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Foreword

This report describes the research which the author advanced during his participation in
the 2005 Young Scientists Summer Program (YSSP).

The reported research deals with application of wavelet analysis to the analysis of
complex data thus contributes to the IME research agenda, which includes development
of methodologies and software tools for analysis and support of complex decision prob-
lems. The reported work is interdisciplinary in nature. It not only required combining
thorough comprehension of mathematical modeling, optimization techniques, and rela-
tional databases with the understanding of complex analysis of agriculture and climatic
data in the context of modeling crop yields. It also required cooperation with colleagues of
the IIASA Land Use Change and Agriculture (LUC) Program. Moreover, the author was
a member of a three-person YSSP team working on researching different approaches to
the same problem1. Such a team work was very fruitful. We mention here only the main
aspects of this successful collaboration:

• different approaches are complementary, i.e., they provide various insights to the
same problem,
• team-members having different skills and experiences have learned from each other,
• time-consuming jobs of data collection, verification, and processing (by organizing a

dedicated database and the supporting software) were shared among team members.

The Summer-time of the YSSP is only three months short, and this type of research
requires substantial amount of time for the initial stage. This initial stage includes a correct
specification of the problem, and then data collection, pruning, verification, and processing.
The problem is challenging, therefore no standard ready-to-use methods were available.
The author therefore had to first advance his research on wavelet analysis, develop or
adapt software to support the new approaches to data analysis, and then to verify various
approaches with the data before discussing the results with the colleagues from the LUC
Program. The constructive criticism by the LUC colleagues had led to the development
of better methods and the corresponding software tools.

Marek Makowski

1The results of another approach are described by Wojciech Kot lowski in IR-07-034.
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Abstract

This paper presents a case study and methods for trend and periodicity identification and
for forecasting which are useful for determining the impact of weather factors to crop
yields. These methods combine standard approaches with wavelet analysis in order to
improve the results. Hence, a brief introduction to wavelet theory is included. All analyses
provided in this research are conducted on United States weather and crop yields data.
Where applicable, the results obtained with the use of standard methods are compared
with those which are enforced by application of the wavelet transform, illustrated with
examples, and evaluated.

Keywords: trend analysis, seasonality identification, forecasting, impact, crop yields,
weather factors, wavelet transform, Haar basic wavelet function
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Ṽj,i an ith MODWT scaling coefficient calculated on the level j
W̃j,i an ith MODWT wavelet coefficient calculated on the level j
W̆ a vector of D2DWT coefficients
V̆j a sub vector of D2DWT scaling coefficients calculated on the level j
W̆j a sub vector of D2DWT wavelet coefficients calculated on the level j
V̆j,i an ith D2DWT scaling coefficient calculated on the level j
W̆j,i an ith D2DWT wavelet coefficient calculated on the level j

δ correction coefficient
κ threshold value
n standard deviation multiplication parameter

SSE sum of square errors
mSSE SSE divided by multiplication of an average of original time series

by the number of locations of this time series
wSSE sum of weighted (by the value at the location of the error) square errors
MSE mean square error
r2 correlation coefficient
df number of degrees of freedom
SST total sum of squares
SSR sum of squares for regression

LR linear regression
PA polynomial approximation

avg average
max maximum
min minimum



– 1 –

Weather Indicators and Crop Yields Analysis

with Wavelets

Bartosz Koz lowski*

1 Introduction

The goal of the reported work was to explore the opportunities provided by wavelet analysis
(WA) for supporting analysis of potential impact of weather factors to crop yields and
reusing established information to e.g. planning. The three main analysis problems are
pertinent to this research:
• trend identification,
• periodicity identification,
• forecasting.

All of these problems were approached with respect to variously profiled time series data
of weather factors and crop yields. Such analysis can be done with standard statistical
methods, like e.g.:

• autocorrelation,
• auto regression,
• trend extrapolation,
• exponential smoothing,
• curve fitting (regression),
• the Box-Jenkins approach.

On the other hand, as a result of previous research, applications of wavelet analysis oc-
curred to be very useful in many applications. They were applied to economical and
finance data and it occurred that WA based approach provides better results than some
other approaches to forecasting, see e.g. (Kozlowski 2004). Wavelet domain also reveals
additional information about time series what was applied in the telecommunications area
(Kozlowski 2005). Hence it was decided to explore applicability of wavelet-based methods
in combination with standard approaches to the above defined analysis.

This paper is organized as follows. The next section provides a brief overview of the
approaches and justifies their application. It also presents a general discussion of the
reasons for using WA and describes the general wavelet-based approach. In the last part
of this section case study is brought forward including short information on data issues.
Section 3 focuses on the method for the trend identification and its applications. In section
4 applications of a wavelet enforced method for periodicity identification in time series
is introduced and investigated. Section 5 describes the wavelet approach to time series
forecasting. Section 6 concludes the paper. For convenience and self-containment of the
report App. B and C contain excerpts form authors previous work and describe basics of
WA and fast polynomial approximation, respectively.

*Institute of Control and Computation Engineering, Warsaw University of Technology,
Nowowiejska st 15/19, 00-665 Warsaw, Poland Phone: +48 (22) 660 7124, Fax: +48 (22) 8253719
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2 Overview

2.1 Approaches

First of the approaches discussed in this paper is trend identification. As it was assumed
that the weather factors influence only a variability of the total characteristics of the crop
yields time series, the natural step was to distinguish these variabilities. The ”‘extraction”’
is achieved by estimating a trend contained in the time series. Then the trend is subtracted
from the original time series data. After this operation further analysis is performed only
on variabilities in the original data (according to the assumption that these are caused by
weather factors). This approach eliminated the need to analyze influences by long-term
factors of crop variability like, e.g., fertilization or mechanization.

