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PREFACE

Task 2 of the System and Decision Sciences Area, Optimization, is a
central methodological tool of systems analysis. It is used and needed by
many Tasks at IIASA, including those of the Energy Systems and the Food
and Agriculture Programs. In order to deal with large-scale applications by
means of decomposition techniques, it is necessary to be able to optimize
functions that are not differentiable everywhere. This is the concern of
the subtask Nonsmooth Optimization. Methods of nonsmooth optimiza-
tion have been applied to a model for determining equilibrium prices for
agricultural commodities in world trade. They are also readily applicable
to some other IIASA models on allocating resources in health care systems.

This volume is the result of a workshop on Nonsmooth Optimization
that met at IIASA in the Spring of 1977. It consists of papers on the
techniques and theory of nonsmooth optimization, a set of numerical test
problems for future experimentation, and a comprehensive research bibli-

ography.
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INTRODUCTION

This volume is the result of a workshop on nonsmooth optimization
held at IIASA from March 28 to April 8, 1977. The designation *First
World Conference on Nonsmooth Optimization™, proposed in jest by one
of the participants after noting that there were only nine others in the
room with him, is, however, appropriate because of the various countries
represented, and because the number of scientists doing research in this
field at that time was rather small.

The small number of participants, and the workshop’s unusual length,
made it possible to achieve a substantial exchange of information. Each
morning (three working hours) was devoted to the talk of one participant,
who therefore could present his work quite thoroughly. During the after-
noons, discussions took place on related topics, such as: systems of in-
equalities, constrained problems, test problems and numerical experiments,
smooth approximation of nonsmooth functions, optimization with noise,
direction-finding procedures and quadratic programming, line searches,
general decomposition, .... However, this workshop format would have
been a failure were it not for the fact that everyone was alert and active
even when not ‘““in the spotlight”. We are very grateful to all the partici-
pants, who contributed to the success of the workshop by their numerous
questions and interruptions during both the formal and informal presenta-
tions.

This workshop was held under the name Nondifferentiable Optimiza-
tion, but it has been recognized that this is misleading, because it suggests
“optimization without derivatives”. As we view it, nonsmooth optimiza-
tion (NSO) is concerned with problems having functions for which gradi-
ents exist almost everywhere, but are not continuous, so that the usual
gradient-based methods and results fail. The contents of these Proceedings
should convince the reader of the importance of being able to compute
(generalized) gradients in NSO.

We have adopted the following topical classification for the papers:
subgradient optimization (three papers), descent methods (four papers),
and field of applicability (one paper).

The first paper, by B.T. Poljak, exhaustively surveys the Soviet work on
subgradient optimization done since 1962. For this method he gives the
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most important results obtained and the various extensions that have been
developed.

J.L. Goffin studies rates of convergence in subgradient optimization.
He shows under which conditions linear convergence can be obtained and
provides bounds on the best possible rate of convergence. These bounds
are given in terms of condition numbers that do not depend on derivative
continuity.

The paper by R. Chaney and A.A. Goldstein addresses the question:
What is the most general framework for the method of subgradient optimi-
zation to be applicable and convergent? Hence, they present the method
in an abstract setting and study the minimal hypotheses required to ensure
convergence.

One of the important conclusions of this workshop has been that
nonsmooth optimization and nonlinear programming (NLP) are, in fact,
equivalent fields. It was known that NLP is contained in NSO via exact
penalty function methods, but B.N. Pshenichnyi’s paper demonstrates the
reverse containment via feasible direction methods.

In his paper, C. Lemarechal describes, in a unified setting, descent
methods developed recently in Western countries. He also provides ideas
for improvement of these methods.

Many methods for solving constrained optimization problems require
the repeated solution of constrained least squares problems for search
direction determination. An efficient and reliable algorithm for solving
such subproblems is given in the paper by R. Mifflin.

The paper by P. Wolfe is concerned with line searches. He gives an APL
algorithm that effectively deals with the issues of when to stop a line search
with a satisfactory step size and how to determine the next trial step size
when the stopping criterion is not met.

The last paper, by J. Gauvin, studies the differential properties of
extremal value functions. This is important for the application of various
decomposition schemes for solving large-scale optimization problems,
because these approaches require the solution of nonsmooth problems
involving extremal-value functions, and in order to guarantee convergence
we need to know whether certain' “semismoothness™ conditions (such as
Lipschitz continuity) are satisfied.

We then give four nonsmooth optimization test problems. They were
selected because they are easy to work with and because they are repre-
sentative both of the field of applicability and of the range of difficulty of
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NSO. Problems 1 and 3 are examples of minimax problems and are not
very difficult. Problem 2 is a nonconvex problem coming from a well-
known NLP test problem, and problem 4 involves a piecewise-linear func-
tion. The last two are sufficiently difficult to slow down considerably the
speed of convergence of any of the NSO methods we know of.

We conclude this volume with a large NSO bibliography. It was com-
piled by the participants and is an update of the bibliography given in
Mathematical Programming Study 3. We wish to thank D.P. Bertsekas,
V.F. Demjanov, M.L. Fisher, and E.A. Nurminskii for the items they
communicated to us.

On behalf of all the participants we would like to acknowledge
ITASA’s generous support and to thank I. Beckey, L. Berg, A. Fildes, and
G. Lindelof for their optimal organizational contributions, which led to
a smooth-running workshop.

We are especially indebted to M.L. Balinski who was instrumental in
establishing a Nonsmooth Optimization group at IIASA and who spent
much of his time and energy to secure a truly international participation
at this workshop.

C. Lemarechal
R. Mifflin






SUBGRADIENT METHODS:
A SURVEY OF SOVIET RESEARCH

B. T. Poljak

This paper reviews research efforts by Soviet authors con-
cerning the subgradient technique of nondifferentiable minimiza-
tion and its extensions. It does not cover the works based on the
concept of steepest descent (by V.F, Demjanov, B.N. Pshenichnyi,
E.S. Levitin, and others) or on the use of a specific form of the
minimizing function (for example minimax techniques). The paper
essentially uses the review by N.Z. Shor [1]. The theorems given
below are mostly simplified versions of results shown in the orig-

inal papers.

1. THE SUBGRADIENT METHOD

Let f(x) be a convex continuous function in the space R®. a
vector 9f(x) € R" is called its subgradient at the point x, if it

satisfies the condition
£(x+y) > £(x) + (3f(x),y) , wvyeRr" . (1)

A subgradient exists (although, generally speaking, it may be not
unique) for all x € R". If f(x) is differentiable, the subgradient
is unique and coincides with the gradient 3f(x) = VE(x). The rules
of subgradient calculation for various types of functions are well

known [2,3]. In particular, with f(x) = max f, (x) where fi(x) are
1<i<m
convex differentiable functions, it is true that

of (x) = o.VE. (x) , a, >0 ,
iEIz(x) ot -
o, =1 , I(x) = {i : f.(x) = £(x)}
i€l (x) 1 1



(for instance one may take 3f(x) = Vfi(x) where i € I(x) is arbi-

trary).

The subgradient minimization method for f(x) on R™ is an

iterative process of the form
Xepq = X Ykaf(xk)/HBf(xk)H (2)

where Y 2 0 is a step size. For differentiable functions this
method coincides with the gradient one. The major difference be-~
tween the gradient and the subgradient methods is that, generally
speaking, the direction —Bf(xk) is not a descent direction at the
point Xy i i,e., the values of f(xk) for nondifferentiable functions
do not decrease monotonically in the method (2).

The subgradient method was developed in 1962 by N.Z. Shor and
used by him for solving large-scale transportation problems of
linear programming [4]. Although published in a low-circulation
publication, this pioneering work became widely known to experts
in the optimization area in the USSR. Also of great importance
for the propagation of nondifferentiable optimization concepts
were the reports by the same author presented in a number of con-
ferences in 1962-1966.

Publication of papers [5,6,7] giving a precise statement of
the method and its convergence theorems may be regarded as the

culmination of the first stage in developing subgradient techniques.

Let us get down to describing the basic results concerning the
subgradient method. As is known, the gradient method for minimiza-
tion of smooth functions employs the following ways to regulate
the step-size:

Y = ol 3fxp) |l

X = X

K+1 - aVE(x, ) 0 <o <a

k

(the ordinary gradient method);



= arg min f(x_ - yaf(xk)/llaf(xk)ll)+

y
k
Y

(the steepest descent method).

Simple examples may be constructed to show that neither of
these methods converges in nondifferentiable minimization; this
necessitates the construction of new principles of selecting the
step size. Consider the major ones. Hereinafter we shall assume
f (x) to be convex and continuous and denote f* = inf f (x) and
X* = Arg min f (x).

(a) Yk = vy > 0., This constant-step method was suggested in
[4]. The simplest example, f(x) = [x|, xe R1, explicitly proves
that this method does not converge. One may show, however, that it

gives a solution "with an accuracy of y".

Theorem 1 [U]

Let X* be nonempty. Then for any § > 0 there exists ¥ > 0
such that in the method (2) with y, =Y, 0 < y < Y we have
lim inf f(xk) < f* + §.

Reference [4] has described the following way of step-size
regulation resting upon this result, although it has not been en-
tirely formalized. A certain y > 0 is chosen and the computation
is made with Yk = y until the values of f(xk) start to oscillate
about a certain limit. After this y is halved and the process is

repeated.

(b) The sequence Yy is chosen a priori regardless of the

computation results and satisfies the condition

This way of choosing the step-size has been suggested in [5] and

[6] independently.

tHereafter arg min p(y) will mean an arbitrary minimum point of

the function p(y), Arg min p(y) is the set of all minimum points.
Y



Theorem 2 [5,6]

In the method (2),(3) lim inf f(xk) = f*, If X* is nonempty
and bounded then p(xk,X*) + 0, where

p(x,X*) = min || x - x*|| .
x*eX¥
It is clear that in the general case the method (2),(3) can-
not converge faster than Yi tends to zero. In particular, this
method never converges at the rate of geometrical progression or
at the rate

0(k™%), s>1 .

(c) 1In certain cases the value of f* is known. For instance,
if

I

f(x) = £.(x) ’

i=p rO0F

where fi(x) are convex functions,
fi(x)t = max {O,fi(x)} ,

and the system of inequalities fi(x) <0i=1,...,mis solvable,
then X* is the set of solutions of this system and f£* = 0. Then
one may take
(f(xk) - £¥)
= l—  , 0 < x<2 . 1)
13g(x) I

Yk
In solving systems of inequalities the method (3),(4) coincides
with the known relaxation method of Kaczmarz, Agmon, Motzkin,
Schoenberg, and Eremin [8]. The method for general problems of
nonsmooth function minimization has in essence been suggested by

I.I. Eremin [9] and systematically developed in [10].



Theorem 3 [9,10]

Let x* be the unique minimum point for f(x). Then in the
method (2), (4) X, - x*. If the condition
f(x) - £* > 2flx - x*[] , 2 >0 (5)

holds, the method converges with the rate of a geometrical pro-

gression.

The advantages of the method (2),(4) are the simplicity of
selecting the step size (since no auxiliary problems should be
solved and no characteristics of f(x) other than f* should be
known) and its applicability, since for a smooth strongly convex
f(x) the method also converges with the rate of a geometrical
progression [10]. Reference [10] has shown a way to modify the

technique when f* is unknown.

(d) N.Z. shor {11] has suggested an essentially different
method for choosing Yt

k
Yk = Y2 » 0 <ag< 1 . (6)

Note that the condition (3) is not satisfied for (6).

Theorem 4 [11,12,13]

Let the condition
(Bf(x) ,x = x*¥) > 2| 3f(x) | || x = x*|| , 2 >0 (7)
hold. Then there exists a pair g (which depends on %) and Y (which

depends on || Xy - x*|| ,2) such that with 1 > q > q, Yo 2 Y in the
method (2),(6) we have

k
| % - x*|| < clavga .

The relationship of g (%) and ¥y (]| Xg - x*|| ,2) may be expressed
explicitly. However, practical implementation of the method (2),(6)
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faces difficulties because generally the values of & and

I X - x*|| are unknown.

The above results prove that the convergence rate for any of
the step-size regulating rules is linear at best. The denominator
of the geometrical progression for the ill-conditioned problems
(i.e. for functions with greatly extended level sets) is near unity.
Thus the convergence rate of all the versions of the subgradient

method may be rather poor.

2. ACCELERATING CONVERGENCE OF THE SUBGRADIENT METHOD

One of the reasons why the subgradient method converges so
slowly lies in its Markov nature. The subsequent iteration makes
no use of the information cobtained at the previous steps. The ma-
jor concept of all techniques for accelerating convergence is the

use of this information (i.e. the values f(xi), Bf(xi), i=0,...,k=-1).

The first methods of this type were those developed by Kelley
and by Cheney and Goldstein [14,15], based on piecewise~linear ap-
proximation of the function. An original technique suggested in
[16] and [17] independently made use only of the values af(xi). Let
M, be a polyhedron in R™ in which the minimum point is localized

k

after k iterations. Then for an arbitrary x € M one may take

k+1 k

M =M N {x:(0f(x

ket = My <ok .

k+1) X = xk+1)

If the center of gravity Mk is taken as the point x one may show

[17] that for the volume Vk of the polyhedron M

k+1

X the following ex-

pression holds:

Vpeq < [1-01 - N

K+1 v

T
N-1 k !

where N is the dimension of the space. Thus for problems of any

dimension
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In other words, the method converges with the rate of geometrical
progression, the denominator being independent of both the proper-
ties of the function and the dimension of the space. This result
is mostly of theoretical interest since the auxiliary problem of
finding the center of gravity for the polyhedron is very difficult
to solve. References [17,18,19] give a number of modified tech-
niques in which a simpler auxiliary problem is solved at each step.
References [18,19] have also shown that the center-of-gravity tech-
nigue is optimal in a certain sense. Roughly speaking, there is nc
algorithm that uses the same information and provides better con-
vergence. A similar result for algorithms that uses only the

values f(xi) rather than af(xi) is given in Reference [20].

These methods [14,15,16,17,18,19,20] have been developed in-
dependently of the subgradient method. Let us turn now to the

algorithms obtained as a direct extension of (2).

Let the value of f* be known. Reference [10] suggests the
following technique. At the kth step the quadratic programming
problem is solved:

2
I

min || x - Xy

f(xk) + (af(xk), X - xk) < £*

< £ (8)

and its solution is taken as x The value m > 0 is arbitrary

k+1°
and may depend on k. In particular, with m = 0 the method is
identical to the subgradient algorithm (2),(4) with A = 1. If m
is smaller, then instead of (8) it is more convenient to solve

the dual problem

k k
. 1 2 .
min {7 | i=}2(_m AOF () || - i=}2(_m A (E(x) = £F = BE(x) %, - x))*
2320} )
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and, denoting its solution as x?, to obtain

koox
x =x_ - ) A af(x,) . (10)
. 1 1
i=k-m

This form of stating the method shows that it is quite closely
related to the steepest descent, the conjugate subgradient, and
other methods. Reference [10] shows that the method (8) con-
verges at least no more slowly than the subgradient method (2),(4)
with A = 1. Moreover, if f(x) is a piecewise~linear function with
a non-singular minimum and m > N, the method is finite. The latter
property is a great advantage of the method, although, firstly,

one needs to know f* and, secondly, for large m the auxiliary

problem 8) or (9,10) is rather laborious.

1 a number of his works [21,22,23,24,25,26] N.Z2. Shor has
suggested that space metric be transformed at each iteration to
accelerate convergence of the subgradient method. A general al-
gorithm for such an approach is in the following: let s € Rn,

Is||l =1, « > 0. Then a linear operator R, (s) such that
_ t
Ra(s)x =x + (a-1)ss x (11)

is referred to as the space-dilation operator acting in the dir-
rection s with a coefficient o. It is clear that Ra(s)s = os,
and for x orthogonal to s, Ra(s)x = x. By making the transfor-
mations of the space Ra (sk) at each step, computing subgradients
for the new variables, and then transforming back to the original

variables, we shall have the method

X = X

k+1 f(xy)

RN
(12)
Pp = PR _ (8 ' 0
%k
N.Z. Shor has considered two feasible versions for selecting di-
rections Sy - The first [21,22,24,25] provides dilation of the
space in the direction of a subsequent subgradient, i.e.
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Sp = af(xk). Let us put down this method in a symmetrical form
suggested by V.A. Skokov [27]:

X X

k+1 = ¥ FYPy o P = CHRIAEGG)

(13)

t
1) Pg-1Px-1

H,_=H + (1 - H =1 .
Obviously, the matrices Hk are symmetric. In the above papers a
number of ways to select the parameters Yy and o, are considered.

In particular if f* and the constant M > 1 are known in the in-
equality

(8f(x) ,x = X*) < M(f(x) - £*) , (14)

(f(xk) - f* )
2 I
2% Gy |l 15)

one may choose

_( 2m
Yk MF 1
+

Theorem & [22]

Let f(x) be convex and continuous and let the condition (14)

hold. Then the algorithm (13), (15) converges geometrically with

the rate o~ /N,

lim inf ak/N(f(xk) - f*) <
A result for the extreme case o = @ and
2(f(xk) - f*)
Yy = (16)

2
I e, |

is also known.
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Theorem 6 [22,27]

If £(x) is quadratic, then in the method (13),(16) Xg = x*¥,
and Hy = 0. In other words, for a quadratic case the method (16)
is finite and coincides with one of the known orthogonalization

methods for solving systems of linear equations.

The second version of the method [23,24,25,26] provides
space dilation in the direction of the difference of two sequen-

- 3f(x

k—1)' In the statement

tial subgradients, i.e. Sy = 9f (x
of [27] the method takes the form

k)

Xep1 = X FYKPx ¢+ Py T CHQIE(G)

[¢]
|

= Bf(xk) - 3af(x (17)

k—1) !

t
_ J_)Hk-1ekeka-1
ol Mx-1%k, %)

-(1

Unlike all other versions of the subgradient method, the step

size is chosen from the condition of the steepest descent:

Yy = arg min £(x, + yp) . (18)

In practical computations the value o, was taken equal to 2 or 3
and further increase of oy did not affect the convergence rate.
References [23,24,25,26) describe certain conditions that guaran-
tee the convergence of the algorithm. Its rate of convergence has
not been given enough attention.

Consider an extreme version of the method, O = .

Theorem 7 [26,27]

Let o =@ and £(x) be quadratic. Then in the method (17),18)
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The method (17), (18) in this case is reduced to one of the ver-
sions of the conjugate directions method [28].

Thus, the subgradient methods with space dilation are con-
ceptually close to variable-metric methods used for minimization
of smooth functions, and their limiting versions have the prop-
erty that they are finite for quadratic functions. The important
question of the convergence rate for space-dilation methods for
essentially nonsmooth functions (e.g. piecewise-linear) remains

unanswered.

3. EXTENSIONS

We have thus far discussed unconditional minimization of a
convex continuous function on RN. Now let us concentrate on the
potential of the subgradient method in solving more general

problems.

(a) Infinite-Dimensional Space. Let it be required to find
the minimum of the convex continuous functional f(x) in the
Hilbert space H. The subgradient 3f(x) is in this case defined
exactly as in (1) and the subgradient method has the same form
as (2). It has been proved [6] that the theorem on convergence
of the method (2),(3) remains valid even in Hilbert spaces, and
the same has been proved [10] for the methods (2),(4), and (8).
Nevertheless some of the methods of Section 2 (e.g. the center-

of-gravity method) are specific to finite-dimensional spaces.

(b) Problems with Constraints. Let us consider the mini-

mization problem with constraints

min f (x) , X € H
g(x) <0 (19)
xe Q ,

where f and g are continuous convex functionals and Q is a convex
closed set. An arbitrary problem of convex programming can be re-

duced to the form (19). Thus if there are several constraints
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gi(x) <0, i=1,...m then it can be assumed that

g(x) = max g, (x)
i
or
m
g(x) = 7§ g; ), .
i=1

The set Q is assumed to be of simple structure; in particular,
the problem of finding a projection onto Q has a simple solution.
The cases of

Q={xeR :a<x<bl , 0={xeH: [|x-af <x)

are typical. Reference [6] has proposed an extension of the sub-
gradient method for solution of (19):

Xee1 = Pl = VS
af(xk)/H 9f (x ) | if glx) <0 (20)
sk =
ag(xk)/H ag(xk)H if g(x) >0 ,

where PQ is the projection operator on Q and convergence of this

method has been proved under the condition (3).

(c) PNonconvex Functions. The function f(x) to be minimized
has thus far been assumed convex. Now let us consider the case
of quasiconvex functions (such that the sets {x : f(x) < C} are
convex). 1In this case the subgradient at the point X, can be re-

placed by a vector s, which is support for the set {x: f(x)f_f(xkﬂ,

k
i.e. (s ,x - x) < 0 for all x such that f£(x) < f£(x;). It can be
proved [6] that with this replacement the method retains conver-

gence under the assumptions made in the convex case.

Another generalization of greater importance is using nearly-
differentiable functions [25]. A generalized gradient of f at x
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is a vector s = lim Vf(xk), where X > X is an arbitrary
k>

sequence of points where the gradient exists. For convex
continuous f (x) the set of generalized gradients coincides with
the set of subgradients. References [25,29] have proved the con-
vergence of the method (2) where the subgradient is replaced by
the generalized gradient. A somewhat different important class
of weakly convex functions to which the subgradient method can

be extended has been studied by E.A. Nurminskii [30,31].

(d) ~Non-Unique Minimum. Let the set X* of the minimum
points of minima of the convex continuous function f(x) on the
convex closed set Q consist of more than one point. Then the
subgradient minimization method is nonstable, in the sense that
for different initial points it can converge to different solu-
tions (and for some variants of the method even that cannot be
guaranteed). In a similar way, in the infinite-dimensional case
the subgradient method may not converge even if there is a unique
minimum solution. This kind of problem can be solved by using a
regularization method. A regularizing function f1(x) is chosen

that is strictly convex (in the infinite-dimensional case uniformly
2

convex), e.g. f1(x) = | x| There is a unique point Xy minimi-
zing the regularized function f(x) + akf1(x), where O > 0 is the
regularization parameter. Then it can be shown [32] that X X*
as o) > 0 where x* is the point in the set of minimum points of
f(x) on Q for which f1(x) is minimal. The subgradient method can
then be made stable by using this idea. Consider the method

Kot = PolX = Y BE0) + @ 3E,(x )] . (21)

In other words, one step of the subgradient method for minimiza-
tion of the regularized function is made; following this, the

regularization parameter is changed.

Theorem 8 [33]

Let f£(x) and f1(x) be convex continuous functions on RN, let

f1(x) be strongly convex, let Q be a convex closed and bounded set,
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and let o O,Yk/ak > O,Zykak = w,ak/ak+1 =1 + O(Ykak) (for in-

stance vy, = k_1/2, @, = kP, 0<p < 1/2). Then in the method

(21) %, » x¥*, where x¥ = arg min f1(x), X* = Arg min £(x).

k XEX* XEQ

(e) A Continuous Analog of the Subgradient Method. To the

X Vf(xk), there corresponds

0% Xppq T X T Yk
the continuous analog x = -Vf(x). Similarly there exists a con-

discrete gradient method,
tinuous version of the subgradient method

x € -3f(x) . (22)
Methods of this type have been in use (without much justification)
since the mid-fifties for solution of linear programming problems
on analog computers. To prove that (22) converges is a non-trivial
matter, however, since (22) is a differential equation with a mul-
tivalued discontinuous right-hand side; therefore its solution
needs an appropriate definition. The existence of a solution to
such an equation also needs special study. References [34,35,36]

deal with this subject.

