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PREFACE

This paper describes methods for solving optimization problems
under uncertainty--when for non-deterministic (stochastic) input
data distribution functions are not precisely known or are not known
at all. The methods have been elaborated for large-scale
static and dynamic problems. They generalize certaln known approaches
which deal with decision-making under uncertainty.

Since under uncertain conditions the decision maker plays the
decisive role, the methods here described are not strictly mathe-
matical. Rather, they provide a general scheme for problem
solution and possible ways to implement individual stages of a solu-
tion.

The paper generalizes the results of studies carried out in
the USSR (mainly at the Siberian Power Institute of the Siberian
Department of the USSR Academy of Sciences) in the last decade
and also contains new information. Though there are some other
approaches to these problems and they, as well as the approach
described herein, might continuously be improved, this paper may
nevertheless be considered as a completed study, ready for practical
usé. In particular, this approach is tried in the study of long-
term prospective energy development that is currently being made
by the IIASA Energy program for some typical regions of the world,

taking into account global conditions and constraints.

-~111-







SUMMARY

Many practical optimization problems are solved under un-
certain conditions--when probability distributions are not known
exactly or are completely unknown for a portion of the input data.
Such uncertainty in input data leads to uncertainty in decision-
making and makes it difficult to solve a problem.

Special methods for dealing with such situations are described
in this paper. They focus on quite complex (including continuous
and dynamic) large-scale problems and have been developed under
the assumption that such problems have one main objective which can
be quantified.

The methods described are aimed at the greatest possible for-
malization of the solution process, at the correct evaluation of
consequences associated with this or that decision and at the
elaboration of recommendations for decision-makers. The appli-
cation of these methods allows one to reduce negative conseguences
(damage, over—-expenditure, risk) which are conditioned by our in-
exact knowledge of the future. They are not able, however, to
avoid these conseguences or uncertainty in decision-making completely
In general, some risk does inevitably exist and mathematical methods
cannot provide the single optimal solution. One can only determine
a set of rational variants which are good in this or that sense,
but the final choice from among them 1nevitably has to be made by
man (decision-maker) himself. |

As to the general approach, the methods considered are based on
already known methods of decision-making under uncertainty. They
assume the calculation of a pay-off matrix and the use of special
criteria (Wald's, Laplace's, Savage's, Hurwitz's, ...). bBut these
methods extend this approach to complex optimization problems.

The basic ideas concern the "discretization” of continuous
problems and the process for distinguishing the "first step"
(priority or urgent decision) for dynamic problems. This allows
one to deal with complex coptimization problems.

Solution of a problem is divided into several operations
(stages): statement of the problem; selection of a representative
set of nature states; search for and preliminary analysis of

feasible solutions; calculation of the pay-off matrix; analysis




of the pay-off matrix and choice of rational variants; final
choice of the variant that is to be taken for realization. The
methods for implementation of each operation have been proposed
and are described in the paper.

In particular, four possible statements of dynamic problems
are considered here. Most of these take into account the fact
that, as a rule, we are really interested only in the first part
of the whole time period under consideration. Just for this part
(the "first step") our urgent decision must be made. Other parts
of the period have to be studied mainly to take into proper account
the consequences of this or that action undertaken in the "first
step". The four statements differ from one another according to
the assumptions made about a system's development (or operation)
in the "afteraction" period.

For the selection of representative nature states and the
search for our possible actions intuitive ways as well as certain
formal methods described in the paper can be used. Some of the
latter are based on the uniform or regular (in some sense) discri-
bution of a given number of points in an n-dimensional domain of
optimizing parameters or non-deterministic input data. The search
for competing variants (actions) can also be made by optimization
for several specific nature states selected in a previous operation.
The optimal variants obtained in this way are dominant ones and can
be considered as candidates for a problem solution.

The pay-off matrix is obtained by evaluating the effects (or
consequences) for each competing solution variant under all selected
states of nature. These are, as a rule, economic values (for example
expenditures) but might be of other kinds as well.

The pay-off matrix represents the basic information for the
following analysis and choice of rational variants. The proper pro-
cedures for this operation are described in detail in the paper. They
involve decision criteria, available information about probabilities
of nature states and the exclusion of non-dominant is sequentially
variants. Thus the number of competing variants are sequentially
reduced and if at some stage of the analysis all criteria point to

one and the same optimal variant, then a problem is solved.
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But in general (when uncertainty in input data still Lleads
to uncertainty in decision-making) such an analysis identifies
several rational variants which are optimal according to different
criteria. In this case they have tobe passed to the decision-~maker
together with their main quantitative characteristics, and the
final choice among these remaining variants must be made by the
decision-maker himself on the basis of his experience and intuition.

Here additional objectives may be taken into account which were

not considered during the earlier solution of a problem; use
may be made of estimation by experts, etc. This operation is not
considered here. But in spite of a "subjective" (heuristic)

choice at this final stage, the preceding analysis guarantees
a choice of only rational ("good") variants and insures against
gross errors.

An example of the use of the methods described is also

given in the paper.
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A PRACTICAL APPROACH TO CHOOSING ALTERNATE SOLUTIONS

TO COMPLEX OPTIMIZATION PROBLEMS UNDER UNCERTAINTY

Lev S. Belyaev

I. INTRODUCTION

Uncertainty of input data affects very adversely the

choice of optimal variants in many practical systems development
problems and hinders the design of systems elements and their
operation. If some input data are not known exactly, then there
will be different optimal variants depending on their values as
used in calculations. This leads to the uncertainty in decision-
making. Neglecting uncertainties in data which really exist and
consideration of just one combination of input data can lead to
wrong choices and serious damage to real-life systems, often in
the economic area.

This paper describes possible methods for taking into account
uncertainty of input data. Such methods allow a reduction of
negative consequences conditioned by our inexact knowledge of the |
future. However, it is impossible to avoid these consequences
fully. Some risk does inevitably exist to the extent that there
remains uncertainty in intial information.

The methods discussed below were developed to solve concrete
optimization problems linked to substantiation of certain decisions.
To be more specific, the methods are directed to the solution of

the fallowing class of problems:

1. Large~scale ones with big numbers of parameters x to be
optimized and of uncertain input data y, both of which might be of
continuous nature. Such problems may be both linear and nonlinear
as well as dynamic ones.

2. Problems with uncertain input data whose distribution functions
are not known at all or are not known exactly (uncertainty

with regard to parameters of probabilistic distribution).




3. Problems with one main objective. Other minor objectives, if
they cannot be expressed as constraints, may be taken into account
in the last stage of the problem solution--when the final decision
is chosen.

Such problems are usual for optimization of prospective
systems development when we have rather complicated tasks, uncertain
input data and mainly economical objectives.

Because of these features the methods under consideration
differ from methods of game theory where conflict situations
or collective decisions are investigated, as well as from methods
of stochastic programming which deal with input data having an exact
or seaquertially improved probabilistic description. The methods
considered in the paper are aimed at the highest possible degree
of formalization for the solution process, at achieving the
correct evaluation of consequences tied to this or that decision
and to the elaboration of recommendations for the decision-maker.
The latter must be specially noted, because uncertainty of input
data leads 1in general to uncertainty in the final choice of decision.
Therefore, we cannot expect mathematical methods to achieve a
single optimal variant when there are uncertain conditions. One
may only determine "good" (rational, intelligent, reasonable)
variants and the final choice among them inevitably has to be
made by the decision-maker himself.

The approach used is in general based on decision theory
but it has certain differences compared with other methods of
choice under uncertainty. This will be discussed in the next

section.

II. GENERAL REMARKS ON METHODOLOGY

II.1. Initial Assumptions

Solutions of problems under uncertainty always reguire some

assumptions. Those taken for considering methods are following:

~ Formal solution of problems under uncertainty cannot in
general identify single optimal variants. Only several rational

variants which are good in this or that sense may be determined.




The final choice from among them has to be made by the decision-
maker.

- Special criteria proposed for uncertain condition (criteria
of Wald, Laplace, Savage, Hurwicz, cel) must be used for selec-
tion of rational variants. But none of them inspires full confidence
and no single criterion can be used for the final choice of
decision. Therefore in general, these criteria cannot eliminate
uncertainty in decision-making.

~ Subjective probabilities for various states of nature cannot
be determined precisely., Ouly several possible probabilistic
distributions can be subjectively obtained, and uncertainty of
the situation isnot eliminated in this way.