The second problem studied is periodicity identification. Since adding additional in-
formation to the analysis process usually implies better results, it is natural to seek for
this kind of information. In the case of time series a natural information, which one may
find, is seasonality occurring throughout the time series.

Last of the problems approached in this paper is time series forecasting. The idea of
forecasting is to assume what will be the state of a phenomenon in the future based on the
knowledge of its “behavior” in the past. If we possess good knowledge of this phenomenon
then we may apply various model-based or rule-based forecasting approaches. Otherwise,
the most commonly used methodologies are based on statistics, see e.g. (Aczel 1989). To all
these problems the wavelet transform (WT) based methodology was applied successfully
(mostly to improve the accuracy of the results).

The WT provides a representation of a time series in a different domain, e.g. the time
series of mean monthly temperature of Junes in Baldwin county in Alabama shown in
Fig. 1 is transformed into a set of coefficients presented in Fig. 2 by Discrete Wavelet
Transform (DWT).
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Figure 1: Original time series of mean monthly temperature of Junes in Baldwin county
in Alabama.

Wavelet domain may be considered as a set of a series of observation points (wavelet
coefficients) derived from the original time series based on a special single (but scaled
and modified) function. In Fig. 2 the Haar basic wavelet function is used. Each point in
each of these series may be interpreted as a difference of weighted (in the Haar based
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(a)

(b)

(c)

Figure 2: Result of sample wavelet transform of the original time series presented in Fig. 1.
Sub figures (c), (b), and (a) present values (vertical axes) of first three wavelet coefficients
sets for corresponding time points (horizontal axes).
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example weights are equal to 1) averages in neighboring intervals. In Fig. 2c each point
(wavelet coefficient) is a difference between two neighboring points. Fig. 2b shows wavelet
coefficients where each is a difference between two averages of two points “on each side”.
In Fig. 2a wavelet coefficients are equal to differences of averages of four points so 8 points
are considered to calculate each wavelet coefficient. A very important (although not always
used) feature of this transform is inversability, which means that the original data may
be reproduced by using wavelet coefficients. As the WT splits time series into short and
long term trends and allows to perform a multiresolutional insight into the time series, it
is natural to assume that the results enforced with wavelet analysis may outperform the
standard analysis approaches. All of the wavelet-based methodologies used here utilize an
analysis schema presented in Fig. 3.

 

Initial 

Analysis 

Wavelet 

Transformation 

Inverse Wavelet 

Transformation 

Closing 

Analysis 

Analysis 

Enforced 

with 

Results of 

Wavelet 

Transformation 

Figure 3: Schema of wavelet-based analysis flow.

After initial analysis (e.g. selecting appropriate length of the time series for wavelet trans-
form) of the time series it is transformed with wavelet transform. Next, an analysis is
performed on the resulting wavelet coefficients. Then, optionally, wavelet coefficients are
inversely transformed into the original time series space and final analysis is performed (e.g.
combining results of two inverse transform procedures). A bit more detailed introduction
to wavelet enforced analysis processes may be found in App. B.

2.2 Data

All experimental results presented in this paper are derived from freely available data sets
gathered for the territory of the United States of America. Weather data includes weather
station level monthly observation series of four following factors:

• precipitation,
• minimum temperature,
• maximum temperature,
• average temperature.

Crop data is available as a set of yearly series of yields (for this research two crops were
used, namely corn and wheat). Thus, we had to deal with a large data heterogeneity, both
spatial and temporal.

One of the activities performed during the data preprocessing phase was upscaling.
Weather station data was upscaled to the county level with simple rules using an ad-
ministrative map associating weather stations with counties. In most cases there was a
one-to-one correspondence between a weather station and a county. In cases where there
was more than one weather station in the county an average of measurements of particular
weather factors was calculated and assumed to be representative for the county. Analysis
was not performed for counties in which there was no weather station data available.

Another preprocessing issue was data quality. Although the quality of data is generally
acceptable, there is a certain amount of missing and suspicious values throughout all data



– 5 –

sets. In the reported research only the data, which contained full set of values for a certain
(relatively long) time interval was considered. Also a lot of discussions and time was
dedicated to analyzing China weather and crop yields data. Unfortunately, it turned out
that the data was too imprecise and its amount was not sufficient. Therefore it was decided
not to attempt analysis of weather impact on crop yields in China2.

In case of a trend identification the results established by the wavelet-based method-
ologies are compared with the results obtained on the basis of the well known, statistical
or analytical analyses. Some measures used for these evaluations are presented in Sec. 3.2.
Also time series forecasting problem has been similarly approached, that is the results of
applications of WA-based methodology have been evaluated with a measure by comparison
with other non-WA approaches.

3 Trend Identification

3.1 The Purpose

Changes in time series of crops may be divided into two groups. The first one will be
referred to as a trend and the second one as a variability. Factors which influence the first
one include, among others, quality and type of soil, fertilization, mechanization, etc. A
variability part observed “around” the trend is supposed to be mostly caused by weather
factors. As in this research the main consideration are weather factors, there is a need for
analyzing only a variability of time series. In time series of crop yields one may observe
certain general trends. Hence, a couple of trend identification methods are presented,
applied, and evaluated.

A desired trend is characterized by the following features:

• it should fit relatively well the corresponding data,
• it should be smooth enough to distinguish it from the original time series, and to

not represent fast changes,
• the impact coefficient (see 3.2.3) defined on top of this trend should have a distribu-

tion with a possibly small number of values far from 0.

Considering these desired characteristics it was decided to use three criteria groups. These
are fitness and smoothness measures of a trend and a distribution of an impact coefficient.
Therefore descriptions of those measures are provided in following subsections.

3.2 Trend Quality Measures

3.2.1 Fitness Measures

Fitness is one of the oldest measures, and a very important factor in trend analysis. Various
coefficients (e.g., MSE and r2) aim to denote how good is the fit. A list of measures along
with their short definitions used in this research, for evaluating accuracy of newly derived
time series, which target fitting the original time series, is provided below. These are some
of the standard coefficients used in various statistical approaches (Aczel 1989).

