the society pursues is to keep itself up and
to expand at the highest rate possible.2 To attain this goal
it invests in lives. Each individual is given a life at birth.
During the reproductive ages the individual has to repay the
debt incurred at birth by producing offspring. The amount of
offspring produced should assure the society a continuing growth
at the highest rate possible.

This maximum growth rate is only feasible if the intrinsic

rate of return to investment is as great as possible.3 The

rate of return is the discount rate which makes the present
value of the net earnings stream equal to the present value of
the costs incurred.

Suppose society invests in a single life. Let the present
value of life at birth be equal to one, then the rate of return
must be such that the present value of the offspring (earnings)

produced by the baby girl equals one too. Hence

B
1 = f e T m(a) 2(a) da . (1.5)
o

2This statement is not new. Lotka (1956, p. 128) writes:
"But, in the organic world at large also, there is presumably
at least some tendency for the adjustment of the procreation
factor so to take place as to make the rate of increase r
a maximum under the existing conditions."

3This is true since each offspring is in turn a new
investment.




Equation (1.5) is identical to the characteristic equation of
single region mathematical demography from which the r implied
by a net maternity function m(a) 2(a) is calculated. The
characteristic equation may therefore be given an alternative
interpretation: it makes the investment costs equal to the
present value of the net earnings stream. The stable growth
rate r is the intrinsic rate of return to the investment.

The theory presented here differs in some respect from the
theory of reproductive value of Fisher (1929) and Keyfitz (1975).
Unlike both authors, we do not rely explicitly on the repayment-
of-debt-interpretation. The focus is on the society as an
investor and not on the individual in which a life has been
invested. This approach enables us to explain why r takes the
value it has. Moreover, it facilitates the interpretation of
the feproductive value in the multiregional case, where not
only the number of offspring are important, but also where they
are born. In addition, it is speculated that this theory puts
‘light on the convergence path of a population to stability. The
observed and projected population growth rate is analogous to
the rate of interest. It is not constant over time and space
but fluctuates from one period to the other and between regions.
In the long run, the rate of interest converges to the intrinsic
rate of return. At equilibrium, i.e., in the stable population,
both are equal.

To generalize the concept of reproductive value to a multi-
regional population system, suppose that the society invests
nbt in a single life but in a portfolio, each element in the
portfolio being a region. The society distributes its invest-
ment in lives between the regions in such a way as to support
a maximum overall growth rate. Equivalently, the rate of return
must be maximum. Denote the spatial distribution of births
(i.e., investment in lives) by the vector {9}. For a two-region

system,



The total discounted number of offspring of Q4 births in

region 1 is ,¥ Q.. A portion 1¥1Q, of the births will be born

in region 1 and 1W2Q1 will be born in region 2, due to the migra-
tion behavior of the girl before and during her reproductive ages.

Analogously, the discounted value of all births in region 1 is
Q1 = 1419 + %19,
In general
{o} = ¥{o} . (1.6)

To maintain the growth potential of the population and to assure
a maximum rate of return, the present value of the flow of births
in region i1 must remain equal to the actual number of births or

lives invested Qi' This implies that for each region, the ratio

of the present value of the births in that region in each genera-

tion to the number of births at the beginning of that generation

must be equal to one, i.e.,

=1 . (1.7)

If the investment of one life in a region is seen as a debt of
the region to society, then in equilibrium each region must repay
its debt together with the interest, computed at a rate r. Fur-
thermore, the relative spatial distribution of births must remain
constant, and the actual number of births at time t is given by
e"tror . (1.8)

~

By way of conclusion, the distribution of births {Q} in the

stable population may be interpreted as the spatial distribution

of investments in lives which enables the society as a whole to

grow at the highest rate possible, or equivalently, which gives

it the greatest rate of return to investment under the schedules




of fertility, mortality and migration. The distribution {Q} is

unique up to a scalar.

Mathematically, {9} is the right eigenvector of ¥(r). For
the system Slovenia-Rest of Yugoslavia,
1.000000
{O} = ’ (1.9)
20.823654

under the convention that the number of births in Slovenia is
unity. This implies that at stability, #.58% of the births
occur in Slovenia and 95.42% in the rest of Yugoslavia.

The distribution of births pictures only one side of the
coin. The other side is the value of a baby in a given region
for the overall growth potential. Since society tries to sustain

a maximal growth rate or rate of return, and since the productive

capacity as shown in the fertility and mortality schedules is
different from one region to another, it matters where the baby
is born. Let the vector {v(0)} denote the value of a baby or a
0-year-old girl by region. Note that it means how much a baby
is worth for sustaining the maximum rate of growth. During the
equilibrium, population grows at a maximum rate r and the rela-
tive value of a regional birth cannot be increased. Otherwise,
a shifting of births could produce a higher r.u
The value of a birth or a 0-year-old girl reflects her

capacity to produce new lives. If a 0O-year-old in region 1 is

worth v1(0), then the reproductive value of the discounted

number of offspring must also be v1(0), i.e.,

v1(0) = \)1(0)1\1’1 + \)2(0)19’2 '

uThe spatial distribution of births {Q} and of the repro-
ductive value {v(0)} may be interpreted, respectively, as the
primal and the dual of mathematical programming. The specifics
and the implications of this correspondence are being explored.



where in is the discounted number of offspring in region j

of a girl born in region i. In general, we may write

—_~—
<
>
-
It
—_—
R
=
=
e

(r) (1.10)

where {v(0)} is the vector of regional reproductive values of
0-year-old girls. It is constant up to a scalar. If the invest-
ment in one life in a region is seen as a debt of an individual

to society, then in equilibrium, each individual must repay that

debt together with the interest, computed at a rate r. The

repayment does not have to take place in the region of origin.

Partial repayment can occur in the other region, where a birth
is worth more or less than in the region of origin.
Mathematically, {v(0)} is the left eigenvector of ¥(r).

For the system Slovenia-Rest of Yugoslavia,

[ 1.000000
{v(o)y} = (1.11)
1.818116

For sustaining the maximum growth rate of 0.61%, a birth in the
rest of Yugoslavia is worth almost twice as much as a birth in
Slovenia. The reason is the high fertility level in the rest
o0of Yugoslavia, combined with the low outmigration level to
Slovenia where fertility is lower. If the fertility level of
Slovenia would drop to 10% of its current value, keeping the
profile constant, then the reproductive value of a birth in the
rest of Yugoslavia would be 9 times that in Glovenia.

