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Abstract

We review the state-of-the-art concerning a mathematical frame-
work for general physiologically structured population models. When
individual development is affected by the population density, such
models lead to quasilinear equations. We show how to associate a
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dynamical system (defined on an infinite dimensional state space) to
the model and how to determine the steady states. Concerning the
principle of linearized stability, we offer a conjecture as well as some
preliminary steps towards a proof.

1 Ecological motivation

How do phenomena at the population level (p-level) relate to mechanisms at
the individual level (i-level)? When investigating the relationship, it is often
necessary to distinguish individuals from one another according to certain
physiological traits, such as body size and energy reserves. The resulting
p-models are called “physiologically structured” (Metz and Diekmann 1986).
They combine an i-level submodel for “maturation”, i.e., change of i-state,
with submodels for “survival” and “reproduction”, which concern changes in
the number of individuals. So they are “individual based”, in the sense that
the submodels apply to processes at the i-level. Yet they usually (but not
necessarily) employ deterministic bookkeeping at the p-level (so they involve
an implicit “law of large numbers” argument).

A first aim of this paper is to explain a systematic modelling approach
for incorporating interaction. The key idea is to build a nonlinear model in
two steps, by explicitly introducing, as step one, the environmental condition
via the requirement that individuals are independent from one another (and
hence equations are linear) when this condition is prescribed as a function
of time. The second step then consists of modelling the feedback law that
describes how the environmental condition depends on the current population
size and composition.

Let us sketch three examples, while referring to de Roos and Persson
(2001, 2002) and de Roos, Persson and McCauley (2003) for more details,
additional examples and motivation as well as further references.

If juveniles turn adult (i.e., start reproducing) only upon reaching a cer-
tain size, there is a variable maturation delay between being born and reach-
ing adulthood. Since small individuals need less energy for maintenance than
large individuals, the juveniles can outcompete their parents by reducing the
food level so much that adults starve to death. Thus “cohort cycles” may
result, i.e., the population can consist of a cohort of individuals which are
all born within a small time window. Once the cohort reaches the adult size
it starts reproducing, thus producing the next cohort, but then quickly dies

2



from starvation. So here the p-phenomenon is the occurrence of cohort cycles
(which are indeed observed in fish populations in several lakes (Persson et al.
2000)) and the i-mechanism is the combination of a minimal adult size with
a food concentration dependent i-growth rate.

The second example concerns cannibalistic interaction. Again we take i-
size as the i-state, now since bigger individuals can eat smaller ones, but not
vice versa. The p-phenomenon is that a population may persist at low renewal
rates for adult food, simply since juvenile food becomes indirectly available
to adults via cannibalism (the most extreme example is found in some lakes
in which a predatory fish, such as pike or perch, occurs but no other fish
whatsoever, cf. Persson et al. 2000, 2003). So reproduction becomes similar
to farming, gaining a harvest from prior sowing (Getto, Diekmann and de
Roos, submitted).

The third example is a bit more complex. It concerns the interplay be-
tween competition for food and mortality from predation in a size structured
consumer population that is itself prey to an exploited (by humans) preda-
tor population, where the predators eat only small prey individuals. The
phenomenon of interest is a bistability in the composition of the consumer
population with severe consequences for the predators. At low mortality from
predation, a large fraction of the consumers pass through the vulnerable size
range, leading to a severe competition for food and a very small per capita
as well as total reproductive output. The result is a consumer population
consisting of stunted adults and few juveniles, a size structure that keeps
the predators from (re-)entering the ecosystem. However, if the ecosystem is
started up with a high predator density, due to a history in which parame-
ters were different, these predators, by eating most of the young before they
grow large, cause the survivors to thrive, with a consequent large total re-
productive output. Thus, the predators keep the density of vulnerable prey
sufficiently high for the predator population to persist. If exploitation lets
the predator population diminish below a certain density, it collapses due to
the attendant change in its food population.

Interestingly, a similar phenomenon can occur if the predators prefer-
entially eat the larger sized individuals only. A more detailed analysis by
de Roos, Persson and Thieme (2003) shows that the essence of the matter is
that in the absence of predators the consumer population is regulated mainly
by the rate at which individuals pass through a certain size range, with the
predators specialising on a different size range. As noted by de Roos and
Persson (2002), a mechanism of this sort may well explain the failure of the
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Northwest Atlantic cod to recover after its collapse from overfishing: After
the cod collapsed, the abundance of their main food, capelin, increased, but
capelin growth rates decreased and adults became significantly smaller. (See
Scheffer et al. (2001) for a general survey on catastrophic collapses.)