SSE =
T−1∑
t=0

(xt − x̂t)
2

mSSE =
SSE
T · x

2A more detailed description of available China data can be found in (Kotlowski 2007).
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wSSE =
T−1∑
t=0

1
xt

(xt − x̂t)2

All of these measures are applied (apart from the whole data set) to 95%, 90%, and 75%
of the best fitting estimated values.

3.2.2 Smoothness Measures

It is very useful to measure smoothness of a trend of a given time series. Generally, the
more smooth is the trend, the better it is, because the chance that it includes fast, local
changes is lower. Also one of the key elements of the algorithm described in Sec. 4 is to
determine how smooth each wavelet coefficients’ series is. Herein a measure applied to
evaluate the smoothness of the derived trends is proposed.

Let us once again consider a time series X of T observation points defined in locations
t = 0...T − 1. Now let us define a coefficient rt as:

rt =
∣∣∣∣∣∣∣∣xt −

xt−1 + xt+1

2

∣∣∣∣− ∣∣∣∣xt−1 −
xt−2 + xt

2

∣∣∣∣∣∣∣∣ , t = 2...(T − 2).

Consider Fig. 4. In case of a line (Fig. 4a) (which is the smoothest function, of course)
values of rt coefficients are equal to 0. In case of an arc (Fig. 4b) rt coefficients are also
equal to 0 as we assume that an arc function is smooth. For functions not containing line
and arc based shapes the values of these coefficients differ from 0.

(a)  
t0 t1 

t 

xt 

(b)  
t0 t1 

t 

xt 

Figure 4: Smoothness measure applied to (a) line and (b) arc.

Having the measure R1 defined as:

R1 = avgt (rt), t = 2...(T − 2),

and assuming that the smaller R1 gets, the smoother a time series is, both the line and
the arc are smooth with respect to R1,.

For analyzing the smoothness of the wavelet coefficients another measure may be de-
rived:

RWBK =
maxt (rt)−mint (rt)√

2j
, t = 2...(T − 2),
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and applied respectively on each wavelet level. In this case a spread (divided by the power
of two to the level j) of rt coefficients calculated from wavelet coefficients within each level
j is analyzed.

Both of these measures may be interpreted as an analysis similar to the analysis of
second derivatives.

3.2.3 Impact Coefficient

For a measure of impact of weather to crop yields an impact coefficient it

it =
xt − x̂t

x̂t
, t = 1...T,

is defined. Values of this coefficient may be divided into three groups, for which:
• it = 0, indicates no impact of weather to crop yields xt,
• it > 0, indicates a relative increase of yield due to impact of weather factors,
• it < 0, indicates a relative decrease of yield due to impact of weather factors.

This measure can also be used for evaluating trend quality: the smaller is the number of
values of it far from 0 the better trend is (as it explains the phenomenon better).

3.3 Standard Trend Identification Methods

In this subsection an example of trend identification is discussed on crop yields data. Fig. 5
shows an example of the original time series of corn in Alexander county in Illinois.
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Figure 5: Original time series of corn yields in county Alexander, IL

A linear regression (LR) 3 performed on this data is shown in Fig. 6.
Fig. 7 the results of a polynomial approximation (PA) applied to the same data set are
presented.

Other widely used trend identification methods include moving average, moving me-
dian, etc.

3.4 Wavelet Example

For fitting a time series, a direct gain is obtained by taking advantage of WT’s multires-
olutional analysis. By analyzing wavelet coefficients the analysis is performed on different
levels of specific aggregation. The results of applications of LR and PA to wavelet coeffi-
cients instead of to the original time series are illustrated in Fig. 8 and 9.

3Exhaustive description of linear regression and other statistical methods may be found in (Aczel 1989).
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Figure 6: Result of application of LR to time series presented in Fig. 5.
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Figure 7: Result of application of PA to time series presented in Fig. 5.
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Figure 8: Result of application of DWT enforced LR to time series presented in Fig. 5.
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Figure 9: Result of application of MODWT enforced PA to time series presented in Fig. 5.

3.5 Evaluations

Tables 1a and 1b summarize the results of evaluations of fitness of trends for the corn and
wheat data, respectively.
As it comes to the averages of fitness measures MODWT PA method provides the best
results.

Tables 2a and 2b show results of evaluations of the smoothness of the trends for the
data.
In case of smoothness the best-worse order of the methods follows: LR, PA, MODWT
enforced PA, DWT enforced LR.

Let us now look at the distributions of the impact coefficient. Plots of this factor for
different trends for corn and wheat are presented in Figures 10 and 11, respectively.
In most cases the distribution of the value of the it coefficient is around zero with a little
shift toward positive values. The number of values close to −1 or 1 is very small. The PA
method has more values concentrated around zero than in the case of linear regression.
Also MODWT based approach is better than the DWT based one. What is most important
that both MODWT and DWT based approaches outperform their non-wavelet equivalents.
From all of the methods MODWT PA has the best result concerning the impact coefficient
distribution.

3.6 Summary

In this Section methods pertinent to trend identification problem were discussed. Three
quality measures of a trend were presented. Theoretical part was followed by some exam-
ples which evaluated derived trends with proposed measures. In case of averages of two
measures, namely fitness and distribution of an impact coefficient MODWT PA approach
provided the best results. In case of a smoothness a linear trend is, of course the best. If av-
erages of all measures are considered DWT LR approach gets dominated by the MODWT
based one. All in all a general conclusion is that WA enforcement improves results of trend
fitting.

Moreover, three groups of approaches to evaluating trends are established. As a sum-
marizing remark we state that the proposed measures are good for our research needs.
However, in other applications as some of these measures present a contrary view to the
trend quality problem (e.g. in case of most real-life phenomena the more smooth the trend
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Table 1: Results of measuring fitness of derived trends for (a) corn and (b) wheat yields.

