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PREFACE

Task 2 of the System and Decision Sciences Area, Optimization, is a
central methodological tool of systems analysis. It is used and needed by
many Tasks at nASA, including those of the Energy Systems and the Food
and Agriculture Programs. In order to deal with large-scale applications by
means of decomposition techniques, it is necessary to be able to optimize
functions that are not differentiable everywhere. This is the concern of
the subtask Nonsmooth Optimization. Methods of nonsmooth optimiza­
tion have becn applied to a model for detcrmining equilibrium prices for
agricultural commodities in world trade. They are also rcadily applicable
to some other nASA models on allocating resources in health care systems.

This volume is the result of a workshop on Nonsmooth Optimization
that mct at nASA in the Spring of 1977. It consists of papers on the
techniques and theory of nonsmooth optimization, a set of numerical test
problems for future experimentation, and a comprehensive research bibli­
ography.
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INTRODUGrION

This volume is the result of a workshop on nonsmooth optimization
held at IIASA from March 28 to April 8, 1977. The designation "First
World Conference on Nonsmooth Optimization", proposed in jest by one
of the participants after noting that there were only nine others in the
room with him, is, however, appropriate because of the various countries
represented, and because the number of scientists doing research in this
field at that time was rather small.

The small number of participants, and the workshop's unusual length,
made it possible to achieve a substantial exchange of information. Each
morning (three working hours) was devoted to the talk of one participant,
who therefore could present his work quite thoroughly. During the after­
noons, discussions took place on related topics, such as: systems of in­
equalities, constrained problems, test problems and numerical experiments,
smooth approximation of nonsmooth functions, optimization with noise,
direction-finding procedures and quadratic programming, line searches,
general decomposition, .... However, this workshop format would have
been a failure were it not for the fact that everyone was alert and active
even when not "in the spotlight". We are very grateful to all the partici­
pants, who contributed to the success of the workshop by their numerous
questions and interruptions during both the formal and informal presenta­
tions.

This workshop was held under the name Nondifferentiable Op-timiza­
tion, but it has been recognized that this is misleading, because it suggests
"optimization without derivatives". As we view it, nonsmooth optimiza­
tion (NSO) is concerned with problems having functions for which gradi­
ents exist almost everywhere, but are not continuous, so that the usual
gradient-based methods and results fail. The contents of these Proceedings
should convince the reader of the importance of being able to compute
(generalized) gradients in NSO.

We have adopted the following topical classification for the papers:
subgradient optimization (three papers), descent methods (four papers),
and field of applicability (one paper).

The first paper, by B.T. Poljak, exhaustively surveys the Soviet work on
subgradient optimization done since 1962. For this method he gives the
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most important results obtained and the various extensions that have been
developed.

].L. Goffin studies rates of convergence in subgradient optimization.
He shows under which conditions linear convergence can be obtained and
provides bounds on the best possible rate of convergence. These bounds
are given in terms of condition numbers that do not depend on derivative
continuity.

The paper by R. Chaney and A.A. Goldstein addresses the question:
What is the most general framework for the method of subgradient optimi­
zation to be applicable and convergent? Hence, they present the method
in an abstract setting and study the minimal hypotheses required to ensure
convergence.

One of the important conclusions of this workshop has been that
nonsmooth optimization and nonlinear programming (NLP) are, in fact,
equivalent fields. It was known that NLP is contained in NSO via exact
penalty function methods, but RN. Pshenichnyi's paper demonstrates the
reverse containment via feasible direction methods.

In his paper, C. Lemarechal describes, in a unified setting, descent
methods developed recently in Western countries. He also provides ideas
for improvement of these methods.

Many methods for solving constrained optimization problems require
the repeated solution of constrained least squares problems for search
direction determination. An efficient and reliable algorithm for solving
such subproblems is given in the paper by R. Mifflin.

The paper by P. Wolfe is concerned with line searches. He gives an APL
algorithm that effectively deals with the issues of when to stop a line search
with a satisfactory step size and how to determine the next trial step size
when the stopping criterion is not met.

The last paper, by J. Gauvin, studies the differential properties of
extremal value functions. This is important for the application of various
decomposition schemes for solving large-scale optimization problems,
because these approaches require the solution of nonsmooth problems
involving extremal-value functions, and in order to guarantee convergence
we need to know whether ccrtain "semismoothness" conditions (such as
Lipschitz continuity) are satisfied.

We then give four nonsmooth optimization tcst problems. They were
selected because they are easy to work with and because they are repre­
sentative both of the field of applicability and of the range of difficulty of
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NSO. Problems 1 and 3 are examples of minimax problems and are not
very difficult. Problem 2 is a nonconvex problem coming from a well­
known NLP test problem, and problem 4 involves a piecewise-linear func­
tion. The last two are sufficiently difficult to slow down considerably the
speed of convergence of any of the NSO methods we know of.

We conclude this volume with a large NSO bibliography. It was com­
piled by the participants and is an update of the bibliography given in
Mathematical Programming Study 3. We wish to thank D.P. Bertsekas,
V.F. Demjanov, M.L. Fisher, and E.A. Nurminskii for the items they
communicated to us.

On behalf of all the partIcIpants we would like to acknowledge
IIASA's generous support and to thank I. Beckey, L. Berg, A. Fildes, and
G. Lindelof for their optimal organizational contributions, which led to
a smooth-running workshop.

We are especially indebted to M.L. Balinski who was instrumental in
establishing a Nonsmooth Optimization group at IIASA and who spent
much of his time and energy to secure a truly international participation
at this workshop.

C. Lemarechal
R. Mifflin





SUBGRADIENT METHODS:
A SURVEY OF SOVIET RESEARCH

B. T. Poljak

This paper reviews research efforts by Soviet authors con­

cerning the subgradient technique of nondifferentiable minimiza­

tion and its extensions. It does not cover the works based on the

concept of steepest descent (by V.F. Demjanov, B.N. Pshenichnyi,

E.S. Levitin, and others) or on the use of a specific form of the

minimizing function (for example minimax techniques). The paper

essentially uses the review by N.Z. Shor [1]. The theorems given

below are mostly simplified versions of results shown in the orig­

inal papers.

1. THE SUBGRADIENT METHOD

Let f(x) be a convex continuous function in the space Rn . A

vector of (x) E Rn is called its subgradient at the point x, if it

satisfies the condition

f(x+y) ~ f(x) + (af(x),y) (1 )

A subgradient exists (although, generally speaking, it may be not

unique) for all x ERn. If f(x) is differentiable, the subgradient

is unique and coincides with the gradient af(x) = Vf(x). The rules

of subgradient calculation for various types of functions are well

known [2,3]. In particular, with f(x) max f. (x) where fi(x) are
1 <i<m 1

convex differentiable functions, it is true that

af(x) = L a.Vf. (x)
iEI (x) 1 1

a. > 0
1 -

La.
iEI (x) 1

5

I (x) {i f (x) }



Vf. (x) where i E I(x) is arbi­
~

6

(for instance one may take af(x)

trary) •

The subgradient minimization method for f(x) on Rn is an

iterative process of the form

(2 )

where Yk ~ 0 is a step size. For differentiable functions this

method coincides with the gradient one. The major difference be­

tween the gradient and the subgradient methods is that, generally

speaking, the direction -af(xk ) is not a descent direction at the

point xk ; i.e., the values of f(xk ) for nondifferentiable functions

do not decrease monotonically in the method (2).

The subgradient method was developed in 1962 by N.Z. Shor and

used by him for solving large-scale transportation problems of

linear programming [4]. Although published in a low-circulation

publication, this pioneering work became widely known to experts

in the optimization area in the USSR. Also of great importance

for the propagation of nondifferentiable optimization concepts

were the reports by the same author presented in a number of con­

ferences in 1962-1966.

Publication of papers [5,6,7] giving a precise statement of

the method and its convergence theorems may be regarded as the

culmination of the first stage in developing subgradient techniques.

Let us get down to describing the basic results concerning the

subgradient method. As is known, the gradient method for minimiza­

tion of smooth functions employs the following ways to regulate

the step-size:

i.e.

-o < a < a

(the ordinary gradient method);



Then for any 0 > 0 there exists y > 0

(2) with Yk = Y, 0 < y < Y we have

7

arg min f(xk - yllf(xk)/II llf(x k ) II)t
y

(the steepest descent method) •

Simple examples may be constructed to show that neither of

these methods converges in nondifferentiable minimization; this

necessitates the construction of new principles of selecting the

step size. Consider the major ones. Hereinafter we shall assume

f(x) to be convex and continuous and denote f. = inf f(x) and

X. = Arg min f(x).

(a) Yk = Y > O. This constant-step method was suggested in

[4]. The simplest example, f(x) = lxi, XE R1 , explicitly proves

that this method does not converge. One may show, however, that it

gives a solution "with an accuracy of yR.

Theorem 1 [4]

Let X. be nonempty.

such that in the method

lim inf f(xk ) < f. + o.

Reference [4] has described the following way of step-size

regulation resting upon this result, although it has not been en­

tirely formalized. A certain y > 0 is chosen and the computation

is made with Yk = Y until the values of f(xk ) start to oscillate

about a certain limit. After this y is halved and the process is

repeated.

(b) The sequence Yk is chosen a priori regardless of the

computation results and satisfies the condition

00

00 (3)

This way of choosing the step-size has been suggested in [5] and

[6] independently.

tHereafter arg min p(y) will mean an arbitrary minimum point of

the function p(~), Arg min p(y) is the set of all minimum points.
y
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Theorem 2 [5,6]

In the method (2),(3) lim inf f(xk )

and bounded then p(xk,X.) ~ 0, where

p(x,X·) = min II x - x*11
x*e:X*

f.. If X* is nonempty

It is clear that in the general case the method (2),(3) can­

not converge faster than Yk tends to zero. In particular, this

method never converges at the rate of geometrical progression or

at the rate

(c) In certain cases the value of f* is known. For instance,

if

m
f(x) L fi(x)+

i=1

where f. (x) are convex functions,
~

f. (x) t = max {O, f. (x) }
~ ~

and the system of inequalities fi(x) ~ 0 i = 1, •.. ,m is solvable,

then X* is the set of solutions of this system and f* = O. Then

one may take

(f (xk ) - f*)
A----''''----

II Clf(xk ) II
o < A < 2 (4)

In solving systems of inequalities the method (3) ,(4) coincides

with the known relaxation method of Kaczmarz, Agmon, Motzkin,

Schoenberg, and Eremin [8]. The method for general problems of

nonsmooth function minimization has in essence been suggested by

I.I. Eremin [9] and systematically developed in [10].
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Theorem J [9,10]

Let x* be the unique minimum point for f(x). Then in the

method (2) ,(4) x
k

~ x*. If the condition

f (x) - f* ~ i II x - x* II i > 0 (5)

holds, the method converges with the rate of a geometrical pro­

gression.

The advantages of the method (2) ,(4) are the simplicity of

selecting the step size (since no auxiliary problems should be

solved and no characteristics of f(x) other than f* should be

known) and its applicability, since for a smooth strongly convex

f(x) the method also converges with the rate of a geometrical

progression [10]. Reference [10] has shown a way to modify the

technique when f* is unknown.

(d) N.Z. Shor [11] has suggested an essentially different

method for choosing Y
k

:

o < q < 1 (6)

Note that the condition (3) is not satisfied for (6).

Theorem 4 [11,12,13]

Let the condition

(df(x),x - x*) > ill <If(x) II II x - x*11 i > 0 (7)

-hold. Then there exists a pair q (which depends on i) and Y (which

depends on II X o - x* II ,i) such that with 1 > q ~ q, YO ~ Y in the

method (2) ,(6) we have

II xk - x* II

The relationship of q (i) and y(II X o - x * II , i) may be expressed

explicitly. However, practical implementation of the method (2),(6)
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faces difficulties because generally the values of 2 and

II X o - x* II are unknown.

The above results prove that the convergence rate for any of

the step-size regulating rules is linear at best. The denominator

of the geometrical progression for the ill-conditioned problems

(i.e. for functions with greatly extended level sets) is near unity.

Thus the convergence rate of all the versions of the subgradient

method may be rather poor.

2. ACCELERATING CONVERGENCE OF THE SUBGRADIENT METHOD

One of the reasons why the subgradient method converges so

slowly lies in its Markov nature. The subsequent iteration makes

no use of the information obtained at the previous steps. The ma­

jor concept of all techniques for accelerating convergence is the

use of this information (i.e. the values f(x.), af(x.), i=O, ... ,k-1)
1 1

The first methods of this type were those developed by Kelley

and by Cheney and Goldstein [14,15], based on piecewise-linear ap­

proximation of the function. An original technique suggested in

[16] and [17] independently made use only of the values af(x.). Let
1

Mk be a polyhedron in Rn in which the minimum point is localized

after k iterations. Then for an arbitrary xk+1 E Mk one may take

Mk+1 = Mkn {x: (af(xk+1),x - xk+1 ) < O}

If the center of gravity ~ is taken as the point xk+1 one may show

[17] that for the volume Vk of the polyhedron Mk the following ex­

pression holds:

1 N
Vk+ 1 < [1-(1 - N-1) ]Vk

where N is the dimension of the space. Thus for problems of any

dimension

q 1 -
-1

e
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In other words, the method converges with the rate of geometrical

progression, the denominator being independent of both the proper­

ties of the function and the dimension of the space. This result

is mostly of theoretical interest since the auxiliary problem of

finding the center of gravity for the polyhedron is very difficult

to solve. References [17,18,19] give a number of modified tech­

niques in which a simpler auxiliary problem is solved at each step.

References [18,19] have also shown that the center-of-gravity tech­

nique is optimal in a certain sense. Roughly speaking, there is nc

algorithm that uses the same information and provides better con­

vergence. A similar result for algorithms that uses only the

values f{x i ) rather than af{xi ) is given in Reference [20].

These methods [14,15,16,17,18,19,20] have been developed in­

dependently of the subgradient method. Let us turn now to the

algorithms obtained as a direct extension of (2).

Let the value of f* be known. Reference [10] suggests the

following technique. At the kth step the quadratic programming

problem is sOlved:

min II x -

f{xk _ 1 ) + (df{x
k

_ 1),x - x
k

_ 1) < f* (8)

and its solution is taken as xk+1 . The value m > 0 is arbitrary

and may depend on k. In particular, with m = 0 the method is

identical to the subgradient algorithm (2) ,(4) with A = 1. If m

is smaller, then instead of (8) it is more convenient to solve

the dual problem

min{.!.
2

k 2 k
L A.af{x.) II - L A. (f{x.) - f* - (af{x.) ,x. -~»:

i=k-rn 1. 1. i=k-rn 1. 1. 1. 1.

Ai ~ O} (9)
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k
and, denoting its solution as Ai' to obtain

x ­
k

( 10)

This form of stating the method shows that it is quite closely

related to the steepest descent, the conjugate subgradient, and

other methods. Reference [10] shows that the method (8) con­

verges at least no more slowly than the subgradient method (2) ,(4)

with A = 1. Moreover, if f(x) is a piecewise-linear function with

a non-singular minimum and m > N, the method is finite. The latter

property is a great advantage of the method, although, firstly,

one needs to know f* and, secondly, for large m the auxiliary

problem 8) or (9,10) is rather laborious.

1 a number of his works [21,22,23,24,25,26] N.Z. Shor has

suggested that space metric be transformed at each iteration to

accelerate convergence of the subgradient method. A general al­

gorithm for such an approach is in the following: let s ERn,

II s II 1, a > O. Then a linear operator Ra (s) such that

R (s) x
a

tx + (a - 1) ss x ( 11)

I

is referred to as the space-dilation operator acting in the dir­

rection s with a coefficient a. It is clear that Ra(S)S = as,

and for x orthogonal to s, Ra(s)x = x. By making the transfor­

mations of the space Rak(sk) at each step, computing subgradients

for the new variables, and then transforming back to the original

variables, we shall have the method

( 1 2)

Pk-1 R -1 (sk)
a

k

N.Z. Shor has considered two feasible versions for selecting di­

rections sk. The first [21,22,24,25] provides dilation of the

space in the direction of a subsequent subgradient, i.e.
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sk = af(xk ). Let us put down this method in a symmetrical form

suggested by V.A. Skokov [27]:

Xk + 1 xk + YkPk Pk = -Hkdf (xk )

t
(13)

Hk Hk - 1 + ( 1) Pk-1 Pk-1 HO1 - ;; (df(xk _ 1 ) ,Pk-1) I

k

Obviously, the matrices Hk are symmetric.

number of ways to select the parameters Yk
In particular if f* and the constant M > 1

equality

(df(x),x -x*) < M(f(x) - f*)

one may choose

Theorem 5 [22]

In the above papers a

and a
k

are considered.

are known in the in-

( 1 4 )

( 1 5 )

Let f(x) be convex and continuous and let the condition (14)

hold. Then the algorithm (13), (15) converges geometrically with

the rate a- 1/ N:

lim inf ak/N(f(x ) - f*) < 00

k

A result for the extreme case a k

2 (f (xk ) - f *)

II Pk 11
2

is also known.

00 and

( 16 )
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Theorem 6 [22,27]

If f(x) is quadratic, then in the method (13) ,(16) x N = x*,

and HN = O. In other words, for a quadratic case the method (16)

is finite and coincides with one of the known orthogonalization

methods for solving systems of linear equations.

The second version of the method [23,24,25,26] provides

space dilation in the direction of the difference of two sequen­

tial subgradients, i.e. sk = of(xk ) - of(xk _ 1). In the statement

of [27] the method takes the form

xk +1 xk + YkPk Pk = -Hkof(xk )

e k
of(xk ) - of (xk - 1 ) ( 17)

t

Hk - 1 - (1
1 Hk_1ekekHk_1

Hk - -) HO I
eL~ (Hk _ 1e k,ek )

Unlike all other versions of the subgradient method, the step

size is chosen from the condition of the steepest descent:

arg min f(xk + YPk)
Y

( 1 8)

In practical computations the value eLk was taken equal to 2 or 3

and further increase of eLk did not affect the convergence rate.

References [23,24,25,26] describe certain conditions that guaran­

tee the convergence of the algorithm. Its rate of convergence has

not been given enough attention.

Consider an extreme version of the method, eLk

Theorem? [26,27]

00

Let eLk = 00 and f(x) be quadratic. Then in the method (17) ,18)

x* o
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The method (17), (18) in this case is reduced to one of the ver­

sions of the conjugate directions method [28].

Thus, the subgradient methods with space dilation are con­

ceptually close to variable-metric methods used for minimization

of smooth functions, and their limiting versions have the prop­

erty that they are finite for quadratic functions. The important

question of the convergence rate for space-dilation methods for

essentially nonsmooth functions (e.g. piecewise-linear) remains

unanswered.

3. EXTENSIONS

We have thus far discussed unconditional minimization of a

convex continuous function on RN. Now let us concentrate on the

potential of the subgradient method in solving more general

problems.

(a) Infinite-Dimensional Space. Let it be required to find

the minimum of the convex continuous functional f(x) in the

Hilbert space H. The subgradient af(x) is in this case defined

exactly as in (1) and the subgradient method has the same form

as (2). It has been proved [6] that the theorem on convergence

of the method (2) ,(3) remains valid even in Hilbert spaces, and

the same has been proved [10] for the methods (2),(4), and (8).

Nevertheless some of the methods of Section 2 (e.g. the center­

of-gravity method) are specific to finite-dimensional spaces.

(b) Problems with Constraints. Let us consider the mini­

mization problem with constraints

min f (x)

g(x) < 0

x E Q

x E H

( 19)

where f and

closed set.

duced to the

g are continuous convex functionals and Q is a convex

An arbitrary problem of convex programming can be re­

form (19). Thus if there are several constraints
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gi(x) < 0, i m 1, ••• m then it can be assumed that

or

g (x) max gl' (x)
i

m
g(x) = L gi(x)+

i=1

The set Q is assumed to be of simple structure; in particular,

the problem of finding a projection onto Q has a simple solution.

The cases of

Q
N

{x E R a < x < b} Q {x E H : II x - a II < r}

are typical. Reference [6] has proposed an extension of the sub­

gradient method for solution of (19):

if

if

(20 )

where PQ is the projection operator on Q and convergence of this

method has been proved under the condition (3).

(c) Nonaonvex Funations. The function f(x) to be minimized

has thus far been assumed convex. Now let us consider the case

of quasiconvex functions (such that the sets {x : f(x) < C} are

convex). In this case the subgradient at the point xk can be re­

placed by a vector sk which is support for the set {x: f (x) 2 f (xk )} ,

i.e. (sk'x - xk ) 2 0 for all x such that f(x) 2 f(xk ). It can be

proved [6] that with this replacement the method retains conver­

gence under the assumptions made in the convex case.

Another generalization of greater importance is using nearly­

differentiable functions [25]. A generalized gradient of f at x
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is a vector s = lim Vf(xk ), where xk + x is an arbitrary
k+oo

sequence of points where the gradient exists. For convex

continuous f(x) the set of generalized gradients coincides with

the set of subgradients. References [25,29] have proved the con­

vergence of the method (2) where the subgradient is replaced by

the generalized gradient. A somewhat different important class

of weakly convex functions to which the subgradient method can

be extended has been studied by E.A. Nurminskii [30,3'].

(d) Non-Unique Minimum. Let the set X* of the minimum

points of minima of the convex continuous function f(x) on the

convex closed set Q consist of more than one point. Then the

subgradient minimization method is nonstable, in the sense that

for different initial points it can converge to different solu­

tions (and for some variants of the method even that cannot be

guaranteed). In a similar way, in the infinite-dimensional case

the subgradient method may not converge even if there is a unique

minimum solution. This kind of problem can be solved by using a

regularization method. A regularizing function f, (x) is chosen

that is strictly convex (in the infinite-dimensional case uniformly

convex), e.g. f,(x) = II x 11
2• There is a unique point xk minimi­

zing the regularized function f(x) + ~kf,(x), where ~k > 0 is the

regularization parameter. Then it can be shown [32] that x
k

+ x*

as ~k + 0 where x* is the point in the set of minimum points of

f(x) on Q for which f, (x) is minimal. The subgradient method can

then be made stable by using this idea. Consider the method

(21)

In other words, one step of the subgradient method for minimiza­

tion of the regularized function is made; following this, the

regularization parameter is changed.

Theorem 8 [33]

Let f(x) and f, (x) be convex continuous functions on RN, let

f, (x) be strongly convex, let Q be a convex closed and bounded set,
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and let Clk
.... O,Yk/Clk .... 0, hkClk 00, Clk /Clk+1 = 1 + o(YkClk ) (for in-

-1/2 -p
1/2) . Then in the methodstance Yk = k , Clk = k , 0 < p <

(21) x
k

.... x*, where x* = arg min f 1 (x) , X* = Arg min f (x) .
XEX* XEQ

(e) A Continuous AnaZog of the Subgradient Method. To the

discrete gradient method, xk+1 = xk - Yk~f(xk)' there corresponds

the continuous analog x = -~f(x). Similarly there exists a con­

tinuous version of the subgradient method

xE-df(x) (22 )

Methods of this type have been in use (without much justification)

since the mid-fifties for solution of linear programming problems

on analog computers. To prove that (22) converges is a non-trivial

matter, however, since (22) is a differential equation with a mul­

tivalued discontinuous right-hand side; therefore its solution

needs an appropriate definition. The existence of a solution to

such an equation also needs special study. References [34,35,36]

deal with this subject.

(f) The Subgradient Method for Finding SaddZe Points. The

point

n m
x* E QCR ,y* E SCR

is called a saddle point of the function ~ (x,y) on QXS if

~(x,y*) > ~(x*,y*) > ~(x*,y)

for all

x E Q, YES

or



min max cp (x,y)
XEQ yES
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cp(x*,y*) max min cp (x,y)
yES XEQ

If the function CP(x,y) is smooth, then to minimize it the gradient

method can be applied:

The similar subgradient algorithm for a nonsmooth case has been

proposed in [5,37]:

(23 )

The method (23) has been validated in [38]. The function CP(x,y)

is called stable [38] if for all x* E X*, y* E y* (Xhy* is the

set of saddle points of cp(x,y) on QXS) one has

Arg min cp(x,y*) = X*
XEQ

Arg max cp(x*,y) = y*
yES

In particular, if CP(x,y) is strictly convex with respect to x and

strictly concave with respect to y, then it is stable.

Theorem 9 [38]

Let ep(x,y) be continuous on RnxRm , convex with respect to

x for all yES, concave with respect to y for all x E Q, and

stable, let the sets Q and S be convex, closed and bounded, and

let Yk + 0, L Yk = w. Then in the method (23),

Results on the convergence of (23) in infinite-dimensional

spaces have been given in [33].
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The convergence of the method (23) without stability (e.g.

for the Lagrange function in a convex programming problem) re­

mains an open question. For the smooth case and with stability

only with respect to x, this question has been answered in [39].

In the general case the method can be modified by regularization

[33] .

