
A FRESH APPROACH TO DATA BASE MANAGEMENT SYSTEMS
PART II: EXTERNAL SPECIFICATIONS FOR THE TEXTAG DBHS

Wm. Orchard-Hays

December 1978 ~'i1P-78-65

Working Papers are internal publications intended
for circulation within the Institute only. Opinions
or views contained herein are solely those of the
author(s>.

2361 I
Laxenburg International Institute for Applied Systems Analysis
Austria

Contents

Section

FOREWORD

loU
1.1

I l'JTRODucrrIOt~

Typing Conventions in This Document

Pa~

1

2
4

2.0

2.1
2.2
2.3
2.4
2.5

2 . 5.1

3 0
3.1
3.2
3.3

FORM AND STRUCTURE OF THE DATA BASE
AND BASIC CO~MANDS 5

Allowable Datum Forms and Pairing of Numbers 5
Node Structure 8
Search Paths, Identifiers, Locators, Implicit Se~s 10
The Nature of Information 15
Defining an Inferior Set 17
Attachments to a Node: Annexes and ~rrays 20

Ij~ORKING STORAGE, VARIABLES AND ARRAYS 23
Variables and Prefixes; References to Node Values 23
Arrays, Node Attachments and Annexes 27
Indirect References 30

4 .0
4.1
4,2
4.3
4.4
4,5
4.6

5 0
5.1
5.2

5.2.1
5.3

BASIC OPERATIONS AND FUNCTIONS
Arithmetic Operators and Form Conversions
Numerical Functions
Relational and Boolean Operators
Order of Execution of Unparenthesi~ed Expressions
Symbolic Functions and Operator '
Other Functions

REFERENCES TO ELEMENTS OF ARRAYS
Numer ic and Automatic' Indexing (except Tables)
Indexing of Tables. Automatic Symbol Matching
Use of Dummy Arrays for Summing
The LOOP and CONTINUE Commands

31
31
33
34
36
37
41

43
43
47
50
51

FILES: CARD-IMAGE, MACROS, INTERNAL, OTHER
The Concept of Decks in External Files

9.0 COMPLETE LIST OF COMMANDS
9.1 Invoking and Initiating TEXTAG

9.1.1 Loading an Annex

6.0
6.1

7. 0
7.1
7.2

7.2.1

8 {)
8.1

SEARCH CONSTRUCTIONS
Find Commands
The SEARCH Command
Illustrative Example

REPORTING FACILITIES
Use of Annexes

of SEARCH

54
56

58
58
60
65

67
68

69
70
71

-i-

9.2
9.2.1
9.2.2
9.2.3
9.2 4

9.3
9.4
9.5

9.5.1
9,5 2
9. 5.3

9 6
9.6, 1
9 6.2
9.6.3
9.6.4

9. 7
9 7.1
9 7.2
9.7. 3
9.7 4

9.8
9.8.1
9.8.2
9.8.3
9.8.4
9.8. '5
9.8.6
9.8.7
9.8.8

Execution Control Commands
Subroutine Loading and Macro File Declaration
Transfers of Control in a Deck
RUN, QUIT, EXIT, ENDATA and Interactive Responses
Usinq Subroutines and Host Facilities
Array Packet Commands and Subcommands
Node Definition; Creation, Deletion and Searching
General and Special Assignment Statements
CVTR Command
DIMEN Command
TIME Command
Miscellaneous Commands
MSGCLASS
SET and QUERY
DISPLAY and REPORT
LOCATE, SCAN and CHANGE
Array Forming and Management Commands
The DELETE Command
The ENFILE and REPLACE Commands
The RECALL Command
The ERASE Command
Report Generation
The PAGE Command
The NOTE Command
HEADING and FOOTING Commands
FORMAT Statements
The PRINT Command
The PUNCH Command
The AUTOFORM Command
AUTOFORM Var iants '

72
72
73
75
77
79
80
84
85
86
87
88
88
89
91
93
94
95
95
96
96
97
97
98
98
99

101
102
103
106

APPENDIX A: Details of The Form Command

APPENDIX B: The READMOD Command: Formats and Rules

APPENDIX C: Rules for Creation and Use of Macros

APPENDIX 0: Declaring User1s Internal Files

APPENDIX E: Use of the LOAD Command

APPENDIX F: Restructuring an Old Data Bank

APPENDIX G: CMS Commands Executable from TEXTAG

-ii-

A FRESH APPROACH TO DATA BASE MANAGEMENT SYSTEMS

Wm. Orchard-Hays

FOREWORD

This is the second part of a two-part paper. In Part I,

more general considerations for a data base management system

were discussed. In this part, detailed external specifications

for a particular DBMS are presented. A few additional observa­

tions of a conceptual nature are also made.