A large part of this paper is based on earlier work of ours, viz. (Diekmann
et al. 1998, 2001, 2003), which we shall refer to as Part I, Part II, and
Part III, respectively. The reader is referred to (Ackleh and Ito, to appear;
Calsina and Saldaña, 1997; Cushing, 1998; Tucker and Zimmermann, 1988)
for alternative approaches.

2 Model ingredients for linear models

Let the i-state, which we shall often denote by the symbol x, take values in
the i-state space Ω. Usually Ω will be a nice subset of Rk for some k. As an

example, let x =

(
a
y

)
with a the age and y the size of an individual. Then

Ω could be the positive quadrant {x : a ≥ 0, y ≥ 0} or some subset of this
quadrant.

We denote the environmental condition, either as a function of time or at
a particular time, by the symbol I. In principle I at a particular time is a
function of x, since the way individuals experience the world may very well
be i-state specific. For technical reasons, we restrict our attention to envi-
ronmental conditions that are fully characterized in terms of finitely many
numbers (i.e., I(t) ∈ Rk for some k and x-dependence is incorporated via
fixed weight functions as explained below by way of an example). The tech-
nical reasons are twofold. Firstly, this seems a necessary approximation when
it comes to numerical solution methods. Secondly, as yet we have not de-
veloped any existence and uniqueness theory for the initial value problem in
cases in which the environmental condition is i-state specific (and to do so
one has to surmount substantial technical problems (Kirkilionis and Saldaña,
in preparation).

As an example, think of I =

(
I1

I2

)
, with I1 the concentration of juvenile

food and I2 the concentration of adult food. We may then describe the
food concentration as experienced by an individual of size y by the linear
combination φ1(y)I1 + φ2(y)I2, where φ1 is a decreasing function while φ2

is increasing. Thus we can incorporate that the food preference is y-specific
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and gradually changes from juvenile to adult food.
The environmental condition should be chosen such that individuals are

independent from one another when I is given as a function of time. The
i-state should be such that all information about the past of I, relevant for
predicting future i-behaviour, is incorporated in the current value of the i-
state. Here “i-behaviour” first of all refers to contribution to population
changes, i.e., to death and reproduction (note that at the i-level this may
very well amount to specifying probabilities per unit of time), but once the
i-state has been introduced it also refers to predicting future i-states from
the current i-state (possibly in the form of specifying a probability density).

As a notational convention we adopt that an environmental condition I
is defined on a time interval [0, `(I)). Often we call I an input and `(I) the
length of the input. For s ≤ `(I) we then denote by ρ(s)I the restriction of
I to the interval [0, s). By defining

(θ(−s)I)(τ) = I(τ + s) for 0 ≤ τ < `(I)− s (2.1)

we achieve that θ(−s)I incorporates the information about the restriction
of I to [s, `(I)) but, by shifting back, in the form of a function defined on
[0, `(I)− s). We write

I = θ(−s)I � ρ(s)I (2.2)

where the symbol � denotes concatenation defined by

(J �K)(τ) =

{
K(τ) 0 ≤ τ < `(K)
J(τ − `(K)) `(K) ≤ τ < `(K) + `(J)

(2.3)

A linear structured population model is defined in terms of two ingredi-
ents, u and Λ, which are both functions of I, x and ω, where ω is a measurable
subset of Ω (which thus implies the requirement that Ω comes equipped with
a σ-algebra Σ). The interpretation is as follows:

uI(x, ω) is the probability that, given the input I, an individual which has
i-state x ∈ Ω at a certain time, is still alive `(I) units of time
later and then has i-state in ω ∈ Σ;

ΛI(x, ω) is the number of offspring, with state-at-birth in ω ∈ Σ, that
an individual is expected to produce when it gets exposed to the
input I while starting in x, during the total length of the input.