(24)

where f,(x) ,f2 (y) are strongly convex functions.

In [33] convergence of this method has been proved under

the same assumptions on yk,ak as in Theorem 8. No strict con­

vexity-concavity or stability of ¢(x,y) is needed.

(g) Difference Approximation of the Subgradient. In a

number of problems the subgradients af(x) are inaccessible and

only values f(x) at arbitrary points are known. In this case

the subgradient af(x) can probably be replaced by its finite­

difference approximation, e.g. by the vector

s(x,a)
N

1:
i=1

f(x + ae.) - f(x - ae.)
~ ~

-------,:;2-a-----~e i (25 )

where e. are coordinate orths; a is the size of the test step.
~

This procedure works, however, only in the smooth case; it may

stop at non-minimum points when minimizing a nondifferentiable

convex function. Convergence may be obtained by introducing

additional smoothing through randomization. One of the simplest

methods of this type was proposed by A.M. Gupal [40]:

(26 )
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where Zk is a random vector uniformly distributed on a unit sphere

and s(y,a} is computed by formula (25). It has been proved [4]

that with a certain ratio of the step sizes a k , Yk (namely, with

2 a k - ak +1IYk = 00, Irk < 00, a k ~ 0, yk!ak ~ 0, ~O) and under some
akYk

natural assumptions on f(x), this method does converge. In [41]

a similar method was used for minimization of discontinuous as

well as nondifferentiable functions.

4 • THE SUBGRADIENT METHOD IN THE PRESENCE OF NOISE

In many real-world problems the gradient or the subgradient

cannot be precisely computed (for instance in system parameter

estimation, identification, learning, and pattern recognition

[42,43]) because of incomplete data on the function to be mini­

mized which is the expected value of a certain quantity whose dis­

tribution law is not exactly known. In other cases the errors are

caused by computation errors, experimentation in a real process,

etc. In any case, usually we know only an approximate value of

the vector af(x), denoted as aF(x). The error

~(x) = aF(x) - df(x) (27)

may contain both the random and the deterministic components n(x)

and a (x) :

M~ (x) = a (x) n (x) =' ~ (x) - a(x) Mn(x) o
(28)

Then the subgradient method for minimizing f(x) on RN is of the

form

(29 )

The pioneering effort in the study of stochastic methods of the form

(29) was made by Yu.M. Ermol'ev [44,45,46]. His investigations and

those of his followers have been summarized in a monograph [47] and

a survey [48]. Among other works on optimization methods in the
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presence of random noise, the book by V.Ya. Katkovnik [49] is

worth mentioning. The methods of type (29) may be regarded as

Robbins-Monro stochastic approximation procedures, and the re­

sults obtained in the theory of stochastic approximation (e.g.

[43,47,50,51]) can be used in their analysis.

Let us cite a simple result on convergence of the algorithm

(29). Its modifications and extensions (deterministic errors,

nonunique or nonexistent extremum, noise with infinite variance,

mean square convergence, etc.) are to be found in [46,47,52,53,

54] .

Theorem 10

Let f(x) be convex, and continuous and have a unique minimum

point x* ERN; suppose the noise ~(x) is purely random, is inde­

pendent at different points, and has a mean M~(x) = 0, and a var­

iance 0
2

(x) = H II ~(x) 11
2 , and assume the following constraints on

the growth of af(x) and 02(x):

lIaf(x) 11
2

< C1 (1 + Ilx

(30)

Let Yk satisfy the condition

00

00 < 00 ( 31 )

Then in the method (29), xk + x* with a probability 1.

As for convergence rate, it can be shown [47,55] that if

the condition f (x) ~ f* + Q.II x - x * 11
2 , Q. > 0 or f (x) ~ f* +

Q.llx - x* II, Q. > 0 is valid, and given the choice Yk = y/k

(y > 0 being large enough), then the rate of decrease of order

o(k-1) can be guaranteed for Ilxk - x* 11
2 in some probabilistic

sense. This is, generally speaking, the highest possible rate

of convergence. Thus for
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212
x ,x E R ,M~ (x)

the iterative process (29) with any method of selecting the step
2 -1

size cannot decrease the value of Mxk faster than O(k ) [56].

On the contrary, for the functions satisfying the condition

(5), and with constrained noise

II ~ (x) II < c < R, (32)

and a step-size rule of type (6), there is geometric convergence.

Theorem 11 [57]

Let f(x) be convex and continuous and the conditions (5) and

(32) hold. Then for any Xo there are YO and q < 1 such that with

Yk = yoqk the estimate II xk - x* II ~ II X o - x* II qk is valid for the

method (29).

The extensions of the subgradient method in Section 3 are, as

a rule, applicable to problems in the presence of noise. Thus a

stochastic analog of the method (20) has been proposed [58].

E.A. Nurminskii has applied the stochastic subgradient method to

a class of non convex functions [59]. The iterative regulariza­

tion method (21) in the presence of random noise has been dis­

cussed in Reference [60]. Finally, the behavior of the subgradient

algorithm for finding saddle points (23) in the stochastic case has

been studied in Reference [44,45,46,47] and in combination with the

regularization method (an analog of (24)), in Reference [50].



24

REFERENCES

[1] Shor, N.Z., Generalized Gradient Methods for Non-Smooth
Functions and Their Application to Mathematical Pro­
gramming Problems, EMM*, 12, 2 (1976), 332-356 (in
Russian) . --

[2] Pshenichnyi, B.N., Necessary Conditions for Extremum,
Nauka, Moscow, 1969 (English translation, Marcel
Dekker, New York, 1971).

[3] Rockafellar, R.T., Convex Analysis, Princeton Univ. Press,
Princeton, N.J., 1970.

[4] Shor, N.Z., Application of the Gradient Method for the
solution of Network Transportation Problems, Notes,
Scientific Seminar on Theory and Application of Cyber­
netics and Operations Research, Academy of Sciences,
Kiev, 1962 (in Russian).

[5] Ermol'ev, Yu.M., M~thods of Solution of Nonlinear Extremal
Problems, Kibern.*, 2, 4 (1966), 1-17; Cybernetics,
~, 4, 1-1 6. -

[6] Poljak, B.T., A General Method of Solving Extremal Problems,
DAN*, 174, 1 (1967), 33-36; Soviet Math. Doklady, ~,

593-59~

[7] Ermol'ev, Yu.M., and N.Z. Shor, On the Minimization of Non­
Differentiable Functions, Kibern., 3, 1 (1967), 101-
102; Cybernetics, 2,1,72. -

[8] Eremin, 1.1., A Generalization of the Motzkin-Agmon Relaxa­
tion Method, Uspekhi Matematcheski Nauk, 20, 2 (1965)
(in Russian) • --

[9] Eremin, 1.1., The Relaxation Method of Solving Systems of
Inequalities with Convex Functions on the Left Sides,
DAN, 160, 5 (1965), 994-996; Soviet Math. Doklady, .§.,
219-2'2'1:'"

[10] Poljak, B.T., Minimization of Unsmooth Functionals, ZVMMF*,
9, 3 (1969), 509-521; USSR Computational Mathematics
and Mathematical Physics, ~, 14-29.

[11] Shor, N.Z., The Rate of Convergence of the Generalized
Gradient Descent Method, Kibern., ~, 3 (1968), 98-99;
Cybernetics, i, 3, 79-80.

*See list of abbreviations below.



25

[12] Shor, N.Z., and M.B. Schepakin, Algorithms for Solving Two­
Stage Stochastic Programming Problems, Kibern., 4, 3
(1968), 56-58; Cybernetics, !, 3, 48-50. -

[13] Shor, N.Z., and P.R. Gamburd, Certain Questions Concerning
the Convergence of the Generalized Gradient Method,
Kibern., 7,6 (1971), 82-84; Cybernetics, 7, 6,1033-
1036. -

[14] Kelley, J.E., The Cutting-Plane Method for Solving Convex
Programs, Journal of the Society for Industrial and
Applied Mathematics, ~, 4 (1960), 703-712.

[15] Cheney, W., and A.A. Goldstein, Newton's Method for Convex
Programming and Chebyshev Approximation, Numerische
Mathematik, !, 5 (1959), 253-268.

[16] Newman, D.J., Location of the Maximum on Unimodal Surfaces,
Journ. ACM, ~, 3 (1965).

[17] Levin, A.Ju., On an Algorithm for the Minimization of Con­
vex Functions, DAN, 160, 6 (1965), 1244-1247; Soviet
Math. Doklady, ~, 286-290.

[18] Judin, D.B., and A.S. Nemirovskii, Evaluation of Informa­
tion Complexity for Mathematical programming Problems,
EMM, ~, 1 (1976), 128-142 (in Russian) •

[19] Judin, D.B., and A.S. Nemirovskii, Information Complexity
and Effective Methods for Solving Convex Extremum
Problems, EMM, ~, 2 (1976), 357-369 (in Russian).

[20] Kuzovkin, A.I., and V.M. Tihomirov, On a Quantity of Obser­
vations for Finding a Minimum of a Convex Function,
EHM, ~, 1 (1967), 95-103 (in Russian) .

[21] Shor, N.Z., Utilization of the Operation of Space Dilation
in the Minimization of Convex Functions, Kibern.,
~, 1 (1970),6-12, Cybernetics, ~, 1,7-15.

[22] Shor, N.Z., Convergence Rate of the Gradient Descent Method
with Dilation of Space, Kibern., 6, 2 (1970), 80-85;
Cybernetics, ~, 2, 102-108. -

[23] Shor, N.Z., and N.G. Zhurbenko, A Minimization Method Using
Space Dilation in the Direction of Difference of Two
Successive Gradients, Kibern., 7, 3 (1971), 51-59;
Cybernetics, 2, 3, 450-459. -

[24] Shor, N.Z., and L.P. Shabashova, Solution of Minimax Prob­
lems by the Generalized Gradient Method with Space
Dilation, Kibern., 8, 1 (1972), 82-88; Cybernetics,
~, 1, 88-94. -



26

[25] Shor, N.Z., A Class of Almost-Differentiable Functions and
a Minimization Method for Functions of this Class,
Kibern., 8, 4 (1972), 65-70; Cybernetics, 8, 4, 599-
606. - -

[26] Shor, N.Z., Convergence of a Gradient Method with Space
Dilation in the Direction of the Difference Between
Two Successive Gradients, Kibern., 11, 4 (1975),
48-53; Cybernetics, 11, 4, 564-570.--

[27] Shokov, V.A., Note on Minimization Methods using Space
Dilation, Kibern., 10, 4 (1974), 115-117; Cybernetics,
lQ, 4, 689-692. --

[28] Pshenichnyi, B.N., and Yu.M. Danilin, Numerical Methods for
Extremum Problems, Nauka, Moscow, 1975 (in Russian).

[29] Bazhenov, L.G., On the Convergence Conditions of the
Minimization Method of Almost-Differentiable Functions,
Kibern., 8, 4 (1972),71-72; Cybernetics, 8, 4, 607-
609. - -

[30] Nurminskii, E.A., Convergence Conditions for Nonlinear
Programming Algorithms, Kibern., 8, 6 (1972), 79-81;
Cybernetics, ~, 6, 959-962. -

[31] Nurminskii, E.A., The Quasigradient Method for Solving of
the Nonlinear Programming Problems, Kibern., 9, 1
(1973),122-125; Cybernetics,~, 1, 145-150.-

[32] Levitin, E.S., and B.T. Poljak, Convergence of Minimizing
Sequences in Conditional Extremum Problems, DAN, 168,
5 (1966), 993-996; Soviet Math. Doklady, 2 (1966)-,-­
764-767.

[33] Bakushinskii, A.B., and B.T. Poljak, On the Solution of
Variational Inequalities, DAN, 219, 5 (1974), 1038­
1041; Soviet Math. Doklady, ~ (1974), 1705-1710.

[34] Karpinskaja, N.N., Methods of Penalty Functions and Founda­
tions of Pyne's Method, AT*, 28 (1967), 140-146;
Automation and Remote Control-,-28, 124-129.

[35] Kupatadze, O.V., On the Gradient Method for Unsmooth
Functions Minimization, Optimalnye i Adaptivnye
Sistemy, Trudy 4 Vsesojuzn. Sovesch. po Avt. Upr.
(Tbilisi, 1968), Nauka, Moscow, 1972 (in Russian).

[36] Korovin, S.K., and V.I. Utkin, Method of Piecewise Smooth
Penalty Functions, AT, 37 (1976), 94-105; Automation and
Remote Control, 37, 39-48.

*See list of abbreviations below.



27

[37] Mikhalevich, V.S., and Yu.M. Ermol'ev, V.V. Skurba, N.Z.
Shor, Complex Systems and the Solution of Extremal
Problems, Kibern., 3, 5 (1967), 29-39; Cybernetics,
l, 5, 25-34. -

[38]

[39]

[40]

[ 41]

[ 42]

[43]

[44]

[ 45]

[ 46]

[47]

[48]

[49]

[50]

Gol'stein, E.G., Generalized Gradient Method for Finding
Saddle Points, EMM, ~, 4 (1970) (in Russian) .

Majstrovsky, G.D., On Gradient Method for Saddle Points
Searching, EMM, ~, 5 (1976), 917-929 (in Russian).

Gupal, A.M., On a Minimization Method for Almost-Differ­
entiable Functions, Kibern., .!.i, 1 (1977), 114-116.

Gupal, A.M., and V.I. Norkin, A Minimization Algorithm
for Discontinuous Functions, Kibern., 13, 2 (1977),
73-75. -

Tsypkin, Ja.Z., Adaptation and Learning in Automatic
Systems, Nauka, Moscow, 1968 (English translation,
Academic Press, New York, 1971).

Aizerman, M.A., E.M. Braverman, and L.I. Rozonoer, Poten­
tial Functions Method in Machine Learning Theory,
Nauka, Moscow, 1970 (in Russian).

Ermol'ev, Yu.M., and V.V. Nekrylova, Some Methods of
Stochastic Optimization, Kibern., 2, 6 (1966), 96-98;
Cybernetics, ~, 4, 691-693. -

Ermol'ev, Yu.M., and N.Z. Shor, The Method of Random Walk
for the Two-Stage Problem of Stochastic Programming
and its Generalizations, Kibern., 4, 1 (1968), 90-92;
Cybernetics, ~, 1, 59-60. -

Ermol'ev, Yu.M., On the Method of Generalized Stochastic
Gradients and Stochastic Quasi-Fejer Sequences,
Kibern., ~, 2 (1969), 73-84; Cybernetics,S, 2, 208­
220.

Ermol'ev, Yu.M., Stochastic Programming Methods, Nauka,
Moscow, 1976 (in Russian).

Ermol'ev, Yu.M., Stochastic Models and Methods of Optimiza­
tion, Kibern., 11,4 (1975), 109-119; Cybernetics,
.!.!.' 4, 630-641.-

Katkovnik, V.Ja., Linear Estimates and Stochastic Optimiza­
tion Problems, Nauka, Moscow, 1976 (in Russian).

Nevel'son, M.B., and R.Z. Hasminskii, Stochastic Approxima­
tion and Recurrent Estimation, Nauka, Moscow, 1972
(in Russian).



28

[51] Poljak, B.T., Convergence and Convergence Rate of Iterative
Stochastic Algorithms, I. General Case, AT, 37, 12
(1976), 83-94; Automation and Remote Control-,-37,
1858-1868. --

[52] Litvakov, B.M., Convergence of Recurrent Algorithms for
Pattern Recognition Learning, AT, 29, (1968), 142­
150; Automation and Remote Control-,-29, 121-128.

[53] Litvakov, B.M., On a Class of Robbins-Monro Procedures,
Information Science, .§., 1 (1973).

[54] poljak, B.T., and Ja.Z. Tsypkin, Pseudogradient Adaptation
and Learning, AT, 34, 6 (1973), 45-68; Automation and
Remote Control, l!-,-377-397.

[55] Guseva, O.V., Convergence Rate of the Method of Generalized
Stochastic Gradients, Kibern., 7, 4 (1971), 143-145;
Cybernetics, 2.,4,738-742. -

[56] Tsypkin, Ja.Z., and B.T. Poljak, Attainable Accuracy of
Adaptation Algorithms, DAN, 218, 3 (1974), 532-535.

[57] Poljak, B.T., Nonlinear Programming Methods in the Presence
of Noise, in Proceedings of the 9th International
Symposium on Mathematical Programming, Budapest, 1976,
North-Holland, Amsterdam, 1977.

[58] Gupal, A.M., One Stochastic Programming Problem with
Constraint of a Probabilistic Nature, Kibern., 10, 6
(1974),94-100; Cybernetics, lQ., 6, 1019-1026. --

[59] Nurminskii, E.A., Convergence Conditions of Stochastic
Programming Algorithms, Kibern., 9, 3 (1973), 84-87;
Cybernetics, ~, 3, 464-468. -

[60] poljak, B.T., Stochastic Regularized Algorithms, in Suppl.
to Preprints, Stochastic Control Symp. IFAC, Budapest,
Sept. 25-27, 1974.



29

Abbreviations of Russian Journal Titles

EMM - Ekonomika i Matematicheskie Metody (Economics and
Mathematical Methods)

*Kibern. - Kibernetika (Kiev)

*DAN

*ZVMMF

*AT

- Doklady Academii Nauk SSSR (Soviet Mathe. Doklady)

- Zurnal Vycislitel'noi Mathematiki i Matematiceskoi
Fiziki (Journal of computational Mathematics and
Mathematical Physics)

- Avtomatika i Telemehanika (Automation and Remote
Control)

*These journals are translated into English.





NONDIFFERENTIABLE OPTIMIZATION AND THE
RELAXATION METHOD*

J. L. Goffin

1. INTRODUCTION

The relaxation method for solving systems of linear inequal­

ities, as defined by Agmon [1] and Motzkin and Schoenberg [7], is

closely connected to the relaxation method for solving systems of

linear equalities. The relationship was made precise in Agmon's

paper.

Subgradient optimization is a technique that attempts to

solve the problem of maximizing a general, maybe nondifferentiable,

concave function (or minimizing a convex function). One of the

main expectations from subgradient optimization is that it could

be used to solve some large-scale problems; computational results

reported in [5] and [6] gave some credence to that idea. Sub­

gradient optimization is closely related to the relaxation method

for solving systems of linear inequalities, which has been used

with success on some very large-scale problems with special struc­

ture: this seems to justify a closer look at subgradient optimi­

zation.

In this paper we will make explicit the relationship between

the relaxation method for linear inequalities and subgradient

optimization. The speed of convergence of both methods depends

on condition numbers which have been defined in [3] and [4]. It

will be shown that the two theorems on convergence are almost

identical.

*This research was supported in part by the D.G.E.S. (Quebec)
and the N.R.C. of Canada under grant A4152.
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2. THE RELAXATION METHOD AND SUBGRADIENT OPTIMIZATION

Let <~i,x> + Si ~ 0, i E I be a finite system of linear

inequalities where ~i ERn, Si E R, x ERn. (2.1)

Let P = {x E Rn : <~i,x> + Si > 0, ViE I}, the solution

set.

Define the function f, by:

and let f* be the maximum of f (x) . It is clear that,
f* > 0 => dim P = n,
f* < o => P is empty,

If we let a i

If we define f(x) = Min {O,f, (x)}, it follows that P is not empty

if and only if Max f(x) = 0, and that P is the set of points on
xE Rn

which f assumes its maximum value. Furthermore, P is empty if

and only if Max f(x) Max f, (x) = f*, < 0; the set of points
x E R

n
XE R

n

on which f assumes its maximum value has been defined as the

infeasible system of linear inequalities.

i ~i
, b = (we assume that a. t 0

II a
i II ~

Chebyshev solution to the
~i

Vi E I), where IIII means the Euclidean norm, then the system

i E I (2.2)

Min {w, (x), O};

is equivalent to (2.').

Let w, (x) = Min {<ai,x> + bi,i E I} and w(x)

also let w* = Max w(x) .
x

Clearly {x ERn: w(x) w*} = P provided that P is not empty

(and w* = 0). If P is empty then w* < 0, and the set of x which

maximizes w(x) is not necessarily the same as the set of x which
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maximizes f (xl (it is clear though that f* < a iff w* < Ol. The

functions f, f" w, w, are all concave and piecewise-linear.

A "subgradient" set can be defined for each x and each con­

cave function, say w,:

dW, (xl = {v ERn: w, (yl ~ w, (xl + <v,y - x>, Y ERn}

L7tting IW, (xl = {i E I: w, (xl = <ai,x> + b i }, then dW, (xl =
Conv{a~: i E IW, (x~}, wher~ Conv means convex hull. Let Iw(xl =
{i E I: w(xl = <a~,x> + b~}. It can be seen that

dw(xl

dw(xl

dw(xl

dW, (xl

Conv(dW, (xl U {O}l

{ a}

ifxg'P

ifXEbdP

if x E int P

(where bd P means boundary of P and int P means the interior of

Pl .

The same definitions and ideas are of course valid for f

and f,.

Three different implementations of the relaxation method

have been given by Agmon--the maximal distance, the maximal

residual, and the cyclical methods.

Let

Hi = {x: <ai,x> + Si > a} {x: <ai,x> + b i > a}

and

Ei {x: <a i ,x> + si a} {x: <ai,x> + b i a}.

The notation d(x,Sl will indicate the distance between a point x

and a set S. Clearly,
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d(x,E i } I<a i ,x> + ail i + bil

II a
i

"

I<a ,x>

d(x,H i } Max (-«ai,x> + a i ) ,O} Max (-«ai,x> + b i ) ,O}
II a

i
II

iNote that w(x} = - Max d(x,H }.
iEI

The relaxation method applied to (2.1) constructs a sequence

of points in the following manner.

2.2.1 Choose x O E Rn arbitrary.

2.2.2 If x q E P, the sequence terminates.

If x q ¢ P, then determine i q by one of the three methods

below.

2.2.2.1 The maximal distance method:

let i q be the index of a halfspace Hi which is

the furthest distance away from x q
; i.e.,

.q .
d(xq,H~ } > d(xq,H~} Vi E I.

2.2.2.2 The maximal residual method:

let i q be the index of a most violated constraint;
.q .q.

i.e., <a~ ,xq > + a~ < <a~,xq> + ai Vi E I.

2.2.2.3 The cyclical method:

assume that I = {1,2,3, ..• ,m}, then take

i q = q + 1 (mod m).

2.2.3 Then set

q+1x

.q
a~

.q
\I a~ II

where usually 0q E (0,2], and go back to 2.2.2 with

q+q+1.
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.q
In the cyclical method it is quite possible that d(xq,H 1

)

0, so that no move is taken at Step 3. We will not discuss it,

as it does not seem easy to compare it to sUbgradient optimiza­

tion.

If 0q 1 then x q+1 is the orthogonal projection of x q on

H
iq

; if 0q 2, then x q+1 is the reflexion of x q on E
iq

; if

0q E (1,2) one talks of overprojection, and if 0q E (0,1) of

underprojection.

Now let us describe the subgradient optimization algorithm,

say for the function f:

2.3.1 Choose x O E Rn .

2.3.2 Compute a subgradient of f at x q : u q E af(xq ).

If u q = 0, an optimal point has been found.

2.3.3 The next point x q+1 of the sequence will be obtained

by moving from x q in the direction of u q by a certain

step size. Go back to 2.3.2 with q+1 replacing q.

Various proposals have been made for the step size:

2.3.3.1 Shor [1 0] : q+1 x q + A uq
A o.x = -- where >q

Ilu
g II q

2.3.3.2 Held and Karp [5] : q+1 = x q + P uq wherex q
Pq > o.

2.3.3.3 Held, Wolfe and Crowder [6], Eremin [2], Poljak

[9], Oettli [8]:

q+1x

where a > 0 and f > f(xq ) is a guess of theq
optimal value f* of f(x) which can either be:

2.3.3.3.1 an overestimate:
A

f > f*
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A

2.3.3.3.2 an underestimate: f < f*

2.3.3.3.3 the exact estimate: f = f*

It can now be seen that:

(i) The maximal distance relaxation method for solving

(2.1) (which is the same as the maximal residual

relaxation method for solving (2.2» is equivalent to

the subgradient algorithm applied to the function

w(x), using the step size given in 2.3.3.3.3 if P is

not empty, and the step size of 2.3.3.3.1 with f = 0

if P is empty.

(ii) The maximal residual relaxation method for solving

(2.1) is equivalent to the subgradient algorithm

applied to the function f(x), with the same use of

step size as above.