(a)

% MAX AVG MIN SD MAX AVG MIN SD MAX AVG MIN SD

100 27015,7 14042,8 6961,3 3366,8 489,9 187,9 73,0 78,3 5,046 2,458 1,145 0,758

95 17452,2 8499,7 4044,5 2347,4 273,5 98,7 40,6 40,1 3,742 1,560 0,661 0,547

90 13246,2 6114,5 2766,3 1767,7 206,1 71,6 24,1 29,6 3,073 1,195 0,456 0,436

75 5153,6 2424,1 1097,4 759,7 89,5 31,2 12,2 12,8 1,495 0,600 0,228 0,231

100 27491,9 14543,6 6877,5 3483,4 497,0 195,3 76,8 78,2 5,151 2,537 1,168 0,750

95 17581,5 8975,1 3706,5 2461,9 261,1 105,8 43,6 39,0 3,792 1,645 0,609 0,559

90 13561,9 6734,0 2796,4 1923,8 195,0 80,7 30,6 30,0 3,105 1,313 0,482 0,458

75 5915,1 2971,5 1240,9 907,9 96,1 39,3 13,8 14,9 1,573 0,730 0,261 0,256

100 31222,3 15172,1 7158,4 4140,8 590,3 208,4 78,7 95,0 5,872 2,649 1,248 0,870

95 18705,2 9102,2 4404,2 2661,2 298,9 106,8 44,6 44,7 4,052 1,667 0,738 0,604

90 14528,2 6638,4 3001,3 2008,9 203,6 79,1 29,8 34,4 3,239 1,293 0,544 0,482

75 5805,9 2767,8 998,9 948,1 114,1 36,2 10,9 15,9 1,708 0,681 0,252 0,272

100 31343,7 16467,7 7549,0 3969,5 600,4 228,4 88,9 93,8 5,925 2,869 1,282 0,836

95 18808,4 10153,2 4821,8 2565,0 290,3 123,1 51,2 45,5 4,057 1,857 0,911 0,590

90 14422,9 7591,6 3418,0 1934,5 227,9 93,6 40,1 33,3 3,215 1,476 0,651 0,464

75 7214,6 3415,1 1408,1 961,8 110,5 45,6 19,4 15,2 1,644 0,833 0,363 0,263

wSSE mSSE

Fitness Measure

SSE

MODWT 

Polynomial 

Approximation

DWT Linear 

Regression

Polynomial 

Approximation

Linear 

Regression

(b)

% MAX AVG MIN SD MAX AVG MIN SD MAX AVG MIN SD

100 2249,2 728,6 0,0 491,2 160,1 20,0 0,0 16,3 1,486 0,627 0,000 0,368

95 1246,3 476,8 0,0 320,0 36,3 12,4 0,0 8,6 1,100 0,447 0,000 0,264

90 1035,5 392,3 0,0 276,3 31,3 10,2 0,0 7,5 0,960 0,377 0,000 0,235

75 504,6 173,4 0,0 127,1 17,8 4,6 0,0 3,5 0,720 0,204 0,000 0,142

100 2024,6 770,1 0,2 512,3 96,4 20,7 0,0 14,2 1,479 0,667 0,002 0,348

95 1567,3 523,3 0,2 342,7 35,0 13,5 0,0 8,5 1,212 0,494 0,002 0,247

90 1387,2 437,5 0,1 296,6 30,3 11,3 0,0 7,4 1,106 0,426 0,001 0,221

75 758,5 208,9 0,1 145,2 18,1 5,5 0,0 3,7 0,771 0,254 0,001 0,138

100 2436,2 838,9 0,0 558,0 289,9 23,9 0,0 23,5 1,971 0,734 0,000 0,433

95 1599,7 542,6 0,0 365,0 40,4 14,1 0,0 9,8 1,757 0,516 0,000 0,313

90 1356,3 445,4 0,0 316,1 33,4 11,5 0,0 8,4 1,571 0,430 0,000 0,278

75 556,0 198,0 0,0 147,4 18,0 5,2 0,0 4,0 1,293 0,235 0,000 0,171

100 2654,0 1060,2 12,5 635,4 340,5 30,0 0,6 26,5 2,177 0,969 0,068 0,428

95 1697,6 707,0 12,5 410,0 42,3 18,5 0,6 10,3 1,789 0,713 0,068 0,306

90 1490,4 584,3 4,4 362,4 38,5 15,3 0,2 9,4 1,533 0,595 0,027 0,289

75 704,0 277,4 2,6 173,7 20,4 7,3 0,1 4,6 1,193 0,352 0,019 0,189

MODWT 

Polynomial 

Approximation

DWT Linear 

Regression

Polynomial 

Approximation

Linear 

Regression

Fitness Measure

SSE wSSE mSSE

Table 2: Results of measuring smoothness of derived trends for corn yields.

(a)

MAX AVG MIN SD

Original 13,7934 9,6378 6,3803 1,3908

MODWT Polynomial Approximation 1,8009 0,7645 0,3302 0,2583

DWT Linear Regression 3,4123 1,3536 0,4115 0,4940

Polynomial Approximation 0,1701 0,0171 0,0000 0,0287

Linear Regression 0,0000 0,0000 0,0000 0,0000

Smoothness Measure

BKSM

(b)

MAX AVG MIN SD

Original 6,7308 3,8718 0,9500 1,0866

MODWT Polynomial Approximation 5,7500 1,0361 0,2048 0,8080

DWT Linear Regression 5,0641 1,2319 0,2080 0,6877

Polynomial Approximation 5,7500 0,4192 0,0000 0,9370

Linear Regression 0,0000 0,0000 0,0000 0,0000

Smoothness Measure

BKSM
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Figure 10: Distribution of values of it for corn, for (a) MODWT PA, (b) DWT LR, (c)
PA, and (d) LR, respectively.
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Figure 11: Distribution of values of it for wheat, for (a) MODWT PA, (b) DWT LR, (c)
PA, and (d) LR, respectively.
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will be the worse fit to the original time series it will have) some extensions could be
considered. E.g. the “final” choice of the best trend may be made with a multi-criteria
approach (Wierzbicki 1980).