- Other objectives which may exist are taken into consideration
only when a problem was solved according to the main objective--
after identifying economically rational variants when the final choice
from among them is made by the decision-maker.

- If a problem is a continuous one in respect to the continuous
nature of optimizing parameters x and uncertain input data y then
certain ways of discretization of the problem have to be used.

- If a problem is dynamic , then the "first step"--the first
time interval or the most urgent (priority) decisions--is distin-
guished. The rational variants are identified just for this
"first step" although a considerably longer period of time is
investigated during the problem solution.

Under such assumptions the proposed approach is a variety of
cost-benefit analysis [1] which uses economic data and monetary
units. It includes the applications of special criteria of
decision theory [2] as well as the assessment of subjective
probability distribution [3]. It is also implied that expert
estimates such as for example Delphi techniques [4] and if necessary
multiobjective analysis (see for example [5])have to be used.
However, this approach differs from others [5,6,7] in certain
rather essential points-

The utility function concept is not used here. This is mainly
due to the fact that in a planned economy (0of the USSR for example)
the "worth" of money does not depend on its sum--any sum economized

in some sector of the economy might be effectively used in other




sectors and its efficiency to be assumed equal in all sectors.

According to assumption (3) above, subjective assessment
of probability distribution can determine not single but several
subjective distribution functions. This corresponds better to the
real state of affairs. In fact one can identify possible probability
distributions on the basis of knowledge and intuition but
not in only one way. Therefore the requirement to determine
several subjective distributions seems to be more realistic and
appropriate.

Multiobjective analysis and expert estimates are applied only
in the final stage of problem solution after identifying decision
variants as rational according to the major objective. This is
appropriate of course only for problems where a malin objective
really exists, but there are very many such problems especially
concerned with systems development. The majority of methods
of mathematical programming (linear, nonlinear, dynamic, stochastic)
operates with just such mono-objective problems.

In short terms,with this approach one tries to analyze a
situation in the most impartial way and to the greatest possible
extent according to the main objective. During this analysis
one does not attempt to eliminate the uncertainty of a situation
but on the contrary intends to carry it honestly to the decision-
maker in the form of several "economically equal" decision variants.
And this is the goal of the methods described below. Then a
decision-maker may choose the final variant to be implemented
from among these "economically equal" ones by his experience
and intuition or can draw in expert estimates and additional
objectives. This last part of decision-maker actions is not
considered in the paper. The special techniques mentioned above

[4,5] can be applied there.



I1.2. Ways of Describing Non-Deterministic Input Data
The following kinds of input data may be distinguished

depending on their properties and our degree of knowledge:

a. Deterministic data, whose values are assumed to be known exactly.

b. Stochastic-definite data, for which sufficiently trust-

worthy probabilistic characteristics may be provided
on the basis of statistical exercises using past ob-
servations.

c. Partly uncertain data, whose distribution functions

cannot be determined well enough. Several possible
distribution functions might be determined for such a
case. This 1is the case of uncertainty about probabili-
stic description of stochastic input variables.

d. Uncertain data, whose distribution functions are not

known at all (because of their nature or the absence of

a suitable analogue in the past). Such data may be

given only by means of intervals o variants of their

possible values (without indicating the probability of

individual values in these intervals).

The description of non-deterministic data (for continuous

ones) is graphically shown in Fig. 1. For discrete data, instead
of distribution functions, distribution series (or rows) can be used and
intervals of possible values can be replaced simply by a set of

possible values.
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Fig.1. The forms of quantitative description of non-
deterministic data.

In general we have all these kinds of input data while a
problem is being solved. But uncertainty in decision-making is
conditioned by the last two kinds only. If we have only deter-
ministic and stochastic-definite data then it is possible, in
principle, to find a single optimal variant with the aid of
special stochastic methods, using mathematical expectation of
objective function as the criterion of optimality. Therefore,
the methods considered here are intended for general cases and

for the last two kinds of data in particular.
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I1.3. The Principle of Making Priority Decisions

The further in the future the given time period is (from
the moment of decision-making) the less correct is the informa-
tion about this period. Therefore every decision concerning
the development or functioning of systems has to be made as late
as possible--as a rule, just before beginning of its implemen-
tation. Thus each time the "freshest" information with the
smallest degree of uncertainty should be utilized.

In practice this means that final decisions should as a
rule relate only to the nearest time interval, to priority con-
struction projects etc. When possible, decisions should be
divided into stages, for example: separately for the start of
a project's design stage and the start of its construction
stage; separately for the design of new equipment, for the
production of prototypes and for the commercial production of
new equipment. Thus, while the first stages are being realized,
technical-economic indicators for projects and ecuipment are
made more precise, and during completion of initial stages, other
external conditions undergo refinement.

Some kinds of decisions are of course concerned with more
distant time periods and require more advance planning. It is
important only that such decisions be made no earlier than
necessary--only when they become sufficiently mature and cannot
be delayed.

This principle, besides laying a general framework for
decision-making, plays an important role in the mathematical

statement of dynamic problems.

II.4. Comparability of Decisions

Because of information uncertainty one has to consider
decision variants for several possible future conditions. This
is typical for all stochastic problems. To properly compare the
consequences linked to every decision variant, one should keep
the following rule: each variant should be considered under a
set of possible future conditions which must be the same for all
variants. 1In other words, the consequences, economic and other-
wise, for each of our decision variants (our actions) have to be
. all determined in light of the same set of conditions (nature
states).




In fact one needs to calculate a table (pay-off matrix) where
the rows correspond to available variants and the columns to
possible nature states. Such a table gives the possibility to
compare decision variants. The figures in a single column are
comparable since they are concerned with the same combination of

input values.

II.5. Impacts of Given Constraints

One of the principal difficulties in solving the problems
under consideration (and stochastic problems as well) is determining
appropriate procedures for'satisfying constraints (balance ecua-
tions, resource limitations, etc.) or for assessing the conse-
quences of not satisfying constraints. When competing decision
variants are being considered (see previous point II.4) under
different nature states, it may happen that certain constraints
are not satisfied. And different constraints may not be satis-
fied for individual variants under different nature states.

The refinement of possible procedures for taking into
account existing constraints requires special attention. These
procedures have to correspond to reality as much as possible.
Sometimes they may reflect additional undertakings which can be
realized quickly (the acceleration of operation starts for system
elements, the construction of temporary projects, importation of
scarce resources, etc.). The overexpenditure due to such under-
takings must be included in calculations.

But in many cases it 1is impossible to satisfy all constraints
because of technical or economic reasons. Then the damage due to
their not having been satisfied must be assessed. As a rule this
is guite difficult. One possible approach that may be recommended
is to consider such damage as uncertain input data together with

other analogous data.

I1.6. About Statement of Problems

As a rule, the statement of a problem involving uncertain
input data is not at all an easy matter, especially when the prob-

lem is a dynamic one. We must establish:



~ the concrete meaning of an action undertaken and the
composition of parameters (components of vector x) which
characterize the action;

- the composition of non-deterministic input data which
are causes of uncertainty (the composition of comvonents
of vector y characterizing nature states);

- the procedures for satisfying constraints for assessing
the results of their not being satisfied;

- the concrete form of an evaluation function E(x,y), that
will estimate the effect (say, expenditures) of different

actions x under different nature states y.

Confusion is possilkle regarding parameters tied with our action x
and parameters related to nature state y as well as parameters which
must be included among components of vector X characterizing our
main action and parameters tied with additional undertakings aimed
at satisfying constraints.

It is difficult also to determine the meaning of our actions

when solving dynamic problems.

II.7. "Discretization" of Continuous Problems

Most practical tasks involve continuous variables describing
both optimizing parameters as well as input data. Thus there
really are an infinite number of possible actions and nature states
and we are not able to consider them all. Therefore it is necessary
in some way to select a limited number of actions and nature states
to consider while the problem is being solved.

In this respect it is important not to overlook potentially
rational decision variants that might occur, and also to include
in the number of nature states considered not only some
mean (or middle) ones but also some extreme conditions (both
sufficiently favorable and unfavorable but really possible).