This interpretation requires that certain consistency relations and monotonic-
ity conditions should hold. In order to formulate these we first introduce some
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terminology and notation. We want u and Λ to be parametrized positive ker-
nels, where I is the “parameter” and a kernel k is a map from Ω × Σ into
R which is bounded and measurable with respect to the first variable and
countably additive with respect to the second variable. We call a kernel pos-
itive if it assumes non-negative values only. The product k× l of two kernels
k and l is the kernel defined by

(k × l)(x, ω) =
∫
Ω

k(ξ, ω)l(x, dξ). (2.4)

Assumption 2.1

(i) Chapman-Kolmogorov:

uI�J = uI × uJ (2.5)

(ii) Reproduction-survival-maturation consistency:

ΛI�J = ΛJ + ΛI × uJ (2.6)

(iii) σ 7→ Λρ(σ)I(x, ω) is non-decreasing with limit zero for σ ↓ 0 (the mono-
tonicity actually follows from (2.6) and positivity).

(iv) σ 7→ uρ(σ)I(x, Ω) is non-increasing and

lim
σ↓0

uρ(σ)I(x, ω) = δx(ω).

(v) In addition we require finite life expectancy: there exists M < ∞ such
that ∫

(0,`(I))
σuρ(dσ)I(x, Ω) ≤ M

for all x ∈ Ω and all I.

If maturation is deterministic, the ingredient uI can be put into a par-
ticularly simple and useful form. Consider an individual with i-state x at a
certain time. Let XI(x) be the i-state of that individual `(I) units of time
later, given the input I and let FI(x) be its survival probability. Then

uI(x, ω) = FI(x)δXI(x)(ω). (2.7)

Concerning the specification of Λ, it makes first of all sense to introduce
the set Ωb of possible states-at-birth (cf. Part I, Definition 2.5; the idea is
that ΛI(x, ω) = 0 whenever ω∩Ωb = ∅). Two situations are of special interest
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– the discrete case: Ωb is a finite set {xb1 , xb2 , . . . , xbm} (with the case
m = 1 being of even stronger special interest)

– the absolutely continuous case: Ωb is a lower dimensional manifold with
a “natural” (Lebesgue) measure dξ defined on it, and ΛI(x, ·) is abso-
lutely continuous with respect to that measure. Here the archetypical
example is Ωb = {(a, x) : a = 0, xmin ≤ x ≤ xmax} that arises when
modeling an age-size structured population.

In the case of a finite Ωb we put

ΛI(x, ω) =
m∑

j=1

jLI(x)δxbj
(ω) (2.8)

where jLI(x) is the expected number of children, with i-state at birth xbj
,

produced, given the input I and in the period of length `(I) of this input,
by an individual having i-state x at the start of the input. In the case of Ωb

being a lower dimensional manifold we put

ΛI(x, ω) =
∫

ω∩Ωb

ξLI(x)dξ, (2.9)

where ξLI(x) has an analogous interpretation (but note that now it is a
density with respect to ξ: only after integrating with respect to ξ over a
subset of Ωb do we get a number).

The building blocks X, F and L are, in turn, obtained as solutions of
differential equations when the i-model is formulated in terms of a maturation
rate g, a per capita death rate µ and a per capita (state-at-birth specific)
reproduction rate β. These read{

d
dt

Xρ(t)I(x) = g(Xρ(t)I(x), I(t))
Xρ(0)I(x) = x

(2.10)

{
d
dt
Fρ(t)I(x) = −µ(Xρ(t)I(x), I(t))Fρ(t)I(x)

Fρ(0)I(I) = 1
(2.11)

{
d
dt ξ

Lρ(t)I(x) = βξ(Xρ(t)I(x), I(t))Fρ(t)I(x)

ξLρ(0)I(x) = 0
(2.12)
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or, in short hand notation,
dX
dt

= g(X, I)
dF
dt

= −µ(X, I)F
dL
dt

= β(X, I)F
(2.13)

We conclude that the ingredients u and Λ for a linear structured popula-
tion model can be constructively defined in terms of solutions X, F and L
of ordinary differential equations involving the ingredients g, µ and β which
specify the i-behaviour in terms of rates as a function of the current i-state
and the prevailing environmental condition.