4 Periodicity Identification

4.1 The Purpose

This Section focuses on the weather data and seeks for the methodology to identify po-
tential periodicities which then may be used in further analyses. For example in various
forecasting algorithms one needs to specify the length of the season. If this information
is not known or not easily derivable it is necessary to provide a tool for periodicity iden-
tification. Herein a description of such a method (based on wavelets) is provided and
experimentally verified.

4.2 The Methodology

DWT and MODWT consider only scales which are powers of 2 but for periodicity identi-
fication it is desired to detect any potential lengths of season, e.g. 3, 4, 5, 6, 7, 9, 10, 11,
12, 13, 14, .... As shown below especially loss of a length of 12 is not desired. Therefore,
D2DWT is used as WT. D2DWT transform calculates wavelet coefficients on all levels (i.e.
not necessarily of power of 2) and as a result any possible period length may be discovered
with this methodology.

Six main steps of this approach are:

• D2DWT transform of a time series,
• calculate smoothness measures for all wavelet coefficients series,
• determine local minimums of smoothness,
• select number of wavelet level for which the local minimum was also found for wavelet

coefficients series of multiplied level,
• repeat above steps for all available series of the phenomenon,
• select most frequently occurring number of wavelet level (in case of a very equally

distributed values it is considered that there is no seasonality).

This may be expressed by the following algorithm (for notation see p. viii):

Algorithm 4.1: waveletPeriodicityIdentification(X, J)

for each time series X of a given phenomenon

do



W̆← D2DWT of X
for each W̆j ⊂ W̆

do

{
Rj ← smoothness of W̆j

according to a given smoothness measure (in this case RWBK)
PeriodLengthX ← j of the best of Rj ,

according to the criterion provided together with the measure
Period← most frequent value among PeriodLengthX

or return 0 if the frequency distribution is flat
return (Period)

Level number Period returned by an above described algorithm is a detected length of a
period for a given phenomenon.
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4.3 Illustrative Example

The first example shows that the proposed methodology is verified on the seasonal time
series of monthly precipitation observations. Fig. 12 shows the original time series of these
observations.
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Figure 12: Original time series of precipitation in Bartholomew county in Indiana.

Fig. 13 presents several D2DWT wavelet coefficients series and Tab. 3 contains results of
smoothness measuring for this time series but more calculations is done for all the available
data.
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Figure 13: D2DWT coefficients series calculated from time series from Fig. 12. Length of
season equals 7 and 12, respectively.

The results show that the smallest repeatable local minimum in values of the smoothness
measure is for wavelet coefficients series of length 12. Fig. 14 shows a seasonal decompo-
sition of a sample time series for which seasonality seems not very obvious. The result of
12 month periodicity was observed for a majority of time series so the final conclusion is
that there is a yearly seasonality in precipitation data.

This experiment has been performed for all series of weather parameters on the whole
available database. As a result it occurred that the most frequent value of a season length
is 12. This is consistent with the general knowledge.

Additional experiments were performed on various profiles and aggregations of the
weather parameters’ data. Values of season length were equally distributed for all weather
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Table 3: Results of measuring smoothness of wavelet coefficient series for time series from
Fig. 13

Length Smth. Length Smth. Length Smth. Length Smth. Length Smth.

1 358,714 16 87,524 31 65,644 46 52,591 61 43,605

2 272,139 17 86,042 32 62,453 47 52,017 62 46,439

3 209,213 18 86,519 33 59,493 48 48,503 63 45,321

4 176,392 19 81,353 34 62,224 49 52,204 64 42,624

5 153,477 20 77,963 35 59,503 50 50,216 65 45,543

6 146,354 21 75,439 36 59,663 51 50,464 66 43,936

7 139,688 22 76,351 37 58,869 52 48,912 67 44,553

8 125,069 23 77,98 38 58,122 53 48,659 68 41,303

9 119,962 24 68,23 39 56,214 54 51,26 69 45,067

10 113,659 25 69,661 40 54,978 55 49,492 70 43,164

11 107,548 26 69,882 41 56,591 56 49,962 71 42,29

12 97,091 27 69,967 42 56,899 57 47,495 72 41,562

13 98,036 28 65,968 43 55,911 58 45,451 73 41,104

14 94,33 29 64,132 44 52,65 59 46,334 74 41,398

15 92,612 30 66,44 45 52,627 60 43,644 75 40,976

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

1970 1971 1972 1973 1974

Figure 14: Decomposition of precipitation time series from Fig. 12 into seasons (first five).



– 16 –

factors so the conclusion is that there was no other periodicity information discovered.

4.4 Summary

The goal of this analysis was to discover various lengths of periodicity (season) for all con-
sidered weather factors, i.e. precipitation and maximum, mean, and minimum monthly
temperatures. A periodicity identification method based on wavelet transform was intro-
duced. It was applied to the U.S. weather data upscaled to the county level. The only
periodicity detected is 12 months long; it was found for all considered weather factors,
and obviously correspond to the common knowledge. The lack of longer (multi-year) pe-
riodicities provides arguments for disputes on multi-year weather seasonality.

5 Forecasting

5.1 The Purpose

This Section elaborates on possibilities of forecasting crop yields. Knowing the future yields
could vastly improve planning in various areas, e.g. consumer market, food processing
industry, trade.