A few definitions given in Part I are used here without re­

statement. The reader may find it necessary to refer to the ear­

lier part for the definitions of dat~~ (plural "datums") and

their distinction from data, ~ttribut~, i~em, Eee£ gr~~E~ and

inferior sets.

-1-

1.0 INTRODUCTION

The DBMS presented here is a system for creating, maintain­

ing and using data banks of wide diversity, but primarily for

highly-structured, ':refined" data. The capacity depends, of

course, on the underlying (host) computer system on which it is

implemented. The design dep~nds on an interactive host which is

also assumed to have various peripheral devices in addition to a

reasonably high-speed central processor with good character han­

dling capability and large, fast storage devices such as disks or

drums The system itself is intended to be permanently available

on an attached storage device together with users' files.

Although tne system has its own specialized filing subsystem,

this in turn is dependent on good file-handling capabilities in

the basic hardware and software. Provision is made for use of

magnetic tapes for back-up storage and mass transfers but normal

operation requires random-access devices.

The system is not merely an unsubstantiated proposal. An

existing system for a specialized area 'may be regarded as the

prototype of TEXTAG. All the techniques implied by the external

specifications given in the sequel have existing, working coun­

terparts in the prototype system. The question is not whether

the TEXTAG system can be effectively and rather inexpensively im­

plemented -- it can be on at least one host system -- but whether

it will provide a useful general capability for data management.

The prototype system has proven extremely effective in one appli­

cation area and TEXTAG will have modified or additional features

of greater generality, without some of the narrow specializations

of the prototype. This does not prove TEXTAG's overall applica­

bility and convenience, of course. This document should provide

the means of desk-checking, so to speak, possible applications.

However, no such system can be fully appreciated without trying

it with a live implementation.

The prototype system was implemented on an IBM 370 under

VM/CMS. To avoid vagueness and hedging on some operational

matters, TEXTAG is presented as though implemented on the same

-2-

host. (Undoubtedly, the first implementation should be to take

advantage of a large body of existing computer code which is ap­

plicable and well-tested.) Clearly, other suitable host systems

exist and, for the most part, implementation on one of them would

not affect TEXTAG capabilities or language. The main exception

to this might be in the declaration and accessing of files, and

the related matter of loading user-provided subroutines from a

subroutine library. The latter is an important capability which

host systems do not make too easy to effect. The existing proto­

type system has this feature but certain practical ~imitations

exist. The prototype system is not portable in general though

adaptation to a couple of other makes of computers would be rela­

tively easy.

The name TEXTAG could probably be given several different

acronymic interpretations. In fact, however, it is formed from

two proto-Indo-European roots: teks meaning to weave or fabri­

cate, and ~~g: meaning to arrange or set in order. These two con­

cepts reflect the central purpose of the system and, roughly, the

kind of resulting construct. Data must be arranged and it must

be threaded into a pattern that renders it useful, that is, a

data bank must be fabricated, both from actual data and from the

relationships perceived in and imputed to it. The analogy to

weaving is thus not so far-fetched.

The presentation is conversational in style. Concise sum­

maries for reference are given in appendices. Section 9 gives

the complete set of commands but grouped functionally. Insofar

as possible, displays such as prompting or instructional text

produced by the system will be identical to those used herein.

After reading this document, a prospective user should already

have a feel for the system's style and be somewhat at horne on

first use of it. Explaining a DBMS in some language completely

different from that used by the system itself would be a foolish

impediment to the purpose. The conventions used snould be readi­

ly understandable to anyone with some experience in common com­

puting practice.

External representations of numbers are essentially those of

-3-

FORTRAN but used more or less indifferently. For 'nonnumeric da­

tums, single quotes enclosing a datum always mark it as nonnumer­

ic, i.e., a character string. An unenclosed string which looks

like a number is always taken as a number.

1.1 ~y~ing Conventions in This Do~~~en~

Certain conventions over and above a language are necessary

for discussing the language. (These are sometimes called a

meta-language.) The following are used in the sequel.

A vertical bar denotes

(1) OR in the sense of union. Thus if a and b are sets,

alb denotes their union.

(2) OR in the sense of either. Thus if a,b,c denote op­

tional values or sets, albic means anyone of or any

member of anyone of a or b or c may be used.