Because of the regional differences in the reproductive
value of a 0O-year-old, a baby girl born in Slovenia can repay
her debt by giving life to only 0.916 offspring at the average,
i.e., less than one daughter (discounted). The 0.102 daughters
born in the rest of Yugoslavia have a higher value than an
equivalent number of daughters born in Slovenia. The weighted

discounted repayment is one:

1.000 = 1.000 * 0.814 + 1.818 * 0.102
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The above interpretation of the characteristic equations
(1.6) and (1.10) and of the value of a 0O-year-old girl, suggests
asking how much the productive capacity is of a girl aged x.

The answer is the expected number of subseguent children dis-

counted back to age x, and weighted by the region of birth:

T B - - A A .
v = v(0)) [ J r@) na) a) da] 27 0
X (1.12)
Denoting
B -r (a-Xx) A ~=1
Q(x) = J e @(a) %(a) % (x) da (1.13)
x
with
1n1(x) 2n1(X)
n(x) =
) My (%)

then we may write (1.72, as
fvix)} = (v} nx) . | (1.14)

The matrix n(x) represents the expected number of offspring
per woman aged X years, and discounted at age x. 2An element
inj(x) gives the number of children to be born in region j from
a woman now X years of age and resident of region i, discounted
back to age x. The vector {y(x)} represents the reproductive
value of an x-~year-old girl by region of residence. Note that
the values of the elements of {v(x)} depend on the scaling

inherent in {v(0)}. 1In the single region case, 3(0) is sometimes

set equal to 1, i.e., the reproductive value of a child just born

5Using the loan-and-repayment interpretation of the
characteristic ecuation, the guestion would be how much of
the debt is outstanding by the time a girl has reached age X.
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is unity. In the multiregional case, the reproductive value of
a child 1s affected by the region of birth. Equation (1.12) is
the general formula of the spatial reproductive value. For x=0,
it reduces to (1.10) since g(O) is the identity matrix. Formula
(1.12) may be derived equally well for the discrete model of
population growth (see Appendix I).

The computation of the reproductive value of the total
population is straightforward. The regional distribution of
the total reproductive value, given by the vector {v}, is the
sum of the age-specific reproductive values {v(x)}, weighted
by the number of women in that age group and region in the base-

year,

w L}
{v}' = J {v(x)} k(x) dx (1.15)
- 0

where 5(x) is a diagonal matrix. The element kii(x) denotes the
number of women in region i and aged x years. Equation (1.15)

may be written as
T 1 w
{vl = {v(0)} J n(x) k(x) dx . (1.16)
< ~ 0 ~ 2

The total reproductive value of the population is
v = {v}l {1} . (1.17)
Denote the discounted number of offspring of the total
population, by place of residence of the population and by place

of birth of the offspring, by the matrix nk:

((.0
nk = g(x) g(x) ax . (1.18)
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Then

(m
{nk} = nk{1} = J n(x){k(x)} dx (1.19)
- 0 - o

gives the discounted number of descendants by region in which

they will be born. The quantity

{nk}' = {1}’ nk (1.20)

~ ~

gives the discounted number of descendants, by place of residence
of the mothers. The total reproductive value of the whole system

is
v = {v(0)} {nk} = {v} {1} . (1.21)

Note that in the single region case (1.16), (1.19), (1.20) and

(1.21) coincide.

1.3 Numerical Evaluation of the Spatial Reproductive Value

The expression for {v(x)} in (1.12) applies to exact age x.
Approximation of the integral in (1.12) by a summation over
5-year age groups, yields a direct computable formula for the

reproductive value at exact age x (Keyfitz, 1977, Chapter 6):

. B=5 _ n _
vix)}' = (v} T [e (a+2.5-X)1 y (a) g(a)][g(x)] L
a=x : (1.22)
= {(v(®}' n, (1.23)
where
- B35S I —(a+2.5-%)r A -1
n = J [e T M(a) g(aq][g(x)l (1.24)
a=X

is the numerical evaluation of n(x) in equation (1.14).
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The matrix ﬁx represents the discounted number of offspring per

person at exact age x. An element jr_li(x) gives the number of

children born in region i, of a mother residing in region j
and x years of age, discounted at age x. The first subscript
therefore denotes the place of residence of the mother, while
the second indicates the place of birth of the offspring.

The average spatial reproductive value for the age interval
X to x + 4 at last birthday is denoted by {SYX} and may be
approximated by:

. v 5 P35S Cp(a-
v} = o 2y [e £(a7%) M(a) L(a)
a=Xx
¢ TR (g 4 5) I:(a+5)] 17 (%)
v 5 BTS -
= (v} 2] M) +e T M@+5) S(a)]
a=X
e"T@X) 1(a) 17 (x) (1.25)
= {v(0)} (1.26)
where
s B3° -5r -r (a-x) -1
Ny =3 v M(a) +e M(a+5) s(a)] e L{(a) L "(x) .
X=a

(1.27)

Note that ng gives the discounted number of offspring per person

in age group x to x + 4, and not the number per person at exact
age X.

Equation (1.25) written for age group x + 5 to x + 9 gives:.

! 5 BT -5r
{gVeisl = v} 5 } M(a) +e M(a+5) S(a)]
a=x+5

e-r(a—x-S) §(a) §_1(x-+5)



T

= W0} N s -

The vector {SVX}' may now be written as

-5r

S M) +e™F M(x+5) 501 L) 17 (x)

* {Y(O)}' 5Nx+5 [e—r(x+5) E(X'+5)][e_rx L(x):l-1

5r

§(x)]
(1.28)

vy} [§~¥(x)-+ [% M(x+5) + N o] e

Eguation (1.28) is analogous to the single region formula of
derived by Keyfitz (1977).

Consider again the two-region system Slovenia-Rest of

ng’

Yugoslavia. The elements of n, are listed in Table 1. The

discount rate is r = 0.006099. Note that 50

¥(r), the characteristic matrix. The elements of ng are given

is identical to

in Table 2. The di: >unted number of female descendants of a
woman living in Slot »:ia and 15 to 19 years old is 1.0076. A
total of 0.9418 is e. nected to be born in Slovenia, while 0.0658
will be born in the lest of Yugoslavia. On the other hand, a
woman of the same age group in the Rest of Yugoslavia has an
expected discounted number of daughters of 1.1943. A small
fraction, namely 0.0067, will be born in Slovenia. This is mainly
due to the low outmigration proportion of women in the Rest of
Yugoslavia and to the low fertility in Slovenia. The curve of
age-specific discounted number of offspring has a peak at age
group 10-14 years.