Forecasting has been fascinating humanity since a very long time. First noticeable
attempts we performed in Japan in 14th century (Murphy 1986). Currently a very popular
approach to forecasting derives from Charles Dow’s theory (Rhea 1993). History based
forecasting applications in the stock market area are nowadays called technical analysis.

Herein a wavelet-based methodology of forecasting is presented. It is also compared
with two simple standard approaches. Evaluation is performed based on the errors of
forecasts.

5.2 Standard Forecasting Methods

The are various forecasting methodologies used in many areas of applications. Let us
consider an example data shown in Fig. 15.
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Figure 15: Original time series of corn yields in Webster, Iowa.

Below there are the series of results of methods using linear (Fig. 16) and polynomial
(Fig. 17) extrapolations.
Please keep in mind that we consider a series of forecasts and therefore, the forecasts’ plot
presented in Fig. 16 not necessarily has to be a straight line.
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Orig. Linear Forecasts

Figure 16: Result of forecasts of time series presented in Fig. 15 by linear extrapolations.
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Figure 17: Result of forecasts of time series presented in Fig. 15 by polynomial extrapola-
tions.
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5.3 Direct Wavelet-based Approach

The essence of wavelet based forecasting is that approximation and extrapolation of time
series are applied for each level in a wavelet space. Inversely transforming wavelets together
with their forecasts back to the time series space provides a forecast of the original time
series. This procedure is organized by Alg. 5.1 (see p. viii for the notation).

Algorithm 5.1: waveletForecast(X, J)

W̃← MODWT of X
for each W̃j ⊂ W̃

do


Ẽj ← extrapolation of W̃j

W̃′
j ← W̃j ∪

{
Ẽj

}
Wj ← an orthonormal (for level j) subset of W̃j containing Ẽj

X′ ← iDWT from all Wj

E ← X′ \ X
return (E)

In order to forecast the wavelet space coefficients similar methods to those used in
direct time series forecasting can be applied. Because these methods are applied many
times it is important to be aware of their computational complexity.

In this case a forecast of the mean temperature is attempted. Fig. 15 presents the
original time series which is going to be forecasted.
Fig. 18 shows the results of series of forecasts performed using the described methodology.
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Figure 18: Result of forecasts of time series presented in Fig. 15 by MODWT-based method
with linear extrapolation.

5.4 Evaluations

Tables 4a and 4b summarize the results of the forecasting methods for corn and wheat
respectively based on the errors of forecasts. The following notation is used:

• MAX - maximum error,
• AVG - average error,
• MIN - minimum error,
• SD - standard deviation.
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Table 4: Results of evaluations of MODWT linear, polynomial, and simple linear forecasts
for (a) corn and (b) wheat.

(a)

MAX AVG MIN SD

MODWT Linear Forecasts 1,572 0,133 0,000 0,147

Linear Forecasts 1,821 0,140 0,000 0,166

Polynomial Forecasts 2,428 0,176 0,000 0,202

(b)

MAX AVG MIN SD

MODWT Linear Forecasts 1,058 0,148 0,000 0,139

Linear Forecasts 1,123 0,162 0,000 0,146

Polynomial Forecasts 11,399 0,789 0,004 1,493

It may be easily seen (as it is a case for all of above mentioned measures of error) that the
best accuracy of the forecast is established using wavelet based methodology. The worst
results are coming from the polynomial extrapolation. The reason for this is that the
polynomial approximation may fit very well at the ends of approximation intervals, and
as a result extrapolation may be misled for values far from the maximum and minimum
values of the time series.

5.5 Summary

This Section provided a description of enforcing forecasting methods with WT. Two tra-
ditional approaches and a wavelet-based method based on one of them (the linear) are
explored and evaluated. WT enforced methodology provided better results in terms of the
used measures of forecasts’ quality.

6 Conclusions and Further Studies

6.1 Conclusions

This paper describes several methods utilizing wavelets and their application to analysis
of time series of crop yields and weather factors. Possibilities of application of wavelets
were explored and positively verified to the following problems:

• trend identification,
• periodicity identification,
• forecasting.

For the trend analysis wavelet-based methods provided a better fit to the original data
than the other methods used for this purpose. Also the distribution of an impact coefficient
defined on top of WA-based trends had better characteristics.

Periodicity identification method found a yearly seasonality which is commonly known.
It did not find any other periodicities what according to the experts is a positive result.

The forecasting method resulted with better quality of forecast with respect to applied
measures when using wavelet-based approach.

It is worth mentioning that a special Data Analysis Framework was prepared for the
purpose of this research. This framework consists of almost 100 classes implemented in
Java language. Classes are designed based on modified JavaBeans specification and comply
with a high reusability paradigm. Each of these classes is designed for a special purpose,
e.g. to perform a Haar DWT, MODWT forecast, polynomial approximation, and many
others.
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Also current status of the research has some limitations which are a direct impulse
for further work on this topic. Those limitations include, but are not limited to: lack
of consideration of spatial variability of precipitation and landscape, soil buffering, or
irrigation. Also the water deficit should be used directly instead of precipitation as the
latter only indirectly and imprecisely captures the deficit.

Finally during the reported research it was found that the weather data aggregation
to the monthly level may be too coarse. Monthly level aggregation looses too much in-
formation about quick changes in the weather factors. Especially in case of WA, which
performs its own aggregations of a specific type, this loss is even bigger. E.g. in hydrology
for weather data a 10 day aggregation is used.

6.2 Possible Further Studies

The reported research has shown the potential of wavelet-based methods for data analysis
and provides a good basis for further investigations. Below some possible activities are
summarized.

Particularly analysis of spatial aspects of quality distributions of trend approximations
and forecasts seems to be very interesting. However interpretation of results of this analysis
would require either an insight into the explored domain or an interaction with domain
experts.

Another forecasting method could be also applied and tested for quality. This method
is described in (Kozlowski 2004) and uses information about seasonality (e.g. derived from
the periodicity identification approach). It is highly probable that its application to the
seasonal weather data would provide good results.