The sense (1) is used only in Figure 1 in the next sec­

tion which defines primary datum forms. Thereafter, a

form set is referred to only as a form and denoted by

it letter-name.

[] denotes optional.

denotes "more of the same" as what preceded.

{} denotes a set (except in Figure 1).

a, ... ,b denotes "from a up to b" where the sequence is obvi­

ous or explained on the side.

upper-case is used for explicit command names, ~orm designa­

tors, key words and the like. Upper-case is also used

for an explicit example. Lower-case is used for a gen­

eral example. Thus "A" is an example of "letter". Use

of upper and lower case herein should not be construed

as indicating actual typing of statements. Typing con­

ventions are largely functions of the terminal and

host.

-4-

2.0 FORM AND STRUCTURE OF THE DATA BASE AND BASIC COMMANDS

We begin this section by defining the complete set of all

possible datum forms and build up structures from there. The

term root refers here to the main node of the data bank, which is

defined automatically when a data bank is initiated.

B bit (0 , 1)

X hex byte,RJ (0,1, ... ,255)

I integer, RJ (-32767, ... ,32767) 2s-complement
,

E short floating-point 0.01±,(16~-15,.. ,16~30) precision 16~-6

F full floating-point 0.01±.(16~-15,.. ,16~30) precision 16~-14

L letter char ($,a,b, ... ,z)

D digit char (0,1, ... ,9)

A alphanumeric char . I LID

C any printable char

N symbol (name) L [A ...] max of 8 , LJ

W word (no internal I) .C[C ...] I max of 8, LJ

S string (no intrnl ') 'C[C ...]' max of 255, as is
p pointer to array N

R reference to text N

Figure 1: Allowable Datum Forms

2.1 ~ll~waQ1.~ Datu!!! ~orm~ an9. ~air.lr.!9. Qf Nu~Q~!"..~

In Fig.l, all allowable datum forms are shown, where a vert­

ical bar is used to indicate OR in the sense of union. Thus the

set of alphanumeric characters, A, is the union of the period,

the letters and the digits. Parentheses enclose actual members

of a set, abbreviated by use of dots between lowest values and

the highest value. The order shown is the sort order. A symbol

(form N) must start with a letter and may o?tionally have up to

seven additional characters from the set A.

Note that all sets are finite, even though the full set of

-5-

printable characters is not shown and hence the cardinality of

forms Wand S cannot be precisely determined. More importantly,

the floating-point forms are finite in both range and precision.

Form E, for example, has a cardinality of

11*227_83 = 1.4*10 9 approximately

or less than one and a half billion values to cover a range of

about 2*10 36 . By contrast, form N has on the order of 1012

members and yet any two are clearly distinguishable. This dis­

tinction between representation and so-called "real" numbers

should never be forgotten. Note also that use of form F (REAL*8

in IBM FORTRAN) gives about 4*10 12 additional values between

every adjacent pair in set E. This makes clear the importance of

./ double pr ec i sian" in manx kinds of numer ical cal cula tions.

The forms defined in Fig.l are internal forms but they are

essentially the external forms also with the following excep­

tions.

(1) The single quotes around a word are external, they are

dropped internally; the same is true of a string but the

internal string has one more byte than the number of exter­

nal characters. The notation LJ means "left-justified,

blank filled on the right".

(2) All numbers ar~ written in decimal notation externally. The

nota tion RJ fa r forms X and I means "r ight-j usti f ied , zero

filled on the 1eft II • However thi s and the inter nal 2s­

complement notation for I are really of no concern to the

user. They work the way one expects.

(3) Floating-point forms- are written externally in a subset of

FORTRAN forms: signed or unsigned integers, mixed numbers

(with decimal point), or exponential forms consisting of ei­

ther an integer or a mixed number followed by E followed by

a signed or unsigned exponent of one or two digits. The

form "Ebdd" where "b" means blank and lid" means digit is

also accepted for compatibility with FORTRAN formatted out­

put.

(4) Sets P and R have a different interpretation explained

below.

-6-

The following conventions are in effect for the typing of

blanks and numbers. With the exception of enquoted strings

(fo rms Wand S) and the fo rm "Ebdd" above, wher ever one blank may

be used, several may be used. Blanks may surround separators

(operators, commas, etc.) or not as desired. No blanks may ap­

pear within the representation of a number except the special

form "Ebdd". Generally speaking, however, any external form of

number may be used for any form of internal number, provided it

is in the allowable range. All numbers are converted to F form

on input and then fixed and/or truncated as appropriate to the

specified internal use. However, for direct arithmetic, the

external form is remembered and honored as though the value had

already been internalized to the apparent form. Thus the effect

of the following expressions should be carefully noted.