The total discounted~number of offspring of the observed
population is given by (1.18) and numerically evaluated by the

formula

gx g(x) ! (1.29)

2
=
|

Il ~€E

x=0

with K(x) being the diagonal matrix with the regional populations

of age group x to x + 4 in the diagonal.
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Table 1. Discounted number of offsprings per person at exact
age X.
REGINN OF RESIDENCE SLOVENIA
CEA LR XX XL ERENEEX ERER L XX L FL F3 ¥ X ]
REGION OF BIRTH OF OFFSPRINGS
TOTAL SLOVENIA R, YUGOS, /
4] P.916100 2.,813686 2,182414
5 P,971974 P,RT772%2 0Q,094682
1@ 1.002209 R,916767 B,@28524¢
18 1,832696 ?,952190 0,08795a7
e9 @,981935 P,929146 0,0852788
25 R,652048 n,632542 0,021506
32 P, 3511202 P, 344533 QA,004587
35 ,153903 2,1525%8 0,901344
49 2,Nn42952 Q. 042710 0,00n24¢e
45 2,204834 Q,004807 @,3dpR2Y
59 ,A01423 2,241417 Q,00p0pb
55 2,200070 P, 2000090 A,P2A8p0QY
6 B,2200902 2, 0080002 0,0200049
6% n,P002007 2,000020 ©,000000Q
Ta Q,a00000 R,000M20 O,PBQPQEVY
1S 0,000000 R, 000200 D,00pC20
89 R,e00000 P, 002000 B,0000Q0Q
REGION DF RESIDENCE R,YUGUS,
AR N X X L X X L X LN L L L Py oy ¥ ¥
REGION 0OF BIRTH OF OFFSPRINGS
TOTAL SLOVENTIA R,YUGQS,
) {,A03908 A, 008942 0,994966
5 1,15839n P,9929091 1,149299
12 1,198425% P,P0B654 1,189771)
{s 1,23831% n,008204 {,232109
22 {,148223 A,225266 1,142957
2% P,743626 *,001747 @,7441879
32 P,394423 B,20055S @,393848
35 @,184449 2,000131 ©,184309
49 A,B720078 2,000023 Q,072d54
45 8,013779 D,amA002 Q,813777
50 2., 073460 N,010300 0,0034s0
59 2.,000000 n, 500000 Q,00p000
60 2,000000 2,000200 92,20000@
65 2,000200 @,2000000 @Q,R00000
7@ 2,00000Q2 N, 00200¢ B,0007@0
75 Q,208000 2,000000 @,0000Q0
82 P,0000200 a,202p00 @,P0Q0Q@0
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Table 2. Discounted number of offsprings per person in age
group X.

REGION OF RESIDENCE SLOVENIA

REGION OF BIRTH OF OFFSPRINGS
TOTAL SLOVENTA R,YUGOS.
0 2,943847 NeBadeT? N,099170
S 9,98689p 2,896792 0,0901090
10 {,e17244 ?,934792 @,0824%52
15 1,007583 ", 941816 @,065767
29 2,819229 n,785%72 0,033857
25 0,573857 ?,492104 0,01;753
3 P,254235 h,25122% 2,P23213
35 ?,299454 n,N9899% 3,009549
49 A, 224254 2,224192 @,A0pQ42
45  2,0n3166 ?,003156 0,000010
58  0,3¢A730 a,000730 Q,000090
5SS 2,0000002 P, a2 0,030000
60 ?,200000 ?2,000300 Q,00p000
65 A,p0An0R N,000080 @,00m000
19 Q.mnan2R ¥,022u27 @,020000
75 Q.vannnp 2,0000023 @,000000
a9 2,070020 2,7220202 0,0000Q0

REGION OF RESIDENGCE R,YUGDS,

P T YTz e X 3 X X 3 o g N ¥ J

REGION OF BIRTH OF QFFSPRINGS
TOTAL SLOVENTA R,YUBOS,
@ 1,276650 V,a09932 1,267618
S 1,178234 n,00R882 1,169355
i 1,218204 @,B308436 |,209768
15 1,194267 n,206720 1,1873547
2 D,949871 @,203167 0,946704
25 2,57251n P,000973 0,571537
L1 B,2915%2 2,000260 0,29129¢2
35  @,129433 @,000047 @,129386
49 P,M03597 3,000004 @,0843593
45  Q,Pn8752 ?,000001 ©,0087%1
58 @,00178S 0,000200 0,001785
55 P.A00@00 R,000000 0,00p009
60 2, 200000 n,A02009 @2,00p0Q0
65 P,220200 7,073729 @,0@p800
79 B, a20000 @,000000 @,200000
78  02,300000 n,00NQR2  0,00pd00
8o ,xe0320 A, 000000 Q,000008
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The value of NK is given in Table 3.

Table 3. Total discounted number of offspring of the observed

population.

Region of

birth of

of fsprings Region of Residence of Mother

Slovenia Rest of Yug. Total ({NK})

Slovenia 352,761 29,934 382,695
Rest of vug. 26,333 5,119,601 5,145,934
Total ({NK}') 379,094 5,149,535 5,528,629

Table 3 shows that; under the 1961 regime of fertility,
mortality and migration, the total discounted number of off-
spring of Yugoslavia is 5,528,629. Of them, 382,695 or 6.92%
will be born in Slovenia. However, the female residents of
Slovenia will account for only 379,094 or 6.86% of the total
discounted number of births. Of the ultimate discounted 382,695
female children born in Slovenia, 29,934 can be attributed to
women now residents of the Rest of Yugoslavia, and 352,761 to
potential mothers now living in Slovenia. On the other hand,
of the discounted 379,094 daughters born from the female popula-
tion of Slovenia, 26,333 will be born in the Rest of Yugoslavia,
and 352,761 in Slovenia.

To derive the reproductive value of the female population,
we must weight the discounted number of offsprings for the region
of birth, If we attach to a birth or a 0-year-old in Slovenia
the reproductive value of unity, then a birth in the Rest of
Yugoslavia is worth 1.818. Adopting this arbitrary scaling, the
age-specific reproductive values by region of residence are
given in Table 4. The elements are the weighted sums of the

discounted number of offspring per woman by region of residence,
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Table 4. Spatial reproductive value per person.

a. Person at exact age X.