Moreover, there is an issue with data correctness. To address this problem one should
explore methods of outliers identification and handling missing data. Hence, in the prepro-
cessing phase of the research two wavelet-based outliers identification methods described
in (Donoho and Johnstone 1995) and (Kozlowski 2005) could be applied and missing values
treatment with wavelets could be investigated.

As the research was performed parallely and in cooperation with two other YSSP
2005 participants (Hai Nguyen and Wojciech Kot lowski) it would be good to join the
results and explore possibilities of common applications of all the approaches. Hai has
been using sliding windows technique and Wojciech applied rough sets and decision rules.
The dependences and possible future collaboration areas between these researches are
illustrated in “Joint Research Overview Diagram”, in Fig. 19.

Considering the last concluding remark summarizing the results (weather data ag-
gregation) another natural step would be to perform analysis with data of lower level
aggregation. Most preferable, in case of WA enforced methodologies, would be a daily
collected data.

Another possibility of extending this research is a big extension of evaluations of pre-
sented methodologies. Especially a comparison with a spectrum of standard methodologies
should be performed.

Finally, a continuation of this study could exploit legacy of a quite sophisticated soft-
ware developed during the Summer 2005.
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Appendices

A Joint Research Overview Diagram
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Figure 19: Joined research overview diagram showing dependences and areas of possible
future collaboration with two other YSSPers, namely Hai Nguyen and Wojciech Kot lowski.
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B Wavelet Analysis

B.1 Wavelet Background

As a beginning of wavelet methodologies we consider year 1909 when Hungarian mathe-
matician Alfred Haar introduced a two-state function in appendix to his doctoral thesis
published later on (Haar 1910). Today a slightly modified version of this function is re-
garded as the first basic wavelet function. Wavelet founded methods began to develop very
quickly in the 1990s and turned out to be very useful for analysis of many problems, e.g.
including analysis and synthesis of time series (Percival and Walden 2000) (in acoustics,
geology, meteorology, and economics), effective data storage, especially images (Prasad
and Iyengar 1997) (computer graphics, movie industry). Lately a very fast development
of wavelet-based data mining (see e.g. (Li, Li, Zhu and Ogihara 2003)) techniques may be
observed.

B.2 Wavelet Functions

Wavelets are functions having nonzero values in a relatively short interval. In this regard
they differ from “normal”, long waves (such as sinusoids) which are determined on a whole
time domain (−∞,∞). Let ψ be a real function of a real variable u, which satisfies two
conditions:

∞∫
−∞

ψ(u)du = 0 (1)

and

∞∫
−∞

ψ2(u)du = 1. (2)

Condition (2) means that for any ε from an interval (0, 1) there is an interval (−T, T )
such that:

T∫
−T

ψ2(u)du = 1− ε.

If ε is close to 0, it may be seen that only in an interval (−T, T ) corresponding to this ε
values ψ(u) are different than 0. Outside of this interval they must equal 0. Interval (−T, T )
is small compared to an interval (−∞,∞), on which a whole function is determined.
Condition 1 implies that if ψ(u) has some positive values, it also has to have some negative
ones (a function “waves”). Therefore Eqs. (1) and (2) introduce a concept of a small wave,
conventionally called wavelet. If Haar function φ, which is a two-state function of real
variable (Fig. 1a):

φ(u) =


−1 for −1 < u ≤ 0
1 for 0 < u ≤ 1
0 otherwise

would be transformed into:

ψ(H)(u) =


− 1√

2
for −1 < u ≤ 0

1√
2

for 0 < u ≤ 1
0 otherwise
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then the resulting function ψ(H) satisfies conditions (1) and (2), and is called Haar basic
wavelet function (Fig. 1b).

B.3 Wavelet Transform

In this report only discrete wavelet transforms are considered. Having an original time
series X and a function ψ on the input, wavelet transform (WT) results in a vector W of
wavelet coefficients and scaling coefficient(s). These coefficients are calculated at different
wavelet levels j (using different scales λ) and in a wide range of locations t. Wavelet
coefficients are grouped into level corresponding vectors Wj ⊂W. For each level a vector
Wj consists of Ij Wj,i wavelet coefficients (i = 0, ..., (Ij − 1)). The last element of a vector
W is a vector VJ

There are many different WTs. Two most often applied are (orthonormal) discrete
wavelet transform (DWT) (results are shown in Fig. 2) and its slightly modified version
which preserves scales but calculates wavelet coefficients in more densely chosen locations
- maximal overlap discrete wavelet transform (MODWT) (results are shown in Fig. 20).
For periodicity identification a dense level discrete wavelet transform (D2DWT) is used
(results are shown in Fig. 21), which is a modification of MODWT that calculates wavelet
coefficients for all possible wavelet levels without respect to the power of 2 constraint.
First wavelet coefficients set of D2DWT is the same as the first one of the MODWT.
Sets (b) and (c) do not appear in MODWT. Set number four (not shown in Fig. 21) of
D2DWT is the same as set (b) of MODWT (shown in Fig. 20).

For a DWT Mallat (Mallat 1989) proposed a very fast algorithm for calculating wavelet
coefficients. With minor modifications it may be applied to other wavelet transforms.

An important feature of DWT is that it may be reversed by an inverse Wavelet Trans-
form (iWT). Original time series can be calculated from wavelet coefficients. This possibil-
ity is fundamental for almost all relevant current wavelet applications. Of course each WT
has its own implementation of iWT so with transforms DWT, MODWT, and D2DWT
inverse transforms iDWT, iMODWT, and iD2DWT are applied, respectively.

Most of the currently applied methodologies using wavelets base on a following schema:

• transformation of an original signal to the wavelet space is done,
• desired analysis is performed on wavelet coefficients resulting from the first step,
• newly established wavelet coefficients are transformed into the starting point space.