For the maximal distance relaxation method (2.2.2.1) it is

clear that the index i q selected maximizes d(xq,H i ), and thus

satisfies

i q .q .q .q .q
-«a , x q » - b~

-<a~ ,xq > - S~
d(xq,H~ )

II aiqll

Max d (Xq,H i ) -w (xq )
iEI

thus

i q E Iw(xq )
.q

dW (xq )and a~ E

The only minor difference is that in sUbgradient optimiza­

tion we are explicitly permitted the use of any v q E dW(Xq ). It

would require the following extension of the relaxation method:

if Iw(xq ), the set of indices of the most distant halfspaces,

contains more than one element, then any direction v q = L
iEIw(xq )
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n.a i can be used, where
1.

and the next iterate would be:

q+1x

L nib
i

• Note that
iEIw(xq )

and that we are simply projecting in the direction of the half­

space {x: <vq,x> + c q > O}. Also II vqll < 1.

In the next section, on condition numbers and convergence

rates, this distinction will require some attention.

One key point to notice is that if the system of inequali­

ties (2.1) is feasible then w* = 0, and thus the maximum value of

w(x) is known; that is exactly the case 2.3.3.3.3 of the sub­

gradient optimization technique. That the step sizes are iden­

tical is trivial to check.

The identity between the maximal residual relaxation method

and subgradient optimization as applied to f can be shown in the

same fashion. In this case, also, if (2.1) is feasible then the

maximum value of f(x) is also known to be equal to zero.

Now if the system (2.1) has no solution, it is clear that

f* < 0 is not known, then the search for a Chebyshev solution to

(2.1) becomes exactly equivalent to the problem of maximizing

f(x), which can be solved through subgradient optimization (in

the case where the objective value is not known). One of the

first examples of subgradient optimization can be found in some

work by Eremin [2] on Chebyshev solutions of incompatible systems
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of linear inequalities (as can the first result on convergence

that I have seen). This also means that the results on rates of

convergence of subgradient optimization gathered by Shor and the

author are valid for the Chebyshev problem.

The main difference between the relaxation method for solv­

ing feasible systems of inequalities and the subgradient method

for maximizing a concave function is that in the first case the

optimal value of the objective is known, while in the second it

is not. This has some implications for the theories of conver­

gence for the two methods: in the first case a rule for the step

size (Oq E (0,2]) can be given so that for each q, d(xq+1 ,P) ~

d(Xq,P)i in the second case no step size rule can guarantee the

monotonic decrease of anything. This also implies that a cycli­

cal rule is not easy to use in subgradient optimization as it

would not be clear if one should move or not in a direction a i •

3. CONDITION NUMBERS AND RATES OF CONVERGENCE

Condition numbers have been defined and rates of convergence

studied, for the relaxation method by Agmon [1] and the author

[3], and for subgradient optimization by Shor [11] and the author

[4]. As the two methods are quite similar, it is not surprising

that the similarity will extend to the study of rates of conver­

gence. In what follows, we will refer extensively to [3] and

[4] •

The study will be made for the comparison of the maximal

distance method applied to (2.1) (or equivalently to (2.2)) and

subgradient optimization applied to w(x). The function w(x) has

the property that every extreme point of dW(X) has norm one

(except possibly for x E P, where 0 is a sUbgradient).

We want to emphasize that not all of the results that follow

can be extended to the comparison of f and (2.1).
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3.1 The Relaxation Method

We will assume that p is not empty. For every x* E bd P,

let

the normal cone to P at x*. The normal cone can be written as:

v = - l
iEIw(x* )

n·a.,n· > O}
~ ~ ~

For any x E Rn/P = {x ERn: x ~ p}, let x*(x) be the closest

point to x in P. Then x*(x) can be characterized by the fact

that

x - x*(x) E Np(x*(x))

Define, for every x* E bd p [3],

~*(x*) = Inf Max {-<ai,v>}
VENp(X*) iEIw(x*)

II vii = 1

It can be shown that ~*(x*) > 0, and that

~* Inf ~*(x*) > 0
x*Ebd p

The definition of the condition number ~* is a sharpened

version of a similar quantity defined by Agmon [1].

It can be shown [3] that (remember that w* = 0):

~*d(x,P) < -w(x) .::. d(x,P)

where d(x,P) = II x - x* (x) II , the distance between x and P. Both

bounds can be shown to be tight, and thus ~* could be defined by
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~* "" Inf -w (x)
xERn/P d(x,f)

Having defined ~*, it is very easy to prove the geometric conver­

gence of the relaxation method, as one can show that

It follows that, provided that 0q E [0,2], then d(xq +1 ,P) <

d(xq,P), so monotonic decrease is guaranteed; and also that if

0q E [£,2 - E), then

so that geometric convergence occurs.

Two other concepts, which are also trying to measure the well

conditioning of a problem, were introduced in [3].

For x* E bd P, let

the tangent cone to P at x*. Clearly Np(x*) is the polar cone to

Cp(x*). A polytope p will be called obtuse if every tangent cone

is obtuse:

Vx* E bd P

For a cone C, let v(C) be the sine of the half aperture angle of

the largest spherical cone contained in C, and let

v = Inf v(Cp(x*))
x*Ebd P
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It is clear that v > 0 iff dim P = n, and that v ~ ~ implies

that P is obtuse. It can also be shown that ~* ~ v [3]. It can

then be shown that the maximal distance relaxation method applied

to (2.1) or (2.2), assuming that dim P = n, converges finitely

if:

(i) P is obtuse and aq E [1 ,2] for all q;

or

(E) aqE [1
2

+ £,2] where £ > 0 for all q, , .
+ 2vl1 - v 2

Thus, it has been proved that, if dim P = n, there is a

range of values of aq which leads to finite convergence, and to

geometric convergence (until termination) [3].

3.2 Subgradient Optimization

For the concave function w(x), a condition number can be

defined:

and

~(x) Inf
U£dW(X)

<u,x* (x) - x>

II ull '11 x* (x) - xii

~ Inf ~(x)

XERn/p

Rates of convergence for sUbgradient optimization depend upon

this quantity.

Theorem 3.1 [4]

Let {xq } be a sequence which satisfies x q+1 = x q + AoPq u
q

II u
q II

where u q
~ dW(X q ), 1..

0
> 0, P E (0,1).

Let
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~
1 j.J-/j.J2_(1-p2)}

Max -, 2
p 1 - p

D

Then:

ifj.J<12
- 2

12
if j.J > ""2

(i)

(ii)

(iii)

p > z(j.J) and d(xO) E [A C,A DJ implies that for all
- 0 0

q: d(xq ) ~ d(xO)pq;

p ~ z(j.J) and d(xO) < AoC implies that for all

q: d(xq ) ~ AocPq;

p < z(j.J) or d(xO) > AoD may lead to convergence of

{xq } to a non optimal point.

Theorem 3.2

The condition numbers j.J and j.J* are equal.

This theorem can be proved in many different ways. It will

be proved here in a way that gives new definitions of j.J and j.J*,

and also does not assume any other result.

By definition

j.J(x) Inf
UEdW(X)

<u,x*(x) - x>

II ull ·11 x* (x) - xii

But <u,x*(x) - x> is positive for any u E dW(X), and

<u,x*(x) - x>

II ull ·11 x* (x) - xii



43

is a quasiconcave function of u on the domain {u: <u,x* (xl - x>

~ O}i it thus follows that the infimum is attained at some of

the extreme points of dW(Xli i.e.

11 (xl Min
iEIw(x)

<a i ,x* (x) - x>

II x* (x) - x II

If one uses the definition of concavity for w, one gets, as

w (x* (x» = 0:

<ai,x*(x) - x> > -w(x) > <aj,x*(x) - x>

for any i E Iw(x), j E Iw(x*(x».

Furthermore, if w' (XiO) denotes the directional derivative

at x in the direction 0, then

W' (Xi x* (x) - x)

W' (X*i x-x*(x»

and thus:

Inf <ai,x*(x) - x>
iEIw(x)

Inf <aj,x - x*(x»
jEIw (x*)

W' (Xi x* (x) - x) > -w(x) > -W' (x* i x - x* (x»

Define for every x:

o(x)

then one has

x*(x) - x

II x* (x) - xii

-w(x)
Wi (Xi o(x» > d(x,P) > -W' (X*i -O(x»
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It is also clear that

fl (x) w' (x; 0 (x) )

so

fl Inf w I (x; 0 (x) )
xERnjP

Also,

as

-W' (x*; -0 (x) ) Sup <aj,o(x» > fl*(X*)
jEIw(x*)

And

-0 (x) E Np (x*) and II 0 (x) II

Inf {-w' (x*; -0 (x»}
XEX*+Np(x*)

so that

fl*(X*)

fl* Inf Inf (-w' (x*; -0»
x*Ebd P -oENp(X*)

II 0 II =1

From this, it is clear that fl ~ fl* (this could also be concluded

from Theorem 3.1 in [4]). Now to show that fl = fl*, the simplest

way is to use v and x* such that

where

Max
iEIw(x*)

i<a ,v>
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and II vii

Now for any a > 0, one has that

x*(x* - av) x*

i.e., the projection of x* - avon P is x*. So

where x

so

Max
iEIw (x*)

x* - av and a

i<a ,x* - x>

i x* - x
<a '--a->

II x* - xII d (x,P) • But,

<ai ,x*> + b i - <ai,x> b i-

-<ai ,x> b i-

<a i ,x*> + b i
0 Vi E Iw(x*)as

Max
iEIw (x*)

-<ai,x> _ b i

d(x,P)

It is easy to check that there exists E > 0 such that Iw (x* - nv)

~ Iw(x*) for any 0 < n < E. Thus, if z x* - EV,

-w (z)
d(z,P) Max

i Iw(z)

-w (z)
d(z,P)

i i-<a , z> - b
d (z, P)

i i-<a , z> - b
< ~* < ~~~ d(z,P)

This, by the way, proves that

-w(x)
Inf d(x,P)
x~P



46

Also:

w (z)
d(z,P) Max

iEIw(z)

i i-<a ,z> - b
d(z,P)

i i-<a ,z> - b
d(z,P) ViE Iw (z)

Min
iEIw(z)

<ai,x* - z>
d(z,P) ~ (z)

From this it follows that

~* = ~ (z) > ~

and as ~ .::. ~*, the theorem follows. II
The proof given here is somewhat messy. One reason for its

use is that it gives two new definitions of ~ or ~* in terms of

directional derivatives. We will state a few related results,

whose proofs are similar to, or included in, the one given above.

(i) If x is close enough to P, then

<ai,x*(x) - x> = <aj,x*(x) - x> V i,j E Iw(x)

This means that every extreme point of the subgradient set dW(X)

makes the same angle with the direction to the closest point to

the optimal set.

(ii) Let

x* E bd P

then

and i E Iw(x*)

Va. > 0
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-a

Min «aj,x*> + b j - a<aj,ai »
jEI

> Min «aj,x*> + b j ) + Min (- a <aj,ai »
jEI jEI

°- aMax <aj,ai >
jEI

ia ,

- a

then

as \fj E I

k i- a<a ,a > > -a

and thus dW(X* - aai) contains only one element, Le., {ai } .11

This last result depends crucially upon the assumption

i I.

There is one result that is very important for subgradient

optimization (for a general concave function), but which depends

upon the assumption that all a i have norm one. If we assume that

an overestimate of V is known, the only thing required to guar­

antee convergence is that an overestimate or Vd(xO,P) be avail­

able [4].

Here it is clear that if w > w*, then

° ° ° °w-w(x ) ~w*-w(x) =-w(x ) ~v*d(x ,P)

and as any feasible sOlution to a dual problem to Max w(x) will
xERn

provide a value w > w*, it follows that w - W(xO) is an over-

estimate to Vd(xO,;).

This is exactly the result that one would wish to extend to

a general function w(x). Unfortunately, given a proper defini­

tion of V*, this result does not extend without significant change.
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Another minor result might be worth mentioning, about the

quantity V; it follows somewhat directly that if dim P = n and

x* E bd P

V (C p (x*)) Max Min <a i ,e>
II e II = 1 iEIw (x*)

and thus v(Cp(x*)) = Max w;(x*;e) which could be called the
II e II = 1

intensity of the steepest ascent at x* of the function w1 (x) .

It also follows that

v(Cp(x*)) Min II u II
UEdW1 (x*)

and thus

v = Min Min II u II
x*Ebd p UEdW1 (x*)

4. CONCLUSION

The relationship between the maximal distance relaxation

method and subgradient optimization as applied to a certain

function w(x), whose optimal value is known, has been made

explicit.

Condition numbers defined in both theories are compared; in

particular ~ = ~*, so that if ~ ~ ~ , then the sustainable rate

of convergence for subgradient optimization is exactly equal to

the rate given by the relaxation method with A = 1.
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AN EXTENSION OF THE METHOD OF SUBGRADIENTS*
Robin Chaney and Allen Goldstein

until 1964, the only general method for the minimization of

nondifferentiable convex functions was the so-called "cutting

plane method" discovered by Cheney-Goldstein [1] and independently

by Kelley [2].

In 1964, Shor [3] conceived the subgradient algorithm. Since

that time, the method has been extensively developed in the Soviet

Union. Some of these references are given in [3]-[12].

Lemarechal has reported at this conference that his computa­

tional experience showed that a modification of the subgradient

method, due to Shor [8], was by far the most effective method for

difficult nondifferentiable problems.

Generalizations of the subgradient method beyond convex

functions have had partial success. The strongest result is due

to Nurminskii [12]; this was corroborated by Poljak. An algorithm

is formulated for a class of "weakly" convex functions. The rate

of convergence obtained is slower than geometric.

The present extension of the subgradient method is to max

families [13] and quasidifferentiable functions of B.N. Pshenichnyi

They are useful in many problems of applied optimization.

1 • ALGORITHM

1.0 Hypotheses

Let E be a real Hilbert space and f a real-valued function

defined on E. Let x E E and £ > 0 be given. Let B(x,£) =

{y: II y - x" ~ d.

*Supported by the National Science Foundation: MPS72-04787-A02.

Sl
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Definition: f is called E-non-stationary on B(X,E), if for any

n, 0 < n ~ E and for any minimizing sequence {xk } for f on B(x,n),

{ II x k - x II} -+ n·

Let m(x,El inf {f(y): y E B(x,El}, T(x,El = {y E E:

f(y) ~ m(x,El}, and D(X,E) = {y: dist(y,T(x,El) ~ d.

Assume there exist multifunctions P: D(X,E) -+ subsets of

T(X,E) and ¢: D(X,E) -+ subsets of B(0,1). These functions,

together with f, are assumed to satisfy [A], [B], and [C] below.

Assume there exist positive constants e, ~, and L such that

whenever y E D(X,E) the following inequalities hold:

[A] [¢(y),y - P(y)] ~ ell y - P(y) II

[B] ~lly - P(y) II < f(y) - f(P(y)) < LilY - P(y) II

[C] II y - T (x, E) II < II y - P (y) II <

1.1 Lemma

Assume [A], [B], and [C] and the number m(x,E) are given.

Set Xo = x'Yk = [f(xk ) - f(P(xk))]/a and x k+1 = x k - Yk¢(xk ).

Then Ilxk - P(xk )II ~ /3kll xo - P(xo )II 0 < /3 = [1 - (*)4]1/2 < 1.

Proof: Assume XkE D. Compute Ilxk+1 - P(xk )11 2
= Ilxk - P(xk )

- Yk¢(xk ) 1/
2

= II x k - P(xk ) 11
2

- 2yk [¢(xk ),xk - P(xk )] + Y~.

Now [¢(xk)'Xk - P(xk )] :: ell Xk - P(xk ) II :: e[f(xk ) - f(P(Xk))]/L

~ [f(xk ) - f(P(xk))]/ak = Yk · Hence -2Yk[¢(Xk)'Xk - P(x k )] <

-2Y~. Thus II x k+1 - P (xk+1 ) 11
2 ~ II x k - P (xk ) 11

2
- Y~ =

2 (f (xk ) - f(P (xk ) ))2 2
II xk - P (xk ) II - a ~ II x k - P (xk ) II x
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(1 - (*)2) ~ Ilxk - T(x,dI1
2

(1 - (*)4). Since Ilxk+1 - T(x,dll

~ II x k+1 - p(xk)11 it follows that x k+1 E D(X,E).

Also, II x k+1 - P (xk+1 ) II ~ II x k+1

< II x k +1 - P (xk ) Ii (1 + (*) 2) 1/2. Thus

II x
k

- P(xk ) II (1 - (*)4) 1/2.

_ T(x,E) II (1 + (.l:!-)2) 1/2
a

II x k+1 - P (xk+1 ) II <

1.2 Definition

By EE we denote the set {y E E: f is E-non-stationary

on B (y, E) }.

1.3 Theorem

Assume f is bounded below on E, and assume [A], [B], and

[C] hold for each y E EE. A finite sequence {xk } can be con­

structed such that for some integer M, xM $ EE.

Proof: Observe first that by [C] inf {m(x,E): x E E } > ~E.
E -

Take Xo E EE' and let {x j } be the sequence constructed by the

above theorem. Since II x k - P (xk ) II + 0, we have by [B] that

{f (xk )} .... m(xo ' d. Again by [B], f (xo ) - m(xo ' d .::. ~ II Xo
- P(xo ) II ~E. Hence m(xo,E) < f(xo ) - ~E. Therefore for

some number k 1 , f(x
k1

) ~ f(xo ) - ~E/2. Set x~ = x
k1

' and

invoke the lemma with an E ball around x' and a new mapping pI
o

assigning points to the set T' = x E E; f(x) ~ inf{f(y):

y E S(X~,E)}. Repeating this process a sequence of numbers

f(xk ),f(xk ), ••• will be generated. It follows that for some
1 2

ks,xk $ EE; for otherwise {f(xk ,)} + -00, contradicting that f
s 1

is bounded below.

1.4 Remarks

In application, the number m(x,E) is in general unknown.

The estimate f(xo ) - ~E > m(x ,E) may be employed in lieu of
- 0
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mated from 1.1.

m(xO,E), however. We have that f(xo ) - ~E = m(xo,n) for some

n, 0 < n ~ E, and fortunately the number n is not required in

the lemma or theorem. If a lower bound for the infimum of f is

can be est i-known, the total number of iterations to reach x k s

2. APPLICATION TO SOME MAX FAMILIES OF B.N. PSHENICHNYI

2.0 General Hypotheses

Let U be a metric compactum. Assume f is defined and con­

tinuous on EE x U, that f(.,u) is Gateaux differentiable on EE'

and that

If' (x,u,h) - f' (y,u,h) I ~ KII x - yll II h II (1)

for all x and y in E , u E U and h E E. It follows that f, and
E

F below, are locally Lipschitz on EE. Let

F(x) max {f(x,u): u E U} ( 2)

and

U(X) {u E U: F(x) = f(x,u)} (3 )

The Clarke differential of F [14] is defined as

lim sup jF(X + k + A~) - F(x + k) ~
Ho k+o I \

The convex functional h + FO(x,h) is the support function for a

weakly compact convex set called the generalized gradient of F

at x. It is denoted by aF(x). See also [14], Propositions 1

and 2.
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2.1 Lemma

aF(x) co U ·af (x,u)
uEU(x)

and
FO(x,h) F~ (x, h) max {f I (x,u,h) : u E U(x)}

where
(F(X + - F(X))F~ (x,h) lim Ah)

A"" 0+
X

PX'oof: By Proposition 4 (Clarke, [14]), f I (x,u,h) = fO (x,u,h) .

Let M(x) = co U af(x,u) and take xES and u E U(x). Then

F(x + Ah) - F(x) > f(x + Ah,u) - f(x,u) and so

11'm l'nf F(x + Ah) - F(x)A > fl(X,u,h)
HO

= max {[¢,h]: ¢ E af (x,u)}

Since u is arbitrary in U(x),

FO(x,h) > lim inf F(x + Ah) - F(x)
HO A

fO(x,u,h)

> max max [¢,h]
uEU(x) ¢Eaf(x,u)

max [¢, h]
¢EM (x)

(See Pshenichnyi [13], p. 166.) Hence M(x) ~ aF(x). By the

definition of FO(x,h) there exist sequences {vk } .... 0 and {A k } + 0

such that:

FO(x,h)
F(x + v n + Anh) - F(x + v n )

lim
n""oo An

Choose u E U(x + v + Anh) so thatn n
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F (x + v + A h)
n n
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f(x + v n + A ,u )n n

F (x + v + A h) - F (x + v n )
n n <

A
n

f(x+v +A h,u ) - f(x+v ,u )n n n n n
A

n

n~oo

We may assume {u } ~ u*.
n

Observe that F(x)

u* E U(x). Therefore

lim f(x + v + A h,u )n n n f(x,u*); hence

lim sup F(x + A~) - F(x) < FO(x,h)
AiO

f(x + v n + A h,u ) - f(x + v ,u )
< lim inf n n n n

n~oo An

lim inf {fl (x + V ,u ,h) + f' (~ ,u ,h)n n n n

- f' (x + v ,u ,h)} < lim inf {fl (x + V ,u ,h)n n n n

f' (x,u*,h) = fO(x,u*,h) < max {fl (x,u,h): u E U(x)}

Hence

and

max max [~,h]

UEU (x) ~ Cl f (x, u)

Clf(x) M(x)

max [~,h]

~EM (x)

max [~, h]
~EM(x)
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2.2 Lemma

Given E > 0 and II hll

F(x) )/E > F' (x,h) - KE.

Proof:

1, we have that (F(x + Eh) -

1 1- max {f(x + Eh,u): U,E U} - - max {f(x,u): u E U}
E E

> ~ max {f(x,u) + f' (x,u,h): u E U(x)}
E

max {f I (x,u,h): u E U(x)}

- KE

To proceed, another hypothesis on our max family is conve­

nient. We shall assume if the index values u are close that

jumps in f' (y, •.. ,h) are bounded.

2.3 Lemma

Let x and y be arbitrary in E and let h = (y-x)/lly-xll.
E

Assume that for E> 0, Ilx - yll ~ E, u 1 E U(x) and u 2 EU(y)

and IF~(y,h) I ~ cr/2 > 0; then

If'(y,u 1 ,h) - f'(y,u 2 ,h)1

max {I f' (y,u,h) I: u E U(y)}

Then there exists EO < E such that:

< r < 1

IF~(x,h) - F~(y,h) I <

IF~(y,h) I
(1 + r)/2

whenever II x - y II < E •
- 0
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Proof: Takellx-yll <E:. Then

IF~(x,h) - F~(y,h)1 = Jmax {f'(y,u,h) + f'(x,u,h)

- f'(y,u,h): u E U(x)} - max {f'(y,u,h): u E u(y)}1

.::. max {If' (x,u,h) - f' (y,u,h) I: u E U(x)}

+ Imax {f' (y,u,h): u E U(x)} - max {f' (y,u,h):

u E u(y)}I.::. keo + rIF~(y,h) I

Ch S < (1 - r) a,· then00 e E: o 4K

IF ~ (x, h) - F ~ (y, h) I
F~(y,h)

1 + r
< ---- 2

whenever II x - y II

2.4 Lemma

< E: .o

Assume the hypotheses of 2.3 with x = P(y). Then F(y) ­

F(P(y)) ~ a/211y - P(y) II (1 - q). By [18], if IF~(x,h) ­

F~(y,h)J .::.qIF~(x,h)1 then (1 - q) IF~(Y,y - p(y))1 .::.IF(y)­
F (P (y) ) I. Since

q 1 + r
-2- and

(
y - P (y) )F ~ y, >

II y - P (y) II
a/2

the formula follows.

2.5 Hypotheses

We now collect some hypotheses.

(a) Given x E EE:' let a(x,E:) = f(x) ; f(P(x))

Since f(P(x)) < f(x), a(x,E:) > o. We shall assume

that: inf {a(x,E:): x E E} a > O.E:
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(b) The hypothesis of 2.2.

(c) The hypothesis of 2.0.

2.6 Remark

Hypothesis (a) is proven in the finite dimensional case

that follows in Section 3.

2.7 Theorem

As a consequence of the hypotheses of 2.5 the conditions

A, B, and C are satisfied.

Proof:

[A] By 2.1, if E: < 0/2K, then F'(y, P(y) - Y )
II P (y) - y II

~ -o(x,E:) + 0/2 ~ -0 + 0/2 = -0/2.

Take ¢(y) E 3f(y,u), then [¢(y) ,P(y) - y]

< F'(y,P(y) - y). Hence [¢(y),y - P(y)]

> 0/2/1 y - P(y) II .

[B] By 2.0 F is Lipschitz continuous. For the lower

bound, see 2.4.

[C] The existence of P follows by taking a minimizing

sequence converging to dist(y,T(x,E:».

3. APPLICATION TO THE QUASIDIFFERENTIABLE FUNCTION OF
PSHENICHNYI

3.0* Hypotheses

The following two hypotheses will be used in the sequel.

Let S be an arbitrary subset of E •
n

*In this section the one-sided differential f~(x,h) will be
simply written as f'(x,h).
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A

[D] f is locally Lipschitz on S and there exists E > 0

such that if 0 < E < E and x is in S then f achieves

its minima on B(X,E) only on the boundary.

[E] f is quasidifferentiable on S. Thus, f is locally

Lipschitz on S, f' (x,.) exists for every x in S, and

f' (x,h) = max {[¢,h]: ¢ E af(x)} for every x in S

and h in En.