When i-state development is stochastic, rather than deterministic, one
needs to replace (2.10). For instance, if i-state corresponds to spatial position
and individuals perform Brownian motion, one needs to replace (2.10) by the
diffusion equation for the probability density of finding the individual at a
position after some time, given I. The advantage of “starting” from the
ingredients u and Λ is that they encompass all such variations.

It is straightforward to check that, under appropriate assumptions on
g, µ and β, (2.7)-(2.8)/(2.9) define parametrised positive kernels satisfying
Assumption 2.1.

The true modelling consists of a specification of g, µ and β, see e.g.
(Kooijman, 2000).

3 Feedback via the environmental condition

At any time t a population is described by a positive measure m(t) on Ω.
Possibly this measure is absolutely continuous (with respect to the Lebesgue
measure; again we think of Ω as a subset of Rk). Then there is a density
function n(t, ·), defined on Ω, such that

m(t)(ω) =
∫

ω
n(t, x)dx. (3.1)

To illustrate the idea of interaction via environmental variables, we con-
sider the situation of competition for food. Let the dynamics of the substrate
S be generated by

dS

dt
=

1

ε

(
S0 − S − S

∫
Ω

γ(x)m(t)(dx)
)

, (3.2)
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where ε−1γ is the i-state specific per capita consumption rate. So an indi-
vidual with i-state x ingests ε−1γ(x)S units of substrate per unit of time. In
energy budget models (Kooijman, 2000) one often assumes that a fraction
1− κ(x) of the ingested energy is scheduled to growth and maintenance and
the remaining fraction κ(x) to reproduction. Thus the ε−1γ(x)S enters in the
specification of g and β (and, in case of starvation, i.e., when maintenance
cannot be covered, also µ). So the S is (a component of) I. Vice versa,
the factor

∫
Ω γ(x)m(t)(dx) corresponds to the environmental condition for

the substrate population. It appears that we can couple the substrate and
the consumer population via the idea that one constitutes the environmental
condition for the other.

If the time scale parameter ε in (3.2) is very small one can employ the
quasi-steady-state approximation for the substrate, i.e., require that the fac-
tor within brackets at the right hand side of (3.2) equals zero. This yields

S =
S0

1 + I
(3.3)

where
I(t) =

∫
Ω

γ(x)m(t)(dx) (3.4)

One should interpret these two identities as follows. When I is considered
as given, as an input, the formula (3.3) specifies what substrate density the
individuals of the consumer population experience. And this then in turn
determines how the I enters the expressions for g, β and, possibly, µ. The
identity (3.4), on the other hand, is the feedback law specifying how, in fact,
the I at a particular time relates to the extant population at that time. In
other words, the combination of (3.3) with rules for how g, β and µ depend
on S defines a linear structured population model. But if we add to that
the consistency requirement (3.4) we turn the linear model into a nonlinear
model in which it is incorporated that individuals interact by competing for
a limited resource S. Note that the ingredients g, µ and β of the linear
model need to be supplemented by the ingredient γ in order to define the
nonlinear model. One could call γ(x) the i-state specific contribution to
the environmental condition. (The precise interpretation depends on the
meaning of (the component of) I).

Since the environmental condition is chosen such that individuals are, for
given I, independent of one another, the feedback law (3.4) is necessarily
linear. Or, phrased differently, the components of I are linear functionals of
the p-state. We call (3.4) a pure mass-action feedback law.
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Sometimes the specification of g, µ and β is based on submodels for be-
havioural processes at a very short time scale, the most well-known example
being the Holling type II functional response as derived from a submodel in
which predators can be either searching for prey or busy handling prey that
has been caught. In such cases the feedback law exhibits a certain hierar-
chical structure which is described in Part II, Section 6 and which we have
called generalized mass action. In this paper we restrict ourselves to the pure
mass action case (3.4).

Especially in the modeling phase it is often helpful to close the feedback
loop in two steps: first an output is computed, which then is fed back as
input via a feedback map. In the example considered above we would write
(3.4) as

O(t) :=
∫
Ω

γ(x)m(t)(dx). (3.5)

Considering S as the true input, we would then write (3.3) as

S = F (O), (3.6)

where

F (O) =
S0

1 + O
. (3.7)

The advantage is twofold: i) it represents better what is going on biologically,
and ii) one can use (3.5) as a definition, with (3.6) as the equation that closes
the feedback loop. In contrast (3.3), by combining both steps in one, lacks
such a clear interpretation. From a mathematical viewpoint the role of (3.4)
is that of an equation only, while the modelling aspect, i.e., the definition of
what inputs and outputs amount to observationally, is lost from sight. On
the other hand, the drawback of distinguishing between I and O is that an
additional variable is introduced which clutters the analysis without playing
any useful role. So in the following we use onlu I.