1/4 gives zero

1.0/4 or 1/4.0 or 1.0/4.0 give .25

4/1 gives 4

4.0/1 or 4/1.0 or 4.0/1.0 give 4.0

That is, pairing an integer with a "real" produces a "real".

This holds for intermediate results as well. Thus

(1+3)/8 gives zero

(1+3.)/8 or (1.+3)/8 or (1+3)/8. give .5

For variables, the above rules hold also, where the type of

variable (forms B, X, I, E, F) determines the implied form.

Conversion to proper form for a result is automatic provided it

is within specified range. An exception exists for form B, how­

ever. Only the parity of the whole number part of a result is

used to assign a value to a bit. Thus

1, 3, -5, 3.14, -1

if assigned to a B variable, all produce a value of 1.

0, 2, -4, 2.739

all produce a value of 0.

A B-variable may be used either as an integer (0 or 1) or as

a boolean variable (l=true, 0=false). Thus the OR of 0 and 1 B­

values gives 1 and the AND of them gives 0. The result of a re­

lational operation is also a B-value. Thus the expressions

-7-

3.5+(x<y)

3 . 5+ (a AN Db)

where x,y are numeric variables and a,b are B-variables are legal

and produce either 3.5 or 4.5. The parentheses are necessary;

without them the result is a B-value equivalent to the expres­

sions

(3. 5+x) < y

(3.5+a) AND b,

respectively. In the latter case, the parity of the whole number

part of (3.5+a) is used as a B-value, that is, a number paired

with a B-value for a boolean operation is first converted to a

B-value.
An R-datum is a symbol used as a reference to an enfiled

body of text which is stored in a separate section of the data

bank. The body of text is given a name (same as the external R­

datum in N form) which is recorded both as the datum value and in

the directory. of the special section of the data bank. Defining

an R-datum does not define the text or cause any other action.

It is for reference only.

A P-datum differs completely in external and internal forms.

It refers to one of four forms of data arrays which can be at­

tached "to a searchable entity. The external P-datum in N form is

a temporary symbolic name for the array which must be entered in

formats to be explained in the sequel. It is first necessary to

explain the concept of nodes.

2.2 Node Structure

The data bank contains two kinds of data: node-structured-- --------
and ~ttac~ed. Although all attached data can be accessed down to

the datum level, primary searches are made and implied sets de­

fined on the basis of a node structure. The latter is the sub­

ject of this section.

The node structure is based on the notions of at~~ibutes,

items, ~~tities and !~la..!..i2.!!..§hiE..§.. A set of items is always de-

-8-

fined by attributes but not all items are entities and not all

entities are items. An ent~~y is a data structure that is en­

tered (or transferred) as a unit, though it may subsequently be

altered in content (but not in structure). When an item is also

an entity, it is called a re~Qf9. The datum values for its at­

tributes are regarded as residing in i~~lds which collectively

farm the record. A record may also have entities (arrays) at­

tached to one or more fields (form P) but these do not enter into

the definition of a node. (This is further elaborated under

search levels in the sequel.)

A record as defined above does not constitute a node. In

order for a set of records to become a set of nodes, one or more

relationships must be defined among them. These relationships

are called prim~£Y relationships and anyone node Q can have at

most four:

its downward link, D(Q)

its left peer, L(Q)

its right peer, R(Q)

its backward link, B(Q).

We also define an upward link, U(Q), for the purpose of defini­

tions. If QI=U(Q2), then Q2=D(Ql) and B(Q2)=QI. Every Q except

the root has a B(Q). The use of L(Q) and R(Q) require an order­

able attribute called the ~ ~~trib~~~. If Q2=L(Ql) or R(QI),

then B(Q2)=Ql. In any peer group {Qi}, one and only Qi, called

the hOQ~' has a U(Qi). If Qh is the hook and U(Qh)=Q, then Q is

the ~~Ee~9r of {Qi} and any Qi is an inferior of Q. If Q is at

level v, then {Qi] constitutes the part of level v+l hooked to Q.

Every set {Qi} has a numeric key, k, constant over the set.

At level v, k>v but the k-values need not be consecutive. It is

usual but not strictly necessary to have

min k(v+l) > max k(v)

and similarly that the k-values for different sets {Qi} at one

level be distinct. Following these rules permit the programming

of built-in checks against errors in assignment or search specif­

ication. The range of k-values assignable by the user is 10 to

255, the first ten digits being reserved for the system.

