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Abstract

Global change processes raise new estimation problems challenging the conventional sta�
tistical methods� These methods are based on the ability to obtain observations from
unknown true probability distributions� whereas the new problems require recovering in�
formation from only partially observable or even unobservable variables� For instance�
aggregate data exist at global and national level regarding agricultural production� oc�
currence of natural disasters� on incomes� etc� without providing any clue as to possibly
alarming diversity of conditions at local level� �Downscaling� methods in this case should
achieve plausible estimation of local implications emerging from global tendencies by using
all available evidences�

The aim of this paper is to develop a sequential downscaling method� which can be used
in a variety of practical situations� Our main motivation for this was the estimation of spa�
tially distributed crop production� i�e�� on a regular grid� consistent with known national�
level statistics and in accordance with geographical datasets and agronomic knowledge�
We prove convergence of the method to a generalized cross�entropy maximizing solution�
We also show that for speci�c cases this method is reduced to known procedures for esti�
mating transportation �ows and doubly stochastic matrices�
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Sequential Downscaling Methods for Estimation

from Aggregate Data

G� Fischer� T� Ermolieva� Y� Ermoliev� and H� Van Velthuizen

� Introduction

The analysis of global change processes requires the development of methods� which allow
for dealing in a consistent manner with data on a multitude of spatial and temporal scales�
Although GIS provides detailed geo� physical information� the socio�economic data often
exist only at aggregate level� Integrated analysis of economic and environmental impacts of
global changes raises a number of new estimation problems for downscaling and upscaling
of available data to ensure consistency of biophysical and economic models� For example�
aggregate data on national income does not reveal possibly alarming heterogeneity of its
concentration among a small fraction of population or within� say� risk�prone regions of
a country� We often need to derive information about the occurrence of disasters and
induced potential losses in particular locations from information of their occurrence at
global or regional levels� Aggregate regional annual concentrations of pollutants may be
well within norms� whereas concentrations in some locations may exceed vital levels for a
short time and cause irreversible damages�

The estimation of global processes consistent with local data and� conversely� long�term
local implications emerging from global tendencies challenge the traditional statistical
estimation methods� These methods are based on the ability to obtain observations from
unknown true probability distributions� For the new estimation problems� which can
be termed downscaling and upscaling estimation problems �see also ��� discussing other
downscaling and upscaling problems�� we often have only very restricted samples of real
observations� Additional experiments to obtain more observations may be expensive�
time consuming� dangerous or simply impossible� For example� although we can estimate
total �departures� or �arrivals� of passengers in transportation systems� the estimation of
passenger �ows between di�erent locations requires expensive origin�destination surveys
and in many cases the data does not exist ���� Similar situations occur with projections
of migration �ows� estimation of �ows in communication systems� and trade �ows� The
paucity or lack of historical data is especially limiting for regions� which are subject to
rapid changes �new developments� shocks� instabilities��

The aim of this article is to develop a recursive sequential downscaling method� which
can be used for a large variety of practical situations� Our main motivation for this is the
spatially explicit estimation of agricultural production� which is outlined in Section ��	 and
Section �� In this problem we deal with �downscaling�� i�e� attribution of known aggregate
national or sub�national crop production and land use to particular locations �grid cell�
pixel�� Sections ���� ��
 outline also the main idea of the sequential downscaling method
of Section 
 by using simple known procedures for estimating transportation �ows �e�g��
migration �ows� combining purely probabilistic prediction with available data on total
demands and capacities of locations� and transition probabilities�

	



Section 
 develops a sequential downscaling method for iterative rebalancing estimates
to satisfy general balance equations connecting unobservable and observable variables� We
prove the convergence of this method to the solution maximizing a cross�entropy function�
For speci�c transportation constraints this method reduces to the procedure proposed in
the 	�

s by the Leningrad architect G�V� Sheleikhovskii for estimating passenger �ows�
The convergence of Sheleikhovskiis method to the solution maximizing a cross�entropy
function was established in �	� by complex and lengthy analysis of speci�c mappings aris�
ing in the case of the transportation constraints� Our analysis for general constraints
is based on duality theory� which signi�cantly simpli�es proofs and clari�es the conver�
gence properties� This opens up a way for various modi�cations and extensions� e�g�� to
situations with uncertainties when the available higher� level information is imprecise or
involves stochastic elements�

Section � outlines connections between the maximum entropy principle� widely used
�see e�g�� �
�� �		�� for the new estimation �downscaling� problems and the fundamental
maximum likelihood principle of statistical estimation theory� We show that the maximum
entropy principle can be viewed as an extension of the maximum likelihood principle� the
so�called minimax log likelihood principle� Therefore� the convergence of downscaling
methods to solutions maximizing a cross�entropy function can be considered as an analog
of the asymptotic consistency �	�� analysis in traditional statistical estimation theory�

Section � describes a practical application and results of numerical calculations� with
a fast convergence of the proposed basic procedure and its possible modi�cations� Sec�
tion � concludes� As an important topic for future research� it emphasizes the need for
incorporating the downscaling methods within the overall decision making problems� i�e��
similar to the existing stochastic optimization theory�

� Downscaling Problems� Motivating Examples

Let us consider situations� very common in regional studies� when direct observations of
uncertain parameters on local levels are practically impossible and the estimation of their
spatially explicit representation requires a downscaling procedure making use of informa�
tion at a higher� more aggregate level� The problem of Section ��	� in fact� motivated the
development of discussed in Section 
 sequential downscaling procedure� Sections ���� ��

outline the main idea of this procedure by using simpler special cases of the problem�

��� Spatial Estimation of Agricultural Production

In general� the available information can be summarized as follows �see also Section ���
Extent of arable land ai� in a pixel i� i � 	� m� is estimated from land cover satellite
images� The degree and extents of suitable area for di�erent crops in a pixel comes from
FAO�IIASA crop suitability studies ���� �	
�� There is also �computer� simulated� spatial
information on the attainable yield dij of crop j� j � 	� n in pixel i� From statistics� the
price pj of crop j� the value Vj of crop production j in a country� i�e� the total production
of crop j multiplied by its price� the crop�wise sown area and production are available�
Let xij be desirable estimates of crop j production in pixel i� This leads to the following
estimate vij � pjdijxij of crop production value j in pixel i� Since production value Vj of
crop j in the country is known from statistics�

Pm
i�� vij � Vj � we have equations

nX
j��

xij � ai� i � 	� m� �	�

�



mX
i��

dijxij � bj � j � 	� n� ���

where bj � Vj�pj �
By introducing new variable yij characterizing area shares by crop j in pixel i� i�e��

xij � aiyij � constraints �	�� ��� can be written as the following

nX
j��

yij � 	� i � 	� m� �
�

mX
i��

aijyij � ej � j � 	� n� ���

where aij � dijai� This modi�cation of constraint �	�� ��� allows the use of entropy�like
arguments�

There will usually be an in�nite number of feasible solutions xij � i � 	� m� j � 	� n
satisfying equations �
� and ���� Therefore� to �nd a unique solution requires application of
some additional principles� A key idea is to use some additional prior information on crop�
speci�c area distribution� i�e�� a prior distribution qij of crop j in pixel i� This prior can be
based upon available crop distribution maps and other ancillary information� such as agro�
climatic� biophysical� terrain and soil� demographic and farming systems characteristics
�see discussion in Section ��� In any case� regardless of availability and detail of ancillary
information� the prior can even be a �least informative� uniform distribution �	��� If a
prior distribution qij � 
� i � 	� m� j � 	� n is available� then a rather natural way to
derive the estimates is from the minimization of the function

nX
j��

mX
i��

yijln
yij
qij

� ���

subject to �
�� ���� where ��� de�nes the so�called Kullback�Leibler distance �	�� between
distributions yij and qij �

Remark �� Function �
P

i�j yij ln
yij
qij

is termed the cross�entropy� i�e�� the mini�

mization of ��� de�nes the cross�entropy maximizing estimates� Since
P

i�j xij ln
xij
qij

�P
i�j aiyijln

yij
qij

�
P

i ailnai� therefore the minimization of function
P

i�j xijln
xij
qij

subject to

equations �	�� ��� is equivalent to minimization of a generalized �a weighted� cross�entropyP
i�j aiyijln

yij
qij
�

An alternative approach� which we take in this paper� is to derive a sequence of esti�
mates y�ij � y

�
ij � y

�
ij � ��� from an appropriate behavioral principle and to prove their conver�

gence to a cross�entropy maximizing solution� For instance� a general tendency in farming
is to allocate a crop j to pixels with maximum production values pjdij �or similar� such as
maximum net revenue or maximum net present value in case of perennial crops or forestry
activities�� However� the straightforward application of such a rule to equations �	�� ���
will� in general� lead to an overestimation or underestimation of aggregate known produc�
tion values Vj � j � 	� n� i�e�� situations when condition ��� is not ful�lled� Thus� these
rule�based initial estimates require a sequential balancing procedure� which is developed
in Section 
� Let us illustrate the main idea of the procedure by using two important
special cases�






��� Estimation of Interzonal Flows

There can be di�erent types of �ows requiring estimation or�and projection procedures� It
may be immigration or trade �ows between di�erent regions� �ows of passengers or goods in
transportation systems� or �ows of messages in communication systems� Purely statistical
projections often require expensive and time consuming origin�destination surveys� the
necessary historical information may not exist ���� In particular� this is a key issue in
situations when land use patterns are changing� e�g�� due to new development or �shocks�
in some locations� In addition� standard statistical procedures often do not take into
account such available information as �demands� for departures from locations i� i � 	� m�
and �capacities� of locations j� j � 	� n� to accommodate in�ows� As a result� they may
overestimate or underestimate the actual movements between locations�

The downscaling methods attempt to estimate �ows among given locations in a way
consistent with available data on the expected total number of �departures� ai from lo�
cations i and arrivals bj in location j� For unknown �to be estimated� �ows xij clearlyPn

j�� xij � ai� i � 	� m�
Pm

i�� xij � bj � j � 	� n� i�e�� we have a particular case of con�
straints �	�� ��� with dij � 	� i � 	� m� j � 	� n� Assume also that there is a prior
probability qij for a passenger from i to choose the destination j� For example� some
behavioral models �see� e�g�� ���� p� �	�� de�ne qij proportionally to a �distance� rij from
i to j� qij � rij�

P
j rij�

Consider the following iterative estimation procedure�
�i�� If a passenger from location i chooses the destination j with a prior probability qij �P

j qij � 	� then the expected �ow from i to j is x�ij � aiqij � Clearly
P

j x
�
ij � ai�

i � 	� m� but there may be overestimation
P

i x
�
ij � bj or underestimation

P
i x

�
ij � bj of

the available bj �
�ii�� Calculate relative imbalances ��j � bj�

P
i x

�
ij and z�ij � x�ij�

�
j � i � 	� m� j � 	� n�

�iii�� Clearly�
P

i z
�
ij � bj � j � 	� n� but the estimate z�ij may overestimate or underestimate

the known demand for departures ai from i� Therefore� calculate ��i � ai�
P

j z
�
ij � x

�
ij �

z�ij�
�
i � and so on�
This balancing procedure can be summarized also as the following� We can represent

x�ij as x�ij � aiq
�
ij � and q�ij � �qij��j ���

P
j qij�

�
j �� i � 	� m� j � 	� n� Assume xk �n

xkij

o
has been calculated� Then �nd �kj � bj�

P
i x

k
ij and calculate xk��ij � aiq

k��
ij �

qk��ij � �qij�kj �
P

j qij�
k
j �� i � 	� m� j � 	� n� and so on� In this form the procedure can

be viewed as a sequential redistribution of demands ai from locations i � 	� m among
locations j � 	� n by using a Bayesian type of rule for updating the prior distribution qij �
qk��ij � qij�

k
j �
P

j qij�
k
j � q

�
ij � qij �

Initially this method was proposed by the architect Sheleikhovskii for estimating pas�
senger �ows between districts of a city �including possible new districts�� Proof of con�
vergence to the solution maximizing