4 Construction of p-state evolution. Step 1:

the linear case.

For the sake of exposition we restrict ourselves here to the situation of a fixed
state-at-birth xb. Given an initial p-state m, we define the cumulative first
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generation offspring function B1 by

B1(t) =
∫
Ω

Lρ(t)I(x)m(dx). (4.1)

The cumulative second generation offspring function B2 is next defined by

B2(t) =
∫ t

0
Lρ(t−τ)θ(−τ)I(xb)B

1(dτ), (4.2)

et cetera (that is, replace in (4.2) B2 by Bn+1 and B1 by Bn). The cumulative
“all offspring” function

Bc =
∞∑

n=1

Bn (4.3)

then satisfies the renewal equation

Bc(t) = B1(t) +
∫ t

0
Lρ(t−τ)θ(−τ)I(xb)B

c(dτ) (4.4)

and one can view (4.3) as the generation expansion obtained by solving (4.4)
by successive approximation. Note that Bc depends on I, even though we
do not incorporate this in the notation.

If we denote by TIm the p-state at time `(I), given that the p-state at
time zero is m and given the time course I of the environmental condition,
then

TIm = uI ×m +
∫ `(I)

0
uθ(−τ)I(xb, ·)Bc(dτ) (4.5)

where
(uI ×m)(ω) =

∫
Ω

uI(x, ω)m(dx) (4.6)

describes the survival and maturation of the individuals present at time zero,
while the second term takes into account the survival and maturation of all
individuals born after time zero. The key result of Part I is that the operators
TI form a semigroup, that is, the map I 7→ TI transforms concatenation
(recall(2.2)) into composition of maps:

Theorem 4.1
TI = Tθ(−t)ITρ(t)I

for any t ∈ [0, l(I))
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Let us recapitulate. Starting from g, µ and β, one constructs u and L
(recall (2.8)); if there is only one possible state-at-birth, then Λ is completely
determined by L). Given an initial p-state m one next constructively defines
the solution Bc of (4.4) by (4.3). The formula (4.5) then provides a way to
calculate, given I, the p-state after `(I) units of time from u, Bc and m. And
Theorem 4.1 justifies our use of the word “p-state”: our construction yields
a dynamical system.

Even though we rightfully refer to Part I for Theorem 4.1, readers who
want to see more details are advised to first consult Part II since some of our
current notation goes back only to that reference.

5 Construction of p-state evolution. Step 2:

closing the feedback loop.

If we substitute m(t) = Tρ(t)Im into (3.4) we obtain the equation

I(t) = γ × Tρ(t)Im =
∫
Ω

γ(x)(Tρ(t)Im)(dx) (5.1)

that I should satisfy in order to have consistency between input and output.
We view (5.1) as a fixed point problem for I, parametrised by the initial
p-state m.

In Sections 7 and 8 of Part II one finds various assumptions on u, Λ and
γ, respectively, g, µ, β and γ that guarantee that the right hand side of (5.1)
defines a contraction mapping on a suitable function space. Here “suitable”
in particular involves a restriction for the length l of the interval on which
I is defined. Thus the contraction mapping principle yields a local solution
I = Im of (5.1). One next notes (see Diekmann and Getto, to appear, for
details) that:

– a fixed point on a smaller interval is a restriction of a fixed point on a
larger interval,

– θ(−t)Im = ITρ(t)Imm, roughly saying that shifted fixed points are the
fixed points corresponding to the updated p-state,

– uniqueness holds on any interval,

– fixed points can be concatenated to achieve continuation, that is, to
obtain solutions on longer time intervals
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to conclude that the local solution can be extended to a maximal solution,
which we also denote by Im. A key result of Part II is that the definition

S(t,m) = Tρ(t)Imm (5.2)

yields a semiflow:

Theorem 5.1
S(t + s, m) = S(t, S(s, m))

(Again we refer to Diekmann & Getto, to appear, for details and for various
results about boundedness and global existence as well as weak∗- continuity
with respect to time t and initial condition m.)