-9-

It is possible that a set of records has no orderable attri­

bute since, although every datum form is orderable, uniqueness of

val ues is required for one attr ibute of a set {Qi}. I~ no attr i­

bute can be well-ordered, then no inferior set can be defined

meaningfully. Such data is either meaningless or it should be

put in an array which is attached to a meaningful node.

Every set of records has one implied order, namely the order

of creation. This order is not remembered explicitly by TEXTAG

but all records entered consecutively are in fact stored in the

same order. The prototype system utilized essentially the

above-described node structure and takes advantage of this

feature for special Durposes but this is not done in TEXTAG since

no general utility is apparent. However, a record of date of

creation or last modification is provided for nodes as described

in the sequel.

It should be noted that records should not be entered in

order on the ordering attribute. Doing so results in all R(Q)

and no L(Q) relationships so that all searches are linear. On

the other hand, all members of one set {Qi} should be entered to­

gether if possible so that searches do not jump around throughout

the physical file. Sometimes it is necessary to reconstitute one

or more major branches to improve retrieval characteristics. The

language provides facilities for this.

2.3 Search Path~, Identifiers, Loc~~ors and ImEtici~ ?et~

Although not strictly necessary, it is usual for a set of

peer nodes to be ordered on an attribute whose datum values are

symbols (form N). Forms S, E, F, P and R may not be used. For

anyone node, its value of the attribute is called its !ef~~en~.

However, a referent is only meaningful and necessarily unique

within its peer group. Furthermore, the group's key attribute

needs to be known by name, and also the numeric key to control

some searches.

Suppose a node structure has been created and it is desired

-10-

'to find some particular node. This is done (in the first in­

stance) with a command called FIND. Although this is the sim­

plest search instruction, it already shows considerable complexi­

ty; for example, it is important where one starts. The system

maintains three pointers called ROOT, START, STOP. (These sym­

bols are preempted only in commands where ambiguity is easily

avoided, in fact impossible.) Initially the system is located at

the root node and all three pointers point to it. ROOT is never

again changed, either by the system or by the user (who is

,blocked). Associated with the three pointers are the k-values (0

for the root) belonging'to the nodes.

The definition of the structure of each record (i.e., the

attribute names and forms) in a peer group is kept with the D(Q)

which leads to it; the key attribute is always defined first and

hence its name is in a known position. (How attribute sets are

defined is given in section 2.5.) Suppose the data bank has

three main branches, or sublibraries, for North America, Western

Europe and Eastern Europe. Say the main nodes for these branches

have a key attribute named WRLD.RGN, form N, with the values

N.AMER, W.ERUOPE arid E.EUROPE, respectively.

Perhaps the user has forgotten the record layout and key at-

tribute. If START points at the root, he can have it displayed

with the command

DISPLAY LOWER

However, he need not do this to find, say, W.EUROPE if he knows

that symbol. It is sufficient to issue the command

FIND W.EUROPE

The STOP pointer will now be set to this node and its k-value

recorded. If the user wants to know what has been recorded about

Western Europ~ as a whole, he can issue the command

DISPLAY NODE

If he now wants to see the record layout, he can issue

DISPLAY LOWER (START)

When no subargument is given to the main argument for DISPLAY,

the subargument STOP is implied. Thus the prior command is

equivalent to

-11-

DISPLAY NODE (STOP)

Le., S'fOP is "where we are" and START is the super ior.

To investigate the substructure under W.EUROPE, the follow­

ing command must first be issued

SET START = STOP

Although general assignment statements require no verb, the verb

SET is necessary here; it notifies the system that we are refer­

ring to system variables, not user-defined ones. Only START or

STOP may appear on the left, never ROOT. The START and STOP

pointers may be held with the command

SET HOLD(i)=STARTlsTOP

where i is an integer literal or variable. Up to 16 pointers may

be held (i=l, ... ,16). If anything but ROOT, START or STOP ap­

pears on the right of such a SET phrase, it must be of the form

SET STOP I START=HOLD (i)

This is not an ordinary vector and has no correspondence to any

vector or list of the same name defined by the user.