SLOVENIA R,YUGOS,
2 1,00n00Q {,818116
S 1,049435 2,098650
10 1,071746 2,1717065
15 1,097742 2,244685
22 1,025122 2,083295
25 2,669642 1,350569
30 P,356509 @,7166%53
35 n,155003 ©,335227
41 #,043150 0,131027
45 0,B04859 0,0250%%
50 2,001427 0,006291
55 a,2npR0a 0,000000Q
60 0,2000090 @,000200
65 2,000000 @,000000
T2 2,000000 @,0000m0
15 2,0PNP00 0,000000
8 2,004000 0,000000
b. Person in age group X.
SLOVENIA R,YUGOS,
@ 1,024980 1,95@086
5 1,06M683 2,134902
i@ 1,084699 2,207935
15 1,061388 ¢2,165819
29 ?,8460928 1,724385
es P,513472 1,040094
30 P,2567208 0,529863
35 n,099904 ©,235286
40 P,02430% @,0792614
4s P, Q031TS P,215911
50 2,0007320 0@,%23245
55 ?,000007 @,000000
60 g,000000 ©0,2000a0
65 P,ABNQ000 Q,220000
T2 #,020000 0,300000
14-] p,000000 0,0220p0
(.1 P, 000000 0,0000p0
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the weights being the components of the {Y(O)} vector. The
total reproductive value of the women in the two-region system

is by Table 3,

[1.000000 1.818116] 352,761 29,934 400,638

26,333 5,119,601 9,337,963

The total reproductive value of the whole system is
vV = 400,638 + 9,337,963 = 9,738,601
Note that the unit in which V is measured is the reproductive

value of a 0-year-old in Slovenia. Using another unit would

give V another value.
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2. THE SPATIAL REPRODUCTIVE VALUE: APPLICATIONS

The concept of spatial reproductive value is a useful
notion for the study of multiregional population dynamics. In
this section, its contribution is illustrated for the definition
of the birth trajectory and the population growth path. This
topic is important since it is a first step to the study of the
convergence path toward stability of a multiregional system,
and since it enabies a simple analytical expression for the
stable birth trajectory. Moreover, it facilitates the sensitiv-
ity analysis of changes in observed rates and the analytical
computation of the momentum of spatial zero population growth.

In the first section, we express the population and birth
trajectory in terms of their spectral components. The spectral
decomposition yields a simple expression for the growth path
and illustrates the relevance of the reproductive value for
spatial demographic analysis. The problems of norming, the
numerical calculation, and some immediate applications are

treated in subsequent sections.

2.1 Spectral Decompo:ition of the Population and Birth

Trajectory

It can be shown that the continuous model of multiregional
growth or the gensralized Lotka model is equivalent to a system

of linear homogeneous differential eguations:
k() = At (2.1)

where {k(t)} is the population distribution by age and region

at time t,

- —_
x " (0)3

x %) (ax))

k1 = | k) 2ax))

(k)

\ucmpmeprs e ol
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with {g(t)(x)} denoting the regional distribution of the popula-
tion in age group x to x + dx, and ®w is the

highest age,

() alk (8
{ } = ——éE—— is the differential with respect to time,
A 1is the transition matrix, assumed to be time-

invariant.

The solution of the system of homogenous equation (2.1) is
(Lancaster, 1969, pp. 189-190):

Alt-t ) (tn)
{}E(t)}=e~ o{k 0}

~

and

k) = L2Ex(0)y (2.2)

(0)}

where {5 = {OE} is the population distribution vector in
the base year. The matrix e is the population growth matrix
of the continuous model, and is therefore analogous to the
generalized Leslie matrix (Rogers, 1975, p. 123).6

The computation of e%t

has received much attention in the
literature, in particular in the engineering literature (see
for example, Wolovich, 1974). One way of expressing eét is by

applying the spectral theorem.

6Note that (2.3) is the generalization of the exponential
growth model

() _ rtg(0)

K ’ (2.3)

(t)

with K being the total population at time t. Eguation (2.3)

is the solution of the differential equation ﬁ(t) = rK(t).
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Spectral theorem: (Lancaster, 1969, p. 63).

Let A be a simple N x N matrix, and f(+) a function. Let

n and Vi

rj be distinct eigenvalues of A and let 51, 52,..., 3
Voreser Vo be normalized right and left eigenvectors respectively,

then
n
f(a) = )} f(r.) B, (2.4)

where §j = {Ej}{vj}' , 3 =1,2,...,n. The matrices §j are
called constituent matrices.7

The matrix e2t of the population growth model (2.2) generally

satisfies the conditions set by the spectral theorem. If

r .
£(a) = e2%, then £(rj) = e ) (Lancaster, 1969, pp. 190-191).

Therefore,

n r.t
2t = 7 eI {g vl . (2.5)
j=1 ~3 ~7

Substituting (2.5) into (2.3) yields

(t) rst -
{g } = e {gj}{yj} {OE} (2.7)

e~

rjt ,
e - <lyyd {xk>{g5} (2.8)

I
| e~13

=1

where <+> denotes the inner product. Equation (2.8) expresses

an arbitrary age and region distribution as a linear combination

"The constituent matrix {g‘}{Yj}' may be expressed in terms

~]
of the adjoint of [§ - rjI] = B(rj) (Lancaster, 1969, p. 175;
Morgan, 196¢):

T Rer.) (2.6)

{gj}{gj} = [tr[g(rj)]] R(x

where tr denotes the trace of a matrix.
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of the right eigenvectors of A.8 It is the solution of (2.2)
in spectral form.

The eigenvectors {Ej} and {vj} are normalized, i.e.,

{-\v)l}'{gj} = 61] ’ lrj =1,...,N
with Gij being the Kronecker delta, i.e., 6ij =1 for i = j,
and Gij = 0 for i # j. When the eigenvectors are not in

normalized form, then (2.8) becomes

(t) _ n 1 rjt :
(k%) = ] ———— e <{v.}'{ x}>{e.} , (2.9)
- j=1 {v,1'{g.} ~loor Fd
~3] ~]
where ————%———— is the normalizing factor. Therefore (2.9) 1is
{yj} {gj}

valid for any scaling of the left and right eigenvectors of %.9

The problem is to find a convenient expression for the normal-
izing factor. This is the topic of the next section.