(f) The Subgradient Method for Finding Saddle Points. The

point
x* € QCR®,y* € scrR®
is called a saddle point of the function ¢ (x,y) on QxS if
o (x,y*) > o(x*,y*) > ¢(x*,y)
for all
X €Q,YeS

or
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min max ¢(x,y) = ¢(x*,y*¥) = max min ¢(x,y) .
XeQ yeS YES xeQ

If the function ¢(x,y) is smooth, then to minimize it the gradient

method can be applied:

X

-

K+1 PQ(xk - Yka¢(xk,yk))

Y1 = Ps(yk + YkVy¢(xk,yk))

The similar subgradient algorithm for a nonsmooth case has been
proposed in [5,37]:

Xpp1 = PQ(xk - yk8x¢(xk,yk))
(23)
yk+1 = Ps(yk + Ykay¢(xklyk)) .
The method (23) has been validated in [38]. The function ¢(x,y)

is called stable [38] if for all x* € X*, y*¥ € Y*¥ (X*xY* is the
set of saddle points of ¢(x,y) on QxS) one has

Arg min ¢(x,y*) = X* , Arg max ¢(x*,y) = ¥Y* .
XEQ yeES

In particular, if ¢(x,y) is strictly convex with respect to x and

strictly concave with respect to y, then it is stable.

Theorem 9 [38]

Let ¢(x,y) be continuous on Ranm , convex with respect to
x for all y € S, concave with respect to y for all x € Q, and
stable, let the sets Q and S be convex, closed and bounded, and
let v, > 0, } Yo = ®. Then in the method (23),

p(xklx*) + 0 ’ p(yk,Y*) -+ 0 .

Results on the convergence of (23) in infinite-dimensional

spaces have been given in [33].
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The convergence of the method (23) without stability (e.gq.
for the Lagrange function in a convex programming problem) re-
mains an open question. For the smooth case and with stability
only with respect to x, this question has been answered in [39].
In the general case the method can be modified by regularization
[33].

Xee1 = Pol¥y — Y (p0(x,yy ) + o 38, (x,))]
(24)
Yisq = Psly, + Yk(3y¢(xk.yk) - o af, vy 1,

where f1(x),f2(y) are strongly convex functions.

In [33] convergence of this method has been proved under

the same assumptions on Yy %, as in Theorem 8. No strict con-

k
vexity-concavity or stability of ¢(x,y) is needed.

(g) Difference Approximation of the Subgradient. 1In a
number of problems the subgradients 3f(x) are inaccessible and
only values f (x) at arbitrary points are known. In this case
the subgradient 39f{x) can probably be replaced by its finite-
difference approximation, e.g. by the vector

f(x + aei) - f(x - aei)

N
s{x,a) = 7} s e; (25)
i=1

where e; are coordinate orths; a is the size of the test step.
This procedure works, however, only in the smooth case; it may
stop at non-minimum points when minimizing a nondifferentiable
convex function. Convergence may be obtained by introducing
additional smoothing through randomization. One of the simplest
methods of this type was proposed by A.M. Gupal [40]:

X1 = ¥ 7 VS (Yoo
(26)
Y = X ooy o
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where Zy is a random vector uniformly distributed on a unit sphere

and s(y,a) is computed by formula (25). It has been proved [u4]
that with a certain ratio of the step sizes Opr Yy (namely, with
a, - 0
2 k k+1
e = @0 v < = @ > 0, v, /o, » 0, ——F—==—>0) and under some

Y
k'k
natural assumptions on f(x), this method does converge. In [#41]
a similar method was used for minimization of discontinuous as

well as nondifferentiable functions.

4. THE SUBGRADIENT METHOD IN THE PRESENCE OF NOISE

In many real-world problems the gradient or the subgradient
cannot be precisely computed (for instance in system parameter
estimation, identification, learning, and pattern recognition
[42,43]) because of incomplete data on the function to be mini-
mized which is the expected value of a certain gquantity whose dis-
tribution law is not exactly known. In other cases the errors are
caused by computation errors, experimentation in a real process,
etc. In any case, usually we know only an approximate value of
the vector 3f(x), denoted as 9F(x). The error

E(x) = dF(x) - 3f(x) (27)

may contain both the random and the deterministic components n(x)
and a(x):

ME(x) = a(x) , n(x) = E(x) - a(x) , Mn(x) =0 .,
(28)
Then the subgradient method for minimizing £(x) on RN is of the
form

xk+1 = xk - YkBF(Xk) . (29)

The pioneering effort in the study of stochastic methods of the form
(29) was made by Yu.M. Ermol'ev [44,45,46]. His investigations and
those of his followers have been summarized in a monograph [47] and

a survey [48]. Among other works on optimization methods in the



22

presence of random noise, the book by V.Ya. Katkovnik [49] is
worth mentioning. The methods of type (29) may be regarded as
Robbins-Monro stochastic approximation procedures, and the re-
sults obtained in the theory of stochastic approximation (e.g.

[43,47,50,51]) can be used in their analysis.

Let us cite a simple result on convergence of the algorithm
(29). 1Its modifications and extensions (deterministic errors,
nonunique or nonexistent extremum, noise with infinite variance,
mean square convergdgence, etc.) are to be found in [46,47,52,53,
54].

Theorem 10

Let f(x) be convex, and continuous and have a unique minimum
point x* € RN; suppose the noise £(x) is purely random, is inde-
pendent at different points, and has a mean M{(x) = 0, and a var-
iance 02 (x) = M||E(x) ||, and assume the following constraints on
the growth of 9f(x) and Oz(x):

ey ? < eyt + [Ix - x*P
(30)
?(x) < cy(1+ [Ix - x*?)
Let Yi satisfy the condition
o] o] 2
Z Y, = ® Z Y < . (31)
k=0 ¥ " k=0 K

Then in the method (29), x, -+ x* with a probability 1.

k
As for convergence rate, it can be shown [47,55] that if
the condition f(x) > f* + ¢|x - x*|F, 2 > 0 or £(x) > f* +
2||x - x*||, ¢ > 0 is valid, and given the choice Y = Y/k
(y > 0 being large enough), then the rate of decrease of order
0k™") can be guaranteed for |x_ - x*H2 in some probabilistic
sense. This is, generally speaking, the highest possible rate
of convergence. Thus for
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f(x) = x2,x € R1,M€2(x) = 02 >0 ,

the iterative process (29) with any method of selecting the step

size cannot decrease the value of Mxi faster than O(k-1) [56].

On the contrary, for the functions satisfying the condition

(5), and with constrained noise
Jeeo | < c< 2 (32)
and a step-size rule of type (6), there is geometric convergence.

Theorem 11 [57]

Let f(x) be convex and continuous and the conditions (5) and
(32) hold. Then for any X, there are Yo and g < 1 such that with
Yy = yoqk the estimate [x, - x*[ < on - x*||qk is valid for the

method (29).

The extensions of the subgradient method in Section 3 are, as
a rule, applicable to problems in the presence of noise. Thus a
stochastic analog of the method (20) has been proposed [58].
E.A. Nurminskii has applied the stochastic subgradient method to
a class of non convex functions [59]. The iterative regulariza-
tion method (21) in the presence of random noise has been dis-
cussed in Reference [60]. Finally, the behavior of the subgradient
algorithm for finding saddle points (23) in the stochastic case has
been studied in Reference [44,45,46,47] and in combination with the

reqgularization method (an analog of (24)), in Reference [50].
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NONDIFFERENTIABLE OPTIMIZATION AND THE
RELAXATION METHOD#*

J. L. Goffin

1. INTRODUCTION

The relaxation method for solving systems of linear inequal-
ities, as defined by Agmon [1] and Motzkin and Schoenberg [7], is
closely connected to the relaxation method for solving systems of
linear equalities. The relationship was made precise in Agmon's

paper.

Subgradient optimization is a technique that attempts to
solve the problem of maximizing a general, maybe nondifferentiable,
concave function (or minimizing a convex function). One of the
main expectations from subgradient optimization is that it could
be used to solve some large-scale problems; computational results
reported in [5] and [6] gave some credence to that idea. Sub-
gradient optimization is closely related to the relaxation method
for solving systems of linear inequalities, which has been used
with success on some very large-scale problems with special struc-
ture: this seems to just;fy a closer look at subgradient optimi-

zation.

In this paper we will make explicit the relationship between
the relaxation method for linear inequalities and subgradient
optimization. The speed of convergence of both methods depends
on condition numbers which have been defined in ([3] and [4]. It
will be shown that the two theorems on convergence are almost

identical.

*This research was supported in part by the D.G.E.S. (Quebec)
and the N.R.C. of Canada under grant A4152.
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2. THE RELAXATION METHOD AND SUBGRADIENT OPTIMIZATION

Let <al,x> + gt >0, 1 €I be a finite system of linear

inequalities where ale r", Bt e R, x € R, (2.1)

Let P = {x € R*: «<al,x> + 8t > 0, ¥ i € 1}, the solution

set.

Define the function f1 by:
£1(x) = Min {<a’,x> + g%, i € 1}

and let f: be the maximum of f(x). It is clear that

f: >0 =>dimP=n ;

f: < 0 =>P is empty .

If we define f(x) = Min {0,f1(x)}, it follows that P is not empty

if and only if Maxn f(x) = 0, and that P is the set of points on
X ER

which f assumes its maximum value. Furthermore, P is empty if

and only if Max_ f(x) = Max_ f.(x) = f¥ < 0; the set of points
n n 1 1
X eR XER

on which f assumes its maximum value has been defined as the

Chebyshev solution to the infeasible system of linear inequalities.

. i , i
If we let at = —% — , 1= ——éf—— (we assume that a, # 0
1 1 1
Il o™ Il ™|l
¥i € I), where || || means the Euclidean norm, then the system
<al,x> + b1 > 0 , ier (2.2)
is equivalent to (2.1).
Let w,(x) = Min {<a',x> + bY,i € I} and w(x) = Min {w1(x),0};
also let w* = ng w(x).
Clearly {x € R®: w(x) = w*} = P provided that P is not empty
(and w* = 0). If P is empty then w* < 0, and the set of x which

maximizes w(x) is not necessarily the same as the set of x which
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maximizes f(x) (it is clear though that f* < 0 iff w* < 0). The

functions £, f1, W, w, are all concave and piecewise-linear.

A "subgradient” set can be defined for each x and each con-

cave function, say Wqt

aw, (x) = {ve R w,(y) <w,(x) +<v,y-x>, yeR} .

Letting Iw,(x) = {ieI: wilx) = <al,x> + b'}, then Wy (x) =
convi{al: i € Iw1(x)}, where Conv means convex hull. Let Iw(x) =
{i €I: w(x) = <a',x> + b'}. It can be seen that

w(x) = 3w1(x) if x &P
ow(x) = Conv(8w1(x) u {0} if x € bd P
aw(x) = {0} if x € int P

(where bd P means boundary of P and int P means the interior of
P).

The same definitions and ideas are of course valid for f

and f1.

Three different implementations of the relaxation method
have been given by Agmon--the maximal distance, the maximal

residual, and the cyclical methods.

Let

gt = (x: <ol x> + gt > 0} = {x: <at, x> + bt > 0}
and

El = {x: <ai,x> + Bi = 0} = {x: <ai,x> + bl = o} .

The notation d(x,S) will indicate the distance between a point x
and a set S. C(Clearly,
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J<ai,x> + gt

ax,eh) = T = |<ai,x> + bt
[| o]l
. i i . .
a(x,nty = HMax (Z(car,0> 3 B ):0) _ max (-(<al,x> + bi),0) .
I o™l
Note that wi{x) = - Max d(x,Hi).

i€l

The relaxation method applied to (2.1) constructs a sequence

of points in the following manner.

2.2.1

2.2.2

Choose x° e R"! arbitrary.

1f x9 e P, the sequence terminates.
1f x4 # P, then determine i9 by one of the three methods

below.

2.2.2.1 The maximal distance method:
let i9 be the index of a halfspace H! which is

the furthest distance away from xq; i.e.,

e .
axq,8t) > ax9,8Y) vie 1.

2.2.2.2 The maximal residual method:
let i9 be the index of a most violated constraint;
.q .q . .
ice., <ot ,x% 4+ gt < <ot ,x% + gl wioe 1.
2.2.2.3 The cyclical method:
assume that T = {1,2,3,...,m}, then take
i9 = g + 1(mod m).

Then set

:q
.q i
xq+1 = x9 + oq d(xq,Hl ) S N R

i
Il ot ]

where usually o©

g+q+ 1.

q € (0,2], and go back to 2.2.2 with
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19

) =
0, so that no move is taken at Step 3. We will not discuss it,

In the cyclical method it is quite possible that ax9,n

as it does not seem easy to compare it to subgradient optimiza-

tion.

If o =1 then xq+1 is the orthogonal projection of x9 on

.q .
gl7; if o = 2, then x9™' is the reflexion of x9 on ELY; if

Oq € (1,2) one talks of overprojection, and if oq € (0,1) of

underprojection.

Now let us describe the subgradient optimization algorithm,

say for the function f:
2.3.1 Choose x° € R™.

2.3.2 Compute a subgradient of f at x3: wde af (x9) .
1f ud = 0, an optimal point has been found.

2.3.3 The next point xq+1 of the sequence will be obtained
by moving from x9 in the direction of u9 by a certain
step size. Go back to 2.3.2 with q+1 replacing q.

Various proposals have been made for the step size:

q
2.3.3.1 shor [10]: x9"1 = x%9 + A Y here A_ > 0.
T | d
2.3.3.2 Held and Karp [5]: xq+1 = x9 + pquq where
> .
Pq 0

2.3.3.3 Held, Wolfe and Crowder [6], Eremin [2], Poljak
[9], Oettli [8]:

g+1 £ -fx%) g

—_—u
q a2
| u=|

xI7 = x9 4+ ¢

where oq >0 and f > £(x9) is a guess of the
optimal value f* of f(x) which can either be:

A

2.3.3.3.1 an overestimate: f > f* ,
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2.3.3.3.2 an underestimate: £ < £* ’

2.3.3.3.3 the exact estimate: £ = f*

It can now be seen that:

(1) The maximal distance relaxation method for solving
(2.1) (which is the same as the maximal residual
relaxation method for solving (2.2)) is equivalent to
the subgradient algorithm applied to the function
w(x), using the step size given in 2.3.3.3.3 if P is
not empty, and the step size of 2.3.3.3.1 with £=o0
if P is empty.

(ii) The maximal residual relaxation method for solving
(2.1) is equivalent to the subgradient algorithm
applied to the function f(x), with the same use of

step size as above.

For the maximal distance relaxation method (2.2.2.1) it is

clear that the index i9 selected maximizes d(xq,Hl), and thus

satisfies
.gq .gq
:q .q el q, _ gl .
—(<at x>y - ptt o= 2@ WXT B 4x9,5t)
iq
la™ |l
= Max d(xq,Hl) = —w(xq) ;
ier
thus
.q q i q
i e Iw(x?) and a € w(x?) .

The only minor difference is that in subgradient optimiza-
tion we are explicitly permitted the use of any vie wxd)y. 1t
would require the following extension of the relaxation method:
if Iw(xq), the set of indices of the most distant halfspaces,

contains more than one element, then any direction v? = )

ieIw(xq)
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nial can be used, where

=1, n; > 0wviewxH ,
ie1w (x9)

and the next iterate would be:

—_evd L9y _ L9 q
Xq+1 = x9 4 Oq <vi,x ; C vq ,
[ v IRadl
with c¢? = y n;b*. Note that
ietw (x9)
«w?,x¥H> + T = ] n; (<at,x®B + Y = wix?)
ieIw (x9)

and that we are simply projecting in the direction of the half-
space {x: <v3,x> + c¥ > 0}. also || v¥|| < 1.

In the next section, on condition numbers and convergence

rates, this distinction will require some attention.

One key point to notice is that if the system of inequali-
ties (2.1) is feasible then w* = 0, and thus the maximum value of
w(x) is known; that is exactly the case 2.3.3.3.3 of the sub-
gradient optimization technique. That the step sizes are iden-

tical is trivial to check.

The identity between the maximal residual relaxation method
and subgradient optimization as applied to f can be shown in the
same fashion. In this case, also, if (2.1) is feasible then the

maximum value of f(x) is also known to be equal to zero.

Now if the system (2.1) has no solution, it is clear that
f*¥ < 0 is not known, then the search for a Chebyshev solution to
(2.1) becomes exactly equivalent to the problem of maximizing
f(x), which can be solved through subgradient optimization (in
the case where the objective value is not known). One of the
first examples of subgradient optimization can be found in some

work by Eremin [2] on Chebyshev solutions of incompatible systems
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of linear inequalities {(as can the first result on convergence
that I have seen). This also means that the results on rates of
convergence of subgradient optimization gathered by Shor and the
author are valid for the Chebyshev problem.

The main difference between the relaxation method for solv-
ing feasible systems of inequalities and the subgradient method
for maximizing a concave function is that in the first case the
optimal value of the objective is known, while in the second it
is not. This has some implications for the theories of conver-
gence for the two methods: in the first case a rule for the step
size (cq € (0,2]) can be given so that for each q, d(xq+1,P) <
d(x9,P); in the second case no step size rule can guarantee the
monotonic decrease of anything. This also implies that a cycli-
cal rule is not easy to use in subgradient optimization as it.

. . . . 1
would not be clear if one should move or not in a direction a~.

3. CONDITION NUMBERS AND RATES OF CONVERGENCE

Condition numbers have been defined and rates of convergence
studied, for the relaxation method by Agmon [1] and the author
[3], and for subgradient optimization by Shor [11] and the author
[4]. As the two methods are quite similar, it is not surprising
that the similarity will extend to the study of rates of conver-
gence. In what follows, we will refer extensively to [3] and
[a].

The study will be made for the comparison of the maximal
distance method applied to (2.1) (or equivalently to (2.2)) and
subgradient optimization applied to w{(x). The function w(x) has
the property that every extreme point of 3w(x) has norm one
(except possibly for x € P, where 0 is a subgradient).

We want to emphasize that not all of the results that follow
can be extended to the comparison of £ and (2.1).
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3.1 The Relaxation Method

We will assume that P is not empty. For every x* € bd P,
let

Ny (x*) = {v € R": <v,y - x¥> < 0, vy €P} ,

the normal cone to P at x*. The normal cone can be written as:

n' = -
Np (x*) {verR': v= ) nja;/n; > 0} .

i€Iw (x*)
For any X € Rn/P ={xer": x ¢& P}, let x*(x) be the closest
point to x in P. Then x*(x) can be characterized by the fact
that
X = x*(x) € Np{x*(x)) .
Define, for every x¥ € bd P [3],
u* (x*) = Inf Max {-<al,v>} .
VGNP(x*) ieIw(x*)
Il vl =1

It can be shown that p* (x*) > 0, and that

u* = Inf u*(x*) > 0 .
x*cbd P

The definition of the condition number u* is a sharpened

version of a similar quantity defined by Agmon [1].

It can be shown [3] that (remember that w* = 0):
u*d {x,P) < -w(x) < d(x,P) ’
where d(x,P) = || x - x*(x) || , the distance between x and P. Both

bounds can be shown to be tight, and thus u* could be defined by
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* = ~w(x)
T en/p 3%/ P)

Having defined u*, it is very easy to prove the geometric conver-

gence of the relaxation method, as one can show that

g+1
14

a2 (x P)

| A

a%(x9,p) - 0q(2 = 09 w2 (x9)

A

a%(x3,p) [1 - 0.(2 - o )u*?] .
q q

It follows that, provided that oq € [0,2], then d(xq+1,P) <
d(xq,P), so monotonic decrease is guaranteed; and also that if

oq e [£,2 - €], then

axTp) caxde) T 07

so that geometric convergence occurs.

Two other concepts, which are also trying to measure the well

conditioning of a problem, were introduced in [3].

For x* € bd P, let
CP(x*) = {u e R?: <al,w> > 0, Yi € Iw(x*)} ,
the tangent cone to P at x*. Clearly NP(x*) is the polar cone to
CP(x*). A polytope P will be called obtuse if every tangent cone
is obtuse:

—NP(x*) c CP(x*) ¥x* € bd P .

For a cone C, let v(C) be the sine of the half aperture angle of
the largest spherical cone contained in C, and let

v = Inf v(CP(x*)) .
x*cbd P
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It is clear that v > 0 iff dim P = n, and that v 2 ﬁ%: implies
that P is obtuse. It can also be shown that u* > v [3]. It can
then be shown that the maximal distance relaxation method applied
to (2.1) or (2.2), assuming that dim P = n, converges finitely
if:

(i) P is obtuse and cq € [1,2] for all q:

or

(ii) o_€ [ 2 + e,z] , where ¢ > 0 , for all q .

T [+ 2v/1 -2

Thus, it has been proved that, if dim P = n, there is a
range of values of cq which leads to finite convergence, and to

geometric convergence (until termination) [3].

3.2 Subgradient Optimization

For the concave function w(x), a condition number can be

defined:

u(x) = Inf <u,x*(x) - x>
uedw(x) || uf| *|| x*(x) - x|
and
H = Inf H(x) .
XERN/P

Rates of convergence for subgradient optimization depend upon

this quantity.

Theorem 3.1 [U]

"
- ~ 17
IR

Let {x9} be a sequence which satisfies xq+1 =xq-+AoOq

where u9 ¢ aw(xq), Ao >0, p € (0,1).

Let
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- 2_ _2 + 2_1_2
C=Max-1—,u/u 2(1p) p = L¥Yu 2( =
e 1-p 1-p
and
/1 = u2 if u < 4;
z(y) =
1
2u if u > 4? .
Then:

(1) p > z(u) and d(x%) € [AC,A_D] implies that for all
qa: axd < ax?ed;

(ii) p > z(w and d(x®) < A C implies that for all
q: a(x9 < Aonq;

(iii) p < 2(u) or d(xo) > AOD may lead to convergence of

{x9} to a non optimal point.

Theorem 3.2

The condition numbers u and u* are equal.

Proof

This theorem can be proved in many different ways. It will
be proved here in a way that gives new definitions of u and u¥*,

and also does not assume any other result.

By definition

u(x) = 1In <u,x*(x) - x>
uedw (x) || ul| || x*(x) - x|
But <u,x¥(x) - x> is positive for any u € 3w(x), and
<u,x¥*(x) - x>
[Full =1l x*(x) - x||
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is a quasiconcave function of u on the domain {u: <u,x*(x) - x>
> 0}; it thus follows that the infimum is attained at some of

the extreme points of sw(x); i.e.

<al,x*(x) - x>

p(x) = Min as [|ai[| =1 .

i€Iw (x) || x*(x) - x|

If one uses the definition of concavity for w, one gets, as

wix*(x)) = 0:
<ai,x*(x) - x> > ~wix) > <aj,x*(x) - x>

for any i € Iw(x), j € Iw(x*(x)).

Furthermore, if w'(x;6) denotes the directional derivative

at x in the direction §, then

w'(x; x*¥(x) - x) = Inf <ai,x*(x) - x>
i€Iw(x)

w'(x*; x-x*(x)) = Inf <aj,x - x*(x)> ,
jeIw(x*)

and thus:

w'(x; x*¥(x) - x)

{v

-w(x) > -w'(x*; x - x*(x)) .