Suppose the main branch nodes have inferior sets with a sym­

bolic key attribute COUNTRY and each of the countries represented

has an inferior set with the key attribute MAJ.SUBD (for major

subdivision) . To find the "bundesland" Niederosterreich in Aus­

tria, starting again from the root, the following commands could

be issued:

FIND W.EUROPE

SET START=S'l'OP

FIl'W AUSTRIA

SET START=STOP

FIND NIEDEROSTERREICH

However, it can all be done with one command

FIND W.EUROPE AUSTRIA NIEDEROSTERREICH. -
After both cases, START is set to AUSTRIA and STOP to NIEDEROS-

TERREICH. The argument to the last FIND is called an i~~~~ifier,

which is a chain of attribute values concatenated with under­

lines. If NIEDEROSTERREICH did not exist under AUSTRIA, the STOP

pointer would end up at the node which would be the nearest peer,

i.e., the one for which NIEDEROSTERREICH would be L(Q) or R(Q) if

-12-

it did exist. The message

SEARCH FAILS AT LEVEL 3

would be displayed. If AUSTRIA had no inferior set, the START

pointer would remain at W.EUROPE and the STOP pointer at AUSTRIA.

The following message would be displayed

SEARCH IMPROPER AT LEVEL 2

(The failure of a search can be tested in a program as explained

subsequently.)
Note that the attribute MAJ.SUBD must be defined as having

S-for~ with a length of at least 16 to hold the long name. This

must not be confused with the name of the attribute, i.e.,

MAJ.SUBD. Attribute names must be of form N.

Several other search commands are defined in the sequel but

further capabilities of FIND need to be pointed out here. Sup­

pose the above search was successful and we are next interested

in Bavaria in West Germany. Let us suppose GERMANY is used under

both W.EUROPE and E.EUROPE. We could start again from the root

(which might be the most efficient here) with the following two

commands.

SET S'TART=B.OOT

FIND W.EUROPE GERMANY BAVARIA

Ho~ever, in more complex structures we might want to do it in a

different way. One way is to use the command FINDSUP (find supe­

rior). The two commands

SET STOP=START

FINDSUP

would get us back to START=W.EUROPE. The command

FIND GERMANY BAVARIA
would then get to the desired node. However. this can also be

done in one instruction using a "backup" referent in the identif­

ier, viz.,

FIND -2 GERMANY BAVARIA

Note that the instruction

SET STOP=START

used above is equivalent to backing up one level. Using FINDSUP

twice would have had the same effect but been much less effi-

-13-

cient. The referent -2 used to begin the identifier in the last

FIND command above thus properly means "back up two levels". In

other words, FINDSUP starts from STOP rather than START and the

backup referent for FIND. while interpreted as meaning to begin

with that many FINDSUP commands, takes advantage of the known re­

lationship between STOP and START. The use of -1 is always

redundant. For example, the instruction

FIND -1 OBEROSTERREICH

has the same effect as

FIND OBEROSTERREICH

since START remains at AUSTRIA in either case.

Before ending this section, one more example will be given

to illustrate the concept of implied sets of items. Suppose each

country node for each region has an attribute LANGUAGE (to record

the main language spoken) and it is desired to find all countries

where the main language is German. There is a command SEARCH

which accepts a variety of arguments; only four forms will be

shown here. Starting from the root, any of the following might

be used (the operator <EQ> meaning "equal;' in explained in sec­

t ion 4. 3) :

(i) SEARCH WRLD.RGN_COUNTRY [FOR] LANGUAGE <EQ> GERMAN

(ii) SEARCH DO"l'iTN 2 [LEVELS] [FOR] LANGUAGE <EQ> GERMAN

(iii) SEARCH TO K [FOR] LANGUAGE <EQ> GERMAN

(iv) SEARCH AT K [FOR] LANGUAGE <EQ> GERMAN

Note that (i) uses a chain of attribute ~~mes, not values. This

is called a ~~ca~~~ rather than an identifier. In the present

case, it is redundant but would not be if, for example, some re­

gion had an attribute STATE instead of COUNTRY. The form (ii)

simply searches down two levels looking for the attribute

LANGUAGE, regardless of the key attributes (which are defined

with the D(Q)s). Form (iii) will search down as far as the level

with the specified k-value for the attribute LANGUAGE. Depending

on how k-values were assigned, this might not be the same level

for all node sets. Form (iv) restricts the search to a specified

k-value.

Levels are processed in order on key attributes, in the

-14-

present case alphabetically. Something like the following output

would be produced.

WRLD.RGN=E.EUROPE

COUNTRY=GERMANY

viRLD .RGN=N .AMER

(NONE)

WRLD.RGN=W.EUROPE

COUNTRY=AU3TRIA

COUNTRY=GERMANY

COUNTRY=SVHTZ.