In a mathematical sense we are speaking here of selections
of vector x values X; (i=1,...,I) and vector y values ys(s=l,...,s),
where I and S are the whole numbers of considered values of vectors
x and y. In this operation the experience and intuition of
specialists play a big role, and some formal methods can be

used as well.
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IT.8. Mathematical Tools

In general, the methods described below are based on the
assumptions mentioned above, and they are in fact an attempt of
an extrapolation of known methods of decision-making under un-
certainty (see for instance [2]) into the area of complicated
optimization problems. These methods assume the use of a "pay-off
matrix" and the application of special criteria appropriate for
uncertain conditions (Wald, Laplace, Savage, Hurwicz, et al.).

But the important questions here are how to state a complex
problem and how to calculate its pay-off matrix. While these
questions are being solved for individual tasks there might be a
need to use various mathematical methods (optimization and simula-
‘tion, linear and non-linear, static and dynamic) depending on

peculiarities of a given task.

IIT. GENERAL SCHEME FOR SOLVING OPTIMIZATION PROBLEMS UNDER
UNCERTAINTY

As was already said, we assume that a problem has a

main objective (as a rule an economic one) which can be quantita-
tively evaluated. Thus we can write an evaluating function

(for a static problem):

E (x, y) , (1-111)

where xeX is the m-dimensional vector, characterizing our choosing
actions, and yeY is the n-dimensional vector whose components
are non-deterministic input data (deterministic data are reflected
in an expression of function E). X and Y are domains where
possible values of vectors x and y exist.

As a rule there may also be constraints in the form of
equalities and inequalities.

The functior: E(X,y) is not an objective function in the
usual sense (as for deterministic or opure stochastic problems).

We are not able to speak about, say, its minimization (if it
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represents expenditures) since its minimum will be obtained for
different nature states y with various values of vector x. Since
probabilities of different nature states are not known, we cannot
use the mathematical expectation of function E(x,y) as the crite-
rion of optimality. Ve must only strive, therefore, to make its
values as small as possible.

The scheme for the solution of such problems supposes the

sequence of operations shown in Fig. 2.

Fig. 2. The Sequence of Operations for Solving Optimization
Problems under Uncertainty.
1. STATEMENT OF THE PROBLEM
2. SELECTION OF REPRESENTATIVE SET OF NATURE STATES

3. SEARCH FOR AND PRELIMINARY ANALYSIS OF VARIANTS
FOR PROBLEM SOLUTION (OR ACTIONS)

4. CALCULATION OF PAY-OFF MATRIX

5. ANALYSIS OF PAY-OFF MATRIX AND CHOICE OF
RATIONAL ACTIONS

6. FINAL CHOICE OF ACTION IMPLEMENTED

General remarks about the statement of problems have already

been made (see point 1I.6.). It will be considered in the next

section in more detail .

The selection of representative sets of nature states is in

fact the "discretization" of the problem with regard to input
data. In the continuous set Y it is necessary somehow to choose

a finite number (S) of points which characterize sufficiently

well the set as a whole. As a rule, the number S should not be
large since a large number of calculations should be made for each
nature state Ys(s=l,...,S). The size of this number must be
established by taking into consideration the peculiarities of a
given problem and computer availabilities. Possible methods for
making this selection will be discussed in detail. This operation
requires great attention as the completeness and reliability of

subsequent analysis depends on how properly this choice was made.
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The next operation is the search for and preliminary analysis

of solution variants xi(i=l,...,I) which in principle might

be rational ones and which have to be considered while a problem

is being solved. Such variants are called "dominant" ones [2].

In this operation, on the one hand, the determination of our

possible actions is made. If they are not evident and if we deal

with a continuous set of optimizing parameters X, then this

operation is a "discretization" of the problem (in regard to

optimizing parameters) like the previous operation. But here

the methods of selection of "representatives" are somewhat different.
On the other hand, in this operation, the gquestion is examined

whether there really is uncertainty in decision-making in the con-

Asidered situation or not. If for all nature states ys(s=l,...,S)

chosen in previous operations there is  one and the same optimal

variant xo, then it means that uncertainty of input data will

not lead to uncertainty in choice of action and we may surely

implement variant x°. But if this is not the case, then analysis

will have to be made to select competing variants (actions) X

(i=1,...,1I) which will be considered in the next operations.

The calculation of pay-Off matrix HEiS||may be one of the most

laborious operations. The economic (or other) effect for every
considered variant xi(i=l,...,I) is evaluated here for all selected
future conditions ys(s=l,...,S). In other words, IxXS values of

function E(x,y) are determined here to obtain the whole matrix

HEiSH:

i=l,...,I
E. = E(x.,Y.) (2-111)
1S s s=1,...,8

Evidently, computers have to be used for such calculations
if a problem is complex enough.

The fifth operation--the analysis of a pay-off matrix and the

choice of rational actions--gives us in fact the final results

of the formal solution of a problem. If there really is uncertainty
in decision-making then the formal methods can point to several
rational actions which might be considered as recommendations for

a decision-maker. The special rules and criteria mentioned above
are used in this operation.
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Sometimes, when decision uncertainty is not great, the re-
commendations by different criteria may coincide. 1In this case
the indicated single rational variant can be implemented with a
great degree of confidence. But in general, various criteria
point to different rational actions and uncertainty in decision-
making remains, since none of the criteria inspires complete
confidence.

In such cases it is desirable to take into account the partial
knowledge of possible probabilities for considered nature states.
Often enough this may eliminate the decision uncertainty.

If all the analysis undertaken in this operation (its
peculiarities will be described in a special paragraph of the paper)
is not able to identify the single optimal variant, then several

rational variants are passed on to the next operation--for the

final choice of decision. This last operation will not be

considered in the paper in detail. As was noted above, the
final choice has to be made by the decision-maker himself
on the base of his experience and intuition. Additional non-
economic objectives (of environmental, sociological, political
character) may be taken into account here. Use may be also
made of estimation by experts (for example the Delphi method) .
The way this operation is carried out depends heavily on peculia-
rities of individual decisions to be made. It should be only noted
that in spite of a subjective (heuristic) choice at this final
stage the preceding analysis guarantees a choice from only rational
variants and insures against gross errors.

Below the methods for the five first operations will be
described in detail. These methods have been published in a

series of books and reports [8~12 and others].
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Iv. STATEMENT OF PROBLEMS

Static problems usually involve a choice of parameters for

systems projects or their equipment. Once chosen, the parameters
do not change during the whole life of a project or equipment

(while the operational conditions might change in unknown ways).

During statement of static problems it is necessary to
establish precisely the composition of the x and y vector com-
ponents and the specific form of the evaluating function E(x,Yy).

The most difficult points concern the elucidation of procedures
for satisfying constraints. As a rule there may be distinguished
two kinds of constraints. The first kind includes constraints whose
satisfaction is mandatory due to technical reasons (destruction of
constructions and so on). Such constraints must be satisfied fully--
1f they are not satisfied for some variant x; even under one of the
considered nature states Ygr then this wvariant X, must be merely
excluded from the following solution of the problem. Constraints
of the second kind cause only economic damages if they are violated.
It is not necessary to satisfy them fully. But damage owing to
their violation must be included in the evaluating function E(x,y).
Such damage as a rule concerns external systems or another part of
the given system. It is difficult therefore to calculate such
damage precisely and sometimes it has to be considered as an uncertain
input data. Thus the composition of the x and y vector components,
as wéil as the concrete form of function E(X,y), have to be estab-

lished simultaneously with procedures for satisfying constraints.

IV.2. Statement of Dynamic Problems

The statement of dynamic problems (and it 1s in the form
of dynamic problems that most systems development tasks present
themsel&es) is markedly different from the statement of static
ones. Here the principle of making priority decisions (see
point II.3) has to be correctly observed.

As a rule we are not egually interested in all parts of
the whole given time period T for which a dynamic problem is to be

solved. Our real interest isonly in the nearest part ("first step")
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of the given period. The other part (tne "afteraction" period) must
be taken into account to see the conseguences of these prioritv deci-
sions. However, final decisions regarding the system's development (o1
operation) in this period can be made later. Therefore in dynamic
problems we may (or must) distinguish the "first step" and "after-
action" periods.

For such a statement of dynamic problems the question of
formulation of system development variants (trajectories) for the
"afteraction" period is quite complex. Apparently, such variants
have to correspond on the one hand to actions undertaken in the
"first step" (the subsequent development of the system depends on
the choice of primary projects) and on the other hand to concrete
future conditions of the system's development (later decisions would
be made based upon situations that have in fact occurred). However
taking into account that subsequent decisions will continue to be
made on the basis of uncertain information and therefore the final
choice will be made by men--intuitively, heuristically--it is
impossible to foresee such decisions and definitely select the
variants of a system's development for the "afteraction" period.
Therefore various approximate methods can be used to determine
these variants, and different statements of dynamic problems
correspond to them [9,11]. Some possible statements will be con-
sidered below.