Define for every x:

§(x) = x*(x) ~ x
| x*(x) - x||
then one has

-w(x)

w'i(x; 8(x)) > a0, py 2 W' x*; -6(x)) .
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It is also clear that

pix) = w'(x; 8§(x))
so
B o= Inf w'(x; §(x)) .
xeRN/P
Also,
—w'(x*; -6(x)) = Sup  <ad,8(x)> > ¥ (x*)
JEIwW (x*)
as
-8(x) € Np(x*) and sy =1 .
And
Inf {-w'(x*; -6(x))} = u*(x¥) ,
XEX*+N_ (x%*)
P
so that
u* = Inf Int {(-w' (x¥*; =8)) .
xX*cbd P —6ENP(x*)
Il 8] =1

From this, it is clear that u > u* (this could also be concluded
from Theorem 3.1 in [4]). Now to show that yu = u*, the simplest

way is to use v and x* such that

u* = Max <al,v>
i€Iw (x*)

where
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vV E - Np(x*) and | v]] =1 .
Now for any a > 0, one has that
x* (x* - av) = x* ,

i.e., the projection of x* - agv on P is x*. So

u* = Max <ai,x*__x>
i€EIw (x*) ¢
where x = x* - av and o = || x* - x|| = d(x,P). But,
<ai,x* - x> = <ai,x*> + bl - <ai,x> - bi
= -<ai,x> - bi

as <a1,x*> + bt =0 ¥i € Iw(x*) ;

SO

—<al,x> - bt
d(x,P) ‘

Max
i€Iw (x*)

u*

It is easy to check that there exists € > 0 such that Iw(x* - nv)

C Iw(x*) for any 0 < n < €. Thus, if z = x* - ev,
_ - i el i
_.d("‘;(zp)) =  Max —ﬁ—“ ;z; D¢ ux < Max ————————<g(éz;) b
! i Iw(z) ’ i€l !
- —w(z)
d(z,P :

This, by the way, proves that

-w(x)

u*¥ = Inf .
X@&P d (x,P)
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Also:

i i
-<a~,z> - b

w(z)
u* = - T = Max ——r—
d(z/P)  je1y(z)  9(2/F
i i
_ -<a’,z> - b .
¥ T v i€ Iw(z)
iow _
= Min %T—Zl = u(z) .
i€Iw(z) !

From this it follows that

u* u(z) > u ,

The proof given here is somewhat messy. One reason for its

and as p > u*, the theorem follows.

use is that it gives two new definitions of u or uy* in terms of
directional derivatives. We will state a few related results,

whose proofs are similar to, or included in, the one given above.

(i) 1If x is close enough to P, then
<al,x*(x) - X> = <aj,x*(x) - x> ¥1i,j € Iw(x) .
This means that every extreme point of the subgradient set 3w(x)

makes the same angle with the direction to the closest point to

the optimal set.

(ii) Let
Xx¥¢c bd P and i€ Iw(x*) ;
then

dw(x* - gal) = {ai} Yo >0 .
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Proof

i i i i
-a = al(x* - aal) + b" > wix* - aa’)

= Min (<a3,x*> + b - a<a3,al>)
jeI
> Min (<a3,x*> + bl) + Min (- a <a3,al>)
jel je1
= 0 - aMax <a3,al>
jEI
=-a as <al,a*> < <at,a’> =1 ¥j e1 .
If ak # at, then
ak(x* - aal) + bk > - a<ak,al> > -a

and thus 3w(x* - aa’) contains only one element, i.e., {al}.

This last result depends crucially upon the assumption
[| at|] =1 i I.
There is one result that is very important for subgradient

optimization (for a general concave function), but which depends

upon the assumption that all al

have norm one. If we assume that
an overestimate of i is known, the only thing required to guar-
antee converdence is that an overestimate or ud(xO,P) be avail-

able [4].

Here it is clear that if w > w*, then
ir—w(xo) > wk —w(xo) =—w(x0) zu*d(xo,P) = ud(XOIP) ’

and as any feasible solution to a dual problem to Max w(x) will
XERDN
provide a value W > w*, it follows that w - w(x ) is an over-

estimate to ud(xO,P).

This is exactly the result that one would wish to extend to
a general function w(x). Unfortunately, given a proper defini-

tion of u*, this result does not extend without significant change.
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Another minor result might be worth mentioning, about the
quantity v; it follows somewhat directly that if dim P = n and
X¥ € bd P

v(Cp(x*)) = Max Min <at,e> ,
[e]|=1 i€Iw(x*)
and thus v(CP(x*)) = llMTr wi(x*;e) which could be called the
ell=1

intensity of the steepest ascent at x* of the function wq(x).
It also follows that

v(Cp(x*)) =  Min  |lu]|
u€8w1(x*)

and thus

Min Min ull .
x*cbd P ueaw1(x*)

<
]

4. CONCLUSION

The relationship between the maximal distance relaxation
method and subgradient optimization as applied to a certain
function w(x), whose optimal value is known, has been made
explicit.

Condition numbers defined in both theories are compared; in

particular u = u*, so that if u < 4; , then the sustainable rate

of convergence for subgradient optimization is exactly equal to
the rate given by the relaxation method with A = 1.
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AN EXTENSION OF THE METHOD OF SUBGRADIENTS*
Robin Chaney and Allen Goldstein

Until 1964, the only general method for the minimization of
nondifferentiable convex functions was the so-called "cutting
plane method" discovered by Cheney-Goldstein [1] and independently
by Kelley [2].

In 1964, Shor [3] conceived the subgradient algorithm. Since
that time, the method has been extensively developed in the Soviet

Union. Some of these references are given in [3]-[12].

Lemarechal has reported at this conference that his computa-
tional experience showed that a modification of the subgradient
method, due to Shor [8], was by far the most effective method for
difficult nondifferentiable problems.

Generalizations of the subgradient method beyond convex
functions have had partial success. The strongest result is due
to Nurminskii [12]; this was corroborated by Poljak. An algorithm
is formulated for a class of "weakly" convex functions. The rate

of convergence obtained is slower than geometric.

The present extension of the subgradient method is to max
families [13] and quasidifferentiable functions of B.N, Pshenichnyi

They are useful in many problems of applied optimization.

1. ALGORITHM

1.0 Hypotheses

Let E be a real Hilbert space and f a real-valued function
defined on E. Let x € E and ¢ > 0 be given. Let B(x,e) =
{y: ||y - x|| < e}.

*Supported by the National Science Foundation: MPS72-04787-A02.
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Definition: £ is called e-non-stationary on B(x,e), if for any

n, 0 < n < e and for any minimizing sequence {x,} for £ on B(x,n),
{lek - x|} »n.

y € B(x,e)}, T(x,e) = {y € E:

{y: dist(y,T(x,e)) < el.

Let m(x,e) = inf {f(y)

f(y) < m(x,e)}, and D(x,¢€)

Assume there exist multifunctions P: D(x,e) -+ subsets of
T(x,e) and ¢: D(x,e) > subsets of B(0,1). These functions,

together with f, are assumed to satisfy [A], [B], and [C] below.

Assume there exist positive constants 0, p, and L such that

whenever y € D(x,e) the following inequalities hold:
Al [6(y),y = P(y)] > 0|y - P(y) ||
[B]1 wlly - P(y) || < £(y) - £(P(y)) < Lily - P(y) |

[l lly - Tx,e) || <lly -p»il <

ly - txoe) | 0+ B2, 4510 .

1.1 Lemma
Assume [A], [B], and [C] and the number m(x,ec) are given.
=Xy - Yk¢(xk).

Set x_ = XYy = [f(xk) - f(P(xk))]/a and Xy

e} +1

Then || x, - Pix) || < 8%[lx, - Pl o< 8 =11 - 42y,

Proof: Assume x, € D. Compute Hxk+1 - P(xk)H2 = ||xk - P(x)
- yk¢(xk)|l2 = || % - P(xk)l|2 - 2y, [0 (x ) yx) = P(x )] + Yi'

Now [(x),x = P(x)] > [ x, = P(xp) || > 0[f(x,) - £(P(x,))1/L
> [f(xk) - f(P(xk))]/ak = Yy- Hence —2Yk[¢(xk),xk - P(xk)] <

2 2 2
=2y . Thus || xp g = PO ) |17 < |l %y - Pxp |2 - Yi =

fix,) - £(P(x,))\2
2 k
| %, - P(xk)|| - ( 3 k ) < ey - P(xk)“2 x
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(1 - MY < fx -rxall® (- &Y. since || xy - Tix,e) ||
<l Xpp1 = P(xk)|| it follows that x, ., € D(x,¢€).
2.1/2
also, [[ x4 = Pxp, Il < |l x4 - Tl (1 + D5
1 2 l 2

< Nl xpepq - POl 0+ (HHT20 Thus [ %y, - Plxy ) |l

_ _ u 4,1/2
%, = B |l (1 = (HH1/2,

1.2 Definition

By E_ we denote the set {y € E: f is e-non-stationary
on B(YIE)}-

1.3 Theorem

Assume f is bounded below on E, and assume [A], [B], and
[C] hold for each y € E_. A finite sequence {xk} can be con-
structed such that for some integer M, Xy ¢ Ee'

Proof: Observe first that by [C] inf {m(x,e): x € Ee} > ue.

Take x € E _,
o) 3

above theorem. Since || x, - P(xk)|| + 0, we have by [B] that

and let {x.} be the sequence constructed by the

{f(x})} > m(x,,e). Again by [B], f(x ) - m(xg,e) > ull xg
- P(xo)|| = pe. Hence m(xo,e) < f(xo) ~ ue. Therefore for

some number k,, f(x, ) < f(x)) - ne/2. Set xj = and
1

o xk1'
invoke the lemma with an € ball around xé and a new mapping P'
assigning points to the set T' = x € E; f(x) < inf{f(y):
y € B(xé,e)}. Repeating this process a sequence of numbers

f(xk ),f(xk );... will be generated. It follows that for some
1 2
ks’xks ¢ E_; for otherwise {f(xki)} + ~», contradicting that f

is bounded below.

1.4 Remarks

In application, the number m(x,ec) is in general unknown.

The estimate f(xo) - ue > m(xo,e) may be employed in lieu of
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m(xo,e), however. We have that f(xo) - ue = m(xo,n) for some
n, 0 < n < €, and fortunately the number n is not required in
the lemma or theorem. If a lower bound for the infimum of f is
known, the total number of iterations to reach X, can be esti-

mated from 1.1. s

2. APPLICATION TO SOME MAX FAMILIES OF B.N. PSHENICHNYI

2.0 General Hypotheses

Let U be a metric compactum. Assume f is defined and con-
tinuous on Ea x U, that f(.,u) is Gateaux differentiable on Ea'
and that

|£' (x,u,h) - £'(y,u,h)| < K[| x - y|| |in] (1

for all x and y in Ee' u €U and h € E. It follows that f, and
F below, are locally Lipschitz on Ea' Let

F(x) max {f(x,u): u € U} , X €E (2)

and

U(x)

{fueu: F(x)=f(x,ul} . (3)

The Clarke differential of F [14] is defined as

F°(x,h) = lim sup Fix + k + X?’ - F(x + k) .

AYo k—+o

The convex functional h -+ Fo(x,h) is the support function for a
weakly compact convex set called the generalized gradient of F
at x. It is denoted by 3F(x). See also [14], Propositions 1
and 2.
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2.1 Lemma

dF (x) = co U 3f (x,u)
ueu (x)
and
F(x,h) = F!(x,h) = max {f'(x,u,h): uw€UX]} ,
where
Fl(x,h) = 1im (F(x + A?) - F(x))
A>0+
Proof: By Proposition 4 (Clarke, [14]), f'(x,u,h)==f°(x,u,h).
Let M(x) = co U 3f(x,u) and take x € S and u € U(x). Then
F(x + Ah) - F(x) > f(x + Ah,u) - f£(x,u) and so
Lim int Elx * Ah) - F&X) 5 go(x,u,h) = £2(x,u,h)

= max {[¢,h]l: ¢ € 3f(x,u)} .

Since u is arbitrary in U(x),

F(x + Ah) - F(x)

F°(x,h) > lim inf

240 A
> max max [¢,h] = max [¢,h] .
u€el (x) ¢€sf(x,u) PEM (x)

(See Pshenichnyi [13], p. 166.) Hence M(x) C 9F(x). By the
definition of F°(x,h) there exist sequences {vk} + 0 and {Ak}+ 0
such that:

F(x + v. + A h) - F(x + v_)
F°(x,h) = lim 3 n
n-»o n

Choose u, € U(x + v, + Anh) so that
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F(x +v_ + A h) = f(x +v_+ X _,u) .
n n n n’' n
Then
F(x-+vn-+knh) - F(x-+vn) . f(x-+vn-+knh,un) - f(x-+vn,un)
A - A °
n n
We may assume {un} + u*,
Observe that F(x) = lim f(x + v + Anh,un) = f(x,u*); hence
n-+o
u* € U(x). Therefore
lim sup Flx + AQ) - Fx) < F%(x,h)
AYO
f(x + v_ + X h,u) - £f(x + v_,u)
< lim inf n n T n nn
T noe n

lim inf {f'(x + vn,un,h) + f'(gn,un,h)
- f'(x + vn,un,h)} < lim inf {f'(x + v, ru,ch)

2
+ KA || h ||}

= f'(x,u*,h) = £°(x,u*,h) < max {f'(x,u,h): u € U(x)}
= max max [¢,h] = max [¢,h] .
uel (x) ¢ af(x,u) dEM (x)
Hence
af (x) = M(x)
and

F!(x,h) = F%(x,h) = max [¢,h]
dEM(x)
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2.2 Lemma

Given € > 0 and || h]| = 1, we have that (F(x + ¢h) -
F(x))/e > F'(x,h) - Ke.
Proof:
% max {f(x + e¢h,u): u.,e U} - % max {f(x,u): u € U}
> % max {f(x,u) + £'(x,u,h): u € U(x)}

K €||h||2 - F(x)/e = max {f'(x,u,h): u e U(x)}
- Ke .
To proceed, another hypothesis on our max family is conve-
nient. We shall assume if the index values u are close that

jumps in £'(y,...,h) are bounded.

2.3 Lemma

Let x and y be arbitrary in E_ and let h = (y-x)/]ly- x|
€ U(x) and u, €U(y)

Assume that for € > 0, ||x - y|| > €, u
and |F}(y,h)| > ¢/2 > 0; then

1

|f. (ylu1lh) - £ (y,uzlh) |

<r <1 .
max {|£'(y,u,h)|: uweu(y)} ~
Then there exists e < € such that:
1 -
[FLah) - FLh | o (g 4y
|F_:_(YIh)|
whenever [[x - y | < e_.

(@]
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Proof: Take ||x - y|| < e. Then

[Fi(x,h) - Fl(y,h)| = |max {£'(y,u,h) + £'(x,u,h)

f'(y,u,h): u € U(x)} - max {f'(y,u,h): u € U(y)}]|

[A

max {|f'(x,u,h) - £'(y,u,h)|: u € UXx)}

+

|max {£'(y,u,h): u € U(x)} - max {f'(y,u,h):

u € U(y)}H< ke, + r|Fl(y,h)|

(1 - r)

Choose €, < —— %

g; then

|F}(x,h) - F}(y,h)| +
F1(Y/h) =2

whenever ||x - y || < €y

2.4 Lemma

Assume the hypotheses of 2.3 with x = P(y). Then F(y) -
F(P(y)) > o/2|ly - P(y) || (1 - @. By [18]1, if |Fl(x,h) -
Fi(y,h)| < q|Fl(x,h)| then (1 - q) |Fl(y,y - P(¥))]| < |F(y) -
F(P(y))

. Since

’

_ 1 +r ' y - P(z) )
q = and P (y, > g/2
z N ly - P |l

the formula follows.

2.5 Hypotheses

We now collect some hypotheses.

f(x) - £(P(x))
4

Since f(P(x)) < f(x), o(x,e) > 0. We shall assume
that: inf {o(x,e): x € Ee} =g > 0.

(a) Given x € E . let o(x,e) =




(b)

(c)

2.6
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The hypothesis of 2.2.

The hypothesis of 2.0.

Remark

Hypothesis (a) is proven in the finite dimensional case

that follows in Section 3.

2.7

As a
A, B, and
Proof:

[a]

[B]

[cl

Theorem

consequence of the hypotheses of 2.5 the conditions

C are satisfied.

By 2.1, if € < o/2K, then F'(y.-—iiﬂﬂ—illl-)
Ipty) -y
< =0(x%,€e) + 0/2 < =0 + 0/2 = -0g/2.

Take ¢(y) € 3f(y,u), then [¢(y),P(y) - yi

A

F'(y,P(y) - y). Hence [¢(y),y - P(y)]

v

/2|y - P(y) || .

By 2.0 F is Lipschitz continuous. For the lower

bound, see 2.4.

The existence of P follows by taking a minimizing

sequence converging to dist(y,T(x,e)).

3. APPLICATION TO THE QUASIDIFFERENTIABLE FUNCTION OF

PSHENICHNYI

3.0%¥ Hypotheses

The following two hypotheses will be used in the sequel.

Let S be an arbitrary subset of En'

*In this section the one-sided differential f;(x,h) will be
simply written as f'(x,h).
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[D] f is locally Lipschitz on S and there exists € >0
such that if 0 < ¢ < € and x is in S then f achieves

its minima on B(x,e) only on the boundary.

[E] £ is quasidifferentiable on S. Thus, f is locally
Lipschitz on S, f'(x,.) exists for every x in 8§, and
f'(x,h) = max {[¢,h]: ¢ € d3f(x)} for every x in S
and h in En'

3.1 Remarks

The concept of quasidifferentiability is used here as it is
in [13]; see also [15] and [16]. Clarke [17] has shown that
many "max" functions are quasidifferentiable.

For a quasidifferentiable function f it is true that each
f'(x,.) is continuous. Moreover, if 0 is not in 3f(x), it
follows that f'(x,.) attains a unique minimum on the set of all
unit vectors. To see this, note that

min f'(x,h) min max {[¢,hl: ¢ € 8f(x)}
bl =1 | Bl <1

max {min [¢,h]l: ¢ € af(x)}
[[hil <1

max {[¢,-¢/]| o] 1: ¢ € 3f(x)}

-min {|| ¢ |

: ¢ €3f(x)}
hence f'(x,.) has its unique minimizer among unit vectors at
—¢o/||¢0|l, where ¢, is the closest point to the origin in

3f (x).

3.2 Definitions

Assume 3.0[D] and let £ > 0 be as in 3.0[D]. Given x € S

and € in [0,3], let h(x,e) be the set of gl unit vectors h such
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that x + €h minimizes £ on B(x,e). Each vector in h(x,c) is

called a direction of e-steepest descent, while

f(x + eh(x,e)) - f£(x)
€

is called the rate of e-steepest descent,

3.3 Lemma

Assume 3.0[E] and x € S. Let {ti} be any positive sequence
converging to 0, and let hi € h(x,ti) for each i. Let {tk} be
a subsequence of {ti} such that {hk} converges to h(0). Then

f(x + t, h ) - f£f(x)
lim ktk
k> k

min {f'(x,h): | h| = 1}

£f'(x,h(0)) .

Proof: By 3.1, f£'(x,.) has a unigue minimizer hO on the unit

vectors. Then, f(x + tkh - £(x) < f(x + tkho) - f(x) for each

k)
k, and so

f(x + t h ) - £(x)
lim sup ktk
k> k

]
< £ (x,ho) .

Also,

f(x+ tkh(O)) - f(x)
f'(x,ho) < £'(x,h(0)) = lim s
k> k

fm+tm)-fm) f(x+t h(0)) -f(x+t h)
lim inf kt +1lim k kk
k> k koo t

k

f(x + £t h ) - f(x)
lim inf kK ,
k> k
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because of the Lipschitz condition on f. Therefore,

fix + tkhk) - f(x)
lim T = fl(xlho) ]
k> k
and moreover, f'(x,ho) = £'(x,h(0)).
3.4 Remark
If 3.0[E] holds and if we put h(x,0) = {ho} (for each x

in S), then the multifunction t -+ h(x,t) is, for each x in S,

upper semicontinuous at 0.

3.5 Theorem

Assume 3.0[D] and 3.0[E]. For each x in S, the multifunc-
tion h(x,.) is upper semicontinuous on [0,€).
Proof: By 3.4, h(x,.) is upper semicontinuous at t = 0., Suppose

0 <t < &. Let {Oi} be a sequence of real numbers converging

to 0 and let {hi} be a sequence of vectors such that each hi is
in h(x,t + 6;) and {h,} converges to h. Let q; = (t +06;) hy
for each i. Then {qi} converges to th and it must be shown that
h is in h(x,t). Two cases can be distinguished, accordingly as

Oi > 0 for each i or Oi < 0 for each 1i.

Case (a). Suppose Oi > 0 for each i. Choose x + p; on
the line segment which joins x + thi and x + a; such that
f(x + pi) = f(x + th(x,t)); this is possible because f(x + thi)
f(x + th(x,t)) > f(x + q;). Hence, [£(x + q;) - f(x + th(x,t)) |
| £(x + q;) - fix + p;) | < L||qi - pi|| < Lo;, where L is a
Lipschitz constant for f£. Thus, ;im fix + qi) = f(x + th) =

19>

f(x + th(x,t)) and so h is in h(x,t).

nov

Case (b). Suppose Oi < 0 for each i. Choose h™ in h(x,t)

and choose x + s; on the line segment which joins x + (t + Oi) h~
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and x + th” such that f(x + s;) = f(x + qi). This is possible,
because f(x + (t + Oi) h™) > f(x + qi) > f(x + th™). Much as
before, one obtains |[f(x + q;) - f(x + th™) | < L|o;[. Thus,

ﬁf.‘.} f(x + q;) = f(x + th) = f(x + th”) and so h is again in h(x,t).

3.6 Miscellany

The following information is from [17] and [19].

Let f be a locally Lipschitz function on En' In this set-
ting, the Clarke generalized gradient 3f(x) is the convex hull
of the limit points of all sequences {Vf(x + hi)} for which
{hi} + 0. The e-generalized gradient asf(x) is the convex hull
of all limit points of {Vf(xi)} where {xi} converges to some
point in B(x,e). The sets 3f(x) and aef(x) are convex and com-
pact and the multifunctions x - 3f(x) and x -+ aef(x) are upper

semicontinuous (in the Hausdorff metric).

Let B be a closed ball and let Z be the set of all station-
ary points x (i.e., 0 € 3f(x)) in B. Given § > 0, put B6 =
{x €eB: ||x~-2]| > 8}. Then, by [19], there exist numbers
€, > 0 and ¢ > 0 such that, for each x in By, 0 ¢'8€ f(x) and

1

| v, £x) |l > o, where V_ £(x) is the point in 3f_ (x) closest

1 1 1
to the origin. If one puts h = V_ f(x)/HVE f(x) || then [h,¢]
1 1

> o for all ¢ in 86 f(x) and x € BG; moreover, if 0 < A < €4
1
then f(x + Ah) - f(x) < -o)X (for each x in B). It follows that

min {f'(x,h): || h|| =1} < -0 for all x in Bg-

Finally, it should also be noted that if B is chosen as
above and if S = B6 then 3.0([D] is automatically satisfied with
€ = §; this is an immediate consequence of the fact that any

unconstrained local minimizer of f is a stationary point.