Equation (2.9) describes the growth path of a population,
the internal dynamics of which is described by the matrix A and
the initial condition by {OE}. The matrix e% is a nonnegative
indecomposable, primitive square matrix. According to the
Perron-Frobenius theorem, it has a dominant eigenvalue er1,
which is unique, real and positive, and larger in absolute value
than any other eigenvalue of the matrix. Therefore, as t becomes
large, the population sequence is increasingly dominated by the
maximal real root er1 (see also Rogers, 1975, p. 97). We may

write for t + «,

, r.
8Note that if rj is an eigenvalue of A, then e J is an eigen-

value of eé. The eigenvectors of A and e® are identical.

9The eigenvector of a matrix is fixed up to a scalar. There-

fore, if {gj} is an eigenvector of A, then also c{Ej} is an

eigenvector. It is the choice of ¢ that determines the scaling.
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r.t
k2 e Tty M kIsE,) (2.10)
- (v} (g} 1 TenT

Equation (2.10) describes the growth path of the multi-
regional stable population. The quantity r, is the intrinsic
growth rate of the stable population. The left eigenvector
{31} a?d the right eigenvector {§1} associated with the dominant
root e | of eé have particularly interesting demographic inter-
pretations. They represent the reproductive values by region
and age, and the stable population distribution by region and
age respectively. Therefore, the absolute number of people by
age and region in the stable population is a function of the
initial population distribution, the distribution of the stable
population, the distribution of the reproductive values and of
the stable growth rate. The stable population distribution
{§1} remains constant, and the total population grows at a rate
rq. To convert the relative distribution vector {E } into the
vector of absolute amounts {k(t)}, we must compute the scaling

factor

d = ———— <{y} { k}> . (2.11)

The first element of d is the normalizing factor. The second

element may be written as

ve <ty > = [T e k) ax (2.12)
Jow X

where {Y(x)} is the regional distribution of the reproductive
value of individuals aged x years, and {Og(x)} is the initial
regional distribution of people of age x. Expression (2.12)
~ gives the total reproductive value of the initial population

(in units determined by the scaling of {v,}).
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Assuming that {y1} and {£1} are normalized eigenvectors,
then the time path of the stable population is given by the
simple expression

r1t

{k(t)} = ve {g

~1} . (2.13)

The absolute number of people in each region and age group is
its relative share, as measured by the normalized {§1}, times
the total reproductive value of the initial population, and
discounted at time t at a rate rq- The stable equivalent to the

original population is10

kO = vigy)

~

The stable equivalent population in age group X is
= (0) _
K = vig =) . (2.14)

2.2 The Determination of the Normalizing Factor

The growth path of the stable population is given by equa-
tion (2.10). The purpose of this section is to derive a usable
and demographically meaningful expression for {Y }'{§1}. This
would enable the use of (2.10) for any arbitrary scaling of
{vi} and {g,}.

The inner product {31}'{§1} may be written as'1

' W 1
(v'(g) = 0[ (v} {5 (0] ax (2.15)

where {y(x)} represents the regional distribution of reproductive
values at age x, and {g(x)} dx is the regional distribution of

people of age x to x + dx at stability. As mentioned before,

1 . . . . .
0Note that v 1s measured in units consistent with the

normalized {31} vector.

11The subscript is dropped for convenience.
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the units in which the reproductive value and the population
distribution are measured are arbitrary. It is assumed that
the unit is determined by the first element of {v(0)} and the
first element of {g(O)}.

By (1.12), {v(x)} may be expressed in terms of {v(o)}:

, B
{v(x)}' = {v(o)}' J [e7™* m(a) f(a) dalle™™ f(x)17"
X (2.16)

On the other hand, it can easily be shown that the age composi-

tion of the population at stability is equal to:

rx

e} = e ™ 2 {g(0)} . (2.17)

Therefore, we may write

' ! g -ra 3
vix)} {g(x)} = {»(0)} J [e m(a) £(a) dal
X

[ 217" 77X A(x)1{£(0)} (2.18)

e (B ~
w3} | e ma) 2(a) da {£(0)]
X

1l

But

e T L@ {E(0)} = {g(a)} . (2.19)

Hence

B
v Y H{E ]} = {v(o)} J m(a){g(a)} da . (2.20)
X
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Substituting (2.20) in (2.15), and noting that m(a) =

a < a and a > B, gives

B w w
J (vix) ' {ex)} dx = {vO)}' I J m(a){£(a)} da dx
o ~ ~ ~ ol x) - ~

(2.21)

The double integral at the right hand side may be written

as
w oW .
J J e ' m(a) 2(a) da dx| {£(0)}
0 X ¥ ~ b
Denoting

~

W ~ .
£(x) = f e "® m(a) 2(a) da
X

the solution to the double integral is

(W w

J f(x) dx
0 ~

[£(x) x]

w
- J x df (x)
0 0 ~

~

w
= 0 - J X g'(x) dx
0
w - A
= f x e T¥ m(x) 2(x) dx
o I" X

Introducing (2.23) into (2.22)\and into (2.21) yields

w W
J (vix)}'{g(x)} dx = {v(O)}'[ f x e ¥ mx) 2(x) dx]
0 ~ ~ ~ 0 ~ -

(2.22)

(2.23)

{£(0)}

(2.24)
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At stability, {£(0)} obeys the following relationship
(Rogers, 1975, p. 93):

{£(0)} = ¥(x){E(0)}

w —rk A 12
e m(x) 2(x) ax|{&(0o)} . (2.25)
0 ~ Z 2
Equivalently, we may write for ¥(r) nonsingular,
Yo o-rx N -1 ¢,
{e@1} = [ f e m(x) £ (x) dx]’ {£(0) . (2.26)
0 i - -

Substituting (2.26) into (2.24) gives

(W

v' lb ) LU -— VN
J {vix)}' {ex)} ax = {v(0)} [ f xe ¥ m(x) 2(x) dx]
0 - - - 0 - -

_w R N . _
. [ [ e ¥ m(x) 2(x) dx] ! {g(0)}
0 (2.27)

Note that
(W

N xe ¥ m(x) L(x) ax = ) (1)

is the first derivative of the multiregional characteristic

matrix with respect to r, and that

LU A
J e”TX n(x) 2(x) dx = ¥(r) = R (0)
0 m L Y R

12Note that by (2.17), (2.25) is equivalent to

W
{e(0)} = J m(x) {€(x)} ax .
0
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is the multiregional characteristic matrix itself. If we define

the matrix of mean ages at childbearing in the stable population as

« = RE (R 017", (2.28)

then (2.27) becomes

w
J( (vx)} (e )Y ax = (v} kle@?)r . (2.29)
0 v & v K1

The normalizing factor is

1 = ! i (2.30)

{vi'{gl (o} k{g(0)}

It is a weighted average of the mean ages at childbearing in the
stable population. In the single region case, the normalizing
factor reduces to %, where ¥ is the mean age of childbearing in

the stable population (Goodman, 1969, p. 665).