Economic (or other) effects in dynamic problems (solved
as a rule by dividing the time period studied into discrete inter-
vals) can be estimated using the functional:

where:
E, = function of expenditures at time interval t;
T = total number of time intervals ("steps");
Xe 1 and X, = vectors of optimiZing parameters at the
beginning and at the end of time interval t;
Yy = vector of indefinite variables that characterizes

nature states at time interval t.
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The first statement is the most simple (and the most rough),
py reducing the dynamic problem to a static one. This is simple
enough when the nature state Ye (s = number of nature state) 1is

taken as a concrete realization of vector y for the whole period T:

YS = (Y1Sl---l Ytsl"'l yTS) (2=-1IV)

and our possible action X, (i = number of the action or variant)
is the choice of a single-valued deterministic trajectory of
the system's development for the whole period T:

X; = (Rygreeer Xpgreeor Xq4) (3-1IV)

With such a statement of the problem the general sequence
of its solution can be the same as for static problems. Some
realizations (2-IV) and several possible actions (3-IV) are chosen.
This is done by formal methods [92] or heuristic means, as will
be described in the next sections.

For each action X and nature state yg we estimate the
expenditures EiS by functional (I-IV). This results in a "pay-off
matrix" lmile and on the basis-of its analysis rational variants
are chosen.

The shortcomings of this statement are obvious.

The second statement (and all following ones) supposes that
the aim of the dynamic problem's solution is the choice of an
expedient action for the nearest time period ("first step") only.

One of the possible ways of solving such a problem is [13]:

(a) several possible actions are planned at the first step
Xi = Xlil
(b) a series of realizations (2-IV) for the whole studied

period are chosen as before;

(c) for each planned action at the first step and the chosen
nature statesdeterministic optimization calculations are
carried out for all steps beginning with the second one; this
gives a pay-off matrix |Eis”’ where E,_ = value of the ob-
jective functional for the i-th action and the s-th nature

state is determined as
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T

Bis = & (x50y7¢) + ﬁln - Et(xt—l’xt’yts) (4-1V)
. ;g;

The first term in (4-IV) is equal to the function value in
the first interval for fixed X, and Yig the second summand is
an extreme value of the functional in the period of afteraction.

Rational actions at the "first step" are chosen on the base
of this matrix.

The merit of such a statement is the flexible and rather
logical adaptation of various decisions to different states of
nature. But it is laborious and does not quite correspond to real
situations. The "suboptimization" of a system development at the
second and following steps for differing conditions agrees with
the assumption that further on (after the first step) we shall
know precisely the forthcoming conditions and therefore shall be
able to act optimally. 1In reality, making decisions at sub-
sequent steps we shall continue to be under uncertainty and
so not be able to act optimally.

Taking into account the second circumstance we may sometimes
not demand such strict "suboptimization" of a system's development
for the period of "afteraction" and may opt for a simplified

third statement. Here some possible actions at the first step

and several nature states (2-IV) for the whole studied period are
also planned.

The difference is in how we take into account the "afteraction"
period and make the calculation of the pay-off matrix. For each
decision in the first step several (two to five) variants of the
system's possible development in the "afteraction" period are

planned (numbers of these variants are designated by j):

(XZij’°"’ EIARRY XTij)] =1,2,... (5-1V)
Further, for all variants j the functional (I-IV) is cal-
culated at each chosen nature state. These calculations become
not optimization but only evaluating (at fixed values Xtij)
calculations unlike in the above mentioned second statement.

Such a calculation determines the expenditure value:

Ejgy = By (X3r¥1¢) +‘§; Bp (%p 1547 Xgiq97Yeg) (6-1V)
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Now we suggest taking into account the adaptation of the system's
development in the period of afteraction under diverse nature
states by the choice of such a variant (from those mentioned)
whereby the expenditures at the given nature state will be

minimal:

E.S = min E. . (7-1IV)

This agrees with the assumption that at the second and following
steps we shall choose this or that variant of the system's further
development depending upon actual conditions, but this circumstance
is taken into account here in simplified form. The wvalues EiS
obtained by relation (7-1IV) are used for filling the pay-off matrix
Il E; Il - Its subsequent analysis and choice of rational decisions
are carried out according to the usual order.

The fourth statement differs from the previous ones as
follows: each rational action at the first step (optimal by the
corresponding criterion) is determined on the assumption that at
all steps of the "afteraction" period the choice is implemented
according to this criterion. 1In other words, we choose a certain
criterion, for instance that of Wéld, and optimize the system's
development for the whole period under study. Optimal action
obtained for the first step belongs to the rational actions. Then
we optimize the system's development (also for the whole period
under study) by another criterion (for example the Savage criterion)
and we get an additional rational action at the first step, etc.

Having fixed the criterion of optimality K we come to the
problem similar to stochastic dynamic problems (with known
probabilistic descriptions), when the extremes of the mathematical
expectation of the functional is sought. It can be solved
using ideas and methods of dynamic programming. For instance, if
we take the Wald criterion (minimax expenditures)} then for each
t-th time interval the following functional equation must be
solved (starting from the end):

O . o

K (xt_i) = min max [Et(xt_l,xt,yt) + K
o Yt

T

t+l(xt)] (8-1IV)
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where:

e}

K, = minimal possible criterion value for the period from
the beginning of the t-th interval to the end of

the period being studied (it depends upon the vector

value x,_q).

The solution of such a problem with continuous values
of vectors x and y, especially of large dimension, involves
great (possibly even unsolvable) computational difficulties.

But, if a finite and not too large number of vector X, values,
characterizing diverse system states, and also a limited number
of nature states is taken (making the problem discrete), then the
solution becomes possible in practice. In [9] there is the
algorithm of a problem's solution using such a statement

on the base of which the computer program has been worked out.

The suitable application of one or the other of the above
mentioned statements depends upon the peculiarities of the given
problem: its general laboriousness (computer time required), the
time available for solution and the solution periodicity, etc.
For each problem these gquestidéns have to be specified. The second
statement is the one most widely used at the present time.

In [9] there are examples of solutions for problems relating
to the management of power systems which take into account un-
certainty in initial information. Also the example of solution of

a dynamic problem is given in the last section of this paper.

V. SELECTION OF A REPRESENTATIVE SET OF NATURE STATES

V.1l. Preliminary Analysis of Available Input Data

One of the main aims here is to clarify the properties of
non-deterministic data with regard to their degree of uncertainty.
One clarifies: really possible intervals (diapazones) of each
data value; mutual dependences {(correlations) between individual
indicators; possibilities to obtain a probabilistic description
for this or that data and the accuracy of such description; the
continuous or discontinuous nature of individual input data; their
most characteristic values, etc. Such an analysis is needed for
quantitative description of input data and subsequent choice of
their specific values.
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The second aim of preliminary analysis is to specify the
most valuable indicators, whose uncertainty leads most directly
to the uncertainty of a situation. Those indicators whose un-
certainty does not influence the results of a problem's solution
(they are as a rule in the majority) may be given deterministically
by their middle, or most probable, or some other characteristic
values. Only main stochastic or uncertain input data whose un-
certainty really leads to uncertainty in decision-making

have to be included among vector y components. To decrease the
dimensions of a problem and the laboriousness of its calculations

it is desirable that the number of these components be as small
as possible. Sometimes a special, rather involved investigation
has to be made for these purposes.

The'preliminary'analysis of input data here under considera-
tion must in fact be done before or simultaneously with the state-
ment of a problem since a specific form of evaluating function
E(x,y) and general procedure of a problem's solution depend on the

composition and properties of the vector y components.

V.2. Recommendations for the Selection

As to the selection of representative nature states, the first
question is the determination of their total number S. As was
mentioned in section III, this number must not be too large and
is determined from the practical viewpoint of laboriousness of
subsequent computations. Usually it is sufficient to consider
10 + 30 different nature states. If in the process of a problem's
solution it becomes necessary to consider certain complementary
nature states, they can be included additionally with corresponding
supplemental calculations.