3.7 Lemma

Assume 3.0(E] with § = B6 and let M > 1 be given. Then
there exists €~ > 0 such that f'(x,h) < -0/2 whenever x € Bé,
e"/M < e <€, and h € h(x,¢e).
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Proof: Let €, = min (6,51). For each x in Bj define e (x)
= min {% €, sup {e: f£'(x,h) < -0/2 for ¢/M < y < € and h
h(x,v)}}. Given x in Bs, we know that e(x) > 0, in view of
3.0[D], 3.5, and the inequality f'(x,h(x,0)) < -o.

To complete the proof, we must show that
e” = inf {e(x): x € Bd} >0 . (1)

Take a sequence {xk} in B; so that {e(xk)} decreases monotoni-
cally to €7. Since Bs is compact, we may require that {xk}
converges to X in Bd' Now define e€* = min {% €,5,5Up {e:
£'(x,h) < -30/4 for 0 < y < ¢ and h € h(X,Y)}}. As above,

e* > 0.

Let ¢ > 0 be given with € < e*. Let T_ = {y: £(y)
< f(x + eh(X,e))} and let P_ denote the multifunction which

assigns to each y in Bd the set of closest points in Te' There

exists k_ such that || x, - X|| < €, - €* whenever k > k . For
o k 2 )

k >k,

=~ %o

% = P ) I < [%, - P_(x) |
(2)
<z -xll + lIx-2 | <

Define y(x,,e) = Hxk - Pe(xk)||. Since 0 < y(x,,e) < &, we

know that f is minimized on B(xk,y(xk,e)) only at boundary points

and we have the equations
Pe(xk) = %+ y(xk,e) h(xk,Y(xk,E)) ‘ k >k ‘
and (3)

f(x + eh(x,e)) = f(xk + Y (%, €) h(xk.Y(xk.E)))
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It is clear that, for k > ko’ each function Y(xk,.) is
nondecreasing on [0,e*]. At this point, we show that each such

Y(xk,.) is continuous on [0,ec*].

Thus, for k > ko’ suppose 0 < € < e* and put o =

lim Y(xk,s). It is clear that
ere

o0 < YxEl) . (4)

Choose an increasing sequence {eJ} which converges to €,+ and

for each j, choose hj S h(xk,y(xk,ej)); we may assume that {hj}
converges to a unit vector h*. From 3.7 and (3), we have
*) = 1i J = X X
f(xk + akh ) %iz f(xk + Y(xk,e ) hj) f(x + eoh(x,eo)) and
* ia i = -
so x, + o h* is in Teo. Hence Y(x,,€_) Il %) Peo(xk)” <
| oy h* || = o . 1In view of (4), it follows that y(x,,.) is left

continuous at €

Let k remain fixed, suppose 0 < €y < e*, and put b

k
lim Y(xk,e). Again, it is clear that
€re
e}
by > v{x.,e) . (5)
Fix n > 0. Since h(xk,.) is upper semicontinuous at

Y(xk,eo) there exists y > y(xk,eo), h; in h(xk,Y(xk,eo)) and
h, in hix,y) so ¥y - v(x.,e)) < n and ||h; - h,]| <n. set
xﬁ—= X, + Iﬁ*. Then f(xi) < £x, + Y(xk,eo) h(xk,Y(xk,eo))) =
f(x + eoh(x,eo), by (3); hence, there exists & > €y SO that

fxp) < £(x + eh(xX,e)). Therefore, Y(x, ,€) = I, - Pe(xk)l

§_||xk - xi|| §_||xk - (X + v (X EY) h8)1| + ||xk + Y(x.,e,) h*
- (x + yh;)||+ ||xk + Yh} - (x + yh |l < Y(xr€0) + 0+ yn.
Since n > 0 was otherwise arbitrary, it follows that bk <
y(xk,eo) and, hence, from (5), that Y(xk,.) is right continuous
at P

Now, for each k > ko and € in [e*/2M,ec*], we choose vk(e)

in the closed set h(xk,y(xk,e)) so as to maximize f'(xk,.) over
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h(xk,y(xk,e)). For each k > ko and € in [e*/2M,e*], we can,
by 3.0[E], select ¢k(e) in Bf(xk) so that

f'(xk,vk(e)) = [¢>k(e),vk(€)] . (6)

Assert now that an integer k1 > kO exists so that

(¢ () sy (e)] < 1o for x >k

5 and

1
(7)

ex/2M < € < e* .

If (7) were false, we could select an infinite subsequence {xj}
of {x } and a sequence {ej} in the interval [e*/2M,e*] so that
[¢ (e ), vy (e,)1 > -0/2 for each j, {EJ} converges to e#, {vj(ej)}
converges to h# and {¢J(€J)} converges to ¢ Since 3f is upper
semicontinuous at X, ¢# is in 3f(X%). By 3.0[E] and the defini-

tion of ¢*, we get

-30/4 > £'(x,h) > [¢#,h] ’ for every h in h(E,s#) .
(8)

#

Next, we shall show that h" is in h(?,e#). If this were

false, then there would be a unit vector h1 so that

f(x + e#h1) < f(x + e#h#) . (9)

For large j, the triangle inequality gives

g = b = UE -7, @1 < g - I
J
which amounts to |Y(xj,ej) - ejl i||xj It follows that
lim Y(xj,e ) = e# . (10)

]+m

From (9), (10), and (3), we have for large j,
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f(x + sjh1) < f(xj + Y(xj,sj) h(xj,Y(xj,sj)))
(11)
= £(X + sjh(x,ej)) ;

But (11) contradicts the definition of h(f,ej) and so it must

be true that h# is in h(f,e#). Since -o/2 < lim [¢.(ej),vj(ej)]

: J
_ J+co
[¢#,h#], the fact that h# is in h(x,e#) leads to a contradic-

tion of (8). Hence (7) is established.

From (6), (7), and the continuity of each Y(xk,.) we have,
for k > k1,

f'(xk,h)i -% g for y(xk,e*/2M) <y < y(xk,e*) and

(12)
h € h(xk,y) .

Arguing as we did for (10), we find lim y(xk,e*/2M) = ¢*/2M and
ko

lim Y(xk,e*) = e¢*¥, Hence there is an integer k2 > k1 such that,

k>

whenever k > k2, we have Y(xk,e*/ZM) < 2e*/3M and Y(xk,e*) >
2e¢*/3. Hence (12) leads to f'(xk,h) < -0/2 whenever 2e*/3M <
Y £ 2e*/3 and h € h(xk,y), provided k > k2.

Therefore, it is true that e(xk) > 2e*/3 for k > k2. It
follows that (1) is true and that the proof is complete.

3.8 Remarks

Suppose that 1.0[A] is replaced by the weaker hypothesis:
1.0[a'] [o(y),y = P(¥)] >0 ||y - P(¥) ||
for y in D, provided ||y - P(y) || > e/N ,
where N > 2L/u .

If this replacement is made, then the argument which yields

Lemma 1.1 can be used to obtain a version of Lemma 1.1 with the
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following conclusion: "...there exists a smallest positive

integer k* such that ||xk* - P(xk*)|| < g/N; moreover, for
k =0,...,k¥-1, one has ||xk - P(xk)|| < Bk||xo - P(xo)||,

where B = [1 - uu/uu]1/2."

It is then easy to show that Theorem 1.3 will still be
valid, with essentially the same proof, if 1.0[A] is replaced
by the weaker 1.0[A'].

3.9 Definitions

Assume 3.0[E] with S = BG and let € > 0. Given x in S,

set T(e,x) = {y: £f(y) < f(x + eh(x,e))} and D(e,x) = {y € Bs:
|y - T(e,x) || < €}, and let P P, y be the multifunction which
associates with each y in D(g,x) the closest points to y in

T(e,x). Define ¢_ = ¢ by ¢(y) = {h/||h]| : h e€3f(y)}.

3.10 Theorem

Let § > 0 and form the set Bd as before. Assume 3.0([E}
holds with 8 = Bg- There exists €~ > 0 and there exist constants
©, W, L, o, and N such that for any x in B and €* in [€7/2,€7],
with T = T(e*,x), D = D(e*,x), ¢ = ¢e*,x' and P = Pe*,x
3.9, it is true that 1.0[A'], 1.0[B], and 1.0[C] hold.

as in

Proof: Let L be the Lipschitz constant for £ on B. Then put
U=o9, ©0=0/(2L), ¢« = L/O, and N = 2L/0. Let M = 2N and choose
e~ as given by Lemma 3.8 to correspond to M.

Now suppose €7/2 < e* < e” and x is in B;. Since ||y - T||=
|y = P(y) || for all y, it is obvious that 1.0[C] holds. If one
sets h = -V _,f(y)/[|V_4£(y) || , then by 3.6, £(y) - £(P(y)) >
f(y) -— £(h + ||[h = T||h) > o||ly - T]| , for all y in D. Hence
1.0[B] is verified.

To see 1.0[A'], let y be in D with ||y - T|| > e*/N. Put
ly = T|| = |ly - P(y)]| . Then € > e*/N = /M while
€ < e*¥ < eg”. It follows from Lemma 3.7 that f'(y,h(y,e)) < -o/2.

m
]
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From 3.0[E] and from the equation P{y) = y + ch(y,e), it follows

that, for every ¢ in 3f(y), [¢,y - P{(y)] = [¢,-eh(y,e)] > ec/2
=ag/2 |ly -2 || > (o2 ||y - eIl el -
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NONSMOOTH OPTIMIZATION AND NONLINEAR PROGRAMMING
B. N. Pshenichnyi*

We first give an algorithm of the penalization type for
solving ordinary nonlinear programming problems in a "nondiffer-
entiable optimization" context as in [1]. We investigate its
rate of convergence. Then we apply it for solving some more
specific problems such as finding a feasible point to a set
of equality and inequality constraints; and, finally, we give

some ideas which might lead to superlinearly convergent algorithms.

1. THE ALGORITHM

Let us consider an ordinary nonlinear programming problem

min fo(x) x € R"

(1)
£.(x) <0 ie1=1{1,2,...,m

in which we suppose the gradients fi(x) to be Lipschitz contin-
uous for i = 0,1,...,m. For simplicity of notation, we suppose
also that there is a degenerate constraint fi(x) =0 ¥ x. We do
not require any Slater condition; in particular, the following
development will accept equality constraints £(x) = 0, simulated

by fi(x) = 2(x), fi+1(X) = =2(x).
It would be possible to solve (1) by successive lineariza-

tions, i.e. by Newton's method, but the linearized problems

*This paper was written by C. Lemarechal from the tape recording
of the talk.
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usually have no solution. This motivates the following algorithm,

which has an NSO background.

Set
F(x) = max{fi(x)/i € I} (note that F(x) > 0) (2)
¢N(x) = fo(x) + N F (x) for some positive (3)
number N (¢N is a
so-called exact
penalization)
IS(X) = {ie I/fi(x)_i F(x) - 8} for some § > 0 . (4)

We will give a descent algorithm for minimizing ¢N(x),
starting from some X, -
Linearizing (1) about x, consider the following direction-

finding problem in p:

min (£ (x),p) + le2 p ER

(5)
(fi(x),p) +£.(x) 20 ie I5(x)

We suppose N and § are chosen such that for any x in the level

set {x/¢N(x) < ¢N(X0)}:

Problem (5) is feasible (6)
and

its Lagrange multipliers u; satisfy
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u, < N . (7
ieta(x)

Therefore, during the iterations of the algorithm, we can check
(5) and (6): if (5) is infeasible, we decrease 6. If (7) does
not hold, we increase N.

Let p(x) denote the solution of (5).

Theorem 1

p(x) = 0 if and only if x is feasible in (1) and it satisfies
first order necessary optimality conditions.

It seems that, for computing p(x), it is more convenient
to solve the dual of (5), namely
. ] 1 2
min } | £0(x) + Yooou fl(x) |

ie1(x) iti - ) u,; £ (x)

i€ I.(x)
8 (8)

u >0

which, in addition, allows us to check (7).

Now the algorithm for minimizing ¢N(x) is iterative: know-
ing X solve (5) (or (8)) to obtain p(xk) = Py- Then perform
a step in the direction Py

X = X

k+1 toa

>
x * %Pk o 70 (97
The step size oy gives a convergent algorithm provided it is
chosen in the following way. Choose e € ] 0, 1[. Try o = 1. If
by (%, + ap) < oo(x) - ea | p |2 (10)
N ¥k k! — *n'¥k Py ’
then take this value. Otherwise replace o by a fixed fraction
of itself until (10) is satisfied.
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In other words, Py is a direction from Xy s in which it is

possible to decrease ¢N(x) by a significant amount, given by (10).

Theorem 2

F(xk) + 0. Every cluster point x* of the sequence {xk} is
feasible in (1) and satisfies the first order necessary optimality
conditions. Furthermore, if (1) is a linear program, convergence
is finite.

Because of the presence of §, (5) might contain only a

small number of constraints compared to those appearing in (1).

2. RATES OF CONVERGENCE

If no constraints are present in (1), the algorithm reduces
to the ordinary gradient method. The rate of convergence is
therefore usually linear. However, it becomes quadratic when
the solution of (1) is a vertex (intersection of n constraints),

i.e. when (1) looks like a linear program.

Let us investigate this point more precisely, because it
will show how to modify the algorithm to obtain superlinear

convergence.

Let x* be a solution of (1). We suppose the standard second

order sufficient optimality conditions are satisfied, namely
(i) fi(x*) i€ 1 (x¥) are linearly independent;
(ii) the (unique) lLagrange multipliers u* are such that
*
u, >0, 1€ I (x*);
i o
(iii) (p,L;x(x*,u*)p) > 0 for any p # 0 such that
' x* = i *
(pr £ (x*)) 0 i €I (x¥) .
Concerning (i), a modification can be made to accept simula-

tion of equality constraints (i.e., when fi(x)_j 0 and —fi(x)_j 0

are both present, one takes into account only one such constraint).
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We can figure out the linear rate of convergence: let P
be the projection mapping onto the subspace spanned by the active
constraint gradients.

Lemma

The mapping p(x) from R" to R" given by (5) is differentiable
around x* and its Jacobian is given by

p'(x*) = - [P+ (I -P)L  (x*,uh)] . (11)
Now observe that Xppq = ¥ F ap(xk) is just the standard
process for solving p(x) = 0. It converges if the mapping

I+ ap'(x*) has all its eigenvalues inside the unit circle.
Then its rate of convergence is the largest modulus of all these
eigenvalues.

It turns out that one can actually compute all these eigen-
values. Let m = |Io(x*)| = number of active constraints at x*.

then p'(x*) has the following eigenvalues:
m of them are equal to - 1;
the n - m remaining ones are equal to - \
where Y; are the n - m strictly positive
eigenvalues of the symmetric matrix

(I - P)Lxx(I - P).

Therefore the eigenvalues of the process (9) (with fixed a) are

1 -0 m times
and
1 - vy n - m times.
These numbers are obviously smaller than 1. For ensuring

convergence, they must be also greater than -1, which means that
o must satisfy
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oo <2 and a < i=1,..., n-m

2
Y

The rate of convergence is then given by the smallest of
these numbers. Hence, the Lagrange multipliers play a very im-
portant role for the rate of convergence. Roughly speaking, the
larger m, the better the convergence. Ideally, when m = n, the
choice o = 1 makes all the eigenvalues zero, so that convergence
is superlinear (Equation (9) reduces to Newton's method for solv-

ing a system of n equalities).

3. APPLICATIONS

Equations (5), (9) and (10) can be applied to solve a system
of equalities and inequalities. In this case, fo(x) = 0 and (5)
reduces to
. 2
min | p |
(12)
(£.(x),p) + £,(x) <0 I € Ig(x)

which is Newton's method.

Here, the assumptions (6) and (7) have to be modified, and

we suppose now that there exists § > 0 such that

Problem (12) is feasible and

satisfies |p(x)]| < C|F(x)| . (13)

This condition is satisfied for example if one supposes
that the null-vector is never obtained by any positive combination
of the active gradients: z xifi(x) #F 0 v Xi > 0.

Also the rule for choosing o is slightly different: we

require

Fx, + o,p) < (1 - oe) F (x) for some e € J 0, 1[ . (14)
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Theorem &
(i) X, > x* and F(x*) <0
(ii) After a finite number of steps, a = 1 satisfies (14)

(iii) After a finite number of steps, F(xk+1) < C Fz(xk)

k

*| < ¢ g® with q < 1

(iv) |xk - x
(v) If the problem is linear, convergence is finite.

The algorithm can also be applied to minimize a max function

of the form

f(x) = max{fi(x)/i € I} (I finite)

Then expressions (1) reduce to

(15)
f,(x) v <0 ier .

It is then convenient not to consider (5) with fO = v, but to

modify it slightly and solve

min n + } | p|? ne€R peR"
(16)
(fi(x),p) + £,(x) - n <0 i€T,(x) .

In this case, (6) and (7) are readily satisfied: (n,p) is
feasible in (16) if n is large enough, and one can verify that
the Lagrange multipliers sum up to 1. Hence, the choice of §

will depend only on computational convenience.

Theorem 2 applies. 1In particular, if the solution of (15)
is a corner (i.e. n + 1 functions fi are maximum at the solution),
then convergence is quadratic. It would be interesting to gener-
alize (16) to the case where the functions fi(x) are not explicitly

known (in particular, when I is infinite).
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4. TIMPROVEMENT OF CONVERGENCE

Let us go back to (5). From (11), if L;x(x*,u*) = I, then
p'(x*) = -I; all its eigenvalues are -1 and the choice of o = 1
yields superlinear convergence. Therefore, any information about
the optimal Lagrange multipliers might allow us to make a linear
transformation on the variables which would generate a very small
maximum eigenvalue for (I + ap').

For example, when x is near x*, replacing (5) by

min (£)(x),p) + }(p,L_ (x*,u*)p)

17
(£;(x),p) + £.(x) < 0

would yield p(x) - (x - x") +o(]x - x*|)

and u(x) = u* + o(|x - x*|) .

To approximate (17), one could for example replace L"(x*,u*)
by L"(xk,uk_1) (uk_1 being the Lagrange multipliers of (17) with

X = xk_1).
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BUNDLE METHODS IN NONSMOOTH OPTIMIZATION

C. Lemarechal

This paper tries to synthesize what are called conjugate sub-
gradient methods, and to extend them to a wider class of bundle
methods. Also, we will show a connection with other methods pri-
marily designed for solving ordinary mathematical programming
problems. Our approach will be intuitive rather than algebraic:
we will give not theorems, but ideas. Nothing essentially new
will be said with respect to papers that have been published else-
where.

We show that methods of conjugate gradients are perfectly
justified as far as a local aspect is concerned, but that this
local study is not enough for constructing efficient algorithms.
We then try to replace the concept local by finite neighborhood
and define the class of bundle methods. Finally we show that

this class has a common background with many well-known methods.

Throughout the paper, f(x) is a function defined on Rn, con-
vex, and Lipschitz, the latter hypothesis being the most important.
R” is considered as a Hilbert space, i.e. we consider only the
Euclidean norm. Also, we note that the dimension need not be

finite; therefore we denote R" by H.

1. LOCAL ASPECT

In this section, we have a point x, fixed in H, and we ask
the question: how can we find a direction of descent, i.e. an

element d € H such that the directional derivative

£' (x,d) = 1limg £ * td) - £(x)
£40 t

n

is strictly negative.
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We follow Clarke's analysis [1]; as a Lipschitz function,

f has a gradient almost everywhere in H. It is therefore possible

to construct sequences {xi} such that Vf(xi) exists and X, > Xx.
The corresponding sequences {Af(xi)} are bounded and have (weak)

cluster points. Define the set of all such cluster points:

M(x) = {g|g = 1lim VE(x;), x5 > x, Vf(xi)exists} . (2)

Then there exists between (1) and (2) the following basic

relation:
£'(x,d) = sup {(d,q)|g € M(x)} . (3)

From this, several observations follow:

(a) The property that 4@ is a descent direction implies that
-d makes an acute angle with every g in M(x). The set of descent
directions is the (open) polar cone of the convex cone generated
by M(x).

(b) M(x) represents exactly the behavior of f in the neigh-
borhood of x. Knowing a descent direction implies a complete
study of £ around x. It is not a trivial problem in general,
unless f is differentiable at x (M(x) is the singleton Vf(x)),
or when f is made up of a finite number of known differentiable
functions fi which meet at x (then M(x) is made up of the gra-
dients Vfi(x)).

(c) Any descent direction defines a hyperplane separating
the convex sets {0} and {convM (x)}. Therefore, x is optimal iff
there is no such hyperplane, i.e. 0 € conv {M(x)}. Accordingly,

it is interesting to consider not M(x) alone, but its convex
hull 3f(x) = conv M(x) (see also (a) above) which is the ordinary
subdifferential [11].

(8) The best descent direction is defined as solving the

problem

min £'(x,d) «» min max {(g,d) |g € 3f(x)} . (4)
a d
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Of course, the directional derivative being in essence a
positively homogeneous function of 4, it is necessary to normalize
d. Then, when the Euclidean norm <18 chosen, it is possible to
show, through some tedious calculations, that the optimal 4 is

opposite to
Nr 3f(x) = Proj 0/3f(x) , (5)

i.e. the point of minimal Euclidean norm in 93f(x). (We note here

that, in the differentiable case, the optimal 4 in the %, sense

1
would be a vector of the canonical basis; in this framework, the

steepest descent method would be Gauss-Seidel!)

(e) Of course, the probability for M(x) not to be a single-
ton is zero. However, x might be so close to a point of nondif-
ferentiability that it is impossible to find a numerically non-
zero step size in the direction -Vf(x). We are in fact interested
in constructing directions that are numerically usable. From this

viewpoint, there is no difference between a nondifferentiable

function and a stiff function: they differ only on a set of
measure 0. Accordingly, our development will be valid also for

minimizing ordinary but ill-conditioned functions. |

Now we give the basic ideas for constructing a descent
direction or, equivalently, for constructing M(x). Suppose we
know k points in M(x):

{g1,...,gk} C M(x)

for some integer k. This is initialized by computing 94 directly.
In view of (e) above, one generally has g4 = VE(x). Knowledge
of one point in M(x) is really the minimal requirement for using

a method based on gradients.

The gquestion is: knowing this partial information about
M(x), is it possible to deduce a descent direction easily? If
not, how can we determine some Ip4+q € M(x) so as to improve the

current approximation?
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Since f'(x,d) 2 max {(d,gi)|i =1,...,k}, we choose some
dk satisfying
(dyrg;) <0 i=1,...,k . (6)

We hope that dk is a descent direction; so, to check it, we

tabulate the function f(x + tdk) for t + 0. Then,

- either we find t > 0 such that f(x + tdk) < f(x) and

we are done,

- or f(x + tdk) > f(x) for any t generated by this line

search.

This is the only interesting case here. By convexity, for any
t > 0 and for any g € M(x + tdk)

f(x + tdk) > f(x) > f(x + tdk) + (g,x - x - tdk) .

Passing to the limit and denoting by 941 DY cluster point
of g, Ie4+q € M(x) by definition. Furthermore one has

(Gpqrdy) 20 . (7)

Comparing (6) and (7), we see that, increasing k by 1 and
computing a new d satsifying (6), we will certainly get a dif-

ferent direction.