2.3 Stable Population Analysis

The expression of the normalizing factor in a demographi-
cally meaningful manner may now be used to gain new insights
into several features of the stable population.

From (2.10), (2.12) and (2.30), we see that, no matter which

scaling is used for the eigenvectors {v} and {£}, the multi-

regional population trajectory for t large is:

k(B - v e"tiey . (2.31)
; v (0)}'kig (0)} :

The ultimate trajectory of births 1is directly derived from

(2.31). Considering only the population at age 0, we may write:

(it - \ SAITITIN AN (2.32)
: (0} g (0))
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or

(t) , _ 1 e .
oty = e J fvx) 'L _k(x)} dx|{£(0)}
N {v(0)}'k{E(0)} ol o~ T (2,33

where {Q(t)} gives the stable number of births, in absolute
terms, in each region at time t associated with an arbitrary
initial population distribution {Ok}}13 The stable equivalent

of the births is immediate:

v

{v(0)}'k{g(0)}

{g} = {e} . (2.34)

~

An equivalent expression for {Q} may be even more meaning-
ful:
v{1}'{£(0)}

{0} = . {£(0)} = Q{E(0)} (2.35)
{v(0) }'k{£(0)} )

where the elements of {£(0)} sum up to one. The quantity Q is
the total number of births in the whole system. These births

are divided between the regions according to {£(0)}.
The ultimate birth trajectory, resulting from one girl at

age x in region 1 is

:
{v(0)}'klg(0)}

et v ) g(m} (2.36)

. . rt
which is analogous to the single-region formula vi(x) e “/x.
Similarly, the ultimate birth trajectory resulting from one girl

at age x in region 2 is

1301e single-region analogue of (2.33) is (Keyfitz, 1975,
p. 591):

; w
olt) = Lert oJ vix) k(x) dx .
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{v(0)} kg (0}

It becomes clear from (2.36)
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e’ " v, (x) {g(0)} . (2.37)

and (2.37) that the absolute

number of births in the stable population depends on the

reproductive value of the girl at age x and consequently on her

region of residence (v1(x) #

vz(x)). The rélative distribution

of the births over the regions is independent of her region of

residence, but is solely determined by {£(0)}. This is con-

sistent with the observation

that the ultimate regional distri-

bution of births is independent of the current population

distribution.
The ultimate birth trajectory is exponential. This can
easily be seen from (2.32) and (2.33). To derive an expression

for the time path of the total reproductive value v, consider

(2.32) and (2.35),

™} = et (g} -
Let
ol®) = et g
then
Q(t) = et hv
where
{1} {g(0)}
h =
{v(o) ' klg(0)}
By (2.12)
Q(t) - oIt <ty

et olE(0)} . (2.38)
(2.39)

(2.40)

. (2.41)

RO (2.42)
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Similarly,
Q(t) - er(t—1) h <{B1}'{E(1)}> , (2.43)

where {5(1)} is the population distribution one year after the

base period.

The equalities (2.42) and (2.43) only hold if

eF<lv ' { k}> = <{v ' ixTys

r —
e Vg = vy (2.44)
where Vo and v, are the total reproductive value of the population
in the base year and in the first year respectively. Equation

(2.44) shows that the reproductive value immediately follows an

exponential trajectory. This is in contrast to the birth
trajectory, which is eryponential only when stability is reached.
Before proceeding to the numerical calculation of {9}, we
derive two more useful expressioné. The first relates {9} to
{nk}. The second expresses the stable equivalent population
{Y} as a function of {Q}.
Combining (2.34) and (1.21) gives

{Ql} =

~

{v(0)}' {nk}{£(0)} (2.45)

Qj-

where
c = {v(o)}'k{g(0)} . (2.46)
Equation (2.45) may be written as

{0} = 2 (6@ 1}{v(0)} {nk} . (2.47)



-33-

Let

c = {0 v}’ (2.48)
then

{g} = 1 C{nk} (2.49)
or

1 (w
{Q} = s © J Q(x){og(x)} dx . (2.50)
0

The stable number of births in each region is a linear combina-
tion of the discounted number of descendants by region of birth.
Equation (2.49) is basically equivalent to (4.29) of Rogers
(1975, p. 99):

{g} = B{nk}
where B = [D = (I - pp*) ¥(x)17' [z - po*1 , and
where D denotes the generalized inverse of D, with D-—[I —W(r)]
The feature of (2.49) is that it does not require the computa-
tion of the generalized inverse, and that it relates {9} to
easily interpretable demographic measures.

Formula (2.50) is particularly useful to study the impact
on the ultimate birth trajectory of a change in the current popu-
lation distribution. A change in the spatial distribution of
females of age x by A{og(x)} changes the stable equivalent of
births by

_ 1
A{Q} = 5 C n(x) A{ k(x)}
and the ultimate distribution of births at t by

Mo()} = ™5 2 ¢ neo ALk} . (2.51) |
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The total stable equivalent population is

© s (0)
W= [ G000 e (2.52)
0
where {E(O)(x)} is given by (2.14). For not normalized eigen-
vectors, (2.52) may be written as
1 W
=L v [ gy ax . (2.53)
Z 0 z

But by (2.17), (2.53) becomes

{y} = [ fw
- v
= C 0

Applying (2.34) gives

Formula (2.55) 1looks
formula of the stationary
1976a, p. 16):

(¥} = e(0){Q} =

e ¥ 2(x) dx] (g} . (2.54)

g(x) dx] {o} . (2.55)

very similar to the stable equivalent

population (Rogers and Willekens,

w/\ ~
[ J 2(x) dx] {Q} (2.56)
0 Z =

where e(0) is the life expectancy matrix, and {6} is the distribu~

tion of births in the stationary population.

14

x and x + dx is

Note that the stable eguivalent population between ages

{E(O)(X)} = e ¥ E(X) {o} ax



The difference is that in (2.55) the intrinsic growth rate r
is not zero.