This schema (illustrated in Fig. 22) applies to all methodologies used throughout the re-
search presented in this report except for periodicity identification (see Sec. 4) methods,
which take an advantage of a multiresolutional analysis provided by wavelet transform to
derive results in the original space, but do not require a inverse transformation (Fig. 23).
This second approach uses information revealed by wavelet domain to directly draw con-
clusions about the time series in the original space.
The research described herein uses a Haar DWT, Haar MODWT, and Haar D2DWT as
WTs. Haar iDWT and Haar iMODWT were applied as iWTs, respectively.



– 25 –

(a)

(b)

(c)

Figure 20: Wavelet coefficient sets of MODWT of time series presented in Fig. 1. Sub
figures (c), (b), and (a) present values (vertical axes) of first three wavelet coefficients sets
localized in time (horizontal axes).
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(a)

(b)

(c)

Figure 21: Wavelet coefficient sets of D2DWT of time series presented in Fig. 1. Sub
figures (c), (b), and (a) present values (vertical axes) of first three wavelet coefficients sets
localized in time (horizontal axes).
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Figure 22: General diagram describing the idea of most wavelet-based analysis methods.
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Figure 23: General diagram describing the idea of wavelet-based analysis methods, which
do not take an advantage of the wavelet transform’s inversability.

C WT Dedicated Polynomial Approximation

When using WT for e.g. trend identification or forecasting number of calculations of trends
increases due to the characteristics of a WT. Therefore the computational complexity of
used methods is very important. Herein a method of linear order of complexity for poly-
nomial approximation is presented, that was developed for the use inside a WT enforced
algorithms (Kozlowski 2004).

We look for approximation yi =
N∑

n=0
anx

n
i of y = f(x). The approximation’s accuracy

criterion is usually defined as:

K =
I∑

i=1

(
N∑

n=0

anx
n
i − yi)2

Its value should be minimized, therefore:

∂K

∂aj
= 2

I∑
i=1

xj
i (

N∑
n=0

anx
n
i − yi) = 0, j = 0, 1, ..., N.

Hence:

I∑
i=1

xj
i (

N∑
n=0

anx
n
i − yi) =

=
N∑

n=0

an

I∑
i=1

xn+j
i −

I∑
i=1

yix
j
i = 0, j = 0, 1, ..., N,

what may be presented as follows:
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

I∑
i=1

x0
i · · ·

I∑
i=1

xN
i

I∑
i=1

x1
i · · ·

I∑
i=1

xN+1
i

...
...
...
...

...
I∑

i=1
xN

i · · ·
I∑

i=1
x2N

i




a0

a1
...
aN

 =



I∑
i=1

yix
0
i

I∑
i=1

yix
1
i

...
I∑

i=1
yix

N
i


.

Having:

Āk =
I∑

i=1

xk
i , k = 0, 1, 2, ..., N, ..., 2N − 1, 2N (3)

and:

Bn =
I∑

i=1

yix
n
i n = 0, 1, ..., N, (4)

a following system of equations:
Ā0 Ā1 · · · ĀN

Ā1 Ā2 · · · ĀN+1
...

...
...
...
...

...
ĀN ĀN+1 · · · Ā2N



a0

a1
...
aN

 =


B0

B1
...
BN

 ,
is derived, where we want to evaluate elements an, n = 0, 1, ..., N .

Having:

A =


Ā0 Ā1 · · · ĀN−2 ĀN−1 ĀN

Ā1 Ā2 · · · ĀN−1 ĀN ĀN+1
...

...
...
...
...

...
...

...
ĀN ĀN+1 · · · Ā2N−2 Ā2N−1 Ā2N

 ,
A may be noted as A = [Ai,j ](N+1)x(N+1), where:

Ai,j = ĀiN+j i, j ∈ {0, 1, ..., N}.

By replacing an n-th column of a matrix A with a column of (single columned) matrix
B:

B =
[
B0 B1 · · · BN

]T
,

matrix Cn is established:

Cn =


A0,0 · · · B0 · · · A0,N−1 A0,N

A1,0 · · · B1 · · · A1,N−1 A1,N
...

...
...
...

...
...
...
...

...
...

AN,0 · · · BN · · · AN,N−1 AN,N

 .
Value an may be derived from a formula:

an = |Cn|/|A| n = 0, 1, ..., N,
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where |A| and |Cn| are principal determinants of matrices A and Cn respectively.
Expanding a determinant |Cn| by an n-th column, results in:

|Cn| =
N∑

j=0

(−1)jBj |Djn| ,

where |Djn| are determinants of a matrix Djn derived from Cn (or from a matrix A) by
removing its j-th row and n-th column, therefore:

an =
1
|A|

N∑
j=0

(−1)jBj |Djn| n = 0, 1, ..., N.

Having xi = i, i = 1, 2, ..., i, ..., I approximation problem of any discrete time series
can be replaced by an equivalent problem of approximation of a time series with the same
values but on a set I = {1, 2, ..., i, ..., I} (subsequently one can go back to the original time
series). Thus (3) and (4) may be replaced by:

Āk =
I∑

i=1

iki , k = 0, 1, 2, ..., N, ..., 2N − 1, 2N,

and:

Bn =
I∑

i=1

yii
n, n = 0, 1, ..., N,

respectively.
As a result values |A| and |Djn|, i, j ∈ {0, 1, ..., N} become equal (for all time series

transformed in an above described way). Those values could therefore be calculated only
once and stored. Likewise when calculating values Bn dependent on y, n = 0, 1, ..., N
subsequent natural numbers’ powers may be obtained from an adequate table.

The described method allows for a substantial decrease of computational time because
it provides a polynomial approximation algorithm of discrete signal with linear, considering
a degree of a polynomial and length of a time series, order of complexity. It may be applied
within any WT driven process without increasing its own (in most cases linear) order of
computational complexity.
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