Note that property (7) comes directly from convexity of f,
which therefore seems essential. 1In fact it can be weakened to
the so-called weak upper semismoothness [8] which, roughly speak-
ing, implies: if the differential quotient [f(x + td) - f(x)]/t
goes to a positive limit, then the corresponding slope (g,d)

(where g € M(x + td)) goes also to a positive limit. ||

Now recall that we are trying to construct M(x). In view

of (6) and (7), in order for I4q tO be as good as possible, dk
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should make the numbers (dk,gi) as negative as possible. This

justifies a min-max strategy., which consists in computing dk as

solving

min max {(d,gi)|i =1,...,k} . (8)
d

Again it is necessary to bound 4; again, when using the Eu-
clidean norm, (8) turns out to have the solution dk = —Nr{g1,...,gk}.
Note that this gives d1 = -9, for k = 1. It is then just techni-
cal to prove that, if x is not optimal, the above process is
finite, thanks to (7),(8), and the boundedness of {gk}. When x
is optimal dk + 0 (strongly), and, since —dk € 3f(x), this pro-
vides a stopping test. Note that when M(x) is finite, the process

is finite anyway.

To conclude this section we state that, knowing a convex
set G included in 3f(x), the best we can do is to compute its
vector of minimal length.

- If G = 9f(x) we then get the steepest descent direc-
tion.

- If G is a sufficient approximation of 3f(x), we get
some descent direction.

- If G is too poor an approximation we can generate a
new point in M(x) and improve G by an infinite line-
search. Repeating the process, it is then possible to
find a descent direction, if any.

2. NUMERICAL ASPECT: ENLARGEMENT OF THE SUBDIFFERENTIAL

In the previous development, several questions remain open.

(a) Keep in mind Section 1(e). Strictly speaking, the
process for constructing M(x) is useless since it is probably a
singleton.

(b) Suppose we try to minimize f by the following algorithm:

- X being given, first compute a descent direc-

tion d, by the process of Section 1.
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- Then move along dk’ for example with an optimal

step size.

This, at best, simulates the steepest descent method, which is
known to be slow, and may converge to a nonoptimal point when £
is really nondifferentiable. In other words, this algorithm

would converge very slowly to a nonoptimal point!

(c) For computing a descent direction--more specifically,
for generating new points in M(x)--we are supposed to perform
infinite line-searches along each trial direction, with t - 0.
This is forbidden. ||

It appears that these phenomena come from the same imper-
fection: M(x) is too small, containing only limits of gradients.
Suppose, on the contrary, that we replace in (2) the concept
"xi + x" by "xi close enough to x". More precisely, for € > 0
define some neighborhood Ve(x) (for example the ball of radius €).

Then enlarge M(x) as follows

M(x) € M_(x) = {glg = LimVE(x;) ,x; + vy, ¥ € VE(X)} , (9)

which directly follows Goldstein's analysis [3]. This new def-

inition eliminates the above~mentioned phenomena:

(a') Me(x) is never a singleton--unless f is linear, at

least in Ve(x) (not an interesting case).

(b') 1If a direction 4 satsifies (d,9) < 0% g € Me(x), it
can be seen by integration that f(x + td) is a decreasing function
of t as long as x + td € Ve(X)' A line-search along d will get
us out of Ve(xn), and, from compactness, we will converge in a
finite number of steps to some Xy such that Ve(xN) contains the
minimum of £.

(c') Constructing Me(X) is easier than constructing M(x)
in the sense that we can stop the line-search along a trial direc-

tion dk as soon as x + tdk € Ve(x), i.e. for some finite t > 0.

Several enlargements of M(x) are possible. One of them,

coming from convex analysis, is particularly interesting, despite
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the fact that it is difficult to define the corresponding Vg(x).
We define directly the convex set
I f(x) = {glvye H, £fly) > £(x) + (g,y - x) - €} . (10)
(a") This set contains 3f(x). Also Bef(x) = 9f(x) only in

very special situations. Moreover, it is a closed, convex, and

(weakly) compact set (because f is Lipschitz).

(b") There exists the following basic relation [11, p.220]:

f(x + td) - f(x) + ¢

inf = sup{(d,g)|g € 3_£f(x)} . (11)
>0 t €
which directly extends (3). It follows that 0 € aef(x)@x min-

imizes f within e. Also, if 4 is such that (d,g) < 0 ¥ g € aef(x),
then (and only then) it is possible to find t > 0 such that
f(x + td) < £(x) - €.

(c") Let x and y be two different points in H. ©Let g € 3f(y)
and ¢ > 0. Then g &€ Bef(x) iff

fly) > £(x) + (g,y = %) - ¢ . (12)

This formula can be looked at from different angles:

(i) x, Yy, g9 € 9f(y) are given. Then g € aef(x) for any
€ > f(x) + (g, vy - x) - f(y) (a known positive number).

(ii) y, g € 2f(y), € > 0 are given. Then g ¢ aef(x) for
any x such that f(x) - (g,x) < £(y) - (g,y) + ¢, i.e. for any x
close enough to y.

(iii) x and ¢ > 0 are given. For any y, any g € 3f(y) is
also in aef(x) provided f(y) + (g,x - y) > f(x) ~ €. By contin-
uity this is again true whenever y is close enough to x (g is
bounded since f is Lipschitz). Observe that the left-hand side
of this inequality is the value at x of the approximation of f

linearized at y.
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In particular, when y is the current point x + td of some
line-search, g € 3f(x + td) belongs also to aef(x) when f(x + td) -
t(g,d) > £(x) - ¢, and this is eventually true provided t -+ 0.

Thus, the introduction of aef(x) does not explicitly define
Ve(X)’ but rather makes precise the concept close enough to in
terms of objective value units. This is the really good feature
of this set: it makes us able to compare movements Ax in H with
the common measure of movements Af in R. Of course, (12) is very
useful since we can only generate points g of the form Vf(y),
and they must be transported into sets aef(x).

Note that -Nr 3f(x) has a good geometrical interpretation:
it is the steepest descent direction. Here, -Nr aef(x) has no
such simple interpretation. We can only say that there exists
n(e) > 0 such that -Nr aef(x) points towards the projection of
x onto the level line f(x) - e-n(e) (if such a level line exists,
i.e. if £(x) > min £ + €). ||

As the first application of this enlargement, we can adapt
the algorithm of Section 1 to construct aef(x), or equivalently

to determine an e€-descent direction, i.e. a direction 4 such that

inf {f(x + td)|t > 0} < £(x) - €. Let x be fixed, and choose
€ > 0. Suppose k points gqree-1g, are already known in aef(x).
Determine dk such that (dk,gi) <0 i=1,...,k. Again it is
interesting to choose dk = -Nr {g1,...,gk}. Make a line-search

along dk' If we can decrease by &, we are done. Therefore,
suppose f(x + tdk) > f(x) - ¢ for any t generated by the line-
search. Two cases may occur:

(3) £(x + tdk) > f(x) ¥ t. Then we are exactly in
the situation described in Section 1. (g,dk) >0Vt >0,
¥y g € af(x + tdk), and we can stop the line-search as soon as
t < [f(x + tdk) - f(x) + e]/(g,dk) which eventually occurs (f
is Lipschitz: (g,dk) cannot go to +«).

(3j3) Slightly more complicated is the case where some tL

is produced during the course of the line-search, such that:

f(x) > £f(x + tLdk) > f(x) - e .
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Then it might be impossible to produce a positive t such that
any g € 3f(x + tdk) simultaneously satisfies g € Bef(x) and
(g:dk) > 0.

f(x + tdk)

This sketch is a counter-example: there is a minimizing t* > 0
along dk' The set L of step sizes generating e-subgradients at

x is [0,t*[. The set R of step sizes generating gradients satis-
fying (7) is lt*,+~[ and LN R = ¢. In fact 9y 41 Should be a
particular subgradient at the optimal t*.

In that situation, the gimmick consists in computing 941
as a convex combination of g, € af (x + tLdk), t, € L, and dg €
af (x + thk), tR € R. We choose this combination such that
(gk+1,dk) ~ 0; and Ipe1 € aef(x) if tp - t; is small enough. I

This is the e-descent method given in [4]. It has a curious
variant, in which we just neglect the test f(x + tdk) < f(x) - €,
and we never move from x. Let us give its schematic description:
fix x € H. Let 94 € 9f(x). Set k = 1.

- Compute d = -Nr {g1,...,gk}.

- Minimize f(x + tdk) for t > 0 and get an optimal te > 0.

- Compute Iyt 1 € 3f(x + tkdk) such that (gk+1,dk) = 0.

Set k =k + 1 and go to 1. ||
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Of course, the second and third steps are only schematic.
One must simulate them by the development (j), (jj) above. The
proof of convergence is fairly illustrative of what is done

generally in this kind of algorithm:

Set ay = f(x) - £(x + tkdk),

denote by Xy the point x + tidi at which this max is attained.

€, = max {ai|i =1,...,k} and

From (12) it can be seen that 95 +1 € aa f(x). Also oy < €
i

i=1,...,k. It follows that 93 € ae f(x) i =1,...,k+1; there-

fore k

_dk+1 € aekf(x) .

Now pass to the limit: as an increasing bounded sequence
* = - 1 s .
€ T € £ (x) lim f(xk). As in Section 1, dk+1 + 0. There
is a general result of uppersemicontinutiy of the subdifferential,
which says that in this situation, 0 € Be*f(x). Hence, from (11):

f(x) < min £ + ¢*, which means

lim f(x) < min £ . ||

3. CONSTRUCTING DESCENT ALGORITHMS: BUNDLE METHODS

So far, we have only considered f near a fixed x, strictly
locally in Section 1, in a fixed neighborhood in Section 2. Now
suppose we have performed several steps of some descent method.
A certain number of points have been generated, at which the
value of f has been computed together with some subgradient. We
symbolize this information by the bundle KyreoerXys f1,...,fk;
Gqr-eer 9y where fi = f(xi) and g; € Bf(xi). We denote
G, = {g1,...,gk}.

This labeling is therefore not that of iterations. In fact
we can store what we want, from just {xk,fk,gk} to all the infor-
mation generated during all the line-searches from the beginning

of the algorithm. This is purely a matter of core requirement.
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Also it is just for simplifying notations that we suppose

fi = f(xi) and 95 € Bf(xi). We might suppose that the user is
unable to compute exactly the function and its gradient. 1In
fact, all we have said and all we are going to say remains valid
when we suppose that the user is given X together with some pre-

scribed tolerance €4 and that he returns fi and g, such that

£(x;) ~g; < £, < f(xi) and g, € Beif(xi) .

Then, the only difference with the case €, = 0 is a minor modi-
fication of (12). ||

Now the question is: how do we use this bundle to compute

"at best” a new point x or to generate a new subgradient

k+1’
Ig+1?

From Section 1, the simplest answer is the following. Let

us suppose that G, < Bf(xk); then we should choose dk = -Nr G, .

k k

This technique is fully justified in two cases.
(I) When the algorithm has been stuck from
%, to X, ¢ all the points x, are close together
and all the gi's are approximately in Bf(xk).
Of course, this is an emergency situation: con-
structing algorithms that we hope do not get

stuck too often is precisely what we want to do.
(ITI) When the situation happens to be
~ f is quadratic and

~ all the line-searches have been exact from
X, to X . In that case, Nr Gk turns out to
be the direction of conjugate gradients which
is optimal in the sense that it points towards
the minimum of f in the set generated by the
bundle. Of course, this situation is not
very interesting either: the aim of NSO is
not to minimize quadratic functions with

exact line-searches!
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In summary, dk = - Nr G, is a poorly justified choice, which

k
is likely to become worse when k increases. The first idea for
overcoming this has been to reset periodically, to force k to be
small. This has given variants of what have come to be called

conjugate subgradient methods.

(a) In [14], one resets as late as possible, i.e. when
Nr Gk >~ 0 (in which case it would be foolish to interpret it as
a direction).

(b) In [5] a rather artificial observation was made: there

is a simple test that detects situation (II) above, namely

(gi'xi - x1) <0 i=1,...,k , (13)

which means that 9 € aeif(x1), where e, = f(x1) - f(xi). (In
fact, equality holds in (13) when the situation is as in (II)).

Accordingly, one resets whenever (13) is not met.

(c) These two rules for resetting are based on (II) above
and do not seem to be very promising. More interesting are
rules given in [9], directly based on (I) and on the fact that
resetting leads to restart on the gradient, which is clumsy.

It is better not to reset but to delete those gi's that appear
to be poor approximations of Bf(xk). This can be done in either
of the two following ways:

- delete those g;'s for which Ixi - Xkl is too large,
or

- define the numbers

a, = f(xk) - f(xi) - (gi,xk - xi) i=1,...,%x , (14)

and delete those gi's for which ay is too large.
(Note that oy >0, o = 0. All the information
is on hand to compute oy and there is a simple

recurrence formula for computing them cheaply.) |
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The latter is very interesting because, as in Section 2,
it again gives a means to measure the proximity of Xy to X in
terms of differences in the objective. From (12) it can be seen

that 9; € Ba.f(xk). Thus, a; measures how far 95 is from af(xk).
i

Intuitively, when computing 4, in terms of the gi's, the weight

k
of 9 should be smaller when oy is larger.

Deletion rule (14) can be considered as a weighting of 9;
by 1 if ai_j §, 0 if a; > §, where 8§ is some chosen threshold.
This is a tough weighting. Clearly, it would be interesting to
smooth it. We think that efficient descent methods would be
obtained if this question of weighting were properly solved.
The next development tries to answer this question, probably
imperfectly, as it does not eliminate the need for a threshold.

From the fact that 9 € aa f(x
i

k) i=1,...,k we can write

YyE€H , f(y) 2 flx) + (g;,y - x) oy =10k,

or equivalently, by convex combination:
f(Y) 3 f(Xk) + (z Xigily - Xk) - I )\lal
¥A: A, >0, Ia =1 . (15)

Every y € H can be described as y = x, + td, t > 0, la] = 1.

In particular, if we choose y = x, + td as the next iterate, the

k
decrement in the objective cannot be larger than the (we hope

positive) number

min {-t(] X;g;,d) + ] Xo; [ A, >0, ] A, =1} .

It is therefore natural to look for the pair t and @ that yields
the best possible decrement, i.e. that solves
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max min - t (§ X.,g.,d) + ) A.a. . (16)
t>0, |d|=1 A 1t it

We do not see clearly how to solve (16) (which, by the way,

has no solution in general: unless 0 € conv G t is infinite).

’
However, parallelling with the general scheme gf a descent method,
we might fix t at some guessed value, solve (16) for 4 alone,

and then forget (16) and perform a line-search along the optimal
d. 1In that case, (16) becomes a saddle point problem in A,d,

very similar to (8); its solution is

a=-1 Xigi/” Xigil
where )} solves
min |J A;qy] + £ I A0 Ay 20, DA =1 . amn

(The case ) Tigi = 0 needs finer analysis, which is not of inter-
est here.)

Although (17) is a well-posed problem, it is not workable;
but there is a trick for transforming it. 1/t can interpreted as
the (positive) Lagrange multiplier associated with some (inequal-
ity) constraint of the form Aiai < e. To t > 0 given, there
corresponds the right-hand side € = § Xiai' Since a; > 0 and
o = 0, the range for ¢ is € > 0. Finally, because the mapping

z + }z” is monotone increasing, (17) is equivalent to

[ min 111 )\igi|2
1Ay =0 Ay 200 (18)
Lz Aiai < e

which is a simple constrained least squares problem. The paper

by Mifflin in this volume is devoted to solving it.
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In (17), t = |x - xk| is unknown. We now give an inter-

k+1
pretation of the unknown parameter € in (18). It is convenient

to denote

G (e) = {glg = 1 Ajgir LAy =1, 2 20, ] Aay £ e}

It is a convex polyhedron included in Gk' Using (12), it is not
difficult to show that G, (e) C 3 _f(x,.). Denote also s(e) = ] A,g;
the optimal solution in (18). Then, s(e) defines the best hyper-
plane separating Gk(e) from the origin. If € is very small, we
can hope that Gk(e) is a good approximation of Bef(xk), so s{g)
will also separate Bef(xk) from the origin. This will guarantee

a decrease by € in the direction -s(g), hence the need to choose

€ as large as possible. On the other hand, if € is too large,
Gk(e) is a poor approximation and s(ec) becomes meaningless in
terms of Bef(xk)'

Thus, the philosophy underlying this development is a con-
struction of Bef(x) for varying € and x--instead of fixed as in
Section 2.

We can call bundle methods the class of methods that pro-
ceed as follows: at each iteration, consider the bundle of in-
formation Greeo sy Oqrese Oy Choose € > 0. Solve (18) for
s{(e). Make a step along -s(eg). For these methods to be effi-
cient, several gquestions should be solved.

Is (18) really the proper problem to solve for computing
the direction? We are supposed to find a hyperplane separating
Gk(e) from 0. However, such a hyperplane would be found also
by changing the metric, i.e. by defining some positive definite
matrix H, considering the objective é(z Aigi,H ¥ Aigi) in (18)
instead of }|} Aigi|2, and taking s(e) = H } A;9; as the direc-
tion.

Second, we have not been able so far to find satisfying
automatic rules for choosing € at each iteration. (An efficient

heuristic is € = Q[f(xk) - min f], but it is not implementable.)
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Since ¢ should be related to f(xk) - f( ), a dialogue between

X141
(18) and the line-search might be necessary; this would make the
direction depend on the step size, and lead to gauche algorithms,

with curve-searches.

Finally, once the direction is found, we should logically
move if we thus get a sufficient decrease. Otherwise, as in
Section 2, we should add a gradient into the bundle and compute
a new direction from the same x,. How do we make the decision

k
to move, and which gradient do we add into the bundle?

In conjugate subgradient methods, the situation is clear:

2

one has an estimate |dk| of -f'(xk,dk). One chooses 0 < m, <

m, < 1 and €> 0. We look for y = X+ tdk and I4q € 9f (y) such
that

(9, rd) > -m,|d, |°

k+17%" = T 1% :

For moving, we require in addition

2 ; =
£(y) < £(x) - m2t|dk| (serious step: x4 = ¥).

If this is impossible, we require

f(y) - t(gk+1,dk) > f(xk) - £ (null-step; 941 € asf(xk) .

This ensures that the direction will change at the next iteration,
and also that the decrease in the objective is sufficient. 1In
bundle methods, there is no clear reason to choose the same cri-

teria. ||

These questions are still open.

4. RELATIONS WITH OTHER METHODS

(a) When € approaches 0 in (18), it is clear that s(tc) goes
to Iy More precisely, a bundle method with & = 0 would reduce
to the algorithm of Section 1.
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(b) No less obviously, if e is large enough (say € > max ai),

s(e) is the direction of conjugate subgradients.
(¢) It is also clear that (15) is just a fancy way of
writing:

> - i =
£(y) 2 £(x) + (9;,¥ — x;) i 1,...,k ,

which is the basis for cutting planes. A bundle method is there-
fore a Boxstep method [7] (or rather Ballstep, since we definitely
prefer Euclidean "boxes"), i.e. the method that consists in

minimizing the linearization T of f inside a ball around x and

kl
then extrapolating by some line-search. In such a method, the
size of the ball is t in (17), and we are now going to make clear

its relation with ¢ in (18).

First of all, s(e) = 0 corresponds to the case where the
minimum of f is attained in the interior of the ball. 1In that
case, we have an optimality condition f(xk) < min £ + ¢ (since
s{e) = 0 € Bef(xk)); on the other hand, ballstep is then equiv-
alent to the pure cutting plane, and solving the linear program
without a normalization constraint also provides an underestimate

on min £f.

Suppose now the typical situation s(e) # 0. Let u >0 be
the Lagrange multiplier of the extra constraint z Aiai < e in (18).
Then

- Iseo] & (ise) D

u=-4d (4]s(e)|?

de

Now consider (17); set e = } X;a;. There also

d

= 'd: (lz Tj_gil)

From the equivalence between (17) and (18), we know that
Y} X.g, = s(e). Therefore 1-_4 (|s(e)|) and we have the basic
i‘i t de

relation

ut = |s(e)| . (19)
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In ballstep, the minimum of the linearization f of f is

attained at x = X, + td (provided the ball constraint is active)

where d, of norm 1, is given a posteriori by d = -s(g)/|s(¢g)
Therefore, after having solved (18), we can say that, if the
ballstep problem had been solved with a ball size t = s(e) | /u,

one would have obtained the point

Xx=x + td = X + liéill x (-s(e)/[s(e)]) = x_ - % s(€)

In particular, when ¢ > +, u >~ 0. From (19), if O ¢ conv GH
t + 4+, We can interpret this result by saying: when 0 # conv Gk’
the pure cutting plane problem is unbounded. There is one (in-
finite) solution--namely the limit of solutions of cutting plane
problems bounded with the Euclidean norm--which gives the con-

jugate subgradient direction (since s(g) = Nr Gk when u = 0).

On the other hand, when € > 0, u goes to some finite value,
i.e. t does not go to 0. This means that there is a strictly
positive t0 such that the ballstep direction is that of steepest
descent whenever the ball size is smaller than ty: (This was
observed in [71]).

(d) Consider the case where the function to be minimized
has the form

f(x) = max hi(x) .
i

In this volume, Pshenichnyi gives an algorithm in which the

direction dk solves the problem

min n + £K|d|2
n,d

(20)
(Vhi(xk),d) + hi(xk) <n i such that

hy (%) 2 £(x) - 8
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for some positive constants K and & (strictly speaking, he chooses
K = 1, but it is more convenient for our development to allow

for different values).

Since, at the optimum of (20), there is at least one active
constraint, we can replace n by maxi[(Vhi(xk),d) + hi(xk)] and
solve instead of (20):

min 3K|d|? + max {Vh, (x,),d) + h, (x,) | i such that
a ik i

k)

he(x) 2 f(x) - st .
Using the same convexification technique as in (16)-(17),
we see that in fact (20) is solved by
d = —% I X vh, (x) where X solves
min 4|3 A,Vh () % - K J Ah () A 20, T =1 . (@)

Again K can be considered as the (positive) Lagrange multiplier
associated with some (inequality) constraint of ‘the form

) Aihi(xk)_i B; this shows a strong relation with (17) and (18).
We now make this relation more precise: any convex function

f (x) may be represented as

f(x) = sup fy) + (g,x - y) .
y,gE3f (y)

Therefore, any convex minimization problem is equivalent to

min v

v, X (22)

f(y) + (gyx - y) = v Yy € H, ¥g € 3f(y) ,

i.e. some sort of linear programming problem; of course this is
highly criticizable since (22) contains an infinite number of
constraints which, in addition, are not explicitly known. How-

ever, one could think of a method of constraint accumulation,
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in which one would replace (22) by the relaxed problem

min v
vV, X
£, 0+ (gi,x - xi) v i=1,...,k ,

where X fi' 9; make up the bundle of Section 3.

Analogously with the present situation, we can set

hi(x) = fi + (gi' X - xi) ’ Vhi(x) =9; -

We then observe that

hy () = £(x) = 0y (a; defined in (14)) .

Therefore (21) takes the form

2
|

1 ’

] = > -
min 3|} X;9; Iay =1, r, >0, ¥ AU - 0] > 8
and the equivalence with (18) is established by taking B = f(xk)-e,

so that K in (2C) is u in (18).

The role of § in (20) is to neglect the subgradients for
which oy is too large, i.e., it is exactly the deletion rule
Section 3(c) of Mifflin.