By analogy to our approach to Y(r) in the first section of
this paper, we consider r in (2.55) as a rate of discount. The

rx

quantity e i!?Vj(x) denotes the number of people born in

region i and alive in region j at age x, discounted at age zero,

and divided by the number of people born in region i. Similarly,
e X iEj(X) may be thought of as a discounted probability.15

rx

Integration of e~ % (x) over all ages yields the matrix of

discounted life expectancies e(r)(O):

(r) _ Jw -rx
e (0) = e L (x) dx . (2.57)
b 0

=

2

An element iej(r)(()) can be given a dual interpretation, similar

to the elements iLj(x) of the 1life table. First, ie.(r)(O) may

denote the number of years lived in region j by an iidividual
born in region i, discounted at birth. Second, it may represent
the discounted number of people 1living in region j and born in
region i, per unit born in 1i.

Consistent with this argument, the stable eguivalent of
the population measures the discounted number of people by
place of resid-> nce or the present value (value at birth) of
the total populi¢izion. This is a better indicator of the r-pro-
ductive capacity than the number of heads in the population
(see also Fisher, 1929, p. 30 and Keyfitz, 1969). Introducing
(2.57) into (2.55) gi.=s:

Compare this with the analysis of Markov chains including
discounting and fees (see e.g., Cinlar, 1975, p. 222).
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Note that the stable equivalent of births is equal to

~

Wo_rx -1
{o} = [ J e T 2 (x) dx] {v}
0 <

or by (2.25):

Yo-rx A © o -rx g -1
{0} [ f e m(x) £ (x) dX][ J e X 2 (x) dx] {’g}
0 0 (2.59)

which is similar to the single-region formula
Q = by
“ _rx A
J e m(x) 2(x) dx
0

= L34
O o_rx
J e 2(x) dx
0

2.4 Numerical Evaluations

. The ultimate birth trajectory is given by (2.32). It
depends on the growth rate r, the total reproductive value of
the population v, the normalizing factor and the relative stable
distribution of births. For the two-region system Slovenia-
Rest of Yugoslavia, the total reproductive value is computed

in the previous section and is equal to 9,738,601. The growth
rate r is 0.006099. To compute the normalizing factor, we must
know the stable mean ages matrix (2.28):

« = RE () R (017

where B(r)(1) and B(r)(O) are approximated by the following

expressions:
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g-5
RI(1) = 7 (x + 2.5) e TX*2:5) yiy 1(x)
- X=a-5 - ~
R-5 _
RV (o) = 7 e TTO*2:5) mix) n(x)
- x=a-5 ~ ~

The stable mean ages matrix in our illustration is

27.310211 0.016201

A
Il

0.243574 27.1045985

The vectors {£(0)} and {v(0)} are given by (1.9) and (1.11)

respectively. The normalizing factor (2.30) is therefore

. -1
1.000000 27.310211 0.016201 1.000000

= [1054.266]

1.818116 0.243574 27.104595 20.823654

The stable equivalent of births is by (2.34):

1.000000 9,237
9,738,601 _
{9} = Fos53¢ =
20.823654 192,355
or
0.045820

{o} = o{E(®)} = 201,592 .
0.954180

(2.60)

(2.61)

1

The total number of births in the stable population is 201,592.

Of these births, 4.58% occur in Slovenia, and 95.42%

Rest of Yugoslavia.
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To derive the stable equivalent of the population {Y}, we

first compute the matrix of discounted life expectancies:

Il c~1N

L(x) (2.62)

which, in the two-region example, is

52.227608 0.599635
g(r)(o) = .

5.629009 52.336800

57.856617 52.936435

The stable equivalent of the population is

597,769
v} = e (o)) = :
10,119,240

Of the 597,769 persons in Slovenia in the stable population,
1e1(r)(0) Q1 = U82,426 are born in Slovenia, and e(r)(O) Q2 =

21
115,342 in the Rest of Yugoslavia.

3. CONCLUSION

This paper has developea the concept of spatial reproduc-
tive value and has shown how it contributes to a better under-
standing of the dynamics of multiregional demographic growth.

Life is considered as an investment by the society in
individuals. The stable population growth rate is the intrinsic
rate of return to this investment. This rate is the maximum
growth rate possible, given the existing fertility, mortality
and migration schedules. Because of the regional differences
in these schedules, the contribution of a birth to the overall

growth rate of the population depends on the region of birth.



_39_

The contribution is measured by the reproductive value at birth.
The allocation of the births to the regions conforms with the
regional reproductive values. Regions with high reproductive
values get a greater share of the total number of births. It
has been shown that the distribution of births and of reproduc-
tive values is such that each individual, as well as each
region, pays back the debt incurred in receiving a life from
society.

Mathematically the stable population growth rate or the
intrinsic rate of return to investment is the rate which gives
to the multiregional characteristic matrix ¥(r) a dominant
eigenvalue of unity. The associated left eigenvector represents
the regional distribution of the reproductive values at birth,
whereas the right eigenvector denotes the regional allocation
of births. It has been shown that the regional distribution
of the reproductive value and of the population at age x follows
directly from the distribution of the reproductive value at
birth and of the births respectively. 1In fact, the reproductive
value of a woman is the weighted discounted value of her off-
spring. It depends not only on the number of offspring but also
on when and where they will be born.

The reproductive value concept facilitates the analysis of
multiregional stable populations. For example, a simple expres-
sion has been derived for the stable equivalents of the births
and the population. Other applications such as sensitivity
analysis and the study of the momentum of zero population growth

will be reported elsewhere (Rogers and Willekens, 1976b).
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APPENDIX I

Derivation of the Spatial Reproductive Value from

the Discrete Demographic Growth Model

The purpose of this Appendix is to derive the formula of
the spatial reproductive value for the discrete model of popula-
tion growth. Recall that the discrete growth model may be
written as (Rogers, 1975, p. 123)

(t+1)} (t)}

(x = oK

where {K(t)} is the vector of the population distribution by
‘region and age, and G is the generalized Leslie matrix.
The vector of reproductive values is the left eigenvector

of the growth matrix G
{vi'c = r{v}' (A1)

or, for 5-year age groups,

0O 0 B(10) B(15) *+» B(B-5) +=++ 0
S o .
[-16) :
v} vis) Yoo v@ ' -] T, :
: © S(B-5)
' 5(z-5) 0
=AvOYvE Y v@ ' (a2]

The scalar )} is the dominant eigenvalue of G. It can be seen
that {v(x)} = {0} for x > B - 5. At age group [B - 5,B], we

have

{v(0)}'B(B = 5) + {v(B)}'S(B -~ 5) = v - 5]}



but {v(8)} = {0}
For age group [R - 10,8 - 5], we write

+

{v(0)}'B(B - 10)

v = 5)t's(@ = 10) = x{v(g ~ 10)}
Since

{v(oy}'s(g - 5)

I

H
> =

{v(p - 5)1}
we have

v }'B(B - 10) + v {v(O)}'BB-5)5(B-10) =x{v(B-10)}"

> =

For age group [B - 15,8 107
{v(0)}'B(B-15) + {v(B~-10)}'s(B~-15) = AMv(B~15)1}

with

{vm>F§m—1m+%{yw)wgm—5@<wwoﬂ.