3.1 Remarks

The concept of quasidifferentiability is used here as it is

in [13]; see also [15] and [16]. Clarke [17] has shown that

many "max" functions are quasidifferentiable.

For a quasidifferentiable function f it is true that each

f' (x,.) is continuous. Moreover, if 0 is not in af(x), it

follows that f' (x,.) attains a unique minimum on the set of all

unit vectors. To see this, note that

min f' (x,h)
II h II =1

mi n max {[ ¢ , h]: ¢ E a f (x) }
II h II .::.1

max {mi n [¢ , h]: ¢ E af (x) }
II h II < 1

max {[ ¢ , - ¢I II ¢ II ]: ¢ E af (x) }

-min {II ¢ II ¢ E af (x) }

hence f' (x,.) has its unique minimizer among unit vectors at

-¢ol II ¢ 0 II , where ¢o is the closest point to the origin in

af (x) .

3.2 Definitions

Assume 3.0[D] and let E > 0 be as in 3.0[D]. Given XES

and £ in [0,£], let h(x,£) be the set of all unit vectors h such
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that x + Eh minimizes f on B(X,E). Each vector in h(x,E) is

called a direction of E-steepest descent, while

f(x + Eh(x,E)) - f(x)
E

is called the rate of E-steepest descent.

3.3 Lemma

Assume 3.0[E] and xES. Let {t.} be any positive sequence
1

converging to 0, and let hi E h(x,t i ) for each i. Let {tk } be

a subsequence of {ti } such that {hk } converges to h(O). Then

min {f' (x, h) :

f'(x,h(O))

II h II

Proof:

vectors.

By 3.1, f' (x,.) has a unique minimizer h on the unit
o

Then, f(x + tkhk ) - f(x) < f(x + tkho ) - f(x) for each

k, and so

Also,

fl(x,h) < f'(x,h(O))
o

f (x + tkh (0) , - f (x)
lim
k....oo t k

f(x + tkhk ) - £(x)
lim inf
k....oo t k
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because of the Lipschitz condition on f. Therefore,

f(x + tkhk ) - f(x)
lim
k+oo t k

and moreover, f' (x,ho )

3.4 Remark

f'(x,h(O)).

If 3.0[E] holds and if we put h(x,O) = {h } (for each x
o

in 5), then the multifunction t + h(x,t) is, for each x in 5,

upper semicontinuous at O.

3.5 Theorem

Assume 3.0[D] and 3.0[E]. For each x in 5, the multifunc­

tion h(x,.) is upper semicontinuous on [0,£).

Proof: By 3.4, h(x,.) is upper semicontinuous at t = O. Suppose

o < t < £. Let {e.} be a sequence of real numbers converging
~

to 0 and let {h.} be a sequence of vectors such that each h. is
~ ~

in h(x,t + e.) and {h.} converges to h. Let q. = (t + e.) h.
~ ~ ~ ~ ~

for each i. Then {q.} converges to tn and it must be shown that
~

n is in h(x,t). Two cases can be distinguished, accordingly as

e. > 0 for each i or e. < 0 for each i.
~ ~

Case (a). Suppose e i > 0 for each i. Choose x + Pi on

the line segment which joins x + thi and x + qi such that

f(x + Pi) = f(x + th(x,t)); this is possible because f(x + thi )

> f(x + th(x,t)) > f(x + q.). Hence, jf(x + q.) -f(x + th(x,t))!
~ ~

= If(x + qi) - f(x + Pi) I ~ Lllqi - Pi II < Lei' where L is a

Lipschitz constant for f. Thus, lim f(x + q.) = f(x + th)
i+oo ~

f(x + th(x,t)) and so h is in h(x,t).

Case (b). Suppose e. < 0 for each i. Choose h- in h(x,t)
~

and choose x + si on the line segment which joins x + (t + ei ) h-
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and x + th­

because f(x

II ~ f (x) II .::. 0,
E 1

to the origin.
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such that f(x + si) = f(x + qi). This is possible,

+ (t + e,) h-) > f(x + q.) > f(x + th-). Much as
1 - 1

before, one obtains If(x + qi) - f(x + th-) I ~ Lleil. Thus,

lim f(x + q.) = f(x + th) = f(x + th-) and so h is again in h(x,t).
1

3.6 Miscellany

The following information is from [17] and [19].

Let f be a locally Lipschitz function on En. In this set­

ting, the Clarke generalized gradient af(x) is the convex hull

of the limit points of all sequences {~f(x + h.)} for which
1

{h.} ... O. The E-generalized gradient a f(x) is the convex hull
1 E

of all limit points of {~f(x.)} where {x,} converges to some
1 1

point in B(X,E). The sets af(x) and a f(x) are convex and com­
E

pact and the multifunctions x ... af(x) and x ... aEf(x) are upper

semicontinuous (in the Hausdorff metric).

Let B be a closed ball and let Z be the set of all station­

ary points x (i.e., 0 E af(x)) in B. Given 0 > 0, put Bo =

{x E B: II x - z II .::. oJ. Then, by [19], there exist numbers

E1 > 0 and 0 > 0 such that, for each x in Bo' 0 $ a f(x) and
E 1

where ~ f(x) is the point in af (x) closest
E 1 E 1

If one puts h = ~ f(x)/II ~ f(x) II then [h,¢]
E 1 E 1

> 0 for all ¢ in a f(x) and x E B~; moreover, if 0 < A ~ E1- E
1

u

then f(x + Ah) - f(x) ~ -OA (for each x in B). It follows that

min {fl (x,h): II h II = 1} ~ -0 for all x in Bo.

Finally, it should also be noted that if Bo is chosen as

above and if S Bo then 3.0[D] is automatically satisfied with

E= 0; this is an immediate consequence of the fact that any

unconstrained local minimizer of f is a stationary point.

3.7 Lemma

Assume 3.0[E] with S = Bo and let M > 1 be given. Then

there exists E- > 0 such that f' (x,h) < -0/2 whenever x E Bo'
E-/M < E < E-, and h E h(x,E).
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Proof: Let E2 = min (0,E 1). For each x in Bo define E(X)

= min {~ E2 sup {E: f' (X, h) 2 -0/2 for E/M < y 2 E and h

h(x,y)}}. Given x in Bo' we know that £(x) > 0, in view of

3.0[0], 3.5, and the inequality f' (x,h(x,O)) 2 -0.

To complete the proof, we must show that

£ (1)

Take a sequence {x
k

} in Bo so that {£(xk )} decreases monotoni­

cally to £-. Since Bo is compact, we may require that {xk }

converges to x in Bo. Now define £* = min {~ £2'suP {E:

f' (x,h) < -30/~ for 0 < y < £ and h E h(x,y)}}. As above,

£* > O.

Let £ > 0 be given with £ < £*. Let T£ = {y: f(y)

< f(x + £h(x,£))} and let P£ denote the multifunction which

assigns to each y in Bo the set of closest points in T£. There

exists ko such that II x k - x II < £2 - £* whenever k > k o . For

k ~ k o '

( 2)

< II xk - x II + II x - P E (x) II < E 2

Define y(xk ,£) = II xk - P£(xk ) II. Since 0 2 y(xk ,£) < 0, we

know that f is minimized on S(xk,y(xk ,£)) only at boundary points

and we have the equations

and

k > k
o

( 3)

f(x + £h(x,E))
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It is clear that, for k > k , each function Y(xk ,.) is
- 0

nondecreasing on [0,£*]. At this point, we show that each such

Y(xk ,.) is continuous on [0,£*].

Thus, for k ~ k o ' suppose 0 < £0 < £* and put uk

lim Y(X
k

,£). It is clear that
£.... £0

( 4 )

Choose an increasing sequence {£j} which converges to £ , and
. 0

for each j, choose h j E h(xk,y(xk,£J)); we may assume that {h j }

converges to a unit vector h*. From 3.7 and (3), we have

f(xk + ukh*) = lim f(xk + Y(Xk,£j) h.) = f(x + £ h(x,£ )) and
j .... oo ] 0 0

so xk + ukh* is in T£o Hence Y(xk ' £0) = II xk - P £ 0 (xk ) II <

II ukh* II uk· In view of (4), it follows that Y(xk ,.) is left

continuous at £
o

Let k remain fixed, suppose 0 ~ £0 < £*, and put bk
Y(xk ,£). Again, it is clear that

( 5)

Fix n > O. Since h(xk ,.) is upper semicontinuous at

Y(xk,£o) there exists Y > y(xk'£o), h6 in h(xk,y(xk,£o)) and

h* in h(xk,y) so Y - Y(xk,£o) < n and II h6 - h* II < n. Set

x{ = xk + yh*. Then f(x~) < ~(xk + y(xk,£o) h(xk,y(xk,£o)))

f(x + £oh(x,£o)' by (3); hence, there exists £ > £0 so that

f(x~) < f(x + £h(x,£)). Therefore, y(xk ,£) = II x k P£(xk ) II
~ II xk - x~ II < II xk - (xk + Y(xk ' £0) h 6) '11 + II Xk + Y(Xk ' £0) h6
- (xk + yh6) II + II Xk + yh6 - (xk + yh*) II < Y(xk,£o) + n + yn.
Since n > 0 was otherwise arbitrary, it follows that b k ~

y(xk,£o) and, hence, from (5), that Y(xk ,.) is right continuous

at £0.

Now, for each k > ko and £ in [£*/2M,£*], we choose vk (£)

in the closed set h(xk,y(xk ,£)) so as to maximize f' (Xk '.) over
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h(xk,Y(Xk,E». For each k > ko and E in [E*/2M,E*], we can,

by 3.0[E], select ~k(E) in af(xk ) so that

Assert now that an integer k 1 ~ ko exists so that

( 7)

e:*-/2M < E < E*

If (7) were false, we could select an infinite subsequence {x.}
J

of {xk } and a sequence {E j } in the interval [E*/2M,E*] so that

[~.(e:.),V.(E)] > -0/2 for each j, {E.} converges to E#, {V.(E.)}
J J J 0 # J # J J

converges to h , and {~. (E.)} converges to ~ Since af is upper
J J

semicontinuous at X, ~# is in af(x). By 3.0[E] and the defini-

tion of E*, we get

-30/4 > f' (x,h) > [~# ,h] for every h in h(x,e:#)

(8)

Next, we shall show that h# is in h(x,E#). If this were

false, then there would be a unit vector h 1 so that

For large j, the triangle inequality gives

II x J' - P (x .) II - II x - P (x) II
E j J E j

which amounts to jy(Xj,E j ) - Ejl 2. Ilx j - xii

From (9), (10), and (3), we have for large j,

(9 )

It follows that

( 10)
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( 11)

f (x + £. h (x, £ . ) )
] ]

# #= [~ ,h ], the fact

tion of (8). Hence

But (11) contradicts the definition of h(x'£j) and so it must

be true that h# is in h(x,£#). Since -0/2 < lim [~.(£.) ,v.(£.)]
- j~oo ] ] ] ]

that h# is in h(x,£#) leads to a contradic-

(7) is established.

From ( 6) , (7) , and the continuity of each Y (xk ' . ) we have,

for k ~ k 1 ,

f I (xk ' h) 2- 1 for y(xk ,£*/2M) < < Y(xk ,£*) and-2 0 Y
( 1 2)

Arguing as we did for (10), we find lim y(xk ,£*/2M) = £*/2M and
k~oo

= £*. Hence there is an integer k 2 ~ k 1 such that,lim y (xk ' £* )
k~oo

whenever k > k 2 , we have y(xk ,£*/2M) ~ 2£*/3M and Y(x
k

,£*) >

2£*/3. Hence (12) leads to f'(xk,h) 2- -0/2 whenever 2£*/3M <

Y < 2£*/3 and hE h(xk,y), provided k > k 2 "

Therefore, it is true that £(xk ) > 2£*/3 for k ~ k 2 . It

follows that (1) is true and that the proof is complete.

3.8 Remarks

Suppose that 1.0[A] is replaced by the weaker hypothesis:

1.0[A'] [~(y),y - P(y)] > e Ily - P(y) II

for y in 0, provided II y - P(y) II > £/N

where N ~ 2L/ll

If this replacement is made, then the argument which yields

Lemma 1.1 can be used to obtain a version of Lemma 1.1 with the
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following conclusion: " ... there exists a smallest positive

integer k* such that II x k * - P (xk *) II < E/N; moreover, for

k = O, ... ,k*-1, one has Ilxk - P(xk ) II 2. skll xo - P(xo ) II,

where S = [1 _ ~4/a4]1/2."

It is then easy to show that Theorem 1.3 will still be

valid, with essentially the same proof, if 1.0[A] is replaced

by the weaker 1.0[A'].

3.9 Definitions

points to y in

h E af (y) } .

> O. Given x in S,

and D(E,X) = {y E Bo:
the multifunction which

and let E

<P by <P (y) = {h/ II h II :Define <P E,X

Assume 3.0[E] with S = Bo
set T(E,X) = {y: f(y) 2. f(x +

II y - T (E, x) II < d, and let P

Eh(x,El) }

P beE,X
associates with each y in D(E,X) the closest

T(E,X).

3.10 Theorem

Let 0 > 0 and form the set Bo as before. Assume 3.0[E]

holds with S Bo' There exists E- > 0 and there exist constants

0, ~, L, a, and N such that for any x in Bo and E* in [E-/2,E-],

with T = T(E*,X), D = D(E*,X), ¢ = ¢ * ' and P = P * as in
E ,x E ,x

3.9, it is true that 1.0[A'], 1.0[B], and 1.0[C] hold.

Proof: Let L be the Lipschitz constant for f on B. Then put

~ = 0, ° = a/(2L), a = L/0, and N = 2L/a. Let M = 2N and choose

E- as given by Lemma 3.8 to correspond to M.

Now suppose E-/2 2. E* 2. E- and x is in Bo' Since II y - T 11=
II y - P(y) II for all y, it is obvious that 1.0[C] holds. If one

sets h = -'i7 E*f(y)/11 'i7 E*f(y) " , then by 3.6, f(y) - f(P(y)) >

f(y) -f(h+ Ilh-Tllh) ~aIIY-TII, forallyinD. Hence

1.0[B] is verified.

To see 1.0[A'], let y be in D with Ily - Til ~ E*/N. Put

E = II y - T II = II y - P (y) II. Then E > E*/N = E- /M while

E < E* < E-. It follows from Lemma 3.7 that f' (y,h(y,E)) < -0/2.
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From 3.0[E] and from the equation P(y) = Y + Eh(y,E), it follows

that, for every ¢ in Clf(y), [¢,y - P(y)] = [¢,-Eh(y,El] > Eo/2

= 0/2 II y - P(y) II > (0/2L) II y - P(y) II II ¢ II .
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NONSMOOTH OPTIMIZATION AND NONLINEAR PROGRAMMING

B. N. Pshenichnyi*

We first give an algorithm of the penalization type for

solving ordinary nonlinear programming problems in a "nondiffer­

entiable optimization" context as in [1]. We investigate its

rate of convergence. Then we apply it for solving some more

specific problems such as finding a feasible point to a set

of equality and inequality constraints; and, finally, we give

some ideas which might lead to superlinearly convergent algorithms.

1 . THE ALGORITHH

Let us consider an ordinary nonlinear programming problem

min f o (x)

( 1 )

f i (x) < 0 i E I {1,2, ... ,m}

in which we suppose the gradients fl(x) to be Lipschitz contin­

uous for i = 0,1, ... ,m. For simplicity of notation, we suppose

also that there is a degenerate constraint fi(x) = 0 V x. We do

not require any Slater condition; in particular, the following

development will accept equality constraints £(x) = 0, simulated

by fi(x) = £(x), f i +1 (x) = -£(x).

It would be possible to solve (1) by successive lineariza­

tions, i.e. by Newton's method, but the linearized problems

*This paper was written by C. Lemarechal from the tape recording
of the talk.
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usually have no solution. This motivates the following algorithm,

which has an NSO background.

Set

F (x)

1J
N

(x)

max{ f. (x) Ii E I}
1

(note that F(x) > 0)

for some positive
number N (1JN is a
so-called exact
penalization)

(2)

( 3)

{i E Ilf i (x) > F(x) - c} for some c > 0

We will give a descent algorithm for minimizing 1J N(x),

starting from some xo .

(4)

Linearizing (1) about x, consider the following direction­

finding problem in p:

min (f'(x),p) + ~lpl2
o

(f~ (x) ,p) + f. (x) < 0
1 1

i E Ic(x)

(5 )

We suppose Nand c are chosen such that for any x in the level

set {x/1JN (x) ~ 1JN (x
O

)}:

and

Problem (5) is feasible

its Lagrange multipliers u i satisfy

(6 )
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1­

iEI
O

(X)
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(7)

Therefore, during the iterations of the algorithm, we can check

(5) and (6): if (5) is infeasible, we decrease O. If (7) does

not hold, we increase N.

Let p(x) denote the solution of (5).

Theorem 1

p(x) = 0 if and only if x is feasible in (1) and it satisfies

first order necessary optimality conditions.

It seems that, for computing p(x), it is more convenient

to solve the dual of (5), namely

min ~ I f'(x) + L u.f~(x) 1
2 - L u.f.(x)

o i '= 1
0

(x) 1 1 iE 1
0

(x) 1 1

u > 0

which, in addition, allows us to check (7).

Now the algorithm for minimizing ~N(x) is iterative: know­

ing xk ' solve (5) (or (8)) to obtain p(xk ) = Pk" Then perform

a step in the direction Pk:

(B)

(9 )

The step size ak gives a convergent algorithm provided it is

chosen in the following way. Choose £ E ] 0, 1 [" Try a = 1" If

( 10 )

then take this value. Otherwise replace a by a fixed fraction

of itself until (10) is satisfied.



74

In other words, Pk is a direction from x k ' in which it is

possible to decrease </>N (>:) by a significant amount, given by ("10).

Theorem 2

F(xk ) + O. Every cluster point x* of the sequence {xk } is

feasible in (1) and satisfies the first order necessary optimality

conditions. Furthermore, if (1) is a linear program, convergence

is finite.

Because of the presence of 0, (5) might contain only a

small number of constraints compared to those appearing in (1).

2. RATES OF CONVERGENCE

If no constraints are present in (1), the algorithm reduces

to the ordinary gradient method. The rate of convergence is

therefore usually linear. However, it becomes quadratic when

the solution of (1) is a vertex (intersection of n constraints) ,

i.e. when (1) looks like a linear program.

Let us investigate this point more precisely, because it

will show how to modify the algorithm to obtain superlinear

convergence.

Let x* be a solution of (1). We suppose the standard second

order sufficient optimality conditions are satisfied, namely

(i) f~ (x*) i E I (x*)
1. 0

are linearly independent;

(ii) the (unique) Lagrange multipliers u* are such that

*u. > 0, i E I (x*);
1. 0

(iii) (P,L~X(X*'U*)p)

(P,fi.{x*)) = 0

> 0 for any p t 0 such that

i E I (x*)o

Concerning (i), a modification can be made to accept simula­

tion of equality constraints (i.e., when f. (x) < 0 and -f. (x) < 0
1. - 1.-

are both present, one takes into account only one such constraint).
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We can figure out the linear rate of convergence: let P

be the projection mapping onto the subspace spanned by the active

constraint gradients.

Lemma

The mapping p(x) from Rn to Rn given by (5) is differentiable

around x* and its Jacobian is given by

It * *- [P + (I - P)Lxx (x ,u )] ( 11)

Now observe that xk+1 = xk + ap(xk ) is just the standard

process for solving p(x) = O. It converges if the mapping

I + apr (x*) has all its eigenvalues inside the unit circle.

Then its rate of convergence is the largest modulus of all these

eigenvalues.

It turns out that one can actually compute all these eigen­

values. Let m = II (x*) I = number of active constraints at x*.o
then p' (x*) has the following eigenvalues:

m of them are equal to - 1;

the n - m remaining ones are equal to - Yi

where Yi are the n - m strictly positive

eigenvalues of the symmetric matrix

(I - P)L~x(I - Pl.

Therefore the eigenvalues of the process (9) (with fixed a) are

and

1 - a m times

n - m times.

These numbers are obviously smaller than 1. For ensuring

convergence, they must be also greater than -1, which means that

a must satisfy
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i 1, ... , n-m

The rate of convergence is then given by the smallest of

these numbers. Hence, the Lagrange multi~liers playa very im­

portant role for the rate of convergence. Roughly speaking, the

larger m, the better the convergence. Ideally, when m = n, the

choice Ct = 1 makes all the eigenvalues zero, so that convergence

is superlinear (Equation (9) reduces to Newton's method for solv­

ing a system of n equalities) .

3. APPLICATIONS

Equations (5), (9) and (10) can be applied to solve a system

of equalities and inequalities. In this case, fo(x) = 0 and (5)

reduces to

min 1 P 1

2

(f ~ (x) , p) + f. (x) < 0
1 1

which is Newton's method.

IE I<5(x)

( 12 )

Here, the assumptions (6) and (7) have to be modified, and

we suppose now that there exists <5 > 0 such that

Problem (12) is feasible and

satisfies Ip(x) I.:: CIF(x) I ( 13)

This condition is satisfied for example if one supposes

that the null-vector is never obtained by any positive combination

of the active gradients: I A.f~ (x) "I 0 'V A. > o.
1 1 1

Also the rule for choosing Ct is slightly different: we

require
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Theorem 3

(i)

( ii)

(iii)

(iv)

(v)

* *xk ->- x and F (x ) .::. 0

After a finite number of steps, ok = 1 satisfies (14)

2After a finite number of steps, F(xk + 1 ) .::. C F (xk )

2 k
Ixk - x* I .::. C q with q < 1

If the problem is linear, convergence is finite.

The algorithm can also be applied to minimize a max function

of the form

f(x) max{f. (x) Ii E I}
1

(I finite)

Then expressions (1) reduce to

min v

( 15)

i E I

It is then convenient not to consider (5) with f o
modify it slightly and solve

v, but to

min n + ! I p I2

(f ~ (x) , p) + f. (x) - n < 0
1 1

n E R, P E R
n

( 16 )

In this case, (6) and (7) are readily satisfied: (n,p) is

feasible in (16) if n is large enough, and one can verify that

the Lagrange multipliers sum up to 1. Hence, the choice of 0

will depend only on computational convenience.

Theorem 2 applies. In particular, if the solution of (15)

is a corner (i.e. n + 1 functions f i are maximum at the solution),

then convergence is quadratic. It would be interesting to gener­

alize (16) to the case where the functions fi(x) are not explicitly

known (in particular, when I is infinite).
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4. IMPROVEMENT OF CONVERGENCE

Let us go back to (5). From (11), if L" (x*,u*) = I, thenxx
p' (X*) -I; all its eigenvalues are -1 and the choice of a k = 1

yields superlinear convergence. Therefore, any information about

the optimal Lagrange multipliers might allow us to make a linear

transformation on the variables which would generate a very small

maximum eigenvalue for (I + apr).

For example, when x is near x*, replacing (5) by

mi n (f' (x) , p) + ~ (p, L" (x* , u * ) p)
o xx

( 17)

(f~ (x) ,p) + f. (x) < 0
1 1

would yield pIx)

and u(x)

- (x - x*) + o(lx - x*l)

u*+o(lx-x*l)

" * *To approximate (17), one could for example replace L (x ,u )

by L" (xk ,uk _ 1 ) (uk - 1 being the Lagrange multipliers of (17) with

x = xk - 1) •
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BUNDLE METHODS IN NONSMOOTH OPTIMIZATION
c. Lemarechal

This paper tries to synthesize what are called aonjugate 8ub­

gradient methods, and to extend them to a wider class of bundle

methods. Also, we will show a connection with other methods pri­

marily designed for solving ordinary mathematical programming

problems. Our approach will be intuitive rather than algebraic:

we will give not theorems, but ideas. Nothing essentially new

will be said with respect to papers that have been published else­

where.

We show that methods of conjugate gradients are perfectly

justified as far as a local aspect is concerned, but that this

local study is not enough for constructing efficient algorithms.

We then try to replace the concept loaal by finite neighborhood

and define the class of bundle methods. Finally we show that

this class has a common background with many well-known methods.

Throughout the paper, f(x) is a function defined on Rn , con­

vex, and Lipschitz, the latter hypothesis being the most important.

R
n

is considered as a Hilbert space, i.e. we consider only the

Euclidean norm. Also, we note that the dimension need not be

finite~ therefore we denote Rn by H.