As a rule there aremnot many (2 +5, sometimes a few more)
impartant indicators whose uncertainty most strongly influences
results. Let us call these the first group of uncertain input
- data. Special attention must be paid to these data. Usually it
is inadmissable to use formalized methods for the selection of
probable combinations of their values.
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The following way may be recommended for the

selection of first group input data combinations.

2 +3 probable values are taken for each such indicator (for
example, "optimistic", "pessimistic", "middle"). If there

are no interdependences between these indicators and simultaneous
appearance of any of their value combinations (for example, only
"pessimistic" or only "optimistic" for all the indicators at
once) is possible, then one must consider a complete set of
combinations of their taken values. As the number of such
indicators included in the first group is not large (2+ 5) the
general number of their value combinations will also not be

large (5+30). And it could be decreased additionally by
clarifying and excluding those combinations that are close

to other ones as regards their influence on a problem's

solution. But if there are mutual interdependences among

first group input data then one can exclude (from a complete

set of combinations) the combinations which seem to be non-real.
Thus a relatively small number (Sl = 5 +20) of value combinations
to be considered during the problem's solution is obtained for
the first group of input data.

Such an approach cannot be used for the remaining

non-deterministic input data (second group) as their number

might be too big (tens or even hundreds). The number of

their values combinations becomes too unwieldy and it is very
difficult (or simply impossible) to select a limited number of
"characteristic" combinations by an intuitive analysis. Formal
methods for such a selection might be recommended here. As a
rule they are based on a regular (in some sense) distribution
of a given number of points in an n-dimensional parallelepiped
or single cube (in a continuous domain Y of possible vector y
values).

In particular, methods have been proposed [9] using
linear code theory for choosing points evenly or uniformly
distributed on a grid or in the centers of spheres having equal
and maximum possible diameters. Fig. 3 illustrates such |

selection within a two-dimensional single cube. In Fig. 3a
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a) on a grid

%

Fig. 3. selection of Uniformly Situated Points.
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a selection of seven points on a regular grid is shown. Fig.3b
shows the selection of 3 points in the centers of spheres. Even-
ness is understood here as providing for the maximum possible
distances between points (with a given total number S). Selection
on a regular grid seems to be better for a big n (large dimensional
vector y) than selection using the centers of spheres. The latter
method uses the Euclid distance as a measure of nearness of
points. But in a large dimensional space the Euclid distance
becomes bad for such a measure. For example the main diagonal
of the single n-dimensional cube strives to infinity if n->
though the length of each rib of the cube remains equal to one.
Therefore with a big dimension of the single cube the centers of
such spheres concentrate 1in the central part of the cube and
when n=>® they even merge with its central point (all having
coordinates 0.5).

Selection using a regular grid has no such disadvantage.
But nowadays the problem of such a choice has been solved for
a partial case only [9], namely, for the case when the given
total number S of selecting points is a simple number (1, 2, 3,
5, 7, 11, 13 and so on). This is not a great disadvantage
however as we can anyway take a certain simple number nearest to
the desired total number of nature states under consideration.
One additional advantage of this method is the consideration
of S values for each component of vector y (see Fig. 3a).
Extrapolation of the points from a single cube into a real
space Y (as a rule into an n-dimensional parallelepiped) may
be simply done as a linear extrapolation.

Hence using such formal methods we can obtain a certain
number (82) of value combinations for the second group (for
the rest) of non-deterministic input data.

Now the representative set of nature states may be ob-
tained if we combine with each other the S, combinations of

1

first group input data values and the S, combinations of the

2
second group. In practice this means that for each combination
of first group input data values all S, combinations of the

second group have to be considered. The general number of
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nature states under consideration will then be S = S, X 82.
To ensure that this number corresponds approximately to the
number outlined earlier one has to choose tne numbers

S.I and S2 in a proper way. For example, one can distribute non-
deterministic input data suitably between first and second groups,
find the minimum possible number (S1) of combinations for the
first group and determine a proper number (82) of combinations
for the second group (which corresponds to the desired total
number S and this first number 51), etc.

If the general number (n) of non-deterministic input data
(components of vector y) is not so big, then one may of course
not divide them into two groups and may select the set of
representatives for all such data simultaneously (as was re-
commended for the first group).

As a result of the whole operation we just obtain

the set of nature states

y (s=1,...,8 , (1-V)

which will be considered during solution of the problem.

With dynamic problems this operation may be done either for

the whole period studied (perhaps with the corresponding in-
crease of the dimension of the vector y by a multiplication

of the number of non-deterministic input data by the number of
time intervals) or for each time interval individually. Then
we obtain either S realizations (2-IV) or T sets (1-V) for

individual intervals.

VI. SEARCH FOR AND PRELIMINARY ANALYSIS OF VARIANTS FOR
PROBLEM SOLUTION

VI.1l. Search for Solution Variants under Consideration

The aim of this search is the selection of potentially
rational solution variants which should be considered during
subsequent solutions of a problem. For continuous problems this

is also in a certain sense a "discretization" of the problem.
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In some problems (especially those with discrete parameters
to be optimized) the competing variants xi(i=l,...,I) among
which rational variants have to be determined are evident or
may be outlined by use of intuition. That depends to a certain
extent on the general number (I) of variants which may be practi-
cally considered taking into account the laboriousness of the
following computations (during which the pay-off matrix]]EisH would
be calculated). If the number of variants which intuitively are
interesting do not exceed this number I and if there is sufficient
confidence that I variants, outlined by intuition, in fact include
all variants (that might prove to be rational ones), then the
operation considered would be relatively simple. This may be
done in an intuitive manner.

For more complicated problems special methods have to be
used. The main approach recommended here is the making of
optimization calculations for several deterministically given
conditions of a sYstem's development or operation. A "locally"
optimal variant obtained under some really possible conditions
evidently would be dominant and might prove to be a rational one
or might even be later taken for implementation.

This approach is rather laborious as it demands a series
of optimization calculations. Therefore, the possibility of its
application and the number of calculations to be made will depend
on computers available, established terms for problem solution
and so on. If there is an opportunity, the search for such
"locally" optimal variants has to be made for all S conditions
(nature states) selected in the previous operation. But in
principle the number of conditions under which the deterministic
optimization calculations are made might differ from the number

of nature states S selected earlier and be either less or more.

Thus, as a result of such optimization calculations a
multitude of possible variants for a problem's solution would
be sought for the ensuing engineering analysis. It has to
be pointed out that the "locally" optimal variants do not cover
the entire set of dominant variants., In principle there may

exist such variants which while not optimal under any conditions
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are in fact better than "locally" optimal ones for the totality
of conditions, and may therefore prove to be rational ones.
But there seems to be no way to determine such dominant variants

except through intuition.

VI.2. Preliminary Analysis of the Solution Variants

The first aim of the preliminary analysis is to examine whether
there really is uncertainty of choice or not; in other words,
whether the "locally" optimal variants sought differ from
each other from the viewpoint of our action or happen to
be the same. .

As to static problems, this examination relates to only
the main parameters which characterize our action. Parameters
related to additional "undertakings"”, which satisfy constraints,
naturally may not be taken into consideration. If a problem
is dynamic, then it is important to test a coincidence of
priority projects for construction or values of main optimizing
parameters in the first (nearest) time interval.

If the coincidence takes place then a problem solution can
be finished and the single optimal wvariant sought has to be
recommended for implementation.

The aim of the following analysis of "locally" optimal variants
(if quite a few of them occur) is to select from them such a number
(I) of competing variants as we can in practice consider during
subsequent solution of a given problem. Then it is necessary to
identify peculiarities which distinguish such variants from one
another. This allows one to select variants which are most charac-
teristic and interesting in this or that sense and to outline some
additional variants which would combine features of different "locally™
optimal variants and better correspond to various (not only to one)
conditions of a system's development or operation. Such an analysis
will have its own particularities for each problem and it is diffi-
cult to recommend some unified scheme.

As the final result of this operation, I solution variants X

(i =1, ..., I) are obtained and then the pay-off matrix ||E,

must be calculated.
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VII. CALCULATION OF THE PAY-OFF MATRIX

The pay-off matrix is a table consisting of I lines and S
columns. Into squares of the table are written the values EiS
of an evaluating function (1-III) or (1-IV) obtained for
solution variant Xy under nature state y_.