~

vE-101 = [
Hence
W(0)3'B(B=15) + 1 {v(0)) 'B(B=~10)S(8 - 15)

+ L {v(0)} B(B-5)S(B-10)8(p~15) = Alv(B-15))"

A
or
WB=15} = L (VO BB =-15) +5 (v(0)}'B(E-10)8(p - 15)
7 b B S
+ < {v(0)} B(B-5)S(E-10)8(8 - 15)
3 B S S
| oses @z B215) gy i}
= {v(0)) I 5 B(a)A(a)n | (8-15)
a=f-15 N

(A3)
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where g(a) is defined as

0
Af{a) = It S (i) ’ for a = 5,10, , 2
~ i=a-5 ~
(AL)
%(a) = I ’ for a =0
In general, we have
, |8z - (FEE+1) 1
{vix)} ={v(0)} A B(a)A(a)| A (x) . (AS)
~ - a=x N ” ~
Equation (A5) may also be written as
. NERC -1
{g(x)} ={y(0)} LA g(a)%(a) L (x) (A6)

a=x

which is the discrete analogue of (1.12).

Note, however, that {y(x)} does not refer to people at
exact age x, but to people in age group [x,x + 4]. Hence
{v(0)} represents the spatial reproductive value of the people
i; the first age group, and not the spatial reproductive value

at birth (or exact age 0).
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APPENDIX II

Glossary of Mathematical Symbols

Defined by equa-

Symbol Interpretation tion or on page
m{a) Diagonal matrix of regional fertility p. 2

rates of exact age a.

M(a) Diagonal matrix of regional fertility p.- 3

?

rates of age group a to a + 4.

L

(a) Probability matrix. The element p. 2
iﬁj(a) denotes the probability that
an individual born in i will survive
to be in j at exact age a.
y(a) Matrix of person-years lived or, p. 3
equivalently, of the number of people
in age group a to a + 4. The element
iLj(a) denotes the person-years lived
in region j between ages a and a + 5 by
an individual born in region i. Eguiva-
lently, it denotes the number of people
born in i and living in j in age group
a to a + 4, per unit born in 1i.

S(a) Survivorship matrix. The element S5 (a) p. 13

denotes the proportion of people ageg
a to a + 4 in region i, surviving to be
in regicn j and x + 5 to x + 9 years
old 5 years later.
R(0) Net Reproduction Matrix. The element (1.3)
iRj(O) denotes the expected number of
offspring born in region j to a woman
who is born herself in region 1i.
¥(r) Multiregional Characteristic Matrix. (1.0}

The element i‘Pj(r) denotes the discounted

number of offspring born in region j to

a mother born in region 1i.




Symbol
B(r) (k)
K
{§<0)}
{v(o)}
{Q<t)}
Q(t)
{0}

e~
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Defined by egua-

Interpretation tion or on page
k-th derivative of the multiregional - p. 28
characteristic matrix.
Matrix of mean age at childbearing. (2.28)
Right eigenvector of ¥(r). Stable (1.6)

regional distribution of births

(population at exact age 0).

Left eigenvector of f(r). Stable (1.10)
regional distribution of the repro-

ductive value at birth.

Regional number of births in the stable (2.32)
population at time t.

Total number of births in the stable (2.42)
population at time t (all regions).

Stable equivalent of the observed (2.34)
(base-year) regional number of births.
Multiregion~. population growth matrix (2.2)
of the conti:uous growth model.

Right eigenvector of eé, associated p. 22
with the dominant eigenvalue. Stable

population distribution by age and

region (fixed up to a scalar).
(e} = [lgo ' {g(ax) ' {g2ax) - {g(x) } 0 +]

Regional distribution of the population p. 25
at exact age x.

Left eigenvector of e§, associated with p. 22
the dominant eigenvalue. Distribution

of reproductive values by age and region

(fixed up to a scalar).

{vi' = [y} {v(@ax) ' (v(ax) ' se-{v(x)} o]



{nk}

{ k=19

Ty

Interpretation

Regional distribution of the repro-
ductive value at exact age x.
Regional distribution of the total
reproductive value.
Total reproductive value (all
regions)

Distribution of the average spatial
reproductive value for the age
interval x to x + 4.

Number of people by age and region

at time t.

e k™ o e @ b i 2ax) 3 - -

Number of people by age and

region in the base year (t = 0).

Defined
tion or

by equa-
on page

(1

(1

(1

(1

[{OE(X)} ={k(x)} =k(x){1} on page 11-12].

Diagonal matrix containing the number

of people in age groum x to x + 4 by

[E(x){]} = {ﬁ(x)}]

region.

Matrix of expected, discounted number

of off. h)ring per woman aged x years.

The elen. at .n.
1]

of childre.

a woman now

of region i,

Matrix of discou. ted number of offspring (1.

of the total popul=ztion, by place of

residence of the motl.ers and by place

of birth of the offspring.

Discounted number of offspring of the

total population by region of birth.

(x) denotes the number

to be born in region j to

discounted back to age x.

(1

- years of age and resident

.12)

.15)

.21)

.25;

21

21

14

.13)

.19)
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Defined by equa-

Symbol Interpretation tion or on page
{nk} Discounted number of offspring of (1.20)

the total population, by region of
residence of the mothers.

n Matrix of computed discounted number (1.24)
of offspring per woman at exact

age X (numerical approximation of

n(x)).
ng Matrix of the average discounted (1.27)
number of offspring per woman in
age group x to x + 4.
{nK} Numerical approximation of {nk}. p. 17
{QK} Numerical approximation of {ﬁk}. p. 17
NK Numerical approximation of nk. p. 17
c Reciprocal of the normalizing (2.46)
factor.
C Outer produr i of the eigenvectors (2.u48)
) of ¥(r). _ |
{v} Stable equivalent of the observed (2.52)
1 ) total number of people by region.
r

e (0) Matrix of discounted life expectancies. (2.57)
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