1 • LOCAL ASPECT

In this section, we have a point x, fixed in H, and we ask

the question: how can we find a direction of descent, i.e. an

element d E H such that the directional derivative

f' (x,d) lim f(x + td) - f(x)

t+O t
( 1 )

is strictly negative.
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We follow Clarke's analysis [1]; as a Lipschitz function,

f has a gradient almost everywhere in H. It is therefore possible

to construct sequences {x.}
1

The corresponding sequences

cluster points. Define the

such that Vf(x.) exists and x. + x.
1 1

{~f(x.)} are bounded and have (weak)
1

set of all such cluster points:

M(x) Vf (x. ) exists}
1

(2 )

Then there exists between (1) and (2) the following basic

relation:

f' (x,d) = sup {(d,g) Ig E M(x)}

From this, several observations follow:

( 3)

(a) The property that d is a descent direction implies that

-d makes an acute angle with every g in M(x). The set of descent

directions is the (open) polar cone of the convex cone generated

by M(x) .

(b) M(x) represents exactly the behavior of f in the neigh­

borhood of x. Knowing a descent direction implies a comp~ete

study of f around x. It is not a trivial problem in general,

unless f is differentiable at x (M(x) is the singleton Vf(x)),

or when f is made up of a finite number of known differentiab~e

functions f i which meet at x (then M(x) is made up of the gra­

dients Vfi(x)).

(c) Any descent direction defines a hyperplane separating

the convex sets {a} and {convM (x)}. Therefore, x is optimal iff

there is no such hyperplane, i.e. 0 E conv {M(x)}. Accordingly,

it is interesting to consider not M(x) alone, but its convex

hull af(x) = conv M(x) (see also (a) above) which is the ordinary

subdifferential [11].

(d) The best descent direction is defined as solving the

problem

min
d

f' (x,d) ~ min max {(g,d) Ig E df(x)}
d

(ll)
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Of course, the directional derivative being in essence a

positively homogeneous function of d, it is necessary to normalize

d. Then, when the Euclidean norm is chosen, it is possible to

show, through some tedious calculations, that the optimal d is

opposite to

Nr af (x) Proj Olaf (x) (5)

i.e. the point of minimal Euclidean norm in af(x). (We note here

that, in the differentiable case, the optimal d in the ~, sense

would be a vector of the canonical basis: in this framework, the

steepest descent method would be Gauss-Seidel!)

(e) Of course, the probability for M(x) not to be a single­

ton is zero. However, x might be so close to a point of nondif­

ferentiability that it is impossible to find a numerically non­

zero step size in the direction -Vf(x). We are in fact interested

in constructing directions that are numerically usable. From this

viewpoint, there is no difference between a nondifferentiable

function and a stiff function: they differ only on a set of

measure O. Accordingly, our development will be valid also for

minimizing ordinary but ill-conditioned functions. II
Now we give the basic ideas for constructing a descent

direction or, equivalently, for constructing M(x). Suppose we

know k points in M(x) :

for some integer k. This is initialized by computing g1 directly.

In view of (e) above, one generally has g, = Vf(x). Knowledge

of one point in M(x) is really the minimal requirement for using

a method based on gradients.

The question is: knowing this partial information about

M(x), is it possible to deduce a descent direction easily? If

not, how can we determine some gk+1 E M(x) so as to improve the

current approximation?
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Since f' (x,d) > max {(d,gi) Ii

d k satisfying

1, ••• ,k}, we choose some

i 1 , ••• , k (6)

We hope that d
k

is a descent direction; so, to check it, we

tabulate the function f(x + tdk ) for t i O. Then,

- either we find t > 0 such that f(x + tdk ) < f(x) and

we are done,

- or f(x + tdk ) > f(x} for any t generated by this line

search.

This is the only interesting case here. By convexity, for any

t > 0 and for any g E M(x + tdk }

Passing to the limit and denoting by gk+1 any cluster point

of g, gk+1 E M(x} by definition. Furthermore one has

Comparing (6) and (7), we see that, increasing k by 1 and

computing a new d satsifying (6), we will certainly get a dif­

ferent direction.

Note that property (7) comes directly from convexity of f,

which therefore seems essential. In fact it can be weakened to

the so-called weak uppep semismoothness [8] which, roughly speak­

ing, implies: if the differential quotient [f(x + td} - f(x}]/t

goes to a positive limit, then the corresponding slope (g,d)

(where g E M(x + td)} goes also to a positive limit. II

Now recall that we are trying to construct M(x}. In view

of (6) and (7), in order for gk+1 to be as good as possible, d k
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should make the numbers (dk,gi) as negative as possible. This

justifies a min-max strategy, which consists in comp?ting dk as

solving

min max {(d,gi) Ii
d

', ..• ,k} ( 8)

Again it is necessary to bound dj again, when using the Eu­

clidean norm, (8) turns out to have the solution d k = -Nr{g" ... ,gk}'

Note that this gives d, = -g, for k =,. It is then just techni­

cal to prove that, if x is not optimal, the above process is

finite, thanks to (7) ,(8), and the boundedness of {gk}' When x

is optimal d k ~ 0 (strongly), and, since -dk E af(x), this pro­

vides a stopping test. Note that when M(x) is finite, the process

is finite anyway.

To conclude this section we state that, knowing a convex

set G included in Clf(x), the best we can do is to compute its

vector of minimal length.

If G = Clf(x) we then get the steepest descent direc­

tion.

If G is a sufficient approximation of Clf(x), we get

some descent direction.

If G is too poor an approximation we can generate a

new point in M(x) and improve G by an infinite line­

search. Repeating the process, it is then possible to

find a descent direction, if any.

2. NUMERICAL ASPECT: ENLARGEMENT OF THE SUBDIFFERENTIAL

In the previous development, several questions remain open.

(a) Keep in mind Section '(e). Strictly speaking, the

process for constructing M(x) is useless since it is probably a

singleton.

(b) Suppose we try to minimize f by the following algorithm:

xk being given, first compute a descent direc­

tion dk by the process of Section ,.
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Then move along d k , for example with an optimal

step size.

This, at best, simulates the steepest descent method, which is

known to be slow, and may converge to a nonoptimal point when f

is really nondifferentiable. In other words, this algorithm

would converge very slowly to a nonoptimal point!

(c) For computing a descent direction--more specifically,

for generating new points in M(x)--we are supposed to perform

infinite line-searches along each trial direction, with t + O.

This is forbidden. II
It appears that these phenomena come from the same imper­

fection: M(x) is too small, containing only limits of gradients.

Suppose, on the contrary, that we replace in (2) the concept

"xi + x" by "xi close enough to x". More precisely, for E > 0

define some neighborhood VE(x) (for example the ball of radius E).

Then enlarge M(x) as follows

M(x) C M (x) = {gig
E

limVf(x.) ,x. + y, Y E V (x)}
1 1 E

(9 )

which directly follows Goldstein's analysis [3]. This new def­

inition eliminates the above-mentioned phenomena:

(a ' ) ME(x) is never a singleton--unless f is linear, at

least in VE(x) (not an interesting case) .

(b ' ) If a direction d satsifies (d,g) < 0 V g E ME(x), it

can be seen by integration that f(x + td) is a decreasing function

of t as long as x + td E VE(x). A line-search along d will get

us out of VE(xn ), and, from compactness, we will converge in a

finite number of steps to some ~ such that VE(~) contains the

minimum of f.

(c') Constructing M (x) is easier than constructing M(x)
E

in the sense that we can stop the line-search along a trial direc-

tion d k as soon as x + td
k

E V
E

(x), Le. for some finite t > 0.11

Several enlargements of M(x) are possible. One of them,

coming from convex analysis, is particularly interesting, despite
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the fact that it is difficult to define the corresponding VE(x).

We define directly the convex set

{gl'ifY E H, f(y) > f(x) + (g,y - x) - d ( 10)

(a") This set contains af(x). Also aEf(x) = af(x) only in

very special situations. Moreover, it is a closed, convex, and

(weakly) compact set (because f is Lipschitz).

(b") There exists the following basic relation [11, p.220]:

inf f(x + td) - f(x) + E
t>O t

sup{(d,g)lg E aEf(x)} ( 11 )

which directly extends (3). It follows that 0 E a f(x)~x min­
E

imizes f within E. Also, if d is such that (d,g) < 0 'if g E a f(x),
E

then (and only then) it is possible to find t > 0 such that

f(x + td) < f(x) - E.

(c") Let x and y be two different points in H. Let g E af(y)

and E > O. Then g E aEf(x) iff

f(y) ~ f(x) + (g,y - x) - E

This formula can be looked at from different angles:

(i) x, y, g E af(y) are given. Then g E a f(x) for any
E

E > f(x) + (g, Y - x) - f(y) (a known positive number).

( 12)

(ii) y, g E af(y), E ~ 0 are given. Then g E aEf(x) for

any x such that f(x) - (g,x) < f(y) - (g,y) + E, i.e. for any x

close enough to y.

(iii) x and E > 0 are given. For any y, any g E af(y) is

also in aEf(x) provided f(y) + (g,x - y) ~ f(x) - E. By contin­

uity this is again true whenever y is close enough to x (g is

bounded since f is Lipschitz). Observe that the left-hand side

of this inequality is the value at x of the approximation of f

linearized at y.
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In particular, when y is the current point x + td of some

line-search, g E af (x + td) belongs also to af (x) when f (x + td) ­
E

t(g,d) ~ f(x) - E, and this is eventually true provided t .... 0.11

Thus, the introduction of a f{x) does not explicitly define
E

V (x), but rather makes precise the concept close enough to in
E

terms of objective value units. This is the really good feature

of this set: it makes us able to compare movements ~x in H with

the common measure of movements ~f in R. Of course, (12) is very

useful since we can only generate points g of the form Vf{y) ,

and they must be transported into sets aEf(x).

Note that -Nr af(x) has a good geometrical interpretation:

it is the steepest descent direction. Here, -Nr a f{x) has no
E

such simple interpretation. We can only say that there exists

n(E) > a such that -Nr a f (x) points towards the projection of
E

x onto the level line f{x) -E-n{E) {if such a level line exists,

i.e. if f (x) > min f + E). II

As the first application of this enlargement, we can adapt

the algorithm of Section 1 to construct aEf(x), or equivalently

to determine an E-descent direction, i.e. a direction d such that

inf {f(x + td) It > a} < f{x) - E. Let x be fixed, and choose

E > O. Suppose k points g1, ... ,gk are already known in aEf{x).

Determine d
k

such that (dk,gi) < a i = 1, ... ,k. Again it is

interesting to choose dk = -Nr {g1, ... ,gk}. Make a line-search

along dk . If we can decrease by E, we are done. Therefore,

suppose f{x + tdk ) > f{x) - E for any t generated by the line­

search. Two cases may occur:

(j) f{x + tdk ) ~ f{x) V t. Then we are exactly in

the situation described in Section 1. (g,dkJ ~ a V t > a,
V g E af{x + tdk ), and we can stop the line-search as soon as

t < [f{x + tdk ) - f{x) + E]/{g,dk ) which eventually occurs (f

is Lipschitz: (g,dk ) cannot go to +00) •

(jj) Slightly more complicated is the case where some t L
is produced during the course of the line-search, such that:
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Then it might be impossible to produce a positive t such that

any g E df(x + tdk ) simultaneously satisfies g E dsf(x) and

(g,dk ) ~ O.

t*-+--.....,.------_""'---.... t

This sketch is a counter-example: there is a minimizing t* > 0

along dk . The set L of step sizes generating s-subgradients at

x is [O,t*[. The set R of step sizes generating gradients satis­

fying (7) is ]t*,+oo[ and L n R =~. In fact gk+1 should be a

particular subgradient at the optimal t*.

In that situation, the gimmick consists in computing gk+1

as a convex combination of gL E df(x + tLdk ), t L E L, and gR E

df(x + tRdk ), t R E R. We choose this combination such that

(gk+1,dk ) =::: 0; and gk+1 E dsf(x) if t R - t L is small enough. II

This is the s-descent method given in [4]. It has a curious

variant, in which we just neglect the test f(x + tdk ) < f(x) - E,

and we never move from x. Let us give its schematic description:

fix x E H. Let g1 E df(x). Set k = 1.

Compute dk -Nr {g1, ... ,gk}'

Minimize f(x + tdk ) for t > 0 and get an optimal t k ~ O.

Compute gk+1 E df(x + tkdk ) such that (gk+1,dk ) = o.

Set k = k + 1 and go to 1. II
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Of course, the second and third steps are only schematic.

One must simulate them by the development (j), (jj) above. The

proof of convergence is fairly illustrative of what is done

generally in this kind of algorithm:

Set a k = f(x) - f(x + tkdk ), Ek = max {aili = 1, ... ,k} and

denote by xk the point x + t.d. at which this max is attained.
1 1

i

fore

From (12) it can be seen that g'+1 E d f(x). Also a i ~ Ek1 a i
1, ... ,k. It follows that g. E d f(x) i = 1, ... ,k+1; there-

1 Ek

Now pass to the limit: as an increasing bounded sequence

E
k

+ E* = f(x) - lim f(xk ). As in Section 1, dk+ 1 + O. There

is a general result of uppersemicontinutiy of the subdifferential,

which says that in this situation, 0 E dE*f(x). Hence, from (11):

f (x) ~ min f + E*, which means

lim f (xk ) < min f II

3. CONSTRUCTING DESCENT ALGORITHMS: BUNDLE METHODS

So far, we have only considered f near a fixed x, strictly

locally in Section 1, in a fixed neighborhood in Section 2. Now

suppose we have performed several steps of some descent method.

A certain number of points have been generated, at which the

value of f has been computed together with some subgradient. We

symbolize this information by the bundle x 1 '···,xk ; f 1 , ... ,fk ;

g1,···,gk' where f i = f(x i ) and gi E df(xi )· We denote

Gk = {g1,···,gk}·

This labeling is therefore not that of iterations. In fact

we can store what we want, from just {xk,fk,gk} to all the infor­

mation generated during all the line-searches from the beginning

of the algorithm. This is purely a matter of core requirement.
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Also it is just for simplifying notations that we suppose

f. = f(x.) and g. E af(x.). We might suppose that the user is
1 1 1 1

unable to compute exactly the function and its gradient. In

fact, all we have said and all we are going to say remains valid

when we suppose that the user is given x. together with some pre-
1

scribed tolerance E., and that he returns f. and g. such that
111

g. E a f(x.)
1 E i 1

Then, the only difference with the case Ei
fication of (12). II

o is a minor modi-

Now the question is: how do we use this bundle to compute

"at best" a new point xk+1 ' or to generate a new subgradient

gk+1?

From Section 1, the simplest answer is the following. Let

us suppose that GkC af(xk ); then we should choose dk = -Nr Gk .

This technique is fully justified in two cases.

(I) When the algorithm has been stuck from

x1 to xk : all the points xi are close together

and all the gi's are approximately in af(xk ).

Of course, this is an emergency situation: con­

structing algorithms that we hope do not get

stuck too often is precisely what we want to do.

(II) When the situation happens to be

f is quadratic and

all the line-searches have been exact from

x 1 to xk . In that case, Nr Gk turns out to

be the direction of conjugate gradients which

is optimal in the sense that it points towards

the minimum of f in the set generated by the

bundle. Of course, this situation is not

very interesting either: the aim of NSO is

not to minimize quadratic functions with

exact line-searches!
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In summary, dk = - Nr G
k

is a poorly justified choice, which

is likely to become worse when k increases. The first idea for

overcoming this has been to reset periodically, to force k to be

small. This has given variants of what have come to be called

aonjugate subgradient methods.

(a) In [14], one resets as late as possible, i.e. when

Nr Gk ~ 0 (in which case it would be foolish to interpret it as

a direction) .

(b) In [5] a rather artificial observation was made: there

is a simple test that detects situation (II) above, namely

(g.,x. - x
1

) < 0
~ ~

i 1 , ••• , k ( 1 3)

which means that g. E a f(x
1
), where

~ £i
fact, equality holds in (13) when the

Accordingly, one resets whenever (13)

£i = f(x 1 ) - f(xi )· (In

situation is as in (II».

is not met.

(c) These two rules for resetting are based on (II) above

and do not seem to be very promising. More interesting are

rules given in [9], directly based on (I) and on the fact that

resetting leads to restart on the gradient, which is clumsy.

It is better not to reset but to delete those g. 's that appear
~

to be poor approximations of af(xk ). This can be done in either

of the two following ways:

delete those gi's for which IX i - xkl is too large,

or

define the numbers

a. f(xk ) - f (x. ) - (gi,xk - xi) i 1 , ... , k ( 14 )
~ ~

and delete those g. 's for which a. is too large.
~ ~

(Note that a. > 0, a
k

= O. All the information
~ -

is on hand to compute a. and there is a simple
~

recurrence formula for computing them cheaply. ) II



91

The latter is very interesting because, as in Section 2,

it again gives a means to measure the proximity of xi to xk in

terms of differences in the objective. From (12) it can be seen

Thus, a i measures how far gi is from df(xk )·that g. E d f (xk ) .
~ a i

Intuitively, when computing dk in terms of

of g. should be smaller when a. is larger.
~ ~

the gi's, the weight

Deletion rule (14) can be considered as a weighting of gi

by 1 if a i .:: is, 0 if a i > is, where is is some chosen threshold.

This is a tough weighting. Clearly, it would be interesting to

smooth it. We think that efficient descent methods would be

obtained if this question of weighting were properly solved.

The next development tries to answer this question, probably

imperfectly, as it does not eliminate the need for a threshold.

From the fact that gi E da.f(xk ) i = 1, ... ,k we can write
~

"f y E H i 1, •.. ,k,

or equivalently, by convex combination:

"fA: A.>O,
~-

L A.
~

( 15)

Every y E H can be described as y = xk + td, t> 0, Idl = 1.

In particular, if we choose y = xk + td as the next iterate, the

decrement in the objective cannot be larger than the (we hope

positive) number

A. > 0, I A.
~ - ~

It is therefore natural to look for the pair t and d that yields

the best possible decrement, i.e. that solves
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t>0,ldl=1

min
A
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- t (\' A.g.,d) + L A.a.t.. 1 1 1 1
( 16)

We do not see clearly how to solve (16) (which, by the way,

has no solution in general: unless 0 E conv Gk , t is infinite).

However, parallelling with the general scheme of a descent method,

we might fix t at some guessed value, solve (16) for d alone,

and then forget (16) and perform a line-search along the optimal

d. In that case, (16) becomes a saddle point problem in A,d,

very similar to (8); its solution is

d L I·g·/IY. I·g·1. 1 1 .. 1 1

where A solves

L A.
1

(17 )

(The case L Aigi

est here.)

o needs finer analysis, which is not of inter-

Although (17) is a well-posed problem, it is not workable;

but there is a trick for transforming it. 1/t can interpreted as

the (positive) Lagrange multiplier associated with some (inequal­

ity) constraint of the form L A.a. < E. To t > 0 given, there
1 1

corresponds the right-hand side E = L I.a .. Since a. > 0 and
1 1 1 -

a k = 0, the range for E is E ~ O. Finally, because the mapping

z + !z2 is monotone increasing, (17) is equivalent to

! I ~
2min A. g. I

1 1

L A. A. > 0 ( 18)
1 1

L A.a. < E
1 1

which is a simple constrained least squares problem. The paper

by Mifflin in this volume is devoted to solving it.
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In (17), t = IXk+1 - xkl is unknown. We now give an inter­

pretation of the unknown parameter E in (18). It is convenient

to denote

{gig l: A.g., I.' A.
1 1 L, 1

1, A. > 0, 1: A.a. < d
1 . 1 1

It is a convex polyhedron included in Gk . Using (12), it is not

difficult to show that Gk(E) C dEf(xk ). Denote also S(E) = L Aigi
the optimal solution in (18). Then, S(E) defines the best hyper­

plane separating Gk(E) from the origin. If E is very small, we

can hope that Gk(E) is a good approximation of dEf(xk ), so S(E)

will also separate dEf(xk ) from the origin. This will guarantee

a decrease by E in the direction -S(E), hence the need to choose

E as large as possible. On the other hand, if E is too large,

Gk(E) is a poor approximation and S(E) becomes meaningless in

terms of dEf(xk ).

Thus, the philosophy underlying this development is a con­

struction of dEf(x) for varying E and x--instead of fixed as in

Section 2.

We can call bundle methods the class of methods that pro­

ceed as follows: at each iteration, consider the bundle of in­

formation g1, ... ,gk' a 1 ,···,ak · Choose E > 0. Solve (18) for

S(E). Make a step along -S(E). For these methods to be effi­

cient, several questions should be solved.

Is (18) really the proper problem to solve for computing

the direction? We are supposed to find a hyperplane separating

Gk(E) from 0. However, such a hyperplane would be found also

by changing the metric, i.e. by defining some positive definite

matrix H, considering the objective ~(L A.g.,H f A.g.) in (18)
211 . 1 1

instead of ! IL A.g. I , and taking S(E) = H L A.g. as the direc-
1 1 1 1

tion.

Second, we have not been able so far to find satisfying

automatic rules for choosing E at each iteration. (An efficient

heuristic is E = ![f(xk ) - min fl, but it is not implementable.)
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Since E should be related to f(xk ) - f(xk+ 1), a dialogue between

(18) and the line-search might be necessary; this would make the

direction depend on the step size, and lead to gauche algorithms,

with curve-searches.

Finally, once the direction is found, we should logically

move if we thus get a sufficient decrease. Otherwise, as in

Section 2, we should add a gradient into the bundle and compute

a new direction from the same xk " How do we make the decision

to move, and which gradient do we add into the bundle?

In conjugate subgradient methods, the situation is clear:

one has an estimate Idkl2 of -fl (xk,dk ). One chooses 0 < m2 <

m1 < 1 and E> o. We look for y = xk + tdk and gk+1 E af(y) such

that

For moving, we require in addition

If this is impossible, we require

(serious step: xk + 1
y) •

This ensures that the direction will change at the next iteration,

and also that the decrease in the objective is sufficient. In

bundle methods, there is no clear reason to choose the same cri­

teria. II
These questions are still open.

4. RELATIONS WITH OTHER METHODS

(a) When E approaches 0 in (18), it is clear that S(E) goes

to gk. More precisely, a bundle method with € = 0 would reduce

to the algorithm of Section 1.
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(b) No less obviously, if £ is large enough (say £ > max ail ,

s(£) is the direction of conjugate subgradients.

(c) It is also clear that (15) is just a fancy way of

writing:

f(y) > f(x.) + (g.,y - x.)
1. 1. 1.

i 1 , ••• ,k

which is the basis for cutting planes. A bundle method is there­

fore a Boxstep method [7) (or rather Ballstep, since we definitely

prefer Euclidean "boxes"), i.e. the method that consists in

minimizing the linearization f of f inside a ball around xk ' and

then extrapolating by some line-search. In such a method, the

size of the ball is t in (17), and we are now going to make clear

its relation with £ in (18).

First of all, s(£) = 0 corresponds to the case where the

minimum of f is attained in the interior of the ball. In that

case, we have an optimality condition f(xk ) ~ min f + £ (since

s(£) = 0 E 3£f(xk )); on the other hand, ballstep is then equiv­

alent to the pure cutting plane, and solving the linear program

without a normalization constraint also provides an underestimate

on min f.

Suppose now the typical situation s(£) i O. Let u ~ 0 be

the Lagrange multiplier of the extra constraint' A.a. < £ in (18).
l. 1. 1. -

Then

u

Now consider (17); set £

1
t

d
d£

(I'X·g·l)l. 1. 1.

From the equivalence between (17) and (18), we know that

L Xig
i

= s(£). Therefore ~ = - d~ (Is(£) I) and we have the basic

relation

ut Is (£) 1 ( 19 )
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In ballstep, the minimum of the linearization I of f is

attained at x = x
k

+ ta (provided the ball constraint is active)

where a, of norm 1, is given a posteriori by a = -s(E)/ls(E) I.
Therefore, after having solved (18), we can say that, if the

ballstep problem had been solved with a ball size t = S(E) I/u,
one would have obtained the point

-x \S(E) I x (-s(E)/ls(E) I)
u

x ­
k

l S (E)
U

In particular, when E ~ +00, U ~ O. From (19), if 04 conv ~

t + +00. We can interpret this result by saying: when 0 , conv Gk ,

the pure cutting plane problem is unbounded. There is one (in­

finite) solution--namely the limit of solutions of cutting plane

problems bounded with the Euclidean norm--which gives the con­

jugate subgradient direction (since S(E) = Nr Gk when u = 0).

On the other hand, when E ~ 0, u goes to some finite value,

i.e. t does not go to O. This means that there is a strictly

positive to such that the ballstep direction is that of steepest

descent whenever the ball size is smaller than to. (This was

observed in [7]).

(d) Consider the case where the function to be minimized

has the form

f (x) max hi (x)
i

In this volume, Pshenichnyi gives an algorithm in which the

direction dk solves the problem

min
T),d

(20 )

i such that
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for some positive constants K and 0 (strictly speaking, he chooses

K = 1, but it is more convenient for our development to allow

for different values).