The calculations of values Eis have to be made according to
the chosen statement of a problem and the established form of
an evaluating function or functional. It is assumed that the
cost of additional "undertakings" in order to satisfy constraints
and the damage which results from their not being satisfied
are accounted for here (in values Eis). These calculations
with dynamic problems will be in fact optimization ones if,
for example, the second statement of such problems
is used (see paragraph IV.2)--with fixed vector x wvalues in
the first time interval, the values of vector x in the "after-
action" period are optimized. A general view of a matrix
HEiSH is represented in Fig. 4 (left part of the table). The
values of expenditures (let an evaluation function be, for
example, expenditures) written in some line give a (non-single)

economic estimation of the corresponding solution variant (under !

deterministic conditions there would be only one column and there -
would be one estimation for each variant). If the probabilities
for different nature states were known (that would correspond to the
existence of deterministic and stochastic-definite input data
only) then for each action (line) it would be possible to find a
mathematical expectation of expenditures. Such an estimation
would allow one to compare variants under consideration with each
other with some degree of confidence and to choose the variant
which is optimal "on the average". But for uncertain conditions
such a possibility does not exist and economic estimations of
variants X, are non-single.

Therefore some characteristic values of an evaluating
function can only be obtained for each variant X, and used
during the following analysis of the pay-off matrix. The most

interesting characteristic estimations are:
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Fig. 4. The Pay-Off Matrix and Its Characteristic Values,

a) Arithmetic average of expenditures.
- ‘| S
E; = — S; E, - (1-VII)

This estimation has formal similarity with the mathematical
expectation of expenditure--it coincides with the latter if the
uniform low of probabilistic distrubtion (equal probabilities)
is assumed for considering nature states Yg- But such an

assumption is, as a rule, far from reality.

b) Maximum value of expenditures for a given variant.
max _
E; = max E. (2-VII)

S
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This characterizes the worst that might happen if this variant

were taken for implementation. This is the more pessimistic

estimation.
c) Minimum value of expenditures.
min . '
Ei = min Eis . (3-VII)

S

This is the more optimistic estimation.

Each of these estimations characterizes the situation only
in a one~side manner. Therefore none of them can be recommended
for the final judging of variants. As a whole they still give
a non-single estimation of variants and do not eliminate in
general the uncertainty in decision-making. But each of these
estimations gives certain characteristics of variants and their
use allows us to formalize and simplify the process of pay-off matrix
analysis. It is appropriate to add these characteristic wvalues
to the right side of the corresponding lines of a pay-off matrix
(see Fig. #4).

Added to them is a maximum risk value which can be found
from the pay-off matrix (see below, paragraph VIII.3) and which
also characterizes the situation to a certain extent. To deter-
mipe risk values R.g the minimal (i.e. in the columns) values

ETD are needed. They are shown in the lowest line of the table.

A: the calculations for the pay-off matrix are made only in

cases where uncertainty in decision-making has been cleared up
(see paragraph VI.2) and ensuing analysis of the pay-off matrix
surely will be made, the characteristic values of the evaluating
function have to bé determined just after (or at the same time as)

the pay-off matrix itself is obtained.

VIII. ANALYSIS OF THE PAY-OFF MATRIX AND CHOICE OF RATIONAL ACTIONS

VIII.1l. The General Scheme of the Analysis

This analysis includes several stages. Movement to a
following stage is necessary only if a preceding stage does not

occur successfully (does not identify the single optimal variant).
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The sequence of the stages is given in Fig. 5. Detailed eluci-
dation for each stage will be carried out below.

Here it should be mentioned that after this whole operation
(if uncertainty of decision remains) the last operation (final
choice of action implemented) follows and that last operations

will not be considered in this paper.

VIII.2. Selection of Dominant Variants

Analysis of pay-off matrix HEiS||begins with the search for
dominant variants. Each of these is better than any other domi-
nant variant under at least one (not mandatorily one and the
same) nature state. Therefore all dominant variants have to be
considered as potential candidates for rational variants and for
implementation.

It is easier to select the set of dominant variants by an
identification of non-dominant ones, which are worse than some
dominant variants under all nature states considered. The
following inequality takes place for non-dominant variant j

(while it is being compared by pairs with dominant variant i):

Ejs > E.lS for all s=1,...,S (1-vIII)
and with at least one s there is strict inequality. Obviously
such variants are bad and can be excluded out of the following
consideration.

After removing non-dominant variants the set of dominant
variants remains; we continue to denote the total number by I.
The "locally" optimal variants sought during the third
operation (see paragraph VI.l) of course would be conserved in
this set since they are better than all the remaining ones under
corresponding nature states. But there also might occur some of
the variants singled out by intuition. And this would be good.
Now only dominant variants are included in the pay-off matrix which

are being passed to the next stage of analysis.
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VIII.3. Use of Decision Theory Criteria for Analysis
of the Pay-Off Matrix

As was already said, the special criteria proposed for
uncertain conditions [2] have to be used for the choice of
rational variants (actions, decisions). The majority of such
criteria use the characteristic values of the pay-off matrix
described above (see Fig. 4). The most interesting criteria,
it seems, are the following:

a) Laplace's criterion (minimum of arithmetic average of
expenditures) which uses the estimation Ei(l—VII). It recommends
choice of the variant xi which gives the minimum Ei:

min Ei = min ——_ > B, — 5 %P . (2-VIII)

i i 8 g=1 1% L

This criterion originated from the principle of "insuffi-
cient reason"--we have no special reason to distinguish or prefer
any one nature state when compared with others and assume that
they are all equally probable. But this of course does not

usually correspond to reality.

b) Wald's criterion (of minimax expenditures), which shows
. o . . : . ,
the variants xw with the minimum of maximal expenditures ETaX
(2-VIII):
. max . , o} _
min Li = min max Eis = X - (3-VIII)
i i s
c) Hurwicz's criterion (of pessimism-optimism), which minimizes
a linear combination of maximal ETaX and minimal ETln (3-VII)
expenditures:
min [aET®® 4+ (1-a) EVT) . %9, (4-VITI)
. 1 1 G
i
where a is an indicator of "pessimism-optimism"” (0O<a <1).

The value of indicator o is chosen by the investigator himself
depending on which estimation (maximal or minimal) he prefers.
This therefore is a very subjective criterion.

d) Savage's criterion (of minimax risk) is analogous to Wald's

criterion but uses risk values:
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m%n RTaX = m%n max RiS — X (SfVIII)
i i S

Risk RiS is an overexpenditure which would take place under nature
state Yg if the variant X, were chosen instead of a variant which
is "locally" optimal under these conditions Yo+ Such risks give
a certain characteristic of a situation--they show the relative
difference of expenditures linked to the choice of one variant
instead of another. In fact they characterize (though in a non-
single manner) the value of the damage (risk) conditioned by un-
certainty of a situation (input data).

To determine risks RiS one has to find the minimum of ex-

penditures for each selected condition y_ (for each column of the
pay-off matrix). Apart from values E?ln (3~VII), the minimum of

expenditures is here sought for in a column (not in a line):

E = m%n EiS (s=1,...,8). (6-VIII)
i
These values represent those minimal expenditures that we should
have if we were to know beforehand what nature state will occur in
the future and chose the variant optimal for these conditions.

Now the value of risk RiS for some variant X and conditions

Vg is determined as the difference:

Ris = Eis - ES ’ (7-VIII)
where EiS is taken from a corresponding square of the pay-off matrix
All IxS values R,  give us the risk matrix [|R; || which is
analogous to the matrix HEiS||. There will be at least one
zero element in each column of the matrix||RisH (for the variant
which is optimal under conditions ys).

Values of risks do not give a single estimation of over-
expenditures; nor did absolute values of expenditures Eis'

For each variant X, values of risks may vary from zero to a
maximum value RTax determined as

Ri = max Ris (i1,...,I) (8-VIII)
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These values give one more characteristic estimation of each
variant compared. Therefore they have to be added to the
characteristic values of the pay-off matrix obtained earlier (see
Fig. 4) and they are used in one of the decision criteria
(Savage's criterion). It may be noted here that an arithmetic
average of risk (ﬁi) also is a certain characteristic estimation.
But while the competing variants X will be compared, the use

of values Ri will give the same result as values Ei(l—VII),

that are used by Laplace's criterion, will.

All the above criteria (2-VIII+5~VIII) have their own
advantages and disadvantages considered in detail in [2]. None
of them can be admitted as being the best, but they allow us to
select rational variants, each of which is good in this or that
respect. These variants obviously require attentive consideration
while the final choice is being made of the variant to be imple-
mented.