Observe in particular that when K = 0 in (21), € = +« in
(18). Then the direction of Pshenichnyi is that of Demjanov [2].
In other words, Mifflin's version of conjugate subgradients is
a variant of Demjanov's method, in which one computes not the
values hi(xk) that make up f(xk), but rather the values at Xy
of the linearized f at previous X5 (this has been pointed out to
us by Bertsekas in a private communication). Although (21) with
K # 0 is apparently only a slight modification of Demjanov (at
least when 6 is small, since one has £(x) - 8 < hi(xk) = f(xk))’

taking the differences in hi(xk) into account is a refinement.
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(e) It is rather amusing to see that such a refinement has
existed for quite some time in a slightly different context:

Consider an ordinary mathematical programming problem,

min £ (x)
(23)

cj(x) <0 3j 1,00.,m

Many methods for solving it are based on the principle of feasible
directions. In their original form, presented by Zoutendijk [15],

they consisted in solving at each iteration the problem

[ min n
n,d

(VE(x,),d) < n
4 (24)
ej(ch(xk),d) <n j in some suitable subset of {1,...m}

L d in some suitable normalization set.

It is certainly numerically necessary to introduce the
weights ej, since there is no reason to compare variations in
the constraints with variations in the objective, even if one
admits that the user himself has scaled the space H to strive to
homogenize variations in the objective alone. |

As with (20), this problem can be transformed to look like
(21). Since the values of the constraints cj(xk) are neglected
in (24), we would get (21) with K = 0, i.e. some Demjanov or
conjugate subgradient method. It would therefore be better to
consider in (24) the constraints

ej[cj(xk) + (ch(xk),d)] <n .

This has been done by Zoutendijk [15] himself, and (with ej = 1)
by Topkis & Veinott [13], Pironneau & Polak [10] and Mangasarian
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[6]. If, as is often true, the cj(xk) are slightly negative num-
bers, the difference is little, but, from the analysis of rates
of convergence in [10], the trick is really helpful (as is the
use of Euclidean norm, as shown in the same paper). Correspon-
dingly, the algorithm of Pshenichnyi for solving (23) (see his
paper in this volume) introduces the same trick. (In addition,

it is more satisfactory, since it does not need Xy to be feasible.

To sum up this Section, (22) establishes a link between non-
differentiable optimization and nonlinear programming. A non-
smooth problem is a linear program with an infinite number of
noncomputable constraints. To solve it, one could take advantage
of the large amount of work done in nonlinear programming. Con-
versely, any efficient method of NSO could help in studying the
(unsolved) general problem of nonlinear programming (23); for
the latter, the theory of e-subgradients is an apparently new

and promising tool.

Most of the methods existing both in NSO and in NLP are
essentially equivalent, provided the parameters they generally

contain are carefully updated.

Through (12), the theory of e-subgradients seems to shed
some light on the fundamental question of scaling the space. It
has been observed that the best numerical results are often ob-
tained by quasi-Newton methods and Shor's method of dilatation
of the space along differences of gradients [12]. Both these
methods (heuristic in NSO) define at each iteration a metric Hk'
assumed also to scale the variables. However, the formulae for
updating Hk are off-line (in particular they do not involve values
of the objective). It would probably be important to know what
kind of relationship exists between e-subgradients (i.e. general

NLP) , guasi-Newton methods, and Shor's methods.
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A FEASIBLE DESCENT ALGORITHM FOR LINEARLY
CONSTRAINED LEAST SQUARES PROBLEMS

Robert Mifflin

1. INTRODUCTION

Consider the constrained least squares problem of finding an

n-vector x = (x1,x2,...,xn)T to
minimize }|px - c|2 = 1xTpTPx - cTpPx + jc’c
subject to Ax = Db
x>0

where P is a p X n matrix, ¢ is a p-vector, A is an m X n matrix,
b is an m-vector and a superscript T denotes transposition. The
column rank of P may be less than n. We give a numerically stable
method for solving this problem based on one given by Wolfe [6]
for the special case where ¢ = 0, m = 1, every component of the
row vector A is 1 and b =1. The algorithm solves a sequence of
reduced dimension subproblems without nonnegativity constraints.
The method is similar in philosophy to one given by Stoer [5], but
our procedure for solving the subproblems, which is inspired by
the work of Golub and Saunders [2], is different. The algorithm
handles equality constraints directly; i.e., we do not use them

to eliminate variables and then create inequality constraints

from the corresponding nonnegativity restrictions as is suggested
by Lawson and Hanson [3] in order to apply their procedure for
inequality constrained problems, which involves yet another prob-
lem transformation.

We note that general quadratic programming algorithms may
be applied to this problem, but, if they do not exploit the

103
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factorized structure of the Hessian matrix PTP to deal with its

possible singularity (or near singularity), such methods may fail.

Our method can also be used to solve strictly convex gqua-
dratic programming problems by transforming the objective function
as shown in [2, p. 248]. Inequality constraints may be handled
by introducing nonnegative slack or surplus variables. To modify
the algorithm to deal with variables % that are not restricted
to be nonnegative, one only needs to work out the implications of
expressing such a variable as the difference of two nonnegative

variables.

This study was motivated by the fact that Lemarechal's [4]
numerical algorithm for minimizing a nondifferentiable function
needs a numerically stable subroutine for solving the special

constrained least squares problem where

n>2 , m=2 , c=0 |,
1 oy Oy "t o g €
A = ’ b = ’
0 1 1 eee 1 1
oy 20 for i =1,2,...,n=-1 , oy <e ,
and
0
0
Pl 91 9ttt dnpq| -
0
In this application the p-vectors 9qr9p0e-+99,_4 are generalized

gradients of a function of p variables to be minimized, and the
solution method employed must not require these vectors to be
linearly independent.
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2. THE ALGORITHM

For a matrix B we denote its ith row by B, and its jth
. . T
column by B). Thus, Bl = BTj. For a vector y = (y1,y2,...,y£) ’

y > 0 means Yy >0 for each 1 = 1,2,...,%.

For x to be an optimal solution to the above constrained
least squares problem it is both necessary and sufficient (because
of objective convexity and constraint linearity) that x and some

m-vector u satisfy the optimality conditions:

Ax = Db
x 20
alu + PT(Px -c) 20
ATju + PTj(Px - c) =0 or xj =0 for each j = 1,2,...,n
Throughout, J ¢ {1,2,...,n} denotes a nonempty set of column

. . . . B
indices corresponding to a nonvacuous submatrix [Q] of columns

of [?]; i.e.,

3
j €J 1if and only if [Aj] is a column of [g]
P

Each submatrix generated by the algorithm satisfies the assump-
tion that

[g] has full column rank . (A1)

For each such matrix we require a solution (y,u) to the corre-

sponding linear system

By = b (1a)

Blu + QTQy = QTc . (1b)
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A solution procedure is given in Section 3 for the nondegenerate

case when

B has full row rank . (A2)
This type of assumption is also made in [5]. For the special
problem with m = 1 in [6], (A2) is always satisfied. For the

case when (A2) does not hold, a degeneracy resolving procedure
that takes into account possible nonuniqueness of u has been
worked out by the author. This procedure may appear in a sub-

sequent paper.

The following sequence of lemmas serves to motivate the
algorithm. All proofs are deferred to the last section of this

paper.

Lemma 1

Suppose (A1) holds. If (1) has a solution then y is unique.
Furthermore, if (A2) also holds then (1) has a unique solution
(y,u) and the solution procedure of Section 3 finds it.

Remark

For the case when (A2) does not hold, the solution procedure
can be modified to determine whether or not (1) has a solution,
and in the former case to find y and the associated u-set. It
can be shown that if (A1) holds and there exists a vector y such
that By = b, then (1) has a solution.

Lemma 2

(y,u) solves (1) if and only if y minimizes |Qy - c|2
subject to By = b. In this case

loy - c|2 = -bTu - cT(Qy -c) . (2)
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Lemma &

Suppose (y,u) solves (1). Define a corresponding n-vector

X by
yj if je g

0 if jgJ

where J corresponds to [g] as defined above. If

and

T

A ju + PTj(Qy -c) 20 for all j &J , (3)

then x and u satisfy the optimality conditions and, hence, x is

an optimal solution to the constrained least squares problem.

Remark

For the special problem of Section 1 with m = 2 and
T
u = (u1,u2) , (2) becomes

2—_
loy|® = —euy - u,
and the left-hand side of

(3) becomes

] if 3§

il
—

or

Iv
N
.

T . .
aj_1u1 + u2 + gj_1Qy if j 2
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Lemma 4
Suppose (A1) holds and (y,u) solves (1). If
T T
A QU + P K(Qy -¢c) <0 for some & & J )
B AK
then [ 2 has full column rank.
Q P
Remark
Note that if B has full row rank then so does [B AK]. Thus,
by Lemma 4, if (A1) and (A2) hold for [3] and B, respectively,
2
then they hold for the augmented matrices [B Al] and [B AK].
Q P

These augmented matrices correspond to the augmented linear system

L.+

By+ + A Y, = b (1a)+
T + T, + + +
B’ + 0Tty + ply)) = Qe (1b)
T + T + L+ +
ATt + P o(oyT 4 PYy)) = PT e . (1c)
Lemma &

Suppose (A1) and (A2) hold, (y,u) solves (1), and (4) holds.
Then (1)+ has a solution (y+,yz,u+) such that

y, > 0
and

L+

+ 2 +
lov* + 2hy} - el? - Joy - ef? = v (a"

qu+ Py - c)) <o .
(5)

Lemma 6

Suppose that the assumptions of Lemma 5 hold and that y > 0.
Let X be the largest value of A € [0,1] such that
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+
Y Y
AR P BT
Define the |J| + 1 vector z by
- + - .
ij + (1 - A)yj for j € J
z, =
J - + .
Ayz for j =2 .
Then X > 0, z, > 0, z 2 O,
B a*1z = b (6)
and
|10 Pz]z - c]2 < |loy - c]2 . (7)
+ _ +
Furthermore, if y > 0, then A = 1 and z = y+ > 0, or if
Y
2

v" 4 0 then z, = 0 for some k € J.

To initiate the algorithm we assume that we have an index
set J and a corresponding full column rank matrix [g such that
(1) has a solution with y > 0. See Section 5 for an initializa-
tion phase that will either provide this initial condition or
indicate its infeasibility. Given this initial condition, the
algorithm is as follows.

Step 1 Solve (1) for (y,u).
If y > 0 go to Step 2. Otherwise go to Step 3.

Step 2 Test the validity of (3).
If (3) holds stop. Otherwise ((4) holds)

set §i = y; for each i € J and §l = 0, append index &
2
to J and column [A ] to [B], and go to Step 1.

p* Q
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Step 3 Let X be the maximum value of A € [0,1] such that
Ay + (1 -y 20
and set
z=2xy + (1 = X))y .
For each i such that z; > 0, set §i =z, and for

each k such that 2z, = 0, delete index k from J and

k

the corresponding column [Ak] from [g] and go to
P

Step 1.

We now show that the algorithm is well defined.

Because of the initialization condition the first subproblem
(1) to be solved has a solution y > 0, and therefore Step 2 is
executed before Step 3, so y is properly initialized to a non-

negative-valued vector.

At each execution of Step 2, if the stop does not occur, a
new index 2 is added to J satisfying (4) and § and B are updated
such that y 2 0 and By = b. From Lemma 4 and the remark following

Lemma 1 the new system (1) will have a solution.

When entering Step 3 we have J, y } 0 and §. By the updating
in Steps 2 and 3, y > 0. Therefore, there exists a » € [0,1] such
that Ay + (1 - A)§ 2 0 (for example A = 0). From the definitions
of X and z, there exists k € J such that Z, = 0. Hence, at least
index k is deleted from J. A new J and a new y > 0 are defined.
Lemma 7, in particular, ensures that the new J is not empty and
that the new system (1) has a solution. This lemma deals with the
situation after an execution of Step '3 in terms of data at the

most recent execution of Step 2.

Lemma 7

B] satisfying (A1), and

Suppose at Step 3 we have [Q
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N

v
o

~

(H) § 240 > 0

z, = 0 for some k # &° ;

2 2
c|® < |@°y® - ¢l

f,

o
N
}

where, at the most recent execution of Step 2, J°, B°, Q° and y°
were the entering values of J, B, Q and y, and %° was the index
added to J°. Let the new values of J, B and Q defined at Step 3
be denoted J , B and Q , respectively. Then the new system

(1) has a solution y = y such that either

y >0 and |Qy - C]z < |Q°y° - CIZ

(8)
or y } 0 and the above hypotheses (H) are satisfied with z = z ,

B=2B and Q = Q where z is the value of z determined at the
next execution of Step 3.

By recursive application of Lemmas 1 through 7 it is now not

difficult to establish finite convergence of the algorithm.

Theorem

Suppose the initial condition holds and (A2) holds for each
matrix B generated by the algorithm. Then after a finite number
of executions of Steps 1, 2 and 3, the algorithm terminates with

an optimal solution to the constrained least squares problem.

Proof

To each J considered at Step 1 there corresponds a unique
y solution of (1) and a corresponding objective value }|Qy - c|2

}|Px - c|2 where x is the n-vector defined by appending zeros to

y as in Lemma 3.
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We now show that each entry to Step 2 has an associated
objective value that is strictly lower than the one at the pre-
vious entry to Step 2, and, furthermore, that the number of
consecutive executions of Step 3 between Step 2 executions is

finite.

By Lemma 6, the above statement is clearly true if there
are no intermediate Step 3 executions. So suppose Step 3 is
entered after some execution of Step 2 which adds index 2° to J.
By Lemma 6 we have at this first entry to Step 3 that the hypoth-
eses (H) of Lemma 7 are satisfied. From Lemma 7, for all sub-
sequent consecutive executions of Step 3 we have Zgo 0 and
some index k # 2° is removed from J. Therefore, J never becomes
empty, the number of such consecutive Step 3 executions is finite,
and furthermore, by Lemma 7, this sequence must terminate with
(8) being satisfied. Now (8) implies a return to Step 2 with a

strictly improved objective value.

Now, since the number of possible index sets J is finite
and all such sets corresponding to entries to Step 2 must be
distinct (due to their different corresponding objective values),
the algorithm is finite.

3. SOLUTION PROCEDURE FOR (1)

Suppose (A1) and (A2) hold and [g] has g columns. Let R

be an upper triangular nonsingular g x q matrix such that
[BTQT][S] =R (9)
and let W be a g x m matrix such that

R'W =38 , (10)

R'w = Q¢ , (11)
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and S be an upper triangular nonsingular m X m matrix such that

Ww=25"s . (12)

R and S can be found by orthogonal factorization (see, for example,

[1,2,3,5]) of g and W, respectively, which is possible by the
full rank assumptions (A1) and (A2). See Section 5 for simple

determinations of R, W, w and S in some special cases and see
the next section for updating these quantities when [g] is changed.

Having R, W, w and S, the solution procedure is as follows:

Solve the triangular linear system
STw =b - WTw
for w, and then solve the triangular linear system
Sv = w
for v so that v satisfies
sTsv = b - wu . (13)
Then set
u=>b-v (14)
and solve the triangular linear system
Ry = Wv + @ (15)

for vy.

4. UPDATING

To perform the updating of R, W, w and S we require a

transformation that can take a 2-vector
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where

This Euclidean norm-preserving transformation can be accomplished

by multiplying [%1] on the left by a Givens matrix
z

2
fe s
G =
s -C
where
Yy = sign(z1) (%12 + 222>i ’
C=Z1/'Y '
s=22/Y [
and the convention for z, = 0 is that vy = z,, ¢ = 0 and s = 1.
Note that GT = G-1, i.e. G is an orthogonal matrix. See Gill,

Golub, Murray and Saunders [1} for details concerning properties
and uses of Givens transformations in connection with orthogonal
factorization.

Augmentation
BA'Q

When [g] is replaced at Step 2 by [ 2], replace

Q P
R r
R by R
0 o
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where r solves

RTr = sTa% + Tp* ,

o = (1a%12 + 1242 - =12)
V_V= (ATQ/ - rTW)/p ’
0 = (PTlc - rTw)/p ,

and S is determined as in [1, pp. 529-530] as follows.

Apply appropriate 2 x 2 Givens transformations sequentially

for i =1,2,...,m to rows i and m + 1 of

]

to reduce w to the zero vector and obtain

[g]
0
where S is upper triangular.

The validity of these replacements may be established by
making the appropriate multiplications and using the fact that
a sequence of Givens transformations is equivalent to multipli-

cation by an orthogonal matrix.
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Deletion

When the kth column of the g column matrix [g] is deleted
at Step 3 replace R, W, w and S by R, W, w and §, respectively,

where the latter quantities are determined as follows.

As in [1, pp. 533-534], apply appropriate 2 x 2 Givens trans-

formations sequentially for i = k,k+1,...,9-1 to rows i and i + 1
of

RTRZ...RETTRAYT RS W )
to form

[ﬁ W 5]

0 w w
where

R is a g~1 x g-1 upper triangular matrix,

W w] is g-1 x m+1,
and (Ww w) is 1 x m+1

Then, as in [1, pp. 530-531], solve the triangular linear

system

STs = yT ;

for s, set

§ = (1 - |S|2)i :

and apply appropriate 2 x 2 Givens transformations sequentially

for i = m,m-1,...,1 to rows i and m + 1 of
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to reduce s to the zero vector and form

oé]
1 sT
where S is upper triangular, and the expression for the bottom
row, as well as the validity of R, W, w and §, follows from the

orthogonality of Givens transformations.

5. INITIALIZATION

For the special problem with m = 2 given in Section 1, a

starting matrix is

for which

and

€-a
1

For the general problem, if a starting matrix is not avail-

able we can first solve the initialization problem of
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minimizing ~[-b A][t]kz

]
N

subject to t

A\
o
.

t,x 2

For this problem a starting matrix is
B [ 1
Q -b
i

R = W—1 = S_1 = (1 + |b|2)2 ’ w =0 and y = 1

for which

Note that this initialization problem is never degenerate, since
all row vectors B generated must contain the coefficient 1 corre-
sponding to variable t. Our algorithm applied to this special
initialization problem is essentially that of Lawson and Hanson
[3, p. 161] for the problem of minimizing |Ax - b|2 subject to

x 2 0.

If the optimal value of the initialization problem is
positive then the constrained least squares problem has no
feasible solution. Suppose this optimal value is zero. Then
the corresponding optimal x satisfies x > 0 and Ax = b. If
X # 0 the set of columns Aj for which xj > 0 will be 1inea§1y
independent, and together with the corresponding columns PJ will
form a starting matrix for the desired problem. If x = 0 then
b = 0, and

is a starting matrix for the equivalent problem of
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minimizing I[O P][i] - ciz
1 0t 1
subject to =
0 A]llx 0
t,x 20 .

This starting matrix is, however, degenerate, because B = [0]
does not satisfy (A2).

6. PROOFS OF LEMMAS

Lemma 1

Suppose (A1) holds. Let (y1,u1) and (yz,uz) be solutions

to (1), i.e.,
By' = b By? = b
and
BTu1 + QTQy1 - QTc BTu2 + QTQy2 _ QTc .

Subtraction gives

Bly' - y%) =0 (16)
and

T, 1

]
o

BT (u! - u?) + QToy! - v9) (17)

2, T

Multiplying (17) by (Y1 -y
(16) gives

)

and using the transpose of

T.T
v - vHTeTw - y®H =0, (18)
and (16) also implies that
(y1 _ y2)TBTB(y1 _ YZ) =0 ,
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which added to (18) gives

Il
(=}

(y1 - yz)T[BTQT][g](y1 - y2)

So

1]
(=}
-

[g]<y1 - v

and (A1) implies that

which, together with (17), implies that

BT(u1 - u2) =0

Suppose, in addition to (A1), that (A2) holds. Then

Therefore, under assumptions (A1) and (A2), if (1) has a solution
it is unique. We now show that (y,u) determined by the procedure
of Section 3 is a solution to (1). Note that (15), (10), (12)
and (13) imply sequentially that

1 1

BR Wv + BR w

By

WiWv + Wlw

sTsv + wla

b - WTw + WTw ’

SO

]
o

By (19)
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By (14) and (9) we have

BTu + 0Toy = BT (b - v) + (R'R - BIB)y .

Now (19), (15), (10) and (11) imply sequentially that

T

BTu + oToy T

8Tb - BTv + RTRy - BT

—BTv + RT(Wv + w)

= -BTy + Bv + QTc ,

so (y,u) solves (1).

Lemma 2
Since 1|Qy - cl2 is convex in y and By is linear in y,
the conditions given by (1) are well known to be both necessary
and sufficient for optimality in the problem of minimizing
}loy - c|2 subject to By = b. Multiplying on the left (1a)
by uT and (1b) by yT, and differencing the resulting equations,
give
uTBy - y'BTu - yToToy = uTb - yToTec
which, by scalar transposition, is equivalent to
yToToy = -bTu + clQy

which is equivalent to (2).

Lemma 3

Combining the definition of x and (1) gives
AXx =By =b ,

Px = Qy (20)
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and

BTu + oT(Px - ¢) = BT™u + QT(Qy - ¢) = 0 . (21)

Also, y 2 0 implies x

v

0. Combining (20), (21) and (3) implies

aT.u + PTj(Px -¢) 20 for each j = 1,2,...,n

with strict inequality only if xj = 0.

Thus, X and u satisfy the optimality conditions.

Lemma 4

Suppose, for purposes of a proof by contradiction, that

=0 (22)

for some nonzero vector (A,AZ)T. Note that
Ag O, (23)

because, by assumption, [g] has full column rank. Multiplying
(22) on the left by (uT}yTQT - cT) gives
(uTB + (yTT - cT)Q> X+ (uTA" + (yTQT - cT>P") A, =0 .

But this is a contradiction, because the first term is zero by
the transpose of (1b) and the second term is nonzero by (23)
and the transpose of (4).

Lemma 6

By the remark following Lemma 4, Lemma 1 applied to (1)+

implies that (1)+ has a solution (y+,y;,u+). Since
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Yy
(B Al][ ] =b ,
0

Lemma 2 applied to (1)+ implies that

2 y+ 2 o Y 2 2
I[Q Pl | 4l - ¢ = I[Q P”] -c|l = 'Qy -c - (24)
Yy 0

By (2) of Lemma 2 applied to (1)+ and (1), we have

y+ 2 2
|[Q Pl L | - | - iQy -c| =

Yy
= —bTu+ - cT(Qy+ + Ply; -c) + bTu + cT(Qy - c)
= -pTut - cToyt - cTPlyZ + blu + clQy . (25)

Multiplying the transposes of (1a) and (1b) on the right by ut

and y+, respectively, and (1a)+, (1b)+ and (1c)+ on the left by

-uT, —yT and yz, respectively, and then adding the resulting

equations gives

yTBu® + uTeyt + yToToyt - uTeyt - UTAYZ - yTeTy* -

T. + + + T
= YTQ Qv - yTQTsz2 = pTut + cTQy+ - u'p - yTQ c

which, after cancellation and rearrangement, is equivalent to

T, %

0 =uA y; + yT Tpl,+

QP Yy + bTu+ + cTQy+ - uTb - yTQTc .
Adding this to (25) and simplifying gives

Y 2
et ,[-c = (2t
Yo

2
- |y - c + yToTe* - ooty vt

(26)



124

which, by transposition, is equivalent to the equality in (5).

Now (24), (26) and (4) imply that y; > 0. Suppose y; = 0. Then,
by (1a)+ and (1b)+, (y+,u+) solves (1). But assumptions (A1)
and (A2) imply, by Lemma 1, that (y+,u+) = (y,u). Then, since

we suppose y; = 0, (4) and (1c)+ are contradictory. Therefore,
y; > 0, which together with (26) and (4) gives the desired

inequality in (5) and completes the proof.