Since, at the optimum of (20), there is at least one active

constraint, we can replace n by max. [(Vh. (xk ) ,d) + h. (xk )] and
~ ~ ~

solve instead of (20):

i such that

Using the same convexification technique as in (16)-(17) ,

we see that in fact (20) is solved by

d 1 I Iivhi(xk ) where I solves
K

min !I~
2

~ > 0, ~Ai Vhi (xk ) I - K Aih i (xk ) A. A. (21 )
~ ~

Again K can be considered as the (positive) Lagrange multiplier

associated with some (inequality) constraint of the form

~ Aihi(xk ) ~ B: this shows a strong relation with (17) and (18).

We now make this relation more precise: any convex function

f(x) may be represented as

f(x) sup f(y) + (g,x - y)
y, gE(lf (y)

Therefore, any convex minimization problem is equivalent to

{

min
v,x

f (y) +

v

(g,x - y) < v 'V Y E H, 'Vg E df(y)

(22)

i.e. some sort of linear programming problem; of course this is

highly criticizable since (22) contains an infinite number of

constraints which, in addition, are not explicitly known. How­

ever, one could think of a method of constraint accumulation,
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in which one would replace (22) by the relaxed problem

min v
v,X

f; + (g.,x -x.) < v
... ~ ~

i 1 , ••• , k

where x., f., g. make up the bundle of Section 3.
~ ~ ~

Analogously with the present situation, we can set

We then observe that

(a
i

defined in (14))

Therefore (21) takes the form

min ! I \ >... g. I2r.. ~ ~ ~ >...
~

1 ,

and the equivalence with (18) is established by taking B = f (~) - E,

so that K in (2C) is u in (18).

The role of 0 in (20) is to neglect the subgradients for

which a. is too large, i.e., it is exactly the deletion rule
~

Section 3(c) of Mifflin.

Observe in particular that when K = 0 in (21), E = +00 in

(18). Then the direction of Pshenichnyi is that of Demjanov [2].

In other words, Mifflin's version of conjugate subgradients is

a variant of Demjanov's method, in which one computes not the

values hi(xk ) that make up f(xk ), but rather the values at xk
of the linearized f at previous x. (this has been pointed out to

~

us by Bertsekas in a private communication). Although (21) with

K f 0 is apparently only a slight modification of Demjanov (at

least when 0 is small, since one has f(xk ) - 02 hi(xk ) 2 f(x
k
)),

taking the differences in hi(x
k

) into account is a refinement.
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(e) It is rather amusing to see that such a refinement has

existed for quite some time in a slightly different context:

Consider an ordinary mathematical programming problem,

min f (x)

( 23)

c
j

(x) < 0 j 1 , ••• , m

Many methods for solving it are based on the principle of feasible

directions. In their original form, presented by Zoutendijk [15],

they consisted in solving at each iteration the problem

min n
n ,d

(24)

j in some suitable subset of {1, ... m}

d in some suitable normalization set.

It is certainly numerically necessary to introduce the

weights 8 j , since there is no reason to compare variations in

the constraints with variations in the objective, even if one

admits that the user himself has scaled the space H to strive to

homogenize variations in the objective alone. II
As with (20), this problem can be transformed to look like

(21). Since the values of the constraints cj(xk ) are neglected

in (24), we would get (21) with K = 0, i.e. some Demjanov or

conjugate subgradient method. It would therefore be better to

consider in (24) the constraints

This has been done by Zoutendijk [15] himself, and (with 8. = 1)
J

by Topkis & Veinott [13], Pironneau & Polak [10] and Mangasarian
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[6]. If, as is often true, the cj(Xk ) are slightly negative num­

bers, the difference is little, but, from the analysis of rates

of convergence in [10], the trick is really helpful (as is the

use of Euclidean norm, as shown in the same paper). Correspon­

dingly, the algorithm of Pshenichnyi for solving (23) (see his

paper in this volume) introduces the same trick. (In addition,

it is more satisfactory, since it does not need xk to be feasible.)

To sum up this Section, (22) establishes a link between non­

differentiable optimization and nonlinear programming. A non­

smooth problem is a linear program with an infinite number of

noncomputable constraints. To solve it, one could take advantage

of the large amount of work done in nonlinear programming. Con­

versely, any efficient method of NSO could help in studying the

(unsolved) general problem of nonlinear programming (23); for

the latter, the theory of E-subgradients is an apparently new

and promising tool.

Most of the methods existing both in NSO and in NLP are

essentially equivalent, provided the parameters they generally

contain are carefully updated.

Through (12), the theory of E-subgradients seems to shed

some light on the fundamental question of scaling the space. It

has been observed that the best numerical results are often ob­

tained by quasi-Newton methods and Shor's method of dilatation

of the space along differences of gradients [12]. Both these

methods (heuristic in NSO) define at each iteration a metric Hk ,

assumed also to scale the variables. However, the formulae for

updating Hk are off-Zine (in particular they do not involve values

of the objective). It would probably be important to know what

kind of relationship exists between E-subgradients (i.e. general

NLP), quasi-Newton methods, and Shor's methods.



101

REFERENCES

[1] Clarke, F.H., Generalized Gradients and Applications,
Trans. of the Am. Math. Soc., 205 (1975), 247-262.

[2] Demjanov, V.F., Algorithms for Some Minimax Problems,
Journal of computation and Systems Sciences, ~ (1968),
342-380.

[3] Goldstein, A.A., Optimization of Lipschitz Continuous
Functions, Mathematical Programming, .11., 1 (1977),
14-22.

[4] Lemarechal, C., An Algorithm for Minimizing Convex Func­
tions, in J.L. Rosenfeld, ed., Information Processing
'74, North-Holland, Amsterdam, 1974.

[5] Lemarechal, C., An Extension of Davidon Methods to Non­
differentiable Problems, in M.L. Balinski and P. Wolfe,
eds., Nondifferentiable Optimization, Mathematical
Programming Study 3, North-Holland, Amsterdam, 1975.

[6] Mangasarian, O.L., Dual, Feasible Direction Algorithms, in
A.V. Balakrishnan, ed., Techniques of Optimization,
Academic Press, New York, 1972.

[7] Marsten, R.E., W.W. Hogan, and J.W. Blankenship, The Box­
step Method for Large-Scale Optimization, Operations
Research, ~' 3 (1975), 389-405.

[8] Mifflin, R., Semi-Smooth and Semi-Convex Functions in Con­
strained Optimization, SIAM Journal on Control and
Optimization, ~' 6 (1977).

[9] Mifflin, R., An Algorithm for Constrained Optimization
with Semi-Smooth Functions, Mathematics of Operations
Research, ~' 2 (1977), 191-207.

[10] Pironneau, 0., and E. Polak, Rate of Convergence of a Class
of Methods of Feasible Directions, SIAM Journal on
Numerical Analysis, ..!..Q., 1 (1973).

[11] Rockafellar, R.T., Convex Analysis, Princeton University
Press, Princeton, N.J., 1970.

[12] Shor, N.Z., and L.P. Shabashova, On the Solution of Mini­
max Problems by the Generalized Gradient Method with
Space Dilatation, Kibernetika, No.1 (1972).

[13] Topkis, D.M., and A.F. Veinott, On the Convergence of Some
Feasible Direction Algorithms for Nonlinear Program­
ming, SIAM Journal on Control, ~' 2 (1967), 268-279.



102

[14] Wolfe, P., A Method of Conjugate Subgradients for Minimiz­
ing Nondifferentiable Functions, in M.L. Balinski
and P. Wolfe, eds., NondifferentiabZe Optimization,
Mathematical Programming Study 3, North-Holland,
Amsterdam, 1975.

[15] zoutendijk, G., Methods of FeasibZe Directions, Elsevier,
Amsterdam, 1960.



A FEASIBLE DESCENT ALGORITHM FOR LINEARLY
CONSTRAINED LEAST SQUARES PROBLEMS

Robert Mifflin

1 • INTRODUCTION

Consider the constrained Zeast squares probZem of finding an
Tn-vector x = (x 1 ,x2 ' ••• ,x

n
) to

minimize

subject to

2! IPx - c I

Ax

T T T T
~x P Px - c Px + !c c

b

x ~ 0

where P is a p x n matrix, c is a p-vector, A is an m x n matrix,

b is an m-vector and a superscript T denotes transposition. The

column rank of P may be less than n. We give a numerically stable

method for solving this problem based on one given by Wolfe [6]

for the special case where c = 0, m = 1, every component of the

row vector A is 1 and b =1. The algorithm solves a sequence of

reduced dimension subproblems without nonnegativity constraints.

The method is similar in philosophy to one given by Stoer [5], but

our procedure for solving the subproblems, which is inspired by

the work of Golub and Saunders [2], is different. The algorithm

handles equality constraints directly; i.e., we do not use them

to eliminate variables and then create inequality constraints

from the corresponding nonnegativity restrictions as is suggested

by Lawson and Hanson [3] in order to apply their procedure for

inequality constrained problems, which involves yet another prob­

lem transformation.

We note that general quadratic programming algorithms may

be applied to this problem, but, if they do not exploit the

103
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factorized structure of the Hessian matrix pTp to deal with its

possible singularity (or near singularity), such methods may fail.

Our method can also be used to solve strictly convex qua­

dratic programming problems by transforming the objective function

as shown in [2, p. 248]. Inequality constraints may be handled

by introducing nonnegative slack or surplus variables. To modify

the algorithm to deal with variables x. that are not restricted
1

to be nonnegative, one only needs to work out the implications of

expressing such a variable as the difference of two nonnegative

variables.

This study was motivated by the fact that Lemarechal's [4]

numerical algorithm for minimizing a nondifferentiable function

needs a numericaltY stable subroutine for solving the special

constrained least squares problem where

n > 2 m 2 c = 0

A

[:
a n-

1
]

• •• 1
b = [:]

and

a. > 0
1

for i 1,2, ... ,n-1

p = [I g ••• g ]2 n-1

In this application the p-vectors g1,g2, ... ,gn-1 are generalized

gradients of a function of p variables to be minimized, and the

solution method employed must not require these vectors to be

linearly independent.
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2 . THE ALGORITHM

row by B. and its jth
1 T

For a vector y = (y 1 ' Y2' ••• , y ~) ,

For a matrix B we denote its ith
. T

Thus, BJ = B j.

> 0 for each i = 1,2, ... ,1.

column by Bj
.

Y > 0 means Yi

For x to be an optimal solution to the above constrained

least squares problem it is both necessary and sufficient (because

of objective convexity and constraint linearity) that x and some

m-vector u satisfy the optimaZity conditions:

Ax b

x > 0

ATu + pT(Px - c) > 0

T p T
j

(Px c) 0 0 for each j 1,2, ... ,nA jU + - or x j

Throughout, J C {1,2, ... ,n} denotes a nonempty set of column

indices corresponding to a nonvacuous submatrix [~J of columns

of [~l Le.,

j E J if and only if [~~] is a column of [~J

Each submatrix generated by the algorithm satisfies the assump­

tion that

[~ ] has full column rank (A1)

For each such matrix we require a solution (y,u) to the corre­

sponding linear system

By b (1 a)

(1 b)
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A solution procedure is given in Section 3 for the nondegenerate

case when

B has full row rank (A2)

This type of assumption is also made in [5]. For the special

problem with m = 1 in [6], (A2) is always satisfied. For the

case when (A2) does not hold, a degeneracy resolving procedure

that takes into account possible nonuniqueness of u has been

worked out by the author. This procedure may appear in a sub­

sequent paper.

The following sequence of lemmas serves to motivate the

algorithm. All proofs are deferred to the last section of this

paper.

Lemma 1

Suppose (A1) holds. If (1) has a solution then y is unique.

Furthermore, if (A2) also holds then (1) has a unique solution

(y,u) and the solution procedure of Section 3 finds it.

Remark

For the case when (A2) does not hold, the solution procedure

can be modified to determine whether or not (1) has a solution,

and in the former case to find y and the associated u-set. It

can be shown that if (A1) holds and there exists a vector y such

that By = b, then (1) has a solution.

Lemma 2

(y,u) solves (1) if and only if y minimizes IQy - cl 2

subject to By b. In this case

2
IQy - cl

T T-b u - c (Qy - c) (2)
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Lemma :3

Suppose (y,u) solves (1). Define a corresponding n-vector

x by

x·
]

y.
]

o

if j E J

if j ¢ J

where J corresponds to [~] as defined above. If

y > 0

and

T T
A jU + P j(QY - c) > 0 for all j <t. J (3)

then x and U satisfy the optimality conditions and, hence, x is

an optimal solution to the constrained least squares problem.

Remark

For the special problem of Section 1 with m
Tu = (u 1 ,u2 ) , (2) becomes

and the left-hand side of (3) becomes

ifj

or

2 and

if j > 2



108

Lemma 4

Suppose (A1) holds and (y,u) solves (1). If

[

B

Q
then

T TA £u + P £(QY - c) < 0

A£] has full column rank.
p£

for some £ \l J ( 4 )

Remark

£Note that if B has full row rank then so does [B A ]. Thus,

by Lemma 4, if (A1) and (A2) hold for [~J and B, respectively,

then they hold for the augmented matrices [~ :~J and [B A£] .

These augmented matrices correspond to the augmented linear system

b

(1b) +

Lemrlla 5

Suppose (A1) and (A2) hold, (y,u) solves (1), and (4) holds.

Then (1)+ has a solution (y+,y;,u+) such that

and

Lemma 6

Suppose that the assumptions of Lemma 5 hold and that y > o.
Let Xbe the largest value of A E [0,1] such that
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;~~] + (1 -;) m' a

Define the IJI + 1 vector z by

for j E J

for j

Then X > 0, z2 > 0, z ~ 0,

[B
2

A ] z = b ( 6 )

and

(7)

= [~~] > 0, or ifFurthermore, if y+ > 0, then X= 1 and z

Y
+ ~ .

f a then zk = a for some k E J.

To initiate the algorithm we assume that we have an index

set J and a corresponding full column rank matrix [~J such that

(1) has a solution with y > O. See Section 5 for an initializa­

tion phase that will either provide this initial condition or

indicate its infeasibility. Given this initial condition, the

algorithm is as follows.

Step 1 Solve (1) for (y,u).

If y > a go to Step 2. Otherwise go to Step 3.

Step 2 Test the validity of (3).

If (3) holds stop. Otherwise ((4) holds)

set Yi = Yi for each i E J and Y2 = 0, append index 2

to J and column [:~] to [~J, and go to Step 1.
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Step :3 Let >: be the maximum value of A E: [0,1] such that

Ay + (1 - A) Y > 0

and set

z = Xy + ( 1 - \)y

For each i such that zi > 0, set Yi = zi' and for

each k such that zk = 0, delete index k from J and

the corresponding column [::] from [~J and go to

Step 1.

We now show that the algorithm is well defined.

Because of the initialization condition the first subproblem

(1) to be solved has a solution y > 0, and therefore Step 2 is

executed before Step 3, so y is properly initialized to a non­

negative-valued vector.

At each execution of Step 2, if the stop does not occur, a

new index ~ is added to J satisfying (4) and y and B are updated

such that y ~ 0 and By = b. From Lemma 4 and the remark following

Lemma 1 the new system (1) will have a solution.

When entering Step 3 we have J, y t 0 and y. By the updating

in 2 and 3, - O. Therefore, there exists A [0,1] suchSteps y ~ a E

that Ay + (1 - A)Y ~ 0 (for example A = 0) . From the definitions

of r and z, there exists k E J such that zk O. Hence, at least

index k is deleted from - are defined.J. A new J and a new y > 0

Lemma 7, in particular, ensures that the new J is not empty and

that the new system (1) has a solution. This lemma deals with the

situation after an execution of Step '3 in terms of data at the

most recent execution of Step 2.

Lemma 7

Suppose at Step 3 we have [~J satisfying (A1), and
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Z > 0

Bz b

(H) zR,0 > 0

zk 0 for some k " R,0

2 100yO 2
/Oz - c I < - cl

where, at the most recent execution of Step 2, J O, BO, 0° and yO

were the entering values of J, B, 0 and y, and R,0 was the index

added to J O• Let the new values of J, Band 0 defined at Step 3

be denoted J-, B- and 0-, respectively. Then the new system

(1) has a solution y = y such that either

( 8)

or y- t 0 and the above hypotheses (H) are satisfied with z = z ,

B = B- and 0 = 0- where z is the value of z determined at the

next execution of Step 3.

By recursive application of Lemmas 1 through 7 it is now not

difficult to establish finite convergence of the algorithm.

Theo'l'em

Suppose the initial condition holds and (A2) holds for each

matrix B generated by the algorithm. Then after a finite number

of executions of Steps 1, 2 and 3, the algorithm terminates with

an optimal solution to the constrained least squares problem.

To each J considered at Step 1 there corresponds a unique

y solution of (1) and a corresponding objective vaZue ~IOY - cl 2
=

!Ipx - cl 2 where x is the n-vector defined by appending zeros to

y as in Lemma 3.
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We now show that each entry to Step 2 has an associated

objective value that is strictly lower than the one at the pre­

vious entry to Step 2, and, furthermore, that the number of

consecutive executions of Step 3 between Step 2 executions is

finite.

By Lemma 6, the above statement is clearly true if there

are no intermediate Step 3 executions. So suppose Step 3 is

entered after some execution of Step 2 which adds index lO to J.

By Lemma 6 we have at this first entry to Step 3 that the hypoth­

eses (H) of Lemma 7 are satisfied. From Lemma 7, for all sub­

sequent consecutive executions of Step 3 we have zlo > 0 and

some index k ~ lO is removed from J. Therefore, J never becomes

empty, the number of such consecutive Step 3 executions is finite,

and furthermore, by Lemma 7, this sequence must terminate with

(8) being satisfied. Now (8) implies a return to Step 2 with a

strictly improved objective value.

Now, since the number of possible index sets J is finite

and all such sets corresponding to entries to Step 2 must be

distinct (due to their different corresponding objective values) ,

the algorithm is finite.

3. SOLUTION PROCEDURE FOR (1)

Suppose (A1) and (A2) hold and [~J has q columns. Let R

be an upper triangular nonsingular q x q matrix such that

(9)

and let W be a q x m matrix such that

w be a q-vector such that

T TR w = Q c

(10)

( 11 )
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and S be an upper triangular nonsingular m x m matrix such that

(12 )

Rand S can be found by orthogonal factorization (see, for example,

[1,2,3,5]) of [~J and W, respectively, which is possible by the

full rank assumptions (A1) and (A2). See Section 5 for simple

determinations of R, W, wand S in some special cases and see

the next section for updating these quantities when [~J is changed.

Having R, W, wand S, the solution procedure is as follows:

Solve the triangular linear system

for w, and then solve the triangular linear system

Sv w

for v so that v satisfies

Then set

(13)

u b - v (14)

and solve the triangular linear system

Ry

for y.

4. UPDATING

Wv + w (15)

To perform the updating of R, W, wand S we require a

transformation that can take a 2-vector
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where

2
Y

This Euclidean

by multiplying

norm-preserving transformation can be accomplished

[::J on the left by a Givens matrix

G

where

and the convention for z1 = 0 is that y = z2' c = 0 and s = 1.

h T -1. . th l' • 1Note t at G = G , 1.e. G 1S an or ogona& matr1x. See G1l ,

Golub, Murray and Saunders [1) for details concerning properties

and uses of Givens transformations in connection with orthogonal

factorization.

Augmentation

When [~J is replaced at Step 2 by [~ A~Jp~ , replace
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W by [~]

W by [;)

S by S

where r solves

RTr = BTA,Q, + QTp,Q,

P (IA,Q, 1
2

+ Ip,Q,1 2 - IrI2)~

- (AT rTW)/pw ,Q,

- T T
W (P ,Q,c - r w)/p

and S is determined as in [1, pp. 529-530] as follows.

Apply appropriate 2 x 2 Givens transformations sequentially

for i = 1,2, ... ,m to rows i and m + 1 of

[~J
to reduce wto the zero vector and obtain

where S is upper triangular.

The validity of these replacements may be established by

making the appropriate mUltiplications and using the fact that

a sequence of Givens transformations is equivalent to multipli­

cation by an orthogonal matrix.
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Deletion

When the kth column of the q column matrix [~J is deleted

at Step 3 replace R, W, wand S by R, W, wand 5, respectively,

where the latter quantities are determined as follows.

As in [1, pp. 533-534], apply appropriate 2 x 2 Givens trans­

formations sequentially for i = k,k+1, ... ,q-1 to rows i and i + 1

of

to form

where

R is a q-1 x q-1 upper triangular matrix,

[W w] is q-1 x m+1,

and (~ ~) is 1 x m+1

Then, as in [1, pp. 530-531], solve the triangular linear

system

for s, set

and apply appropriate 2 x 2 Givens transformations sequentially

for i = m,m-1, .•. ,1 to rows i and m + 1 of
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to reduce s to the zero vector and form

where S is upper triangular, and the expression for the bottom

row, as well as the validity of R, W, wand S, follows from the

orthogonality of Givens transformations.

5. INITIALIZATION

For the special problem with m 2 given in Section 1, a

starting matrix is

[:J [:
~,]
g1

for which

R
[: ", ]

(1 + Ig 1 1

2 )!

w S
[: 1:,1 2 )-I] w 0

(1 +

and

For the general problem, if a starting matrix is not avail­

able we can first solve the initialization problem of
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minimizing I (-b A][~JI2

subject to t 1

t,x > 0

For this problem a starting matrix is

for which

w o and y

Note that this initialization problem is never degenerate, since

all row vectors B generated must contain the coefficient 1 corre­

sponding to variable t. Our algorithm applied to this special

initialization problem is essentially that of Lawson and Hanson

(3, p. 161] for the problem of minimizing lAx - bl 2 subject to

x > o.

If the optimal value of the initialization problem is

positive then the constrained least squares problem has no

feasible solution. Suppose this optimal value is zero. Then

the corresponding optimal x satisfies x ~ 0 and Ax = b. If

x ~ 0 the set of columns Aj for which x. > 0 will be linearly
J .

independent, and together with the corresponding columns pJ will

form a starting matrix for the desired problem. If x = 0 then

b = 0, and

is a starting matrix for the equivalent problem of
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minimizing 1[0 Pl[;] - Cl 2

subject to G :][:] = [~]

t,x ~ 0

[0
1
]This starting matrix is, however, degenerate, because B

does not satisfy (A2).

6. PROOFS OF LEMMAS

Lemma 1

Suppose (A1) holds.

to (1), i. e . ,

b

Subtraction gives

1 1 2 2 .Let (y ,u ) and (y ,u ) be solut~ons

b

and

o ( 16 )

and

(17 )

Multiplying (17) by (y1 - y2)T and using the transpose of

(16) gives

and (16) also implies that

o ( 1 8 )
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which added to (18) gives

So

and (A1) implies that

which, together with (17), implies that

Suppose, in addition to (A1), that (A2) holds. Then

Therefore, under assumptions (A1) and (A2), if (1) has a solution

it is unique. We now show that (y,u) determined by the procedure

of Section 3 is a solution to (1). Note that (15), (10), (12)

and (13) imply sequentially that

By = BR- 1wv + BR- 1w

wTwv + wTw

STSv + wTw

b - wTw + wTw

so

By b ( 19 )
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By (14) and (9) we have

Now (19), (15), (10) and (11) imply sequentially that

T T T TB b - B v + R Ry - B b

so (y,u) solves (1).

Lemma 2

Since !IQy - cl 2 is convex in y and By is linear in y,

the conditions given by (1) are well known to be both necessary

and sufficient for optimality in the problem of minimizing

!IQy - cl 2 subject to By = b. Multiplying on the left (la)

by u T and (lb) by yT, and differencing the resulting equations,

give

T T Tu b - Y Q c

which, by scalar transposition, is equivalent to

which is equivalent to (2).

Lemma :3

Combining the definition of x and (1) gives

Ax

Px

By

Qy

b

(20 )
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and

(21)

Also, Y > 0 implies x ~ O. Combining (20), (21) and (3) implies

T T
A ·u + P . (px

J J
c) ~ 0 for each j 1,2, ... ,n

with strict inequality only if x j = O.

Thus, x and u satisfy the optimality conditions.

Lemma 4

Suppose, for purposes of a proof by contradiction, that

for some nonzero vector

o

Note that

(22 )

(23)

because, by assumption, [~J has full column rank. Multiplying

T T T T .(22) on the left by (u ,y Q - c ) glves

(UTB + (yTQT _ CT)Q) A + (UTAt + (yTQT - CT)pt) At 0

But this is a contradiction, because the first term is zero by

the transpose of (1b) and the second term is nonzero by (23)

and the transpose of (4).

Lemma 5

By the remark following Lemma 4, Lemma 1 applied to (1)+
+ . + + +implies that (1) has a solutlon (y 'Yt'U ). Since
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Lemma 2 applied to (1)+ implies that

(24)

By (2) of Lemma 2 applied to (1)+ and (1), we have

2

Cl =

(25)

Multiplying the transposes of (1a) and (1b) on the right by u+
+. + + +and y , respect~vely, and (1a) , (1b) and (1c) on the left by

_uT , _yT and y~, respectively, and then adding the resulting

equations gives

which, after cancellation and rearrangement, is equivalent to

Adding this to (25) and simplifying gives

+ yTQTp~ _ cTp~) y~

(26)
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which, by transposition, is equivalent to the equality in (5).