It is guite possible that there might exist certain variants
which are not optimal by any of the described criteria but are
good if we consider all of them at once. Such variants can be
found with the aid of certain generalized criteria. Such a
criterion (K) can be compiled [9] by the use of characteristic

values of the pay-off matrix (together with value RTax)f

. . = max min max o
min K, = min [alEi + ain + a3Ei + auRi ] —Xy
= 1 ya £ -
al+ a2+ a3+ oy 1; O_al, Ay Qgr Oy 1. (9-VIII)

Depending on the values of coefficients o accepted by the
investigator one may pass from this criterion to each of the

four preceding ones or get this or that combination of them.

Of course, this criterion has all the disadvantages of previous
ones and does not remove uncertainty in decision-making (perhaps,
conversely, it multiplies the number of rational variants). But
it does allow one to search for variants interesting from the
viewpoint of the totality of the preceding criteria.

And such variants also have to be considered while the final

decision is made.
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If all described criteria point to one and the same
variant a given problem might be considered solved (see Fig. 5).
Just this variant may be recommended for implementation. Such
cases are rare but happen sometimes. But in general there will
be several (say J) rational variants (recommendations of different
criteria do not coincide completely) and one has to pass to the

next stage of the analysis (see Fig.6).

VIII.4. Accounting Possible Probabilities of Different
Future Conditions

It is very important to utilize available information
about probabilities of different input data values. Very often
this allows liquidating the uncertainty in decision-making.

Such information concerns stochastic - definite and partly
uncertain input data.

At this stage one attempts to identify possible probabilities
of the appearance o0f different nature states considered using
the probabilistic characteristics of individual input indicators,
and then to determine a mathematical expectation for each rational
variant.

Since we assume that vector y includes all kinds of non-
deterministic input data, there exist indicators with distribution
functions that are not known exactly or are not known at all.
Therefore it is completely impossible to obtain a single distri-
bution of probabilities for selected nature states ys- But one

can identify several (Q) subjective distribution functions (series):

Fq(y) g=1l,...,Q, (10-VIII)

which give probabilities PSq for individual nature states Ygr

where

P = 1.
1 s94

™M w

Experts' estimations based on experience and intuition inevitably
have to be used when such combinations Fq(y) are specified. Of cour

there is not a single way for such assessments [3,14]. But even such

intuitive characteristics will be helpful. And the use of several
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characteristics instead of one permits us to study more fully a
field of possible probabilities for different nature states and
guarantees against gross errors and arbitrariness.

Now for each distribution row Fq(y) we can determine mathe-
matical expectations of expenditures linked to a choice of

various rational variants X3

Miq = Sé:l psq EiS ‘ (11-VIII)

where EiS are obtained from the pay-off matrix.

For all variants X (i=1,...,J) and all rows Fq(y) we just

obtain matrix [Mqu (of mathematical expectations of expenditures).
The lines of this matrix correspond to the rational actions
(just as in the pay-off matrix, but the number of lines would be
less--J £ I). The column in this case represents not individual
nature states but the whole set with fixed combination of their
probabilities ("mixed strategies" of nature). The values Miq
in individual columns can be compared with each other and this
will identify the variant XZ which gives the minimum for the
mathematical expectations of expenditure for this distribution

series F s
q(y

min Miq —_—— X . (12-vIITI).

If with all Fq(q=l,...,Q) there is obtained one and the same
optimal variant then a problem is solved (see Fig. 5)--the consi-
deration of the information about possible (probable) distribu-
tion laws has eliminated the uncertainty of the final choice. 1In
opposite cases it would still be necessary to continue the ana-
lysis, but as a rule with a smaller "zone of uncertainty" (a smaller

number J. of rational variants which remained).

1

VIII.5. Analysis of Mathematical Expectations Matrix||Mqu

The matrix||Mqu with the remaining rational variants x,
(i=l,...,Jl) has to be analyzed with the same decision criteria

as were used earlier ﬂn?the}?Q“Offnﬁtrix}{EiSH . To do this the




-38-

values EiS in formulas (2-VIII) + (7-VIII) are changed in Miq and
index 2 in g (now uncertainty is considered with regard not to
individual nature states yg but to the distribution rows Fq).

Also a special index has to be used (say M) for distinguishing
risks Ryiq otained with matrix HMqu from risks R;_ . The whole
scheme of matrixIIMqu analysis is similar to that of matrix!IEiSH
(see Fig. 6).

One result of this analysis might possibly be the coinci-
dental recommendations of different criteria. Then a problem is
solved (see Fig. 5). If this has not happened then one may try

to make the most detailed analysis of remaining rational variants

in the light of matrix | In particular it might be useful

M, || -
19
to estimate "overexpenditures" for characteristic values used by
different criteria which take place with this or that rational
variant (comparing with the variants which are optimal by
corresponding criteria) [9]1. Let us denote some applicable

crterion with index "c" and the total number of criteria with
"c" (¢c=1,...,C). Then the minimal value of the mathematical

expectation of expenditures according to the criterion c will bea

MR~ nin M., (13-VIII)
C l 1C

where Mic = Mi for Laplace's criterion, M = M?ax for Wald's

ic
. . max . .
crlterlon,‘Mic = RMi for Savage's criterion, etc. If some

variant is not optimal by the criterion ¢, then it will
have some hoverexpenditures" Oic in value Mic compared with the

variant which is optimal by this criterion (as it is with risk R):

Oic = Mje ~ Mo - (14-VITI)
Determining these "overexpenditures" for all remaining rational
variants and for all criteria applied we shall obtain the
matrix [|0; || which is similar to risks matrix [|R; || or||RMqu but
expresses our possible losses from the viewpoint of different

criteria. This matrix characterizes the relative effectiveness
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of various rational variants in the measures used by different
criteria. Again we have a non-single estimation here due to
the uncertainty of a situation and the possibility of the
comparison of variants only in partial (individual) aspects.

While we have the matrix ||0; || , we can use at least two
sensitive principles which permit an additional comparison of
variants, namely, the principle of "insufficient reason":

- , 1 < o
min O; = min —— c§=_:l Ojp — = X5, ¢ (15-VIII)

. 1 ir
1 1

and the minimax principle:

. max . o)
. = . . - I
min Ol min mzx Olc X (16-VIII)

It is in principle possible.also to weigh (subjectively of course) the relative
significance of various criteria and to compile some generalized
criterion similar to criterion (9-VIII). But this has a sense only
if none of the weights is equal to zero. By the way, the prin-
ciple of "insufficient reason” (15-VIII) assumes equal weights
for all criteria.

It should be underlined here that such a procedure cannot and
must not have the aim of determining the single optimal variant
(theoretically it is possible to repeat such a procedure several

times--to the values 5i and OTaX

obtaining "overoverexpenditure",
etc.--till a single optimal variant is achieved). This procedure
is only intended for more comprehensive analysis and for more sub-
stantive recommendations concerning the composition of rational
variants to be presented to a decision maker. The latter is very
important--not to miss a variant which might in fact be a good one.
An example of the procedure for determining the matrix |[O.

icll
max

and of values 6i and Oi is shown in Fig. 7. Three criteria

(Laplace, Wald and Savage) are applied here. Five variants X

|EiS||and four distri-

remained after analysis of the pay-off matrix
bution rows F, were considered when matrix HMiq“was calculated.
Two variants (x1 and x3) proved to be optimal by mathematical ex-

pectations of expenditures. (Their values are indicated by squares
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and also shown in the lowest line since they are used for the
estimation of risk matrixHRMquwhich is not shown in Fig. 7 but

X .
values.) Two variants

was used for the determination of Rﬁ?
(xu and x5) turned out to be non-dominant (the variant X1 is
better for all Fq) and therefore were not considered further.

The use of these three criteria has identified two rational
variants (x1 and x2). Variant X, is non-rational (since two
preceding ones were dominant over it)and was excluded, although the
decision—maker might feel that it deserves attention. The minimal
values (13-VIII) of the criteria are noted below the table.

iL’ Oiw and Ois
(14-vIII) and matrix ||O; || which has only two lines here. The

They are used in determining "overexpenditures" O

principles (15-VIII) and (16-VIII) were applied and both variant
Xq and variant X, as well still remained rational (the first by
the principle of "insufficient reason", the second by the minimax
principle). But the economical consequences of each variant are
now more evident and only two of them remain.