P
ij xijln�xij�qij� was given in �	� using extremely

lengthy and complex arguments essentially relying on speci�c mappings associated with
the transportation constraints� In Section 
 we propose a similar method for general con�
straints ���� We apply duality theory� which allows us to signi�cantly simplify and clarify
the analysis �Proposition 	�� This opens up an opportunity for various modi�cations� in
particular� to situations with uncertain parameters ai� bj � and dij �

��� Estimation of Stochastic Matrices

It is interesting to note that a similar procedure is used in the conventional statistical
theory for estimating doubly stochastic matrices �see discussion in �	
�� �	���� Suppose
we can observe transitions of a Markov chain with n states and stochastic matrix fPijg�

�



The usual estimate of Pij is xij � �ij�ai where �ij is the number of transitions from
i to j� which are observed� and ai �

P
j �ij � This amounts to a normalization of the

rows of matrix f�ijg� If it was known that fPijg is in fact a doubly stochastic matrix�
i�e��

P
i Pij � 	� then it was proposed to alternately normalize �as in Section ���� the

rows and columns of f�ijg in the belief that this iterative process would converge to an
estimate of fPijg� Proof of convergence of this procedure to a doubly stochastic matrix
for rather special cases was given in �	
�� From the results in �	� follows the convergence
for general doubly stochastic matrixes and the optimality of the resulting estimates as the
cross�entropy maximizing solution�

� Sequential Downscaling Methods

Consider the following problem� minimize

nX
j��

mX
i��

xijln�xij�qij�� ���

subject to constraints �	�� ���� where qij � 
� dij � 
 are given� ai � 
� bj � 
� i � 	� m�
j � 	� n� Values xij � 
 are also possible when qij � 
 or dij � 
� Without loss of
generality� we assume xij � 
� qij � 
�

Pn
j�� qij � 	� i � 	� m� and the set of feasible

solutions de�ned by �	�� ��� is not empty�
Consider the following sequential procedure�
Step �� Compute an initial estimate x�ij � aiqij � Clearly� x�ij satis�es �	��

P
j x

�
ij � ai�

since
P

j qij � 	 but� in general� constraints ��� are violated�

Step �� For given xk � xkij � �nd �k��j satisfying equations

mX
i��

dijx
k
ije

dij�j � bj � j � 	� n� ���

The left hand side of this equality is a strictly monotonic function and �k��j can be
easily calculated�

Step �� Calculate zk��ij � xkije
dij�

k��
j � and

�k��i � ai�
X
j

zk��ij � i � 	� m� j � 	� n� ���

Step �� Update xkij to

xk��ij � �k��i zk��ij � i � 	� m� j � 	� n� ���

and so on with Steps � � �� until desirable convergence is reached� e�g�� constraints �	�� ���
are satis�ed with a given accuracy�

In summary� this procedure� similar to Sections ���� ��
 involves a sequential updating
of a priori probability distribution qij by using a Bayesian type of rule� xk��ij � aiq

k��
ij �

qk��ij � qij	
k
j �
P

j qij	
k
j � 	

k
j � edij�

k
j � where values 	kj are calculated using observations of

imbalances rather than using observations of real random variables�

Proposition �� The sequence xk �
n
xkij � i � 	� m� j � 	� n

o
� k � 
� 	� ���� generated

by iteration ������� converges to the solution x� of constraints �	�� ��� minimizing the
function ����

�



Lemma� There exist such �i � 
� �j � i � 	� m� j � 	� n� that the optimal solution x�ij
minimizing ��� subject to constraints �	�� ��� satis�es the following optimality conditions�
x�ij � xij��� ���

ai �
P

j xij��� �� � 
� i � 	� m�
bj �

P
i dijxij��� �� � 
� j � 	� n�

xij��� �� � qij�ie
dij�j � i � 	� m� j � 	� n�

Proof� For a continuous� strictly convex function ��� on a non�empty compact set
of an Euclidian space there is a unique optimal solution to the minimization problem�
Consider the Lagrangian function�

L�x� 
� �� �
X
i�j

xijln�xij�qij� �
mX
i��


i�ai �
nX

j��

xij� �
nX

j��

�j�bj �
mX
i��

dijxij�

Since the optimal solution is positive� the optimality conditions lead to

�L

�xij
� ln

xij
qij

� 	� 
i � dij�j � 
�

i � 	� m� j � 	� n� i�e�� the optimal solution can be represented analytically as xij�
� �� �
qije

�i��edij�j � i � 	� m� j � 	� n� The dual problem reads� �nd Lagrange multipliers
�
i� �j�� i � 	� m� j � 	� n� maximizing function


�
� �� � minxL�x� 
� �� � L�x�
� ��� 
� ���

From basic results of convex analysis it follows that 
�
� �� is a strictly concave continu�
ously di�erentiable function and the optimality condition can be written as

�


d
i
� ai �

nX
j��

xij�
� �� � 
� i � 	� m�

�


d�j
� bj �

mX
i��

dijxij�
� �� � 
� j � 	� n�

By using new notations �i � e��i���� �j � �j � and the same notations xij��� �� for
corresponding xij�
� ��� 
i � 
i��i� � ln�i � 	� �j � �j we obtain the proof due to the
strict monotonicity of e��i����

Proof of Proposition �� It is easy to see that the sequential method ���� ��� updates
variables � � ���� ���� �m�� � � ���� ���� �n� and x � fxijg to satisfy the optimality condi�
tions of Lemma� Namely� equations ��� require that the gradient of the strictly concave
function of the dual problem 
��
k� �k��� � 
� whereas equations ��� require that the
gradient 
��
k��� �k��� � 
� for some 
k� �k � k � 
� 	� ����

Indeed� let us illustrate just a few steps of the method� Solution x�ij can be represented

as x�ij � ��i qije
dij�

�
j � ��i � ai� �

�
j � 
� Clearly� that

P
j x

�
ij � aij � i�e�� 
�i�


�� ��� � 
�


�i � 
i����i �� ��
�
i � ��i � �

�
j � ��j � At Step � values ��j modify x�ij to y

�
ij � ��i qije

dij���j��
�
j ��P

i dijy
�
ij � bj � i�e�� 
�j�


�� ��� � 
� ��j � ��j � ��j � At Step � values ��i modify y�ij to

x�ij � ��i�
�
i qije

dij���j��
�
j ��
P

j x
�
ij � ai� i�e�� 
�i�


�� ��� � 
� 
�i � 
i����i �� ��
�
i � ��i�

�
i and so

on�
Therefore� the convergence of vectors 
k� �k and fxkijg to the optimal solutions of the

dual and the primal problems follows from the convergence of the cyclic ascent method
�	���

�



Remark �� It follows from the above that for transportation constraints� i�e�� for
dij � 	� i � 	� m� j � 	� n� the proposed method is reduced to Sheleikovskii�s method� In
this case� it also follows that the optimal solution is represented as xij��� �� � qij�i�j �
�i � 
� �j � 
� i � 	� m� j � 	� n� what is typical for the so�called gravity models ����

� Minimax Likelihood and Maximum Entropy

De�nitely that besides a cross�entropy maximization there exists a vast variety of op�
timization principles to single out a solution of equations �
�� ���� Let us show that
minimization of ��� is a natural generalization of the fundamental maximum likelihood
principle of statistical theory�

The standard statistical estimation theory deals with the situation when the infor�
mation on unknown distribution can be derived from observations of underlying random
variables� In such a case� the most natural principle for selecting an estimate from a given
sample of observations is the maximum likelihood proposed by Fisher ���� This principle
requires that the estimate has to maximize the probability that a given sample is observed�

A downscaling problem deals with the estimation of often unobservable variables� Yet�
the uncertainty can also be characterized or interpreted in probabilistic terms� For exam�
ple� in the estimation of crop production values de�ned by equations �
�� ���� we can think
of values yij � 
�

Pn
j�� yij � 	 as the probability �the degree of our belief� that a unit

area of pixel i is allocated to crop j� It is easy to see that the maximum entropy principle
can be viewed as an extension of the maximum likelihood principle�

Consider a situation similar to problems posed in Section �� Namely� let us assume that
there is an underlying random variable � with a �nite number of possible values ��� ���� �r
and the unknown true probability distribution of � is concentrated at these points with
associated probabilities p��� ���� p

�

r� Prob�� � �j � � p�j �
In the statistical estimation the available information is given by a random sample

��� ���� �N of N independent observations of � on �p��� ���� p
�

r�� A maximum likelihood esti�
mate of the unknown probabilities �p��� ���� p

�

r� is obtained by maximizing the probability
�likelihood� of observing ��� ���� �N

NY

k��

Prob�� � �k � �
rY

j��

p
vj
j �	
�

subject to constraints
Pr

j�� pj � 	� pj � 
� j � 	� r� where vj is the number of times the
value �j has been observed�

Pr
j�� vj � N � Since lny is a monotonously increasing function

of y� the maximization of �	
� is equivalent to maximization of the log likelihood function
ln
Qr

j�� p
vj
j �

Pr
j�� vjlnpj or normalized by the number of observations N �

Pr
j�� vj � N �

the sample mean function
	

N

nX
j��

vjlnpj � �		�

This is a continuous� strictly concave function on the set of Rn determined by linear
constraints� By using the Lagrangian function �or the more general fact of Proposition
� below� we can derive the well known result �see� e�g�� �	��� that the unique solution
maximizing �		� is the empirical probability function

pNj � vj�N� j � 	� r� �	��

�



Let us consider this di�erently� The log likelihood function �		� is the sample mean
approximation of the expectation

Elnp� �
rX

j��

p�j lnpj � �	
�

where the unknown probability distribution p�j is approximated by the frequencies vj�N

derived from an available sample of observations ��� ���� �N� In downscaling problems the
available information about the unknown probability distribution p�j � j � 	� r is given not
by a sample of observations� but by a number of constraints �
� and ���� i�e�� p� � P �
where P is the set of all feasible distributions� If y � �y�� ���� yr� � P � then we can consider

rX
j��

yjlnpj � �	��

as an approximation of the expectation function �	
� similar to the sample function �		��
The log likelihood function �	�� is de�ned for any feasible probability distribution y � P �
The worst�case estimate from P leads to minimization of the function

V �y� � max
p�P

rX
j��

yjlnpj � �	��

w�r�t� y � P � Therefore� the minimization of �	�� w�r�t� p � P is a counterpart to the
minimization of �		�

Proposition ��

min
y�P

max
p�P

rX
j��

yjlnpj � min
y�P

rX
j��

yjlnyj � �	��

Proof� It follows from analogous to �	�� fact� if y � P � then V �y� �
Pr

j�� yjlnyj �
Indeed� for a given y � �y�� ���� yr� � P and p � P we have

Pr
j�� yjlnpj �

Pr
j�� yj lnyj �Pr

j�� yj ln
pj
yj

�
Pr

j�� pj �
Pr

j�� yj � 
 since lnz � z � 	 for z � 
�

Remark �� In other words� the worst�case estimate leads to the principle of maxi�
mizing entropy �

Pr
j�� yjlnyj � In the case of a given prior distribution q � �q�� ���� qr�� we

may require the minimization of the di�erence between the function �	�� for p � P andPr
j�� qj lnpj for the given prior q from P �

min
y�P

�max
p�P

rX
j��

yjlnpj �
rX

j��

yjlnqj � � min
y�P

X
yjln

yj
qj
� �	��

i�e�� the maximization of cross�entropy function �
Pr

j�� yjln
yj
qj
or the Kullback�Leibler dis�

tance between distributions y and q� Clearly� instead of selecting a worst�case distribution
y � P in �	�� we can take other distributions� which may lead to di�erent downscaling
principles� Since the estimation is usually used to support decision making processes�
these more general principles may be speci�c to di�erent types of problems� i�e�� explicitly
connected with the goals of a decision making problem�

� Practical Applications

The proposed method has been applied for downscaling aggregate national and subnational
data on crop production and land use �Section ��	� for all main countries of the world�
The downscaling was performed country�by�country� For this� the territory of each country

�



was subdivided into grid cells with cultivation share� each cell with spatial resolution of
� by � min latitude�longitude� i�e�� urban areas� infrastructure� and water bodies were
excluded from the analysis� To illustrate the dimensionality� the number of grid cells
with cultivation in France equaled �
��� in Germany ��	
� and in Austria 		��� For
larger countries� such as United States and Russia� the number of grid cells with active
agricultural use reached approximately �� thousand� for Brazil �
 thousand and about ��
thousand for China� The data on aggregate country�speci�c agricultural production was
obtained from FAO� The list of crops comprised �� major crops such as wheat� rice� maize�
potato� soybean� pulses� oil crops� co�ee� tea� tobacco� cotton� etc� Figure 	 shows spatial
distribution of downscaled total crop production value for Europe in terms of international
prices �Geary�Khamis �GK� dollars of �


� �

	 per spatial land unit �grid cell��

Calculation of the prior included important spatial information on percentage of cul�
tivated� rainfed and irrigated land in each grid cell derived using satellite images of land
cover classes as well as aggregate statistics of arable land used for annual and perennial
crops in each country� For example� Figure � shows cultivated land share by grid cell�
In addition� the calculation of prior included information on multicropping index� i�e��
how many harvests may be obtained per year from a piece of land� derived with AEZ
methodology ���� �	
�� crop suitability �including climate� soil� and terrain conditions� and
attainable yields in each spatial land unit� as well as information on characteristics of
prevailing farming systems and population distribution�

Versions of the algorithm were written in FORTRAN and MATLAB programming
languages and performed on PC� They showed fast convergence and� thus� e�cient perfor�
mance in dealing with large and spatially detailed data� Clearly� the time performance of
the algorithm depends on the size of a study region� i�e�� number of grid cells or land units
considered and the number of crops that can be grown in each location� Applications of
the algorithms to global studies showed that to attain high precision �	
��� solution time
increased roughly linearly with the increase of problem dimensionality� The performance
is often remarkably fast� which is explained by the quality of the prior and the correspond�
ing initial approximation� Thus� for Austria� � iterations were needed� for Germany and
France about �
 to 

 and for China about �
� which indicates that the algorithm can be
e�ciently used in large real� world downscaling problems�

Remark �� The proposed method can easily be modi�ed to re�ect problem�speci�c
peculiarities of constraints �	� and ���� An important special case is the transportation
constraints� i�e�� dij � 	� i � 	� m� j � 	� n� If coe�cients dij are reasonably well approxi�
mated by a product of some parameters �i� i � 	� m� �j � j � 	� n� for instance dij � �i�j �
i � 	� m� j � 	� n� then �	�� ��� can be reduced to the transportation constraints by intro�
ducing new variables yij � �jxij and substituting bj by bj��j and ai by ai��i� i�e�� simply
by rescaling� Another simplifying situation occurs when function edij�j is approximated

by a function Aijf
�j
j � i � 	� m� j � 	� n� for some parameters Aij � 
� fj � 
� i � 	� m�

j � 	� n� and �j varying within the range of plausible solutions of ����

� Concluding Remarks

In this paper we analyze numerical downscaling procedures only for situations when aggre�
gate observed information is available and used as constraints on average values� For many
practical situations this assumption may be insu�cient and the procedures may need to
be extended into more rigorous treatment of uncertainty regarding a prior probability qij
and parameters of constraints �	�� ����

For practical applications� the choice of appropriate �priors�� their inherent uncertain�

�



Figure 	� Total crop production value� GK dollars per grid cell�

Figure �� Share of cultivated land per grid cell�

	




ties and imprecision� are among the major challenges of the downscaling methodology�
ultimately determining the success of these procedures�

An important issue for future research� besides the uncertainty of �priors� and other
parameters� is concerned with the incorporation of downscaling methods within the overall
decision making problems� i�e�� similar to the stochastic optimization theory�
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