Now (24), (26) and (4) imply that y~ ~ O. Suppose y~ = O. Then,

by (1a)+ and (1b)+, (y+,u+) solves (1). But assumptions (A1)

and (A2) imply, by Lemma 1, that (y+,u+) = (y,u). Then, since

we suppose y~ = 0, (4) and (1c)+ are contradictory. Therefore,

y~ > 0, which together with (26) and (4) gives the desired

inequality in (5) and completes the proof.

Lemma 6

Since y > 0 and y~ > 0, X is well defined by

>: = min ~ 1, min [y j /y j - y;) : y j - y; > 0, j E J ] ~

- - +and we have A > 0, z£ = AY£ > 0 and Zj ~ 0 for all j E J.

Moreover, Z has at least one zero component if and only if

y+ * O. The definition of z combined with (1a) and (1a)+ implies

(6) and, combined with the convexity of quadratic functions having

positive semidefinite Hessian matrices, implies that

(27)

Finally, (7) follows from (27) and (5).

Lemma 7

-By construction at Step 3, y satisfies

(28)

Also, J- C J,

column rank.

so [~=J has full column rank, because [~J has full

By (28) and (H) we have

b (29)



125

so, by the remark following Lemma 2, y is well defined and

b

Therefore, by Lemma 2 and (28),

(30)

(31 )

If Y > 0, then (8) follows from (31) and the hypothesis that

(32)

Suppose y- t O.

Step 3, X and z

X > 0

-Then, because y > 0, at the next execution of

are well defined and we have

and

o for some k

Also, by (29) and (30), we have

B z b (33 )

and, by objective convexity, (31) and (32), we have

If z~o = 0 then, since J- C J O U {R,o}, (33) and Lemma 2 imply that

which contradicts (34). Therefore, z~o > 0 and the proof is

complete.
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SUFFICIENT MINIMIZATION OF PIECEWISE-LINEAR
UNIVARIATE FUNCTIONS*

P. Wolfe

PRELIMINARIES

Minimization of a function of a single variable is a funda­

mental subroutine in most procedures for the minimization of

functions of many variables. We now know of important classes

of large-scale linear programming problems, having astronomically

many variables, which can be recast as problems of minimizing

convex, nonlinear but piecewise-linear, functions of reasonable

numbers of variables. The "method of conjugate subgradients"

is a procedure for solving the latter kind of problem, requiring

as a subroutine an efficient procedure for finding a "one-sided"

minimum of the given function (in the sense described later) on

an arbitrary ray in the space of problem variables. In other

words, a procedure is required which will efficiently find a

certain kind of approximate minimum, if such exists, of any con­

vex, piecewise-linear function f of a single variable. Further,

in the given context of large-scale linear programming, the

function f cannot be explicitly described: rather, given any

value x of its argument, one can readily calculate f(x) and one

support of the graph of f--that is, a "slope", denoted here by

f 1 (x), such that

f(y) > f(x) + f' (x) (y - x) for all y

--but no more. The kind of function handled here is unusual in

one respect: f' (x) is not continuous. Consequently, a method

designed for the more usual problem, in which f' (x) is continuous,

does not work well in this case.

*Research partially sponsored by the Air Force Office of Scientific
Research, U.S. Air Force, under Contract f49620-77-C-0014. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
notation hereon.
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The algorithm below accomplishes the required end with what

we believe to be near the smallest required computational effort.

PROBLEM STATEMENT

The piecewise-linear (more properly, piecewise-affine) func­

tion f is defined for all x ~ 0 by

i " ... ,I} (1)

where, for each i, a. and b. are real numbers. The quantities a.
~ ~ ~

and b i are not explicitly given: rather we suppose that we have

a procedure which, for any x ~ 0, determines the value f(x) and

some ai' b i for which f(x) = aix + b i • We denote that a i by f' (x).

To simplify notation below we will suppose that f(O) = 0, and also

that M = f' (0) < 0 (since, otherwise x=o is trivially the minim­

izer) •

We know that exact solution of the univariate minimization

problem is not needed for success of the overall procedure of which

it is a subroutine. Much computational labor can be saved by

requiring only that the two following conditions be satisfied

by the approximate minimizer x:

(a) f (x) ~ Mm
2

x

(b) f' (x) ~ Mm,

(The constants m, and m2 must satisfy the relations 0 < m2 < m, < '.0.)

Our goal is thus to find x ~ 0, f (x), and f' (x) satisfying (a)

and (b). The "one-sided" nature of the requirement (b) is distinc­

tive for the kind of problem of interest here, as opposed to the

more usual requirement

If' (x) I ~ m, IM I

For efficiency, this problem needs a substantially different

algorithm from that used if the latter requirement must be met.
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Using the convexity of f it is easy to show that the two

functions

f(x)/x f' (x)

are nondecreasing; so the set of all x satisfying (a) is an inter­

val of the form [O,A] (where A=O or A=oo are both possible), and

the set of all x satisfying (b) is the form [B,oo) (with the same

possibilities for B). If A=oo then (a) holds for all x, and our

procedure will generate a sequence of values of x tending to in­

finity, so that f(x) will tend to _00. Otherwise it is easy to

show that B ~ A, so that the two intervals overlap. The algorithm

below finds a point in that overlap.

ALGORITHM

When f and f' are evaluated for some value of x, the data

are recorded in the form of the triple (x, f(x), f' (x)). Supposing

terminal data (i.e., satisfying both (a) and (b) above) not to

have been found, L will denote the most recent triple evaluated

for which x lies in the interval [O,A], LL the previous such

triple, and R the most recent, if any, for the interval [B,oo).

Li(x,y,m) will denote the line of slope m passing through the

point (x,y); thus Li(L) is a line of slope f' (x) passing through

a point (x,f(x)). The "stepping factor" E is some number greater

than one; we have found the value E=6 useful. Component j of a

triple like L will be denoted L[j], as in the APL language. The

relations LL[1] ~ L[1} < R[1] will hold throughout the course of

the algorithm.

It is supposed that a "starting" value x > 0 has been pro­

vided for the algorithm. Initially Land LL are set to (O,O,f' (0))

and R to (00,00,00). The algorithm consists in execution of the

steps below in order (except where "go to" intervenes).

1.1 Evaluate f(x), f' (x).

1.2 If (a) does not hold, go to 4.

1.3 If (b) holds, terminate; x,f,f' is the solution.
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2.1 Set LL to L.

2.2 Set L to (x,f(x), f' (x)).

2 • 3 If R [ 1] < co , go to 5.

3. (Extrapolation) Use linear extrapolation on the slopes LL[3],

L[3] to determine the value x* (which may be co) at which f' (x*)

should vanish. Set x to Min {x*,x + E(x - LL[1])}. Go to 1.1.

4. Set R to (x, f(x), ft (x)).

5. If the point (L(1), L(2)) is on the line Li(R), terminate;

the solution is (L[1], L[2], R[3]).

6.1 Set x to the abscissa of the intersection of the lines

Li(L), Li(R).

6 • 2 If R [ 3] 2. 0, go to 1.

7.1 Set x to the larger of

tion of the line Li(O,O,-m2 )

(L [ 1 ] , L [2 ]) and (R[ 1] , R [2] ) .

x and the abscissa of the intersec­

with the line passing through

Go to 1.

Notes

Step 3: x* is determined by the calculation: if

LL[3] 2. L[3], set x* = co. Otherwise

x* = (f' (x) LL[1] - x LL[3])/(f ' (x) - LL[3])

Step 5: The point (L[1],L[2]) is on Li(R) when L[2] = R[2]

+ R[3] (R[1]-L[1]). In that case, Li(L[1j,L[2j,R[3]) is

a support of fat L just as Li(L) is, and since R[3] ~ L[3],

the former is preferable.

Step 6.1: x is given by the formula

(L[2] - R[2] + R[1]R[3] - L[1]L[3])/(R[3] - L[3])

Step 7.1: The desired abscissa is

(L [ 1] R [ 2] - R[ 1] L [2] ) / (R [2] - L [2 ] + m2 (R [ 1] - L [ 1] ) )



THE METHOD OF PARAMETRIC DECOMPOSITION IN
MATHEMATICAL PROGRAMMING: THE NONCONVEX CASE

Jacques Gauvin

1. INTRODUCTION

We consider a large mathematical program which may be written

in the following general formulation:

max f(x,y,z)

subject to gi(x,y) < 0 i 1, ..• ,m

(P 0)
h j (x, z) 0 j 1 , ••. , p

lk(y,z) < 0 k 1 , •.• , r

where x ERn, y E RS
, z E Rt . It is expected here that the objec­

tive function f and the constraints g.,h. are decomposable in
1 J

their arguments x, y, and z and that the optimization is easy

when y and z are held fixed.

Essentially in the method of parametric decomposition [3] or

the method of primal decomposition by resource allocation [6],

[15,16] the variables y and z are considered as parameters and

are held fixed at the first optimization level where the follow­

ing problem in x is solved by a standard NLP method:

(
max f(XiY,Z)

(P 1 ) subject to gi (x,y) < 0

h j (x, a) 0

i 1 , ••• ,m

j 1, •.. ,p

Let S (y) i 1 , ••• , m}

T (z)
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o j 1, .•. ,p}
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and U(y,z) = sty) n T(z) be the feasible set for (P1)' The

optimal value of (P 1 ) is given by

max f(x,y,z) if U(y,z) + <jJ
x E U(y,z)

v(y,z)
if U(y, z) <jJ

which is called the extremal-value function.

P(y,z) = (X E U(y,z) If(x,y,z) = v(y,z)}

is the set of optimal solutions for (P 1). V = {(y,z) IU(y,z) + <jJ}

is the set of feasible parameters for (P 1).

At the second level, a postoptimization is performed on the

feasible parameters

max v(y,z)

(P 2 ) subject to (y,z) E V

lk (y , z) < 0 k 1 , ••• , r

In this method of decomposition-coordination by resource

allocation, an optimal solution of subproblem (P
1

) always gives

at least a feasible solution to the original problem (PO)' Such

is not the case in a dual-type method such as that of decomposition­

coordination by prices (see Lasdon [9]) where a feasible solution

of the original problem will only be attained, in general, at an

optimal solution.

Under convexity assumptions, the extremal-value function

v{y,z) is concave and subdifferentiable, and some methods have

been proposed to solve the problem (see, for example, [15,6,8].

A description of the first two works can be found in [9] Chapter 9) .

To our knowledge, it seems that recent methods of nondif­

ferentiable convex optimization [17,10] have not been applied to

the problem of parametric decomposition.
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It is not the purpose of this paper to survey the results

and methods of convex parametric decomposition, but rather to

see what can be done in the nonconvex case. To make the presen­

tation more simple, we will assume

f(x,y,z)

gi(x,y)

hj(x,y)

f (x)

g. (x) - y.
1 1

h.(x) - z.
J J

The extension of results to the more general problem can be easily

obtained.

First some results from [5] are presented from which a locally

Lipschitz property for the extremal-value function is derived.

Also an estimation of the generalized gradient of this function

is obtained. Maybe these results can be useful for designing

a method to solve the nonconvex and nondifferentiable second

level optimization problem.

Some results are already available in that direction. F.H.

Clarke [2] has given optimality conditions that can be applied

to the postoptimization problem. Also some algorithms have been

proposed for optimizing nondifferentiable nonconvex functions;

see [12] for such a proposal and a review of others.

In the sequel all functions defining program (PO) are assumed

continuously differentiable.

2. A LOCALLY LIPSCHITZ PROPERTY FOR THE EXTREMAL-VALUE
FUNCTION

Let y,z be some feasible parameters for problem (PO)' For

x, a local maximum of (P 1), let I(x;y,z) = {ilgi(x) = Yi} be the

set of active inequality constraints and K(x;y,z) be the set of

Kuhn-Tucker vectors corresponding to X, that is the set of (u,v)

E Rm x RP such that
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m p
I u. 'Vg. (x) + I v

J
' 'Vh. (x)

i=1 l l j=1 J

i 1, .. ,m

Let

u.(g.(x) - y.) 0
l l l

U K(x;y,z)
x EP(y,Z)

be the set of all multipliers corresponding to (y,z).

The directional derivative of v(y,z) at (y,z), for a direction

d (d
1

, d
2

) E Rm
x RP, \Id II = 1, is

v' (y,Zid)
- 1 - 2

lim v(y+td ,z+td ) - v(y,z)

t+O t

We will also consider lim inf and lim sup for the right-hand side

expression. Examples show that these limits can be infinite if

for some x E P(y,z), K(x;y,z) is empty or unbounded. To avoid

this situation we assume at x the Mangasarian-Fromowitz con­

straint qualification, denoted (CQ1).

( i) There exists awE Rn such that

'Vg. (x) • w < 0 i E I(x;y,z)
l

(CQ1 )

'Vh. (x) • w 0 j 1 , .•• , P
J

( ii) The gradients {'Vhj(X)}, j 1 , .•• , p

are linearly independent.
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In the absence of equality constraints, (CQ1) is equivalent

to the Cottle constraint qualification: the system

I
i E I(x;y,z)

u. I/g. (x)
1 1

o u. > 0
1

has no nonzero solution. If the gi are convex and the h j affine,

(CQ1) is the. well-known Slater condition.

This regularity condition has the following nice property

(see [4 or 5]).

Lemma 2.1

Let x be a local maximum. Then K(x;y,z) is a nonempty,

convex and compact set if and only if (CQ1) is satisfied at x.

The presence of equality constraints may cause the set U(y,z)

to be empty near (y,z). The next lemma gives a condition to rule

out this situation [5, Lemma 2.5].

Lemma 2.2

If (CQ1) is satisfied at some x E P(y,z) then U(y,z) is not

empty near (y,z).

Conditions to have the function v(y,z) continuous are given

in the following [5, Theorem 2.6].

Theorem 2.3

If U(y,z) is nonempty and U(y,z) is uniformly compact near

(y,z) then U(y,z) and v(y,z) are upper semicontinuous at (y,z).

Furthermore if (CQ1) holds at some x E P(y,z) then v(y,z) is

also lower semicontinuous at (y,z).

The (CQ1) regularity condition has the advantage of being

preserved in a neighborhood of (y,z) [5, Corollary 2.10].

Theorem 2.4

If in Theorem 2.3, (CQ1) holds at every x E P(y,z), then

there exists a 0 > 0, such that for all (y,z) satisfying



136

II(y,z) - (y,z)11 _~o, (CQ1) holds also at each x E P(y,z), the

point-to-set map K(y,z) is upper semi-continuous at (y,z) and

K(y,z) is uniformly compact near (y,z). More precisely, this
n n n nresult means that for any sequence {(y ,z )}, (y ,z ) ~ (y,z),

there exist (un,vn ) E K(yn,Zn), a subsequence {(um,vm)} and a

(u,v) E K(y,Z) such that (um,vm) ~ (u,v).

It should be noted that K(y,z) is not necessarily lower

semicontinuous at (y,z) under the assumptions of Theorem 2.4.

The next result gives bounds for the potential directional

derivatives of v(y,z). It does not require any second-order

assumptions [5, Theorem 3.3].

Theorem 2.5

Suppose that U(y,z) is nonempty, u(y,z) is uniformly com­

pact near (y,z) and (CQ1) holds at some x E P(y,z), then for

any direction d

min
(u,v) E K(X1Y,Z)

1 2{u • d + v • d }

- 1 - 2 - -
< lim inf v(y+td ,z+td ) - v(y,z)

t~O t

Furthermore, if we assume that (CQ1) holds at every x E P(y,z)

then

max
x E P(y,z)

min
(u,v) E K(X1Y,Z)

1 2{u • d + v • d }

- 1 - 2 - -
< lim inf v(y+td ,z+td ) - v(y,z)

t~O t

- 1 - 2 - -
< lim sup v(y+td ,z+td ) - v(y,z)

t~O t
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x E PtY,Z)
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1 2max {u • d + v • d }
(u,v) E K(X;y,z)

The bounds given in Theorem 2.5 are sharp: there are ex­

amples for which the directional derivatives of v(y,z) exist at

(y,z) with the upper bound attained for a direction d 1 , the lower

bound attained for some other d 2 , and a value strictly in between

for a different d
3

(see [5, example 3.1]).

If in Theorem 2.5, we replace (CQ1) by the following more

restrictive regularity condition.

{

The gradients {~gi (x),~hj(X)}' i
(CQ2)

are linearly independent.

1, ... ,p,

then the directional derivative exists and is given by

v' (x,y;d) max {u
x EP(y,Z)

(2.6)

where (u,v) is the unique multiplier vector corresponding to x.

Under convexity assumptions, we can obtain the following

corollary of Theorem 2.5 [5, Corollary 3.5]; [7].

CoroZZary 2.7

Suppose the functions f, {gi}' i = 1, ... ,m are convex and

{h j } are affine. If U(y,z) is nonempty, U(y,z) is uniformly com­

pact near (y,z) and (CQ1) (which is then equivalent to the Slater

condition) is satisfied for each x E P(y,z), then v(y,z) has a

directional derivative for any direction d at (y,z) and

v' (y, z;d) min
(u,v) E K(x;y,z)

1 2{u • d + v • d }

From Theorem 2.4 and Theorem 2.5, it is possible to obtain

a locally Lipschitz property for the extremal-value function.
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Theorem 2.8

Suppose that U(y,z) is nonempty, U(y,z) is uniformly compact

near (y,z) and (CQ1) holds at every x E P(y,z); then there exists

a a-neighborhood Na(y,Z) and a finite K such that for any (Y1,z1)'

(Y2,z2) E No (y,z)

From Theorem 2.4, the regularity condition (CQ1) remains

valid at every (y,z) E N (y,z), for some E > 0, with the set of
E

multipliers K(y,z) uniformly bounded. Therefore, for some 0,

o < a < E, Theorem 2.5 is valid at any (y,z) E N8 (y,z), and, for

any direction d = (d 1 ,d2 ), II d II = 1, there exists some finite K
1

and K2 such that

K1 < lim inf [v(y+td 1 ,z+td2 ) - v(y,z)]/t
HO

< lim sup [v(y+td 1 ,z+td2 ) - v(y,z)]/t < K
2

HO
(2.9)

2211 - 22 11For (y,z ),(y,z) E Na(y,Z), write (y,z), - (y,z)

A(d 1 ,d2 ) where II(d
1

,d
2

)11 = 1 and A = 11(/,z2) _ (y1,z1)11.

(2 9) . f 11 h h f . (1 d 1 1 d2 ) .From . 1t 0 ows t at t e unct10n v y +t ,z +t 1S

Lipschitz continuous on the ray d, for t E [O,A], hence absolutely

continuous on that ray. Therefore its derivative exists almost

everywhere and we can write

1 1 1 2 1 1v(y +Ad ,z +Ad ) - v(y ,z ) f
A d 1 1 1 2

-- v(y +td ,z +td ) dt
dt

o

This derivative, when it exists, is equal to the right derivative,
1 1 1 2which is the directional derivative v' (y +td ,z +td :d). From

(2.9) we then obtain
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Stern and Topkis [14] have obtained the previous result for

a program without equality constraints

{

max f (x)

subject to gi(x) < Yi i 1 , ••• , m

assuming that the functions gi(x) have continuous second deriva­

tives.

F.H. Clarke [2] also considers the problem

go(x)

{

min

subject to gi(x) < si i 1, ... ,m

where he defines (P ) to be "calm" if the extremal-value functions

¢(s) inf{go (x) Igi (x) < s. i 1, ... ,m}
1

is finite, and if

lim inf [¢(s') - ¢ (s) ] > -00

s'+s II s '- s II

The program (P s ) is also defined to be "normal" if the Kuhn-Tucker

conditions hold at every optimal point x of (P ). In fact,
s

Clarke does not assume that the functions g. (x) are differentiable
1

and he gives some generalized Kuhn-Tucker conditions which reduce

to the usual ones when differentiability is assumed. Then he

shows that if (Ps) is "calm" then (ps) is normal. The converse

of this result is not valid unless (P ) is assumed "normal" with
s

bounded multipliers. He also shows that on a neighborhood S of



o where <j>(s)

all s in S.
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is finite, P(s) is "calm" and "normal" for almost

The following example shows that the "almost all s"

is meaningful.

Example 2.10

, min

l subject to g, (x)

-x

Then <j> (s) _s'/3 and (P ) is either "normal" or "calm" at s
s O.

3. THE GENERALIZED GRADIENT OF THE EXTREMAL-VALUE FUNCTION

For the previous section, we have conditions to guarantee

the extremal-value function v(y,z) to be Lipschitz in some ball

about (y,z). Following Clarke ['] the gradient Vv(y,z) then

exists almost everywhere in that ball (Rademacher's theorem).

Definition 3.1 tl]

The generalized gradient of v(y,z) at (y,z) denoted

dV(y,Z), is the convex hull of the set of limits of the form

lim Vv(y+h ,z+k ), where (h ,k ) -+ (0,0).n n n n

dV(y,Z) is a nonempty convex compact set. The generalized

directional derivative of v(y,z) at (y,z) for the direction

d = (d',d2 ) E R!n x RP is

Then

0--v (y,z;d) lim sup
(y,z)-+(y,z)

t+O

, 2
[v(y+td ,z+td ) - v(y,z)]/t

° - -v (y,z;d)

that is, VO(y,z;o) is the support function of dV(y,Z).
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We can obtain, under the assumptions of Theorem 2.8, the

following estimation for the generalized gradient of the extremal­

value function.

Theor'em 3.2

Suppose that U(y,z) is nonempty, U(y,z) is uniformly com­

pact near (y,z) and (CQ1) holds at every optimal point x E P(y,z).

Then the generalized gradient of v(y,z) at (y,z) is contained

in the convex hull of all the Kuhn-Tucker multipliers correspond­

ing to the optimal points; that is dV(y,Z) ~ co K(y,Z).

Proof

Take a soquence {(yn,zn)}, (yn,zn) + (y,z) where ~v(yn,zn)

exists. For any direction d = (d 1 ,d2
) E R

m
x RP we have, by

Theorem 2.4, that (CQ1) still holds in some neighborhood of

(y,z), and we have, by Theorem 2.5,

. n 1 n 2 n nl1m[v(y +td ,z +td ) - v(y ,z )]/t
tiD

< max
(u,v) E K(yn,zn)

1 2
[u"d + v"d ]

for some (un,vn ) E K(yn,zn). Again from Theorem 2.4, there

exists a subsequence {(um,vm)}, a (u,v) E X(y,z) such that

(um,vm) + (u,v). Taking the limit on both sides we obtain by

[13, Theorem 32.2],

1 2max [u"d + v"d ]
< (u,v) E K(y,z)

1 2
max [u"d + v"d ]

(u,v) E co K(y,z)
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Since this result holds for every direction d, we have, by [13,

Theorem 13.1],

This with Definition 3.1 gives the result. II

If the directional derivative v' (y,z;d) exists and is equal
oto v (y,zid) for every direction d, then v(y,z) is said to be

quasidifferentiable at 6,z) (see [11]).

Corollary 3.3

If in Theorem 3.2 the regularity condition (CQ1) is replaced

by (CQ2) (see (2.6)), then dV(y,Z) = co K(y,z) and v(y,z) is

quasidifferentiable at (y,z).

Proof

For any (u,v) E K(y,z), we have

max
(u,v) E K(y,Z)

1 2
[u'd + v'd ]

by (2.6)

0--
< v (y,zid)

hence, by [13, Theorem 13.1], (u,v) E dV(Y,Z) and K(y,z) C dV(y,Z).

By Theorem 3.2, dV(y,Z) = co K(y,Z). Therefore we have,

for every direction d,

0--
v (y,Zid) 1 2max [u'd + v'd ]

(u,v) E co K(y,z)

max
(u,v) E K(y,z)

by [13, Theorem 32.2] and (2.6). II
The next example illustrates the previous result.
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y > 0

y 0

y < 0

At Y 0, the maximum occurs at x 1 = 1 with multiplier u 1 = 3/2

and at x 2 = -1 with multiplier u
2

= 1 where (CQ2) is satisfied

at both points.

For y > 0, the maximizer is + 11+y, and for y < 0, the maxi­

mizer is - li+y; hence the extremal-value function is

(Hy) 3/2

( 1+y)

if Y > 0

if y < 0
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__________-+ ~"___....;a"__ .. Y

3
2"

dV (0)

Therefore

v'(O;1) 3 v O(0; 1 )
2

v' (0;-1) -1 v O(0;-1)

and

3 if > 0
2 Y

dV(Y) [1 ,t ] if Y 0

if Y < 0

The next example shows that under assumption (CQ1) the

extremal-value function is not necessary quasidifferentiable.