Lemma 6

Since y > 0 and y; > 0, X is well defined by

- . . + + .
A= 1, m .// N : . = vy. >0,
mlns , 1n[yJ (yJ yJ) yJ yJ = J]s

and we have X > 0, z, = Xy; > 0 and 2,20 for all j € J.
Moreover, z has at least one zero component if and only if

y+ $ 0. The definition of z combined with (1a) and (1a)+ implies
(6) and, combined with the convexity of quadratic functions having
positive semidefinite Hessian matrices, implies that

2 2 2

3 = [0 B T
[Q P71z - ¢ < A [Q P7] - c + (1 - A)|Qy - ¢ .

+
Y (27)

Finally, (7) follows from (27) and (5).

Lemma 7

By construction at Step 3, y satisfies

_ B |_ B
y > 0 and _ly = zZ . (28)
Q Q

Also, J C J, so [g—] has full column rank, because [g] has full
column rank. By (28) and (H) we have

BYy=Db , (29)
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so, by the remark following Lemma 2, y is well defined and
By =b . (30)
Therefore, by Lemma 2 and (28),

07y - ¢l < Q% -cl?= oz -c|® . (31

If y > 0, then (8) follows from (31) and the hypothesis that

loz - c|? < |@°y°® - ¢|?® . (32)

Suppose Yy } 0. Then, because y > 0, at the next execution of

Step 3, X and z are well defined and we have

>|

v
o
-

z =iy + (1 -XNy>20 ,

and

k

Z 0 for some k .

Also, by (29) and (30), we have
Bz =5b (33)

and, by objective convexity, (31) and (32), we have

- 2
|

Q72" - ¢ |

<]e7g -cl?= oz -c|?< oy -cl|® . (3

If z,, = 0 then, since J C J°U{2°}, (33) and Lemma 2 imply that

le°y® - ¢|? < Q72" - ¢|? ,

which contradicts (34). Therefore, Z;o > 0 and the proof is

complete.
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SUFFICIENT MINIMIZATION OF PIECEWISE-LINEAR
UNIVARIATE FUNCTIONS*

P. Wolfe

PRELIMINARIES

Minimization of a function of a single variable is a funda-
mental subroutine in most procedures for the minimization of
functions of many variables. We now know of important classes
of large-scale linear programming problems, having astronomically
many variables, which can be recast as problems of minimizing
convex, nonlinear but piecewise-linear, functions of reasonable
numbers of variables. The "method of conjugate subgradients"
is a procedure for solving the latter kind of problem, requiring
as a subroutine an efficient procedure for finding a "one-sided"
minimum of the given function (in the sense described later) on
an arbitrary ray in the space of problem variables. 1In other
words, a procedure is required which will efficiently find a
certain kind of approximate minimum, if such exists, of any con-
vex, piecewise-linear function f of a single variable. Further,
in the given context of large-scale linear programming, the
function f cannot be explicitly described: rather, given any
value x of its argument, one can readily calculate f(x) and one
support of the graph of f--that is, a "slope", denoted here by
f'(x), such that

f(y) 2 £(x) + £'(x)(y - x) for all y

--but no more. The kind of function handled here is unusual in
one respect: f'(x) is not continuous. Consequently, a method
designed for the more usual problem, in which f'(x) is continuous,
does not work well in this case.

*Research partially sponsored by the Air Force Office of Scientific
Research, U.S. Air Force, under Contract f49620-77-C-0014. The
United States Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright
notation hereon.
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The algorithm below accomplishes the required end with what

we believe to be near the smallest required computational effort.

PROBLEM STATEMENT

The piecewise-linear (more properly, piecewise-affine) func-
tion £ is defined for all x > 0 by

f(x) = Max {aix + bi :i=1,...,1} , 1)

where, for each i, a; and bi are real numbers. The quantities a;
and bi are not explicitly given: rather we suppose that we have

a procedure which, for any x > 0, determines the value f(x) and
some a,, bi for which f(x) = a;x + bi' We denote that a; by f£'(x).
To simplify notation below we will suppose that £(0) = 0, and also
that M = £'(0) < 0 (since, otherwise x=0 is trivially the minim-

izer).

We know that exact solution of the univariate minimization
problem is not needed for success of the overall procedure of which
it is a subroutine. Much computational labor can be saved by
requiring only that the two following conditions be satisfied

by the approximate minimizer x:
(a) £f(x) < Mmzx '

(b) £'(x) 2 Mm, .
(The constants m, and m, must satisfy the relations 0 < m, < m, <1.0.)
Our goal is thus to find x >0, f£(x), and f'(x) satisfying (a)
and (b). The "one-sided" nature of the requirement (b) is distinc-
tive for the kind of problem of interest here, as opposed to the
more usual requirement

£ (x) [ < m M|

1

For efficiency, this problem needs a substantially different
algorithm from that used if the latter requirement must be met.
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Using the convexity of f it is easy to show that the two

functions
fx)/x , £ (x)

are nondecreasing; so the set of all x satisfying (a) is an inter-
val of the form [0,A] (where A=0 or A=~ are both possible), and
the set of all x satisfying (b) is the form [B,~) (with the same
possibilities for B). If A=» then (a) holds for all x, and our
procedure will generate a sequence of values of x tending to in-
finity, so that f(x) will tend to -«. Otherwise it is easy to
show that B < A, so that the two intervals overlap. The algorithm
below finds a point in that overlap.

ALGORITHM

When f and f' are evaluated for some value of x, the data
are recorded in the form of the triple (x, f(x), f'(x)). Supposing
terminal data (i.e., satisfying both (a) and (b) above) not to
have been found, L will denote the most recent triple evaluated
for which x lies in the interval [0,A], LL the previous such
triple, and R the most recent, if any, for the interval [B,«).
Li(x,y,m) will denote the line of slope m passing through the
point (x,y); thus Li(L) is a line of slope f'(x) passing through
a point (x,f(x)). The "stepping factor" E is some number greater
than one; we have found the value E=6 useful. Component j of a
triple like L will be denoted L[j], as in the APL language. The
relations LL[1] < L[1}] < R[1] will hold throughout the course of
the algorithm.

It is supposed that a "starting" value x > 0 has been pro-
vided for the algorithm. Initially L and LL are set to (0,0,f'(0))
and R to (»,»,»), The algorithm consists in execution of the

steps below in order (except where "go to" intervenes).
1.1 Evaluate f(x), f'(x).

1.2 If (a) does not hold, go to 4.
1.3 If (b) holds, terminate; x,f,f' is the solution.



130

2.1 Set LL to L.
2.2 Set L to (x,f(x), £'(x)).
2.3 If R[1] £ », go to 5.

3. (Extrapolation) Use linear extrapolation on the slopes LL[3],
L[3} to determine the value x* (which may be =) at which f' (x¥)
should vanish. Set x to Min {x*,x + E(x - LL[1])}. Go to 1.1.

4, Sset R to (x, £f(x), f'(x)).

5. If the point (L(1), L(2)) is on the line Li(R), terminate;
the solution is (L[1], L[2], RI3]).

6.1 Set x to the abscissa of the intersection of the lines
Li(L), Li(R).
6.2 If R[3] >0, go to 1.

7.1 Set X to the larger of x and the abscissa of the intersec-
tion of the line Li(0,0,-mz) with the line passing through
(L[1],L[2]) and (R[1],R[2]). Go to 1.
Notes

- Step 3: x* is determined by the calculation: if

LL[3] > L[3], set x* = », Otherwise

x* = (f'(x) LL[1] - x LLI3])/(f'(x) - LL[3]) .

~ Step 5: The point (L[1],L[2]) is on Li(R) when L[2] = R[2]
+ R[3] (R[1]1-L[1]). 1In that case, Li(L[1],L[2],R[3]) is
a support of f at L just as Li(L) is, and since R[3] > L[3],

the former is preferable.

- ©Step 6.1: X is given by the formula

(L{2] - R[2] + R[1]R[3] - L[{1]L[3]1)/(R[3] - L[3])

- ©Step 7.1: The desired abscissa is

(LITIRI2] - RI1IL[2])/(RI[2] - L[2] + m,(R[1] - LI1]))



THE METHOD OF PARAMETRIC DECOMPOSITION IN
MATHEMATICAL PROGRAMMING: THE NONCONVEX CASE

Jacques Gauvin

1. INTRODUCTION

We consider a large mathematical program which may be written

in the following general formulation:

max f(x,y,z)

subject to gi(x,y) <0 , i 1,40.,m

(PO)W

hj(x,z) =0 , 3 1,...,p

L lk(YIz)f_ 0 I3 k 1,.-.,r

where x € Rn, y € Rs, z € Rt. It is expected here that the objec-
tive function f and the constraints gi,h. are decomposable in
their arguments x, y, and z and that the optimization is easy

when y and z are held fixed.

Essentially in the method of parametric decomposition [3] or
the method of primal decomposition by resource allocation [6],
[15,16] the variables y and z are considered as parameters and
are held fixed at the first optimization level where the follow-

ing problem in x is solved by a standard NLP method:

max f(x;y,2)

(P,) subject to gi(x,y) 0 , i=1,...,m
hj(x,a) =0 , j=1,...,p .
Let Sly) = {x € Rn|gi(x,y) <0 , i=1,...,m}
T(z) = {x ¢ Rn|hj(x,z) =0 , j=1,...,p}
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and U(y,z) = S(y) N T(z) be the feasible set for (P1). The
optimal value of (P1) is given by

max f(x,y,z) 1if Ul(y,z) ¥ ¢
x € Uly,2z)
viy,z) =
oo if U(y,z) = ¢

which is called the extremal-value function.
P(y,z) = {x € Uly,2) |£(X,y,2) = vi{y,z)}

is the set of optimal solutions for (P,). V = {{y,2)|Uly,z) % ¢}

is the set of feasible parameters for (P1).

At the second level, a postoptimization is performed on the

feasible parameters

max v(y,z)
(P2) subject to (y,z) € V

lk(y,z) <0 , k=1,...,r .

In this method of decomposition-coordination by resource
allocation, an optimal solution of subproblem (P1) always gives
at least a feasible solution to the original problem (PO). Such
is not the case in a dual-type method such as that of decomposition-
coordination by prices (see Lasdon [9]) where a feasible solution
of the original problem will only be attained, in general, at an

optimal solution.

Under convexity assumptions, the extremal-value function
v(y,z) is concave and subdifferentiable, and some methods have
been proposed to solve the problem (see, for example, [15,6,8].
A description of the first two works can be found in [9] Chapter 9).

To our knowledge, it seems that recent methods of nondif-
ferentiable convex optimization [17,10] have not been applied to

the problem of parametric decomposition.
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It is not the purpose of this paper to survey the results
and methods of convex parametric decomposition, but rather to
see what can be done in the nonconvex case. To make the presen-

tation more simple, we will assume

f(x,y,2) = £(x)

gi(XIY) gl(x) - yl

hj(x,y) hj(x) - Z. .

J

The extension of results to the more general problem can be easily
obtained.

First some results from [5] are presented from which a locally
Lipschitz property for the extremal-value function is derived.
Also an estimation of the generalized gradient of this function
is obtained. Maybe these results can be useful for designing
a method to solve the nonconvex and nondifferentiable second
level optimization problem.

Some results are already available in that direction. F.H.
Clarke [2] has given optimality conditions that can be applied
to the postoptimization problem. Also some algorithms have been
proposed for optimizing nondifferentiable nonconvex functions;

see [12] for such a proposal and a review of others.

In the sequel all functions defining program (Po) are assumed
continuously differentiable.

2. A LOCALLY LIPSCHITZ PROPERTY FOR THE EXTREMAL-VALUE

FUNCTION
Let ¥,z be some feasible parameters for problem (Py). For
X, a local maximum of (P,), let I(k;¥,2) = {i|g;(x) =y} be the

set of active inequality constraints and K(x;y,z) be the set of
Kuhn-Tucker vectors corresponding to X, that is the set of (u,v)
€ R™ x RP such that
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r % T 5 %
VE(X) = iz u; Vg, (x) + _21 v th(x)
]
{ u, 2 0 i=1,..,m
1
ui(gi(i) -y.) =0

Let

be the set of all multipliers corresponding to (y,Z).

The directional derivative of v(y,z) at (y,z), for a direction
d=(d,d%) € R™ x ®P, |lall= 1, is

= 1 = 2 - -
v'(7,2;d) = 1lim YA¥y*td ,z+td’) - viy,z)
tv0 t

We will also consider lim inf and 1lim sup for the right-hand side
expression. Examples show that these limits can be infinite if
for some x € P(;,E), K(x;y,z) is empty or unbounded. To avoid
this situation we assume at x the Mangasarian-Fromowitz con-
straint qualification, denoted (CQ1).

~
(i) There exists a w € R™ such that

Vgi(i)- w<0 , ieiI(x;y,2z)

(ce1)

th(i) *w=0 , F=1,...,p .

(ii) The gradients {th(i)}, J=1,e0.,p

are linearly independent.
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In the absence of equality constraints, (CQ1) is equivalent

to the Cottle constraint qualification: the system

Z __ u, Vg.(x) =0 , u, >0
i€ I(xy,2) = 1 *

has no nonzero solution. If the g; are convex and the hj affine,

(CQ1) is the well-known Slater condition.

This regularity condition has the following nice property
(see [4 or 51).

Lemma 2.1

Let X be a local maximum. Then K(§;§,E) is a nonempty,

convex and compact set if and only if (CQ1) is satisfied at x.

The presence of equality constraints may cause the set U(y,z)
to be empty near (y,z). The next lemma gives a condition to rule
out this situation [5, Lemma 2.5].

Lemma 2.2

If (CQ1) is satisfied at some x € P(y,z) then U(y,z) is not

empty near (y,z).

Conditions to have the function v(y,z) continuous are given
in the following [5, Theorem 2.6].

Theorem 2.3

If U(y,2z) is nonempty and U(y,z) is uniformly compact near
(§,§) then U(y,2z) and v(y,z) are upper semicontinuous at (§,§).
Furthermore if (CQ1) holds at some x € P(§,E) then v(y,z) is

also lower semicontinuous at (y,z).

The (CQ1) regularity condition has the advantage of being

preserved in a neighborhood of (y,z) [5, Corollary 2.10].

Theorem 2.4

If in Theorem 2.3, (CQ1) holds at every x € P(y,z), then
there exists a § > 0, such that for all (y,z) satisfying
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”(y,z) - (§,E)”_§6, (CQ1) holds also at each x € P(y,z), the

point-to-set map K(y,z) is upper semi-continuous at (y,z) and
K(y,2z) is uniformly compact near (y,z). More precisely, this
result means that for any sequence {(yn,zn)}, (yn,zn) ~ (¥,2),
there exist (un,vn) € K(yn,zn), a subsequence {(um,vm)} and a

(u,v) € K(y,2) such that (4™, v™) > (,v).

It should be noted that K(y,z) is not necessarily lower

semicontinuous at (§,E) under the assumptions of Theorem 2.4.

The next result gives bounds for the potential directional
derivatives of v(y,z). It does not require any second-order

assumptions [5, Theorem 3.3].

Theorem 2.5

Suppose that U(y,z) is nonempty, u(y,z) is uniformly com-
pact near (y,z) and (CQ1) holds at some x € P(y,z), then for

any direction d

min {u - d1 + v - 4d

(u,v) € K(X:;y,2)

2}

- 1 - 2 - -
< lim inf v(y+td ,z+td”) - viy,z)

t¥0 t

Furthermore, if we assume that (CQ1) holds at every X € P(§,E)
then

_ max _ min_ _  {u - d1 + v - dz}
X € P(y,z) (u,v) € K(X;y,2)
- ‘|_ 2 - -
< 1im inf V(yttd ,z+td") - v(y,z)
t40 t

v{§+td1,§+tdz) - v(y.,z)

| A

lim sup
t+0 t
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< max max {u - d1 + v e dz}

T X eP(y,z) (uv) € K(XiY,Z)

The bounds given in Theorem 2.5 are sharp: there are ex-
amples for which the directional derivatives of v{(y,z) exist at
(§,E) with the upper bound attained for a direction d1, the lower
bound attained for some other d2, and a value strictly in between

for a different d. (see [5, example 3.1]).

3

If in Theorem 2.5, we replace (CQ1) by the following more

restrictive regularity condition.

The gradients {Vg, (x),Vh.(X)}, i € I(X:¥,2), 3 = 1,...,P,
(cQ2) * )

are linearly independent.

then the directional derivative exists and is given by

v'(%,y:d) = max _ {a - d' +v - a’}

- X _ (2.6)
x € P(y,z)

where (u,v) is the unique multiplier vector corresponding to x.

Under convexity assumptions, we can obtain the following
corollary of Theorem 2.5 [5, Corollary 3.5]1; [7].

Corollary 2.7

Suppose the functions £, {gi}, i=1,...,mare convex and

{hj} are affine. 1If U(§,E) is nonempty, U(y,z) is uniformly com-

pact near (y,z) and (CQ1) (which is then equivalent to the Slater

condition) is satisfied for each x € P(§,E), then v{(y,z) has a
directional derivative for any direction 4 at (y,z) and

1 2}

v'(y,z;d) = max min {u -d +v - 4d

X € P(;,E) (u,V) S K(}_{;§IE)

From Theorem 2.4 and Theorem 2.5, it is possible to obtain

a locally Lipschitz property for the extremal-value function.
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Theorem 2.8

Suppose that U(§,E) is nonempty, U(y,z) is uniformly compact
near (;,E) and (CQ1) holds at every X € P(§,E); then there exists
a §-neighborhood N6(§,E) and a finite K such that for any (y1,z1),
(v,r2,) € Ng(¥,2)

|V(y2122) - V(Y1rz1) | <K ”(ylez) - (Y1rz1)” .

Proof

From Theorem 2.4, the regularity condition (CQ1) remains
valid at every (y,z) € NE(§,E), for some € > 0, with the set of
multipliers K(y,z) uniformly bounded. Therefore, for some §,

0 < 8§ < g, Theorem 2.5 is valid at any (y,z) € N6(§,E), and, for

any direction 4 = (d1,dz),||d||= 1, there exists some finite K1
and K2 such that
K, < lim inf [v(y+td',z+td?) - v(y,2z)1/t
t+0
< lim sup [v(y+td1,z+tdz) - viy,z)]/t £ K, (2.9)
t40

2 2 1 - = \ 2 1 1
For (y ' 2 ),(Y Iz1) (S Ns(le)l write (YZIZ Y, - (Y ' Z )

1 .2 2 2 1
= A(d1,dz) where |[(@ ,d%)|| = 1 and X = |[(y°,2°) - (y1,z M -
From (2.9) it follows that the function v(y1+td1,z1+tdz) is
Lipschitz continuous on the ray d, for t € [0,A], hence absolutely

continuous on that ray. Therefore its derivative exists almost
everywhere and we can write

4 siyletal,z'+ta?) ar .

A
viytera!,zlerd?) - viy', 2l = [ =

0

This derivative, when it exists, is equal to the right derivative,
which is the directional derivative v'(y1+td1,z1+td2;d). From
(2.9) we then obtain
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K1A < v(yz,zz) - v(y1,z1) < KZA

and the result follows with K = max{|K1|,|K2|}-|

Stern and Topkis [14] have obtained the previous result for

a program without equality constraints

{ max f(x)

subject to gi(x) Y o i=1,...,m

assuming that the functions gi(x) have continuous second deriva-

tives.

F.H. Clarke [2] also considers the problem

min go(x)
(Ps) {

subject to gi(x) <s. , i=1,...,m

where he defines (Ps) to be "calm" if the extremal-value function

p(s) = inf{go(x)|gi(x) < s, i=1,...,m}
is finite, and if
lim ing 1080 =01, o

st>s  ls'-s ||

The program (PS) is also defined to be "normal" if the Kuhn-Tucker
conditions hold at every optimal point x of (Ps). In fact,

Clarke does not assume that the functions gi(x) are differentiable
and he gives some generalized Kuhn-Tucker conditions which reduce
to the usual ones when differentiability is assumed. Then he
shows that if (Ps) is "calm" then (Ps) is normal. The converse

of this result is not valid unless (Ps) is assumed "normal" with

bounded multipliers. He also shows that on a neighborhood S of
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0 where ¢(s) is finite, P(s) is "calm" and "normal" for almost
all s in S. The following example shows that the "almost all s"

is meaningful.

Bxample 2.10

min go(x) = -x
e |
subject to g1(x) = x3 <s
Then ¢ (s) = -s1/3 and (Ps) is either "normal" or "calm" at s = 0.

3. THE GENERALIZED GRADIENT OF THE EXTREMAL-VALUE FUNCTION

For the previous section, we have conditions to guarantee
the extremal-value function v(y,z) to be Lipschitz in some ball
about (§,§). Following Clarke [1] the gradient Vv(y,z) then

exists almost everywhere in that ball (Rademacher's theorem).

Definition 3.1 [1]

The generalized gradient of v(y,z) at (y,z) denoted
Bv(§,§), is the convex hull of the set of limits of the form
lim vV(§+hn,E+kn), where (h_,k ) > (0,0).

v(y,z) is a nonempty convex compact set. The generalized
directional derivative of v(y,z) at (§,§) for the direction
a=(a,a%) e ®™ x RP is

lim sup [v(y+td1,z+td2) - viy,z)1/t .
(y,2)>(¥,2)

t+0

v0(3,2:q)

Then

2

v0(¥,2:d) = maxig' - @' + g2 - a?|(g',q%) € w(¥,7)}

that is, vo(y,z;-) is the support fumction of dviy,z) .

r
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We can obtain, under the assumptions of Theorem 2.8, the
following estimation for the generalized gradient of the extremal-

value function.

Theorem 3.2

Suppose that U(§,E) is nonempty, U(y,z) is uniformly com-
pact near (y,z) and (CQ1) holds at every opntimal point x € P(y,z).
Then the generalized gradient of v(y,z) at (§,§) is contained
in the convex hull of all the Kuhn-Tucker multipliers correspond-
ing to the optimal points; that is dv(y,z) € co K(y,z).

Proof

Take a sequence {(y",z")1}, (yn,zn) +~ (¥,2z) where Vv(y",z™)
exists. For any direction d = (d1,d2) e R™ x RP we have, by
Theorem 2.4, that (CQ1) still holds in some neighborhood of

(y,z), and we have, by Theorem 2.5,

Vv(yn,zn) e d = lim[v(yn+td1,zn+td2) - v(yn,zn)]/t
t40
1
< max [u-d" + v-d2]
T (u,v) € K(y", 2"
- [un-d1 + vn-d2]
n _n n _n ;
for some (u’',v’) € K(y ,z ). Again from Theorem 2.4, there

exists a subsequence {(um,vm)}, a (u,v) € K(?,E) such that
(um,vm) + (u,v). Taking the limit on both sides we obtain by
[13, Theorem 32.2],

[lim Vv(yn,zn)] +d =< u-d' + v'd2
max _ [u'd1 + v-d2] .
< (u,v) € K(y,2)
= max [u'd1 + V'd2]

(u,v) € co K(y,z)



Since this result holds for every direction d, we have, by [13,
Theorem 13.1],

lim vv(y",2z") € co K(y,z)

This with Definition 3.1 gives the result. ||

If the directional derivative v'(§,§;d) exists and is equal
to vo(y,z;d) for every direction d, then v(y,z) is said to be
quasidifferentiable at (§,E) (see [111).