6 Steady states

The symbol I denotes a constant input defined on [0,∞). (Slightly abusing
notation we do not distinguish between the function and the value it takes.)
A steady state is a measure m on Ω such that

Tρ(t)Im = m, ∀t ≥ 0, (6.1)

where
I = γ ×m =

∫
Ω

γ(x)m(dx). (6.2)

Since T̃ (t) := Tρ(t)I is a semigroup of positive linear operators and m has
to be positive, (6.1) amounts to the condition that the spectral radius is
an eigenvalue and is equal to one. (For future reference we observe that,
whenever there is a spectral gap,

T̃ (t)m → c m as t →∞

exponentially in the weak∗-sense, for any positive initial measure m. Here
c = c(m) is a positive real number.)

The defining relations (6.1)–(6.2) are not suitable for “finding” steady
states. For that purpose, the generation perspective is much more suitable.
In particular one can concentrate on newborn individuals and the offspring
they are expected to produce, with due attention to the state-at-birth of the
offspring.

13



In the simple case of one possible state-at-birth, a first steady state con-
dition is that the basic reproduction ratio, the expected number of offspring,
equals one:

R0(I) := Lρ(∞)I(xb) = 1 (6.3)

This is a condition on I. If dim I = 1 this is one equation in one unknown.
Very often R0 is monotone in I which then immediately yields uniqueness.

More generally we should, in the notation of (4.6), have

Λρ(∞)I × b = b, (6.4)

with b a positive measure on the set Ωb of possible birth states. Written out
in detail (6.4) reads ∫

Ωb

Λρ(∞)I(x, ω)b(dx) = b(ω) (6.5)

for all measurable subsets ω of Ωb. And if Ωb is a nice subset of Rk for some
k and b has a density f we may rewrite this as∫

Ωb

ξLρ(∞)I(x)f(x)dx = f(ξ), ξ ∈ Ωb. (6.6)

Equation (6.4) is a linear eigenvalue problem: the dominant eigenvalue
of a positive operator should be one. This is, just as (6.3) but now more im-
plicitly, a condition on the parameter I. If this condition is satisfied and the
eigenvalue is algebraically simple (a sufficient condition being the irreducibil-
ity of the positive operator) then the eigenvector b is determined uniquely
modulo a positive multiplicative constant, to be denoted by c below.

Returning to the case of a fixed state-at-birth, we note that (2.10) – (2.12)
simplify considerably when the input is constant. For given I we define x
and F by {

dx
da

= g(x, I)
x(0) = xb

(6.7)

{
dF
da

= −µ(x, I)F
F(0) = 1

(6.8)

and next we note that

R0(I) =
∫ ∞

0
β(x(a), I)F(a)da. (6.9)
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Let c denote the steady p-birth rate. Then

m(ω) = c
∫ ∞

0
uρ(a)I(xb, ω)da = c

∫ ∞

0
F(a)δx(a)(ω)da (6.10)

and consequently (6.2) can be written as

I = c
∫ ∞

0
F(a)γ(x(a))da. (6.11)

Beware that F and x depend on I.

Theorem 6.1 m is a steady state, i.e., (6.1)-(6.2) hold, iff m is given by
(6.10), with x and F defined by (6.7)-(6.8), where I and c are such that (6.3)
(with R0(I) given by (6.9)) and (6.11) hold.

For the proof see Part III. Note that (6.3) and (6.11) are 1+dim I equations
in as many unknowns, viz., c and I. Also note that (6.9) is defined completely
in terms of solutions of ODE, since we may supplement (6.7) – (6.8) with{

dL
da

= β(x, I)F
L(0) = 0

(6.12)

and put
R0(I) = L(∞). (6.13)

Similarly we may write (6.11) as

I = cG(∞) (6.14)

where G is obtained by solving{
dG
da

= γ(x)F
G(0) = 0

. (6.15)

The main message of Kirkilionis et al. ( 2001) is that one can do a numerical
parameter continuation study of steady states of physiologically structured
population problems by combining standard ODE solvers with standard con-
tinuation algorithms when solving (6.3)-(6.11).
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7 Linearized stability