Example 3.5

max f x 2

subject to 2 <g1 x 2 + x 1 - Y1

2 <g2 x 2
- x 1 Y2
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o

--------....;;~+IIIIIl!E~--------_+ x 1

o

At Y = (0,0), the maximum occurs at x = (0,0) where (CQ1) holds

with the set of multipliers

K(XiO) 1, u
1

> 0, u
2

> O}

For the direction d = (1,0), v' (Oid) =!. Now take a sequence
{n} n n n n I nly , An where y = (y 1,0), y 1 < 0, y 1 .... 0, An .j. 0, An < y 1 i then

o< v (Oid)

and therefore VO(Oid) ~ v' (Oid) and v(y) is not quasidifferen­

tiable at y = o.

The next results characterize the gradients of v(y,z) when

they are assumed to exist.
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Corollary 3.6

If the assumptions of Theorem 3.2 are satisfied and if the

gradient

exists, then

- [ClV, ClVJ
ClYi ClZ j

i 1 , ••• , m j 1, ... ,p,

< min max
x E P{y,z) (u,v) E K{i;y,z)

max
x E P (Y, z) [u.]min ~ <

lu,v) E K{i;y,z) v j

i 1 , ••• , m j == 1, ... ,p

For any direction d we have, by Theorem 2.5,

v'{y,z;d)

> max
x E P{y,z)

min [u.d 1 + v.d2 ]
(u,v) E K{i;y,z)

Hence for the direction -d,

which implies

'ilv (y ,z) . d < min
x E P{y,z)

1 2max [u-d + v-d ]
(u,v) E K{i;y,z)

These two inequalities taken with the directions d equal to

the unit vectors in Rm
x RP give the results_ II
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Corollary 3.7

If in Corollary 3.6 the regularity condition (CQ1) is re­

placed by (CQ2), then the set of multipliers is a singleton,

that is K(y,Z) {6i,v)} and Ilv(y,z) = (\i,v).

Proof

Under (CQ2), for each x E P(y,z), K(X;y,z) is a singleton.

From Corollary 3.6, we have

i 1 , ••• , m,

which implies the result. dV
(The same holds for , j = 1, .•. ,p.)11dZ.

J

Recently R. Mifflin [11,12] has introduced the notion of

semi smooth and weakly upper semismooth functions. The defini­

tions are the following.

Definition 3.8

A function F:Rn
+ R is semismooth at x E Rn if

:i) F is Lipschitz on a ball about x and

(ii) for each direction d E Rn and for any sequences {tk } C R+,

{8k} C Rn and {gk}CRn such that {tk } -l- 0, {8k/tk} + 0

and gk E dF(x+tk d+8 k ) the sequence {gk'd} has exactly one accumu­

lation point.

Definition .3.9

F: Rn
+ R is weakly upper semismooth at x if the follow­

ing conditions hold:

(i) F is Lipschitz on a ball about x

(ii) for each direction d E Rn

lim inf gk' d > lim sup [F (x+td) - F (x) ]It
k+oo t-l-O
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where {gk} C Rn is any sequence such that gk E aF(X+tkd)

and {t
k

} c R+ is any sequence such that {tk } ~ o.

In Example 3.5 it can be easily seen that the extremal-value

function is weakly upper semismooth and even semismooth. At the

present time, it is not known whether these properties are gen­

erally satisfied or not by the extremal-value function under the

assumption of Theorem 3.2.
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A SET OF NONSMOOTH OPTIMIZATION TEST PROBLEMS

Test Problem 1: MAXQUAD

The objective function to be minimized is

f(x) max {(Akx,x) - (bk,x)I k =1, ... ,5}

where

The (symmetric, diagonal dominating) matrices Ak , together

with the vectors bk , are given by the fancy formulae:

Ak(i,j) e i / j cos (i,j) sin (k)

e i / k sin (i.k)

i < j

and the diagonals of Ak are

i
TO sin (k)

The following naive FORTRAN program fills up the data for

K MAX = 5, N = 10.

151
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do 30 k=l,kmax
ak=float (k)
do Ie i=l,n
ai=float (i)
do II' j=i,n
aj=float (j)
a(k,i,j)=exp(ai/aj)*cos(ai*aj)*sin(ak)
a (k, j , i) =a (k, i , j )

Hl continue
do 20 i=l,n
ai=float (i)
f(k,i)=exp(ai/ak)*sin(ai*ak)
a(k,i,i)=abs(sin(ak))*f10at(i)/f10at(n)
do 20 j=l,n
if(j.ne.i) a(k,i,i)=a(k,i,i)+abs(a(k,i,j))

20 continue
30 continue

For this particular problem, the optimal solution is

f* -0.8414

x* (-0.1263, -0.0346, -0.0067, 0.2668, 0.0673,

0.2786, 0.0744, 0.1387, 0.0839, 0.0385)

The following FORTRAN program computes the value of the

objective, VAL, and a subgradient, G, at a given point, x.

k(l=(l
do 50 k=l,kmax
fi=(J.
do Ie i=l,n
z=x(i)
fi=fi-f(k,i)*z
do 10 j=l,n

10 fi=fi+a(k,i,j)*x(j)*z
if(k0.eo.(I) go to 20
if(fi.1e.va1) go to 5~

28 k(J=k
val=fi

50 continue
do 7'J i=l,n
z=-f(kO,i)
do I':(j j=l,n

FC z=z+2.*a(kC,i,j)*x(j)
7~! g(i)=z
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The standard starting point is xi = 1 i = 1, •.. ,n, for which

f = 5337. Another interesting starting point is x = 0, since

f has a kink at this point (fk(O) = 0 k = 1, .•• ,k max}.
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Test Problem 2: SHELL DUAL

This is the second problem of Colville, where all the con­

straints are penalized with an £1 penalty function (A.R. Colville:

A Comparative Study of Nonlinear Programming Codes, IBM, New York,

Scientific Report 320.2949 (1968)).

There are two groups of variables: xi' i 1, ... ,k=10

and Yj' j = 1 , ... , m= 5.

The original problem from Colville is

min
m 3

2 L d.y. + (Cy,y) - (b,x)
j=1 J ]

2
2 (C y). < e. + 3d. Y .

. ] ] ] ] j 1 , ••• , m

X .::. 0 y > 0

Here we define the functions

P j (x,y) (A x) . 2 ( C y) . 2- - 3d.y. - e.
] ] ] ] ]

k m
Q(x,y) L min (O,xi ) + L min (O'Yj)

i=1 j=1

and the function to be minimized is

f(x,y) 21 r d. y~1 + (Cy,y) - (b,x)
j = 1 ] ]

+ 10 0 ~ r max (0, p. (x, y)) - Q (x, y) I1j=1] ~
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The vectors d, e, b and matrices A and C are given at the end

of this problem.

A program which computes the function f(x,y) and its

gradient is also given. In this program, the data m, k, d, b,

e, A, C, together with PENAL = 100 are supposed to be passed in

a COMMON block.

The variables x and y form a single vector X where

X (I)

X (M+I) = xi

i

i

1 , ••• , m

1 , ••• , k

The optimal point is f* 32.3488

y* (0.3, 0.3335, 0.4, 0.4283, 0.224)

x* (0.,0.,5.1741,0.,3.0611,

11.8396,0.,0.,0.1039,0.)

The starting point is f 2400.

0.0001 j 1 , .•• , 5

0.0001

60

i f 7
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Data for SHELL DUAL

d = 4. 8. 10. 6. 2.

e = -15. -27. -36. -18. -12.

Matrix a b

-16. 2. O. 1- O. -40.
O. -2. O. 4. 2. -2.

-3.5 O. 2. O. O. -0.25
O. -2. O. -4. -1. -4.
O. -9. -2. 1 • -2.P -4.
2. O. -4. O. O. - 1 •-, . - 1• -, . -1- -1. -40.

- 1. -2. -3. -2. - 1 • -60.
1• 2. 3. 4. 5. 5.
1. 1• 1. 1. 1. 1•

Symmetric Matrix c

30.
-20.
-10.

32.
-10.

-20.
39.
-6.

-31.
32.

-10.
-6.
1O.
-6.

-10.

32.
-31.
-6.
39.

-20.

-10.
32.

-1e.
-20.

30.
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Program for computing function and gradient in SHELL DUAL

z=c.
do 10 j=l,ffi

Hi z=z+d(j)*x(j)*x(j)*x(j)
if (z.lt.0.) go to 30
val=2.*z
cio 20 j=l,m

20 g(j)=6.*d(j)*x(j)*x(j)
go to 50

3'1 val=-2.*z
do 40 j=l,m

40 g(j)=-6.*d(j)*x(j)*x(j)
c

50 do 70 j=l,ffi
z=C.
do 60 i=l,m

60 z=z+c(i,j)*x(i)
val=val+z*x(j)

70 g(j)=g(j)+2.*z
c

do 80 i=l,k
il=m+i
val=val-b(i)*x(il)

80 g(il)=-b(i)
c
c compute the constraints
c

do 2130 j=l,m
z=-3.*d(j)*x(j)*x(j)-e(j)
do 120 i=l,k
il=m+i

120 z=z+a(i,j)*x(il)
do 140 i=l,m

140 z=z-2.*c(i,j)*x(i)
if(z.le.0.) go to 200
val=val+penal*z
g(j)=g(j)-6.*penal*d(j)*x(j)
do 160 i=l,k
il=m+i

160 g(il)=g(il)+penal*a(i,j)
do 180 i=l,m

180 g(i)=g(i)-2.*penal*c(i,j)
200 continue

c
c now the nonnegativity constraints
c

do 320 i=l,n
if (x (i) •ge. 0.) go to 320
val=val-penal*x(i)
g(i)=g(i)-penal

320 continue
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Test Problem 3: EQUIL

The following nonconvex problem is a min-max formulation

of an economic equilibrium problem in Scarf (The Approximation

of Fixed Points of a Continuous Mapping, SIAM Journal on Applied

Mathematics, 15 (1967), 1328-1343).

where

Minimize {max[fi (x) i = 1,2, ... ,N]

x j > 0 , j = 1 ,2 , ••• , N}

N
LX.

j= 1 ]

NA
L f1 (x)

J/,=1
for i 1,2, ... ,N

for J/, = 1, 2 , ... , NA

The input data N, NA, WJ/,k' AJ/,k and B are given below.
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Data tor EQUIL

N '" H Nfl '" 5

Matrix ,,;

3. 1. .1 • 1 5. • 1 • 1 6 •
• 1 10 • .1 • 1

c; .1 .1 • 1-' .
• 1 9 • 10. • 1 4. • 1 7 • .1
.1 • 1 • 1 10 • .1 3. .1 .1
.1 • 1 .1 • 1 • 1 .1 • 1 11.

~atrix P>.

1. 1. 1. 1. 1. 1. 1. 1.
2. •e 1 • • 5 1 • 1. 1. 1.
1. 1.2 .8 1.2 1.6 2. .6 .1
2. .1 • 6 2 • 1. 1. 1. 2.
1.2 1.2 • 8 1 • 1.2 • 1 3 • 4.

Vector b '" [.5 1.2 .r 2. 1.5

An interesting starting point is

x j .125 for all j

where f(x) max f~ (x) has the value 9.7878. The optimal value
i ...

of f is zero and occurs at a strictly positive point near

x = (.27, .03, .06, .09, .07, .31, .10, .07)

The following FORTRAN SUBROUTINE CALCUL (x,G,VAL) requires the

data NA, N, A, Wand B to be available in the common blocks

labelled ENTIER and REEL. It is useful when

(Cl
N
LX.

j=l ]
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If x j > 0 for all j it returns the value of f in VAL and returns

a projected (with respect to (e)) generalized gradient in G.

Otherwise, it returns an arbitrarily large number in VAL and no

useful G.

SUBROUTINE CALCUL(X,G,VAL)
COMMON /ENTIER/ NA,N
COMMON /REEL/ A(5,10) ,W(5,10),B(5)
COMMON /EXCESS/ ED(10),R(5,10),D(5,10) ,XB(5,10)
DIMENSION X(10),G(10)
VAL=LE20
DO 10 I=l,N
ED(I)=0.
G(I)=0.

10 CONTINUE
DO 100 L=l,NA
SUMR=0.
SUMD=0.
DO 20 K=l,N
IF(X(K).LE.0.)GO TO 400
XB(L,K)=X(K)**B(L)
SUMD=SUMD+A(L,K)*X(K)/XR(L,K)

20 SUMR=SUMR+W(L,K)*X(K)
DO 80 I=l,N
D(L,I)=XB(L,I)*SUMD
R(L,I)=A(L,I)*SUMR/D(L,I)

80 ED(I)=ED(I)+R(L,I)-W(L,I)
100 CONTINUE

H'!l>.X=l
Vl>.L=ED(I)
DO 200 I=2,N
IF (ED(I).LE.VAL) GO TO 2C0
VAL=ED(I)
H1AX=I

2fH~ CONTINUE
SUI-'I=0.
DO 300 J=l,~

DO 240 L=l,NA
TLJ=A(L,J)*(l.-P(L))
IF (J.EQ.IMAX) GO TO 230
T=TLJ*XP(L,IM"X)/XB(L,J)
GO TO 240

230 T=TLJ+E(L)*D(L,J)/X(J)
240 G(J)=G(J)+(A(L,IM"X)*W(L,J)-T*P(L,IMAX))/D(L,IM"X)

SUM=SUM+G(J)
300 CONTINUE

SUM=SUM/FLOAT(N)
DO 350 J=l,N

350 G(J)=G(J)-SUM
400 RETUFN

END
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Test Problem 4: TR48

This problem is the dual of a transportation problem with

48 sources and 48 destinations. It was communicated to us by

J.L. Goffin and the cost data is from M. Held, R.M. Karp:

A Dynamic Programming Approach to Sequencing Problems, J. Soo.

Indust. Appz.. Math., lQ., 1 (1962), 196-210.

The objective to be minimized is

f(x)
n n

- { L s. x. + L d. min n (a .. - x· ) }
i=1 1 1 j=1 J i=1 1J 1

where n = 48. See the following pages for the statements for

computing the function and its gradient, for the data, and for

the initial and optimal points.

The initialization x = 0 is standard. The point "initial

2" is given by J.L. Goffin. It has been computed by subgradient

optimization.
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Statements for computing function and gradient in TR48

f=0.
do HI i=l, n
g(i)=s(i)

HJ f=f+s(i)*x(i)
do 50 j=l,n
xmax=1.e30
do 40 i=l,n
z=a (i , j ) -x (i)
if(z.gt.xmax) go to 40
xmax=z
k=i

40 continue
9 ( k ) =g (k ) -d (j )
f=f+d(j)*xmax

50 continue
f=-f
do 70 i=l,n

70 g(i)==-g(i)

vector s

vector d

Sources and destinations

22, 53, 64, 15, fiF, 37, 16, 23, 67, 18, 52, 69,
17, 29, 5f1, 13, 95, 34, 59, 36, 22, 94, 28, 34,
3f>, 36, 55, 77, 45, 34, 32, 5R, 30, 88, 74, 59,
93, 54, [l~, 30, 79, 46, 3~, 41 , l)<), 52, 76, 93.

61, 67, 24, (.' <l , 13, 86, P9, 46, 48, 5~, 74, 75,
Ee, 40, 29, 115, 3:2 , 21, Fl, 21, 51, 14, R9, 79,
3e, 20, 97, 1CJ , 10, 73, 59, 92, 52, F6, 89, E,5,
63, 47, 7, El, P7, 19, 36, 43, 9, 12, 8, 67.

Statements for readin~ tre symmetric cost matrix A

1 format ( (16f5. r) )
read 1, «a(i-l,j) ,j=i,n) ,i=2,n)
do 10 i=l,n
a(i,i)=lC;Ji1G~.

do I" j=l,i
a ( i , j ) ==a (j , i)

Ie continue

( data for A on next page )
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Data for Cost Matrix in TR48

273 1272 744 1136 1972 1560 1e:l18 1539 1457 42S 1129 1251 1421 568 334 837
1364 22, ~61 754 1169 1466 720 1260 816 664 1176 939 1698 983 1119 1029
1815 721 1753 :no 1499 '107 1576 ~42 qtl4 617 896 1164 1030 1718 604 999
60~ 866 1722 1330 1640 1266 1185 q40 5~4 661 JJ4t 314 358 629 1124 ~58847 533 915 1219 401 1009 54~ 937 915 o 2 bq8 770 1560 26

1494 5'16 1244 1304 1300 665 66 444 11')7 1359 1176 1475 335 1519 140 937
697 951 267 227 1229 587 369 554 721 1212 739 596 12'11 1114 701 426
285 676 155 456 1936 31'1 337 604 907 214 424 748 617 666 1592 521

2172 356 467 15~3 dtl2 2139 21tl2 1961 781 676 1425 1<361 1473 1713 1761 1617
370 1073 1304 1369 10'12 453 798 1283 973 565 1315 1204 1796 846 1447 1143
959 1275 1213 2085 742 1309 1479 1760 703 1727 072 1479 666 16'16 1057 3b7

1252 904 66d 443 1500 930 1052 776 1049 402 361 1119 578 406 618 581
1095 670 641 1152 1060 567 q33 374 579 235 325 1802 331 217 665 062

182 312 864 732 763 1456 608 2066 491 400 1466 744 2013 2082 1665 075
552 400 182 620 721 1735 051 740 551 1551 1769 1159 613 2072 1300 1605
607 1017 1251 610 1259 2596 b26 1137 1255 1123 943 1359 188 1262 271 2300
463 2540 609 1038 2099 1766 2699 2493 2266 264 1398 304 699 538 1335 454
393 173 1198 1370 760 216 1692 919 1286 435 679 861 548 913 219cl 483
803 1161 731 627 1086 292 883 27'1 1906 175 2156 490 662 16'19 1430 2300

2117 1686 136 1023 884 755 1612 74'1 690 476 1501 1654 1049 516 19'15 114'1
1500 739 1079 1161 615 1214 2485 780 1100 1347 985 916 1361 260 1171 328
2202 445 2365 665 966 196~ 1729 2568 2333 2108 177 1327 177 1486 757 506

609 961 1474 ')67 6tl1 1552 1317 936 594 197 928 316 723 2203 500 604
402 1104 455 630 641 1058 562 1557 528 2425 220 704 1845 1122 2405 2428

2204 730 945 1302 587 335 435 930 1358 61') 504 1496 1153 927 428 341
tl03 lilO 649 2119 343 521 652 939 340 049 533 916 451 1783 362 2290
130 568 1727 1105 2301 2285 2059 595 053 891 1082 1199 726 96 553 1125
653 563 947 986 1493 560 11cl3 513 652 1033 902 1763 642 1032 1131 1604
4b3 1556 663 1298 947 1461 795 3'{1 002 ~67 973 768 1472 5tl6 252 30cl
603 920 309 236 1252 569 940 165 663 414 454 552 1745 269 482 1168
355 397 633 713 432 666 1453 410 1756 642 262 1260 1051 1558 1737 1508
592 598 222 814 1094 510 235 1335 620 692 100 626 541 219 524 1697

90 410 952 605 238 706 570 622 503 1581 257 1985 3'16 309 1453 1039
2043 1972 1744 514 661 1025 1227 617 90 1525 tl35 1114 263 770 700 400

740 2049 311 630 1007 630 459 924 405 739 360 1749 115 2055 428 492
1568 1256 2166 2026 1796 303 853 663 632 999 572 972 225 763 900 451
767 293 1240 726 420 1111 862 617 q43 1374 586 1299 8d? 1070 1633 1057
547 999 252 1483 1681 H89 1326 230 610 1156 557 642 879 1000 1467 558

117iJ 760 531 1038 b7~ 1726 700 1023 1082 1631 460 1579 586 1320 9d2 1463
796 371 302 949 1021 026 1508 550 546 983 397 821 q11 1023 1dO 651
478 1436 476 465 1333 235 525 b27 1022 123 973 1155 715 1475 902 273
953 002 1550 lq'>7 1240 89tl 396 1479 745 1105 240 831 645 442 723 1983
316 623 1152 543 470 939 482 66~ 443 1690 205 1909 510 455 1492 1238

2091 1938 1709 354 813 1163 676 1264 1473 639 1326 tl47 801 1254 976 1643
1157 1169 983 1'105 878 1836 340 1590 1206 1621 1034 689 503 995 1376 1239
1626 674 11~3 725 1399 549 1004 869 1427 816 882 1716 214 902 1222 1210

390 1164 1225 949 123~ 1210 b60 863 1207 1446 1197 969 1042 741 865 821
644 7~0 385 1374 803 404 960 1056 665 )1& 1420 794 1341 1017 1137 1036

1056 679 1200 189 1645 1891 1704 1403 442 699 453 2'10 483 160'1 107 304
1024 511 251 712 646 525 585 149'1 330 1865 495 231 1356 999 194'1 1872
164q 567 591 9')0 410 690 2147 594 590 326 1191 4~9 50q b3tl 1098 758
1794 703 243'1 414 751 1637 1011 2314 "q55 223'1 928 921 624 32') 1356 4bO

369 1241 413 47" 660 1097 166 1038 1049 761 1497 905 238 925 702 1506
1506 1287 99b 216 4'7~ 1941 188 350 '136 792 161 541 632 745 552 1607
375 2115 296 392 1547 959 2121 21lq 1090 641 676 1480 435 129 949 708
325 355 1001 4'12 1007 1137 7'79 175~ 774 2'11 1146 516 1668 1765 1573 1038
231 182'1 1603 2339 1524 1'180 1673 2421 1315 2394 357 2136 cl25 2237 150'1 579

1204 347 9')9 ~40 233b 1266 320 919 b05 154 623 (,52 5dO 5tl2 1508 344
1950 429 .24.c 1402 94~ 19J6 1~43 1717 60, 5b2 072 699 197 350 9')7 529

8b1 1263 660 184~ 645 ZqO 1250 631 1d02 1667 1650 9d 341 1511 015 60S
1092 1397 1019 1~62 1010 2700 b~5 1061 ~Oc0 1148 25Sq ~734 2520 1212 1176 b~7

1051 1010 290 985 1200 743 lq2'{ ':)..,& 466 ;81 1110 158q 1395 1166 061 626
469 701 607 685 14q6 qu 196; 45'1 254 1393 u2j 1~63 1975 1752 73S 515

1171 c347 10()~ 1316 9H 2063 770 5~d 143q 507 1920 2101 1695 1167 546 114q
03 2145 317 2q45 426 i:J75 1972 1584 2571 2qOo 217'1 194 1231 1094 1036 036

1371 100" 35q d33 020 1429 1309 1146 1021 352 2003 259 2412 345 011 1925
1507 2523 2300 2151 220 1163 1020 1005 HO: 1272 504 oq9 653 1114 101~ 2044
'132 2165 330 559 1666 1291 2204 215,j HOc 26c 917 2~1I 1723 636 1720 53 4
145 290 22d1 1531 667 1029 1235 2410 del 213~ 51'1 ';Jl~ 1102 192 1744 1724

1500 790 :it1 1067 C.cc 7Jl 550 lc35 ')1'1 1490 1'167 161q 1553 400 67~ 727
243') 1qb1 2c.9 22,30 1500 ~G1J 1353 1bi
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Init ializat ions and Optimal Point for TR48

initial 1 in itial 2 cptimal

f(x) -464816. -63S524.9 lJ -63F'56').

1 O. 11. 19 144.
2 O. 127.20 257.
3 O. -129.70 O.
4 O. 3lJ4.50 483.
5 O. -40.72 89.
6 o. -295.30 -165.
7 o. -202.30 -72.
8 o. -382.30 -252.
9 O. -217.70 -88.

10 O. -307.70 -17e.
11 O. 178.10 31 1•
12 O. -4.36 126.
'13 o. -123.30 7.
14 o. -265.30 -135.
15 O. 28.28 158.
16 O. 70.57 209.
17 O. -31.801 101.
18 o. -222.30 -92.
19 O. 96. 19 229.
20 O. -52.79 RO.
21 O. -34.71 95.
22 O. -59.16 71.
23 O. -373.70 -244.
24 O. -28.35 102.
25 O. - 141. 70 -12.
26 O. 2.28 132.
27 O. 198.50 337.
28 O. -69. 16 61.
29 O. -26.35 104.
30 O. -88.72 41 •
31 O. 130.80 261.
32 O. -12.35 118.
33 O. -30.70 99.
34 o. -376.30 -246.
35 O. 23. 18 156.
36 o. -400.30 -270.
37 o. 197. 10 330.
38 O. -260.30 -130.
39 O. 813.50 952.
40 O. -191.70 -62.
41 O. 31.29 161-
42 O. 345.50 484.
43 O. -1.72 122.
44 O. 335.50 474.
45 O. 947.50 1086.
46 O. 722.50 861.

~~ o. -300.30 -170.o. 73.20 206.
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This problem seems very difficult. Another problem,

called A48, and simpler, consists in defining

d.
1

i 1 , ... , n

The optimal value for this problem is -9870.
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