This output amounts to an implici~ ~~~ of items whose attribute

set might be called GERMAN with the attributes WRLD.RGN and COUN­

TRY. (Note that, being implicit, it has no key attribute.) ~ore

elaborate forms of SEARCH can further restrict or enlarge the set

and also permit full examination of nodes, with further disposi­

tion of the information ~s desired.

2.4 The Nature of Information

Referring to the previous subsection, one can note the

three-tiered nature of any data which can be regarded as informa­

tion. First is the name or other ?e.5'_~~~.!.Q!! of the set of

~efiQi~9. ~ttribu~~~. Second are the na~~_~ of th~ 9_~1:~--i!2~~es

which are the values of the defining set and which are assumed to

be meaningful to a reader. Third are the val~~§ of the

~~~~ie~~~~ occurring in the items. This is the absolute minimum

for meaning. Stated differently:

1. What class are we talking about?

2. What attributes are we interested in?

3. What values of those attributes occur?

These are not independent. The class is defin~d by at least some

attributes, and attributes are abstractions based on values or

qualities that have been observed and given some general label.

Nevertheless, understanding or knowledge is based on an organiza­

tion like that above which is independent of the particular repo-

-15-



sitory of information or the system used to manipulate it. For

example, if our attention is directed to the class of objects

known as humans, they are distinguished by various attributes.

One attribute is known as language and one of the particular

languages spoken, is German. Additionally, the information is or­

ganized by where people live, etc. The complete structure of

such knowledge is exceedingly complex and the extent often vast.

In any practical use of it, we must restrict our attention to

only a few attributes and a modest number of distinguishable

grades of these attributes. Even when we consider a continuum,

this becomes a discrete subJect of study; no one supposes that

every possible value will ever be observed, much less recorded.

This is perhaps a good place to point out again the types of

applications for which TEXTAG is suitable, or rather unsuitable.

Bibliographic data is, in anything like pure form, not a suitable

body of material to be organized with a system like TEXTAG. The

scope of literature in al~ost any field has reached such propor­

tions as to approach a continuum. Until and unless such a body

of literature has been extensively, expertly and consistently

abstracted a gargantuan task in most cases -- no system

designed for elaborate organization with precise referents and

other labels can deal with i~. There is simply no way to find,

for example, all references to a particular subject area by a

particular author or school unless someone has laboriously dug

out and organized such information and systematically recorded

it. Such a task could be greatly aided and made more fruitful by

a system like TEXTAG, once a human being had done the initial in­

vestigative work. Users of bibliographic data banks do not al­

ways seem to understand this or else assume the necessary work

has been done. In only a few specialized cases is the latter

true.

TEXTAG provides some

text but huge volumes

plained in the sequel.

capability for storing unorganizled

are not contemplated. This will be ex-

-16-



by STOP (the root the

set with the following in-

The first task in constructing a data bank is to establish

its main branches. ~he bare system provides a root node with

nothing hooked to it. The definition of the main branches is

very important since all substructures will be influenced by it

to some degree. ~his is, of course, true at any level but the

first breakdown affects more nodes, obviously.

In the previous example, for instance, does one really want

to segregate data by world regions or by main subject areas.

This will depend on the purpose and intended use. It is a deci­

sion the person who constructs the data bank must make and will

have to make again and again at lower levels. TEXTAG does pro­

vide commands for reconstituting all or part of a data bank into

different organizations so mistakes need not be lived with inde­

finitely. However, the necessary instructions can be intricate

and time consuming to execute so one should use as much foresight

as possible in the original breakdown.

Starting from any node pointed to

first time), one d~fines an inferior

struction:

DEFINE LOWER K=k [NP] [SOURCE=f ilename ,deckname]

The option NP means "no prompt". The SOURCE option indicates

that necessary definitions are to be read from a deck in a card­

image input file and implies NP. If neither option is used, the

following prompt is displayed:

TYPE IN ATTRIBUTE DEFINITIONS, KEY ATTRIBUTE FIRST.

TERMINATE ~VI~H ":END" ON A NEW LINE.

Input lines, only the first of which starts with ATTRIS: and con­

taining phrases as indicated are then expected.

ATTRIB: symbol [AS] form [,symbol ... ]

where the symbols are in N form and ;'form" may be any of the fol-

-17-



lowing:

BlxIIIEIF\LIDIAlcINlwlp\R

without further specification; or

XIIIEIF = (min, max)

showing allowable range of values; or