Returning to the general line of analysis, it seems now
that all possibilities of formal methods are exhausted (see Fig. 5
and 6). As was said in the beginning of this paper we are not con-
sidering here the procedures of experts' estimation and application
of other objectives which the final choice by decision-makers (the
last operation) would require. We have analyzed a situation to the
greatest possible extent. We eliminated many variants and identified
the rational ones in the light of our single objective (economi-)
cal or other). (If there had been a need to maximize (not minimize)
some objective then all schemes for finding a solution would be
the same, only instead of a minimization, a maximization should be
made in appropriate places.) If the whole analysis did not provide
the single rational (optimal in that case) variant, then the un-
certainty of input data has indeed conditioned the uncertainty
of decision~-making, and we have to pass the identified rational
variants along with all results of the solution (all matrices and
characteristic values) to a decision-maker(for the completing
operation which is not considered in this paper as it requires
another Special method [4,5]).

The example of a problem's solution by means of the given

scheme will be given in the next section.
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IX. THE EXAMPLE OF A PROBLEM SOLUTION

IX.1l. General Description of the Problem

The example considered below is borrowed from [9]*. The
sense of the problem consists in the choice of priority power
plants which constructions would have to start immediately after
those plants already under construction. But for correct choice
0of these priority plants we must consider certain additional time

periods ("afteraction" period) and therefore the problem is a
dynamic one. In the example the North-West united electric power
system (UEPS) of the USSR is studied. It consists of three power nodes
(Southern, Central and Northern), and several new plants might

be constructed in each node. The selection of priority plants is
assoclated with a specific node and the problem consists in fact

not only in the determination of priority plants but also in their
distribution over the UEPS region-

A 12-year future time period with yearly intervals was taken
for the study of the UEPS development. For greater concretization
and simplification, the problem was stated as a choice of only fhe
first (one) priority power plant (it is assumed that the solution
of such a problem might be repeated after a while for the choice of
the next new plant), and the sense of the decision to be made
is just the choice of the first new plant placed into one of
the nodes. This decision is considered as the action at the

"first step". The latter is not linked to a fixed duration

¥
See the article "The Task of Determining the Priority Electric
Power Plants into United Electric Power Systems" in [9].
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of time. The duration of the "first step" in this case depends

on the type of priority plant chosen which might recuire more

or less time for its construction and might provide the increase
of energy demand for longer or shorter time periods. Therefore

the duration of a complementary "afteraction" period might also

differ.

An experience of earlier studies of such problems shows that
the input data whose uncertainty most strongly influenced the
results are: values of the electricity consumption and the peaks
of daily load (for the whole UEPS and its individual nodes), and
the technical-economic indicators for new power plants and fuels.
Therefore, the following input data were taken as uncertain oncs
while the problem was being solved:

-- electricity consumption
-- daily consumer-load peaks
-- fuel costs (per capita) for different kinds of

power plants
-- per capita investments for new plants.

These data were given by intervals of their possible (probable),
values. The rest of the input data wenzconsidered as deterministic.
As a whole the vector of uncertain input data (y) characterizing state

of nature had 32 components in this example.

IX.2. The Statement of the Problem and Scheme Used for
Solution

The third statement of dynamic problems (see formulas (2-1IV),
(5-1V), (6-IV), (7-1IV) in paragraph IV.<2) was taken for the prob-
lemrconsidered. That means that for each priority power plant
sought, several variants of a following development of the UEPS

inthe "afteraction" period were outlined and "evaluating" (not
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optimization) calculations were made while the pay-off matrix was
obtained.

23 states of nature were selected for the solution. This
number was established from the viewpoint of the laboriousness
of computations. Specific values for these 23 combinations of
non-deterministic input data were selected with the use of the
method considered in paragraph V.2 for the choice of a given number
of points on a regular grid. Dominant variants for a priority
construction were sought by deterministic optimization calcula-
tions for all 23 selected nature states. The non-linear discrete
optimization model of electric power systems (see [15] was applied
for this aim. The majority of priority (first) power plants happens

to coincide and only 3 different priority plants were identified

in 23 computations made. They are:
1. Gas-turbine station (GTS) in Southern node;
2. Hydro-accumulating power station (HAPS) in Central node;

3. HAPS in Northern node.

Such a result evidences that manoeuverable equipment for
operation during daily load peaks is insufficient in the UEPS.
The priority constructions of these 3 power plants were taken as
possible actions at the "first step" and we shall call them the first,
second and third actions accordingly.

Three "subactions"--variants of the UEPS development or sequences
of power plant construction in the "afteraction" period--were outlined
for the first action. They were selected from among "locally"”
optimal variants of the system development obtained for the considered
states. But for the second and third actions there was considered
only one development variant in "afteraction" period (one for

each of these two actions).
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All 5 of these "subactions" or sequences of power plant
constructions (three for the first action and one each for the second
and third) have been computed under all 23 nature states with
the use of a special "evaluating"model which consistsof certain
(not all) blocks of the optimization model mentioned. As has
been written in paragraph II1.5, special "undertakings" have
to be provided for the adaptation of a variant of system develop-
ment to different nature states (mainly for the satisfaction
of given constraints). In this specific problem the adaptation
is needed primarily owing to different demands for electricity
(and capacity) in various nature states. Such an adaptation in
the example under consideration was provided by changing start
times of power plant operation (and construction) according
to whether the rate of demand increase was more or less is in this or
that nature state considered. Therefore changeable data of
starts for power plant operation (or construction) are in fact
the main "undertakings" for the adaptation considered in this
problem. Because of this, the outlined 5 seqguences ("sub-
actions") were lengthened, when necessary, to such an
extent that the whole capacity of plants was sufficient even in
the most unfavorable nature state (having the biggest demand) .

Expenditures obtained for outlined actions and "subactions"”
under various nature states are represented in Fig.8a. In the line
marked "min El" are shown the expenditures, which are minimal among
three "subactions" taken for the first action. These expenditures
will further characterize the first action, and tne three lower lines
of Fig. Ba are the pay-off matrix for the problem considered. 1In the

X

two rightiost columns the values ETa and Ei which are minimized
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by Wald's and Laplace's criteria are written for all three
actions. The risks matrix calculated on the basis of the pay-
off matrix is given in Fig. 8b, where the maximum risk values
for each action are also shown in the rightmost column.

During the subsequent solution of the problem the figures
of these two tables were used for the comparison of the actions

and the choice of rational priority power plants.

IX.3. Analysis of the Pay-0Off Matrix and Determination of
Rational Actions

The application of decision criteria to the pay-off matrix shows
that the first action is optimal with Laplace's and Savage's cri-

teria and the third with Wald's criterion (see the rightmost columns

of Fig.8a and 8b). The second action is non-rational. It is
worse than the first action by all indicators wused (Ei, ETaX,
ghax,

Since there happen to be two rational actions, an additional
analysis has to be made. There had been no particular information
about probabilities of different nature states. Therefore
the analysis linked to calculation of the matrix of mathematical
expecations of expenditure was not made. But the "overexpenditures"

OiL’ Oiw’ Ois by the corresponding criteria have been calculated.
They were determined accordingly with the formulae (13-VIII) and

(l4-VIII) but instead of mathematical expectations Mic the character-

. . . = max a
istic wvalues of expenditures (Ei, Ei ’ RT X) were used.

The matrix of "overexpenditures" obtained has the following figures:




4§

‘ = max max fl = max
Actions F Ei Ei Ri OiL O;Lw Ois Oi Oi

1st || [5459 ] 11967  [571] 0 328 0 [109 [ 328]

3rd [1o360 [11639] 2811 901 o 2270 | 1057 2270

One can see that the first action proved optimal by using
the "overexpenditure" matrix for both the principles of "insufficient
reason" (15-VIII) &and minimax (16-VIII) (see last two columns).
Therefore this action might be recommended for implementation with some
confidence. There are élso twe more reasons for such a recommen-
dation. First, this first action is optimal under a majority of
nature states--under 18 from 23 (see zeros in Fig. 8b).
And second, one can see in Fig.8a that all maximum values of

expenditures (ETaX)

take place under the 23rd nature state which
is the most unfavorable one. Therefore orientation toward Wald's
criterion according to which the third action is optimal, means in

fact orientation toward the worst conditionsg; and this seems to

be too cautious (conservative) a decision.
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