Given a steady state, how do we determine whether or not it is stable?
Apart from the special situation in which we want to determine the ability of
a missing species to invade successfully an existing community (see e.g. Part
III, Sections 2.2 and 2.3 where it is explained that the answer can be given
in terms of R0), this is a difficult question. We say that the answer can be
found by way of a characteristic equation if it is possible to derive a function
f : C → C such that the steady state is asymptotically stable if all roots
of the equation f(λ) = 0 lie in the left half plane while being unstable if at
least one root lies in the right half plane. We claim that for physiologically
structured population models the answer can indeed be found by way of a
characteristic equation and that, moreover, this equation takes the form

det M(λ) = 0, (7.1)

where M is a dim I × dim I matrix. The intuitive explanation is that the
semigroup T̃ (t) = Tρ(t)I of positive linear operators introduced in the begin-
ning of Section 6 has dominant eigenvalue zero. Accordingly, the stability
or instability is completely determined by the feedback loop (and not by the
population dynamics per se) and this leads, after linearization, to a tran-
scendental characteristic equation in terms of a matrix of size dim I × dim I
(essentially the λ comes in via the Laplace transform of a time kernel; see
below).

The proof of this claim is involved and, in fact, some details still have to
be filled in. For the stability part there are two steps:

Step 1 assuming that Im(t) − I → 0 exponentially for t → ∞, show that
S(t,m) → m for t →∞,

Step 2 assuming that all roots of (7.1) are in the left half plane, show that
m−m small implies that Im(t)− I → 0 for t →∞ (in fact exponentially).

As usual, the instability part is more difficult (note that, for instance, the
instability part was not proved in the book by Webb (1985); it was proved,
for age structured models, by Prüß(1983); see also (Desch and Schappacher
1986; Clément et al. 1987). The difficulty is substantially enhanced in the
present case by the fact that the nonlinear semigroup is not differentiable
(indeed, there is a problem with, e.g., slightly shifted Dirac easures). Our
“escape strategy” is to consider an invariant and attracting subset of the p-
state space on which we have more smoothness. In work in progress, mainly
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by Philipp Getto, we use a different p-state representation to characterize
this subset, viz., we use the history of I and the history of the population
birth rate to identify the p-state. In our further description below we restrict
our attention to the stability part.

The only nonlinear feature in the constructive definition of the semiflow
S is the fixed point problem (5.1) for the environmental variable I. So that
is the problem we should linearize. As a preparatory step we rewrite (5.1) in
the form

I(t)− I = γ × (Tρ(t)I − Tρ(t)I)m + γ × Tρ(t)I(m−m) (7.2)

and introduce the map Q that describes how the output depends on the
perturbation of the steady input

(QJ)(t) = γ × (Tρ(t)(I+J) − Tρ(t)I)m. (7.3)

Now think of J as extended by zero for negative arguments and define the
shift operator θ(s) by

(θ(s)J)(τ) = J(τ − s). (7.4)

Proposition 7.1 Q is translation invariant:

Qθ(s) = θ(s)Q. (7.5)

Even though the map J 7→ Tρ(t)(I+J)m is in general not smooth, the map
Q may very well be, as it involves the pairing with γ. We state this as an
assumption.

Assumption 7.2 Q is differentiable with derivative L.

This is basically a smoothness assumption on γ. Admittedly the assump-
tion is stated rather imprecisely, as we have not specified the function space
of inputs. The idea, however, is to compute the derivative for any fixed t and
to use the outcome to define a linear input-output map L.

Now observe that L inherits the translation invariance of Q and recall
that “linear + translation invariant ⇒ convolution” whence we have

Proposition 7.3 (LJ)(t) =
∫ t
0 k(t− τ)J(τ)dτ for some kernel k.
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Finally, we define M(λ) to be the Laplace transform of k minus the iden-
tity. In fact one can express k, and hence M , explicitly in terms of solutions
of linearized ODE like, when one linearizes (2.10)

dY

da
=

∂g

∂x
Y +

∂g

∂I
J. (7.6)

We refer to Kirkilionis et al. (2001) for the details. Note that this char-
acterization of k allows a numerical implementation. Thus, despite all the
complications, one can make the linearized stability test operational in the
context of concrete examples!
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