Corollary 3.3

If in Theorem 3.2 the regularity condition (CQ1) is replaced
by (CQ2) (see (2.6)), then 3v(y,z) = co K(y,z) and v(y,z) is
quasidifferentiable at (y,z).

Proof

For any (u,v) € K(§,§), we have

a-al + ved® max _ _ [ued! + v-d?)

(u,v) € K(y,z)

| A

= v'(y,z;:d) by (2.6)

< <93 3

hence, by [13, Theorem 13.1], (u,v) € ov(y,z) and K(y,z) C 3v(y,z).
By Theorem 3.2, 3v(y,z) = co K(y,z). Therefore we have,

for every direction 4,

VO(?,E;d) = max _ [u~d1 + v~d2]
(u,v) € co K(y,z)

= max_ _ [u-d' + ved’] = v'(y,z;d)
(u,v) € K(y,2)

by [13, Theorem 32.2] and (2.6). ||

The next example illustrates the previous result.
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Example 3.4
x3 if x>0
max f =
x> if x <o
. 2
subject to g = x" - 1 < y
-~
—_— — — e == fmmm== Y 20
vy =0
—-— -— e —-— ey T S . S -— aes o 9 y<
At § = 0, the maximum occurs at §1 = 1 with multiplier ﬁ1 = 3/2
and at x, = -1 with multiplier Gz = 1 where (CQ2) is satisfied

at both points.

For y > 0, the maximizer is + V1+y, and for y < 0, the maxi-

mizer is - Yi+y; hence the extremal-value function is

(1+y)32 i y > 0

viy) =
(1+y) if y< 0
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/
/7
/7
|
Y
1 3 o
2
3v(0)
Therefore
vt ;) = 3= %0
' _ _ .0
v'(0;-1) = -1 = v (0;-1)
and
% if vy >0
— 3 : _
av(y) = < [1,5 ] if y =0
| 1 if y <0

The next example shows that under assumption (CQ1) the

extremal-value function is not necessary quasidifferentiable.

Example 3.5
max f = X,
subject to g, = x, + x2 < y
1 2 1 =41
2
9y T X T X 1Y,
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%2
»>
g, =0
-> X
g, =0
n
9y =Ygt A,
_.n
g1 _Y1
At ¥y = (0,0), the maximum occurs at x = (0,0) where (CQ1) holds
with the set of multipliers
K(x;0) = {(u;,uy) fjug +u, =1, ug >0, u, 20} .
For the direction d = (1,0), v'(0;d) = 4. Now take a sequence

n n _ n n ,n n,,
{y",2,} where y= = (y{,0), yg <0, yg + 0, A ¥+ 0, A < |y1|, then
n - n = n —y0 = < v0¢g.
v ™ @) - vy™I/a = e yRA = 1< v ora)

and therefore VO(O;d) # v'(0;d) and v(y) is not quasidifferen-
tiable at § = 0.

The next results characterize the gradients of v(y,z) when
they are assumed to exist.
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Corollary 3.6

If the assumptions of Theorem 3.2 are satisfied and if the

gradient
vy, z) =[i¥L' iQL] , i=1,...,m; 3 =1,...,p,
Byi sz

exists, then

v

u. 3V .

max min [ 1] < Yi

X €P(y,2) (u,v) € K(X;Y,2) vy v
3z

]

A

min max [vl]
x € Ply,z) {u,v) € K(x;v,2) J
i=1,...,m ; j=1,...,p .

Prooﬁ

For any direction d we have, by Theorem 2.5,

Vviy,z) - @ = v'(y,z;d)

_  hmax min_ [u-a' + v-d?
x € Ply,2z) (u,v) € K(x;y,2)

{v

Hence for the direction -4,
- = . 1 2
vv(y,z) * (-d) > max min - [u-d + v-4d°] ,
which implies

Vv(§,§)- d £ _ min max [u-d1+ v-d2] .

X € P(y,2z) (u,v) € K(X;y,2)

These two inequalities taken with the directions d equal to

the unit vectors in R™ x RP give the results. |
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Corollary 3.7

If in Corollary 3.6 the regularity condition (CQ1) is re-
placed by (CQ2), then the set of multipliers is a singleton,
that is K(y,z) = {(u,¥)} and Vv(y,z) = (u,V).

Proof

Under (CQ2), for each x € P(y,z), K(x;y,z) is a singleton.

From Corollary 3.6, we have

max u; < v £ _ min _ u ’ i=1, s,
X € Ply,2) Yi  x e Ply,2)
which implies the result. (The same holds for 3%!3 i=1,....,p)]l
3

Recently R, Mifflin [11,12] has introduced the notion of
semismooth and weakly upper semismooth functions. The defini-

tions are the following.

Definition 3.8

A function F:R™ + R is semismooth at x € R if

’

(i) F is Lipschitz on a ball about x and

(ii) for each direction d € R™ and for any sequences {tk} C R,
c n n
{ek} R™ and {gk}C:R such that {tk} v 0, {ek/tk} + 0

and 9, € OF (xX+t d+6k) the sequence {gk-d} has exactly one accumu-

k
lation point.

Definition 3.9

F: R > R is weakly upper semismooth at x if the follow-

ing conditions hold:
(i) F is Lipschitz on a ball about X
(ii) for each direction 4 € R

lim inf 9y * d > 1lim sup [F(x+td) - F(x)1/t
ko £+0
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where {gk} c R" is any sequence such that 9y € aF(§+tkd)

and {tk} C R, is any sequence such that {tk} + 0.

In Example 3.5 it can be easily seen that the extremal-value
function is weakly upper semismooth and even semismooth. At the
present time, it is not known whether these properties are gen-
erally satisfied or not by the extremal-value function under the

assumption of Theorem 3.2.
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A SET OF NONSMOOTH OPTIMIZATION TEST PROBLEMS

Test Problem 1: MAXQUAD

The objective function to be minimized is
f(x) = max {(Aerx) - (ber)lk =1,..-,5}
where
10

XER

The (symmetric, diagonal dominating) matrices A, together

with the vectors bk, are given by the fancy formulae:

i/3

A (i,3) = eJ cos (i,3) sin (k) i < j

b, (1) i/k sin (i.k)

e

and the diagonals of A, are

A (i,i) = 75 sin (k) + jiiAk(i,j) .

The following naive FORTRAN program fills up the data for
K MAX = 5, N = 10.

151



1¢

29
32

152

do 38 k=1,kmax

ak=float (k)

do 10 i=1,n

ai=float (i)

do 18 j=i,n

aj=float(j)
alk,i,j)=exp(ai/aj)*cos(ai*aj)*sin(ak)
a(k,j,i)=a(k,i,j)

continue

do 20 i=1,n

ai=float (i)

f(k,i)=exp(ai/ak) *sin(ai*ak)
a(k,i,i)=abs(sin(ak))*float(i)/float(n)
do 28 j=1,n

if(j.ne.i) a(k,i,i)=a(k,i,i)+abs(a(k,i,j))
continue

continue

For this particular problem, the optimal solution is

f* -0.8414

x* (-0.1263, -0.0346, -0.0067, 0.2668, 0.0673,

0.2786, 0.0744, 0.1387, 0.0839, 0.0385) .

The following FORTRAN program computes the value of the

objective, VAL, and a subgradient, G, at a given point, x.

14

2€

&C
78

k@=3

do 50 k=1,kmax

fi=0.

do 1C i=1,n

z=x (1)

fi=fi-f(k,i)*z

do 10 j=1,n
fi=fi+a(k,1i,j)*x(j)*=z
if(kB.ec.®) go to 29
if(fi.le.val) go to 57
kB=k

val=fi

continue

do 72 i=1,n
z=—f(kC,1i)

do €8 j§=1,n
z=z+2.*a(k@,1i,3) *x(j)
g(i)=z
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The standard starting point is X5 = 1i=1,...,n, for which
f = 5337. Another interesting starting point is x = 0, since
f has a kink at this point (fk(O) =0k=1,...,k max).
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Test Problem 2: SHELL DUAL

This is the second problem of Colville, where all the con-
straints are penalized with an 21 penalty function (A.R. Colville:
A Comparative Study of Nonlinear Programming Codes, IBM, New York,
Scientific Report 320.2949 (1968)).

There are two groups of variables: X0 i=1,...,k=10

and yj, j=1,...,m=5,

The original problem from Colville is

m

min 2 § d.y> + (Cy,y) - (b,x)
3=1 J°]

(Ax), - 2(Cy). < e, + 3d.y> 3 =1,...,m
3 RRAE T 3%3

Xzo ’ y_>_0 .

Here we define the functions

2
P. ’ = (A .- 2 R Y. o~ .
J(X Y) ( x)J (Cy)J 3d3y3 eJ
k m
Q(x,y) = ] min (0,x;) + ] min (0,y5)

i=1 j=1

and the function to be minimized is
flx,y) = 2 iZ 4. Y?| + (Cy,y) - (b,x)
j=1JJ
m

+ 100 % } max (0,P.(x,y)) -Q(x,y) .
3=1 ?
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The vectors d, e, b and matrices A and C are given at the end

of this problem.

A program which computes the function f(x,y) and its
gradient is also given. In this program, the data m, k, 4, b,
e, A, C, together with PENAL = 100 are supposed to be passed in
a COMMON block.

The variables x and y form a single vector X where

X(I) = y; i=1,...,m

X (M+I) i=1,...,k .

]
k]

The optimal point is f* = 32.3488

y* (0.3, 0.3335, 0.4, 0.4283, 0.224)

x* = (0., 0., 5.1741, 0., 3.0611,

11.839%9, 0., 0., 0.1039, 0.)

The starting point is £ = 2400.

y5 = 0.0001 j=1,...,5
x; = 0.0001 i+ 7
60 .

b
~
1]



~-16.

_305
0.
0.
2.

-1.

-1.

1.

30.
-20.
-10.

32.
-10C.
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Data_for SHELL DUAL

-15. ~27. =36. =-18.

Matrix a

2. 0. 1. C.
-2. 0. 4, 2.
c. 2. 0. 0.
-2. 0. =4, -1.
-90 -2. 1. ‘2.9
C. -4, o. 0.
-1. -1. -1. ~1.
-2. -3. -2. ~1.
2. 3. i, 5.
1. T te 1.

Symmetric Matrix c

=20. =10, 32. =10,
3q. -6, =31, 32.
-€. 1C. -6. -1C.
=21, -6. 39. -2C.

32. =10. -2C. 20,

-12.

-40.
~2.
-0.25
-4,
-4,

~-40,
-60.

2.

1.
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Program for computing function and gradient in SHELL DUAL

z=0.
do 12 j=1,m

16 z=z+d(3)*x(3) *x (§) *x(3)
if (z.1lt.0.) go to 30
val=2,*z
do0 26 j=1,m

28 g(3)=6.*d(J)*x(J)*x(])
go to 50

30 val=-2.*z
do 40 j=1,m

40 g (3)=~6.%d(3)*x (3)*x(3)

56 do 72 j=1,mw
z=0.
do 60 i=1,m

60 z=z+c(i,j)*x (1)
val=val+z*x(j)

70 g(J)=g(j)+2.*z

do 80 i=1,k

il=m+1i

val=val~b(i)*x(il)
88 g(il)=~b (i)

compute the constraints

(o]

do 208 j=1,m
z==3,.%d(J) *x () *x(j)~e(])
do 120 i=1,k
il=m+i

120 z=z+a(i,]j)*x(il)
do 1490 i=1l,m

1490 z=z~2.*c(i,j)*x (i)
if(z.le.0.) go to 200
val=val+penal*z
g(j)=g(j)~6.*penal*d(j)*x(Jj)
do 168 i=1,k
il=m+i

160 g{il)=g(il)+penal*a(i,j)
do 188 i=1,m

180 g(i)=g(i)=~2.*penal*c(i,]j)

200 continue

now the nonnegativity constraints

(o]

do 320 i=1,n
if (x(i).ge.B.) go to 320
val=val-penal*x (i)
g{i)=g(i)-penal

320 continue
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Test Problem 3: EQUIL

The following nonconvex problem is a min-max formulation
of an economic equilibrium problem in Scarf (The Approximation
of Fixed Points of a Continuous Mapping, SIAM Journal on Applied
Mathematies, 15 (1967), 1328-1343).

N
Minimize {max[fi(x) :i=1,2,...,N1: } x.=1 |,
j=1 )
Xj >0, 3=1,2,...,N}
where
XGERN
NA
£.(x) =} £(x) for i = 1,2,.-.,.N
1 1
=1
. N B, N 1-B,
£ = (Bgy k£1wkkxk)/(xi k£1A&kxk ) - W

for £ = 1,2,...,NA |

The input data N, NA, W and B are given below.

ek’ Pox
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Data tor EQUIL

N =8 NA =5
Matrix W
3. 1. .1 .1 S. .1 o1 6.
Jd 1¢. .1 .1 S. .l .l .1
.1 9. 1e. .1 4, .1 7. .1
.1 .1 L1010, .1 3. . .1
.1 .1 .1 .1 .1 .1 1 11,
Matrix A
1. 1. 1. 1. 1. 1. 1. 1.
2. .8 1. 5 1. 1. 1. 1.
1. 1.2 .8 1.2 1.6 2. .6 .1
2. .1 .6 2. 1. 1. 1. 2.
1.2 1.2 .8 1. 1.2 .1 3. 4,

Vector b = [ .5 1.2 .0 2., 1.5 ]
An interesting starting point is
xj = .125 for all j

where f(x) = max fi(x) has the value 9.7878. The optimal value
1

of £ is zero and occurs at a strictly positive point near
x = (.27, .03, .06, .09, .07, .31, .10, .07)
The following FORTRAN SUBROUTINE CALCUL (x,G,VAL) requires the

data NA, N, A, W and B to be available in the common blocks
labelled ENTIER and REEL. It is useful when

N
c ] x. =1 .
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If xj > 0 for all j it returns the value of f in VAL and returns

a projected (with respect to (C)) generalized gradient in G.

Otherwise, it returns an arbitrarily large number in VAL and no

useful G.

10

20

g0
100

26¢

230
24¢

300

350
400

SUBROUTINE CALCUL (X,G,VAL)
COMMON /ENTIER/ NA,N

COMMON /REEL/ A(5,18),W(5,18),B(5)
COMMON /EXCESS/ ED(10),R(5,10),0(5,10),%XB(5,10)
DIMENSION X(10),G(19)
VAL=1,.E20

DO 16 I=1,N

ED(I)=0.

G(I)=6.

CCNTINUE

0O 168 L=1,NA

SUMR=0.

SUMD=0.

DO 28 K=1,N
IF(X(K).LE.0.)GO TO 400
XR(L,K)=X(K) **R (L)
SUMD=SUMD+A (L,K) *X (K) /XB (L,K)
SUMR=SUMR+W (L, K) *X (K)

DO 86 I=1,KN
D(L,I)=XB(L,I)*SUMD
R(L,I)=A(L,I)*SUMR/D(L,I)
ED(I)=ED(I)+R(L,I)~W(L,I)
CONTINUE

ImMax=1

VAL=ED (1)

0O 208 I=2,N

IF (ED(I).LE.VAL) GO TO 208
VAL=ED (I)

IMAX=I

CONTINUE

SUM=0.

0O 340 J=1,N

DO 246 L=1,NA
TLJI=A(L,J)*(1.~B (L))

IF (J.EQ.IMAX) GG TC 2390
T=TLJ*XP (L, IMAX)/XR (L,J)

GO TC 240
T=TLJ+B (L) *D(L,J) /%X (J)
G(J)=C(J)+(A(L,IMAX)*W(L,J)~-T*R(L,IMAX)) /D (L, INAX)
SUM=SUM+G (J)

CONTINUE

SUM=SUM/FLOAT (N)

0O 35¢ J=1,N

G(J)=G(J)~SUM

RETURN

END



161

Test Problem 4: TRUS8

This problem is the dual of a transportation problem with
48 sources and 48 destinations. It was communicated to us by
J.L. Goffin and the cost data is from M. Held, R.M. Karp:
A Dynamic Programming Approach to Sequencing Problems, J. Soc.
Indust. Appl. Math., 10, 1 (1962), 196-210.

The objective to be minimized is

n n
.. n
f(x) = -{§ s.x,+ ] d.min (a.. - x:)}
L e T Bt
where n = 48. See the following pages for the statements for
computing the function and its gradient, for the data, and for

the initial and optimal points.

The initialization x = 0 is standard. The point "initial
2" is given by J.L. Goffin. It has been computed by subgradient

optimization.
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Statements for computing function and gradient in TRU8

£f=0.
do 18 i=1l,n
g(i)=s(i)

19 f=f+s(i)*x(i)
do 58 j=1,n
xmax=l.e30
do 4€ i=1,n
z=a(i,j)~x(i)

if (z.gt.xmax) go to 4%

Xmax=z
k=1
40 continue
g(k)=g(k)=d(3J)
f=f+d (j) *xmax
58 continue
f=~f
do 70 i=1,n
78 a(i)==-g(i)

Sources and destinations

vector s 22, 53, 64, 1%,
17, 29, 5@, 13,
36, 3£, 55, 77,
93, 54, 89, 30,

vector 4 61, 67, 24, t¢,
£g, 406, 29, 45,

3e, 20, 97, 19,
63, 47, 7, €1,

Statements for readinc

1 format ((16£5.0))

6€, 37,
95, 134,
45, 34,
70, 46,

13, 8¢,
32, 21,
le, 73,
€7, 19,

the symmetric cost matrix A

16,
59,
32,
3%,

89,
€1,
59,
36,

23,
36,
58,
41,

46,
21,
92,
43,

read 1, ((a(i-1,3),j=i,n),i=2,n)

do 1¢ 1i=1,n

a(i,i)=1eqeac,

do 1 j=1,1

a(i,j)=a(j,i)
1§ continue

67,
22,
3¢,
9e,

48,
51,
52,

9,

eg,

€6,

€9,

59,
93.

75,
79,

67.

( data for A on next page )



213
1364
1815

00y

1454
697
285

2172

125
1095

463
803
355
592
z043

1568

568
563
1556
920
367
598
410
1972
2049
1256 2
2693
999
750
371
1438
-7
623
1938
1169
674
1164
790
679
511
567
703
1241
1287
2115
355
1829
347
4zg
1263
1357
1010
701
347
2145
10006
523
2165
250
790
1401

100y

2360 <
33¢
2
501

ey ¢

814
605

2026
726

2 1483

1038

Data for Cost Matrix in TRU8
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6 1572

1169
1499
1640

441
13006
1229

6 1936

382
1092
T42
1600
1060
763
721
1259
2099
760
1086
684
015
966
631
641
587
343
2301
1493
947
1252
432
1064
238
661
1007
1796
420
1681
879
1021
1333
1240
470
813
878
1399
1239
803
1645
646
410
751
680
47y

2 1547
. 1007

1524
2336
Iy
645

¢ 1010

1200

5 1440

51y
uzb
veo
2e0
1668
567
6CC

o 1560

1580
1486
1107
1266
1009

11
1489
1726
026
235
893
939
1163
1836
549
1210
454
1861
525
690
1837
1097
1941
95y
1137
1780
1266
1946
240
2700
743
472
2063
o75
142y
1163
151
1529
721

413

1678
720
1576

1355

1539
1280
yliz
445
937
Ly
554
604
1961
1283
9 1760
776
374
2066
740
1137
2493

279
T49
780
2568

1457
516
4y
894
915

1157
721
907
781
973
703

1049
579
591
551

1255

2¢66

1286

1906
690

1100

2333
594
528

1358
340
053
882
862
863

17586
520
503

1602

2dcy

456
254
1434
2571

6 1021
5 1503

150¢

2387 &

317

425
664
6117

867 14

1359
1212
214
676
565
1727
402
235
400
1551
1123
264
435
176
476
1347
2108
197
2425
519
v4§
851
1033
967
41y
Gl2
892
1581
1525
739

1129
1176
896
11706
739
424
1425
1315
672
361
325
1466
1769
943
1398
879
2156
1501
985
177
928
220
504
533
1082
902
973
454
262
100
257
835
360
572
5866
557
L1
397
973
240
205
1326
1034
882
1197
1420
453
4G5
1191
528
1497
161
676
1148
357
625
87¢
1650
& 25594
1110
323
1320

6 179

2003
504
317
519

Y 1767

1251
539
1184

2136

054

¢34 ¢

1584
1963
2101
194
255 ¢
v43
23l
yle
18614

1421
1698
1030
53
348
335
1291
817
1473
1796
686
578
331
2013
613
188
699
548
€62
1045
1361
177
723
18“5
1153
451
726
642
w72
1745
1051
541
396
203
115
ezh
837
879
586
411
715
645
510
801
503
214
1042
1341
433
1350

5b8
983
1718
62
i
1519
1114
666
1713
846
1696
406
217
2082
2072
1282
538
913
1699
516
260
1486
2203
1122
927
1783
96
1032
586
269
1858
219
309
770
2055
763
1070
1000
1320
10e3
1475
4y2
455
1254
595
g02
741
1017
1609
999
538
325
925
745
129

3 1705

2237
582
358

1511

1212

1166

1752

3 1187

1054
245

3 1114

636
19e
4o

334
1116
oou
1124
1560
140
701
1592
1761
1447
1057
618
665
1665
1300
21
1335
2198
1430

1995 1

1mM7n

1131
252
482

1737
524

1453
700
428
306

1633

1467
g82
180
30z
723

1492
976

1376

1222
865

1137
107

1949

1098

1356
702
552
949

1573

1569

1508
557
015

1176
861
739
548

1036
g1

1019 2

1720
1744
075
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Initializations and Optimal Point for TRA4SB

initial 1 initial 2 cptimal
f(x) -464816. -638524,94 ~-63F565,
1 0. 11.19 144,
2 0. 127.20 257.
3 0. -129.70 0.
4y 0. 344,50 Le3,
5 0. -40.72 Ro,
6 0. ~-295.30 -165.
7 0. -202.30 -T2,
8 0. -382.30 -252.
9 0. ~217.70 -88,
10 0. -307.70 -178.
1 0. 178.1C 311.
12 0. ~4,.36 126,
13 0. -123.30 7.
14 0. -265.30 -135.
15 0. 28.28 158,
16 0. 70.57 209.
17 0. -31.81 101.
18 0. -222.30 -9z,
19 0. 96.19 229.
20 0. -52.79 R0.
21 0. -34.71 g5,
22 0. -58.16 71.
23 0. ~373.70 -244,
24 0. -28.35 102.
25 0. -141.70 -12.
26 0. 2,28 132.
27 0. 198.50 337,
28 0. -69.16 61,
29 0. ~-26.35 104,
30 0. -88.72 41,
31 0. 130.80 261.
32 0. -12.35 118,
33 0. -30.70 99.
34 0. -376.30 -2ke.
35 0. 23.18 156.
36 0. -400.30 =-270.
37 0. 197.10 330.
38 0. -260.30 -130.
39 0. 813.50 952.
40 0. -191.70 -62.
41 0. 31.29 161,
42 0, 345,50 48y,
43 0. ~7.72 122.
Ly 0. 335.50 47y,
Ls 0. 947,50 1086.
) 0. 722.50 861,
4 0. -300. 30 -170.

y 0. 73.20 206,
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This problem seems very difficult. Another problem,

called A48, and simpler, consists in defining

s, =d, =1 i=1,...,n .

The optimal value for this problem is -9870.
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