S=lengthIC=lstring'IW=symbol

However, for the key attribute (first one), the forms B, E, F, P

and R may not be used. The last three forms require explanation.

If it is desired to use S form for an attribute (for instance,

MAJ.SUBD in the earlier example), the field length must be de­

fined. This is the only form whose length is not fixed. The

phrase C='string l defines in the string the particular characters

which are allowable; otherwise C form permits any printable char­

acter.

The phrase W=symbol permits the field to have the form of a

general word but be restricted to specified values. The symbol

refers to a form of array called a LIST which must either be de­

fined by a packet of lines for a list following the last attri­

bute definition or have been entered previo~sly into temporary

storage (explained later). The format for a list is explained

below. This 'use of a list should be employed sparingly since it

adds considerably to the size of the D(Q) substructure. Although

the same list can be used with different inferior sets during de­

finition, it must be copied into each D(Q) for subsequent use.

The form :END beginning a line is used to terminate all

packets of related lines input to TEXTAG, whether from the termi­

nal or from a file.

l~ote that several attributes can be defined on one ATTRIB:

line by separating them with commas. Continuation lines can be

used as required or desired but the break must be at a comma. If

input is from a card-image file, all the above conventions apply

Just as though the lines were typed. The deck structure in such

a file is explained in section 6.1.

To illustrate the foregoing, the first level of the earlier

-18-



example might be defined as follows:

DEFINE LOWER K=10 NP

ATTRIB: WRLD.RGN N, POP.MILL I, AREA.THU I, NO.CNTRY X

:END

Note that DEFINE adds the D(Q) substructure to the node pointed

to by STOP. If a D(Q) already existed, an error message is

displayed.

It is now necessary to create the nodes themselves. This is

done with the command CREATE. For checking purposes, this com­

mand requires that K be specified again. It permits two forms of

input: either a free-form list of attribute datums in the order

specified by DEFINE, starting with the key attribute and complete

up to right-hand dropoff, or a list of identified phrases which

mayor may not be complete. Unspecified attributes are set to

their null values (0 or blank). However, the key attribute value

must be specified. The general form is

CREATE INFERIOR K=k [ID] [SOURCE=filename, deckname]

The argument ID indicates that identified phrases of the form

attribute-name=value

will be used. In either case, the values are entered on one or

more lines following of the form

NODE: attribute-name=value [, ... ]

if ID was specified or

NODE: valuel [,value2 valuen]

if ID was not specified and the node has n attributes. The lists

are terminated as usual with :END on a new line. The indicator

NODE: occurs only on the first line.

Tne superior to the node being created is pointed to by STOP

both before and after execution. Several nodes can be defined in

succession by starting each one with NODE: on a new line before

:END appears. Note that "NODE:" cannot be a value; it is a

preempted construction. The same is true of \I: END Ii • If for some

reason these must be used as datums, they must be enclosed in

single quotes.

An entire set of ATTRIB:: CREATE and NODE: lines, followed

by appropriate :END lines, can be executed from a card-image file

-19-



2.5. I

the missing arrays are
the proper reference

not found, an error is
are given in section

with one DEFINE using the SOURCE option. Similarly, such a

SOURCE phrase can be used with the CREATE command. More gen~ral­

ly, any number of commands can be enfiled in a deck and executed

with the RUN command, explained in the sequel.

~ttachments to ~ ~9de; An!:!exe§. anQ. ~rr~§.

Two special cases occur with attributes of form Rand P.

The symbol for an R form refers to a body of unorganized text

called an annex which either has been or will be entered into an

auxiliary file of the data bank. These annexes are stored in a

separate file, simple in structure but possibly voluminous. Each

annex must have a unique referent symbol ..No check is made that

the annex exists when a node referring to it is created. An an­

nex is not uniquely associated with one node. If it is desired

to simply reserve space for a later reference to some annex when

a node is created, the attribute datum can be left blank. Note

that an R-form attribute really accomplishes nothing that an N­

form couldn't; it is just a convenience and allows searching on a

known attribute type. The enfiling of annexes is explained in

section 8.

The symbol for an attribute of form P is entirely different;

it is strictly local and temporary, used merely to identify a

following packet of lines which define an array. The lines. de­

fining all arrays for the node must appear after all node lines

but before the :END line. Order of the packets need not be

correlated with order of node fields; each packet ends with its

own :END line nested inside the one for the node as a whole. If

any P-form attributes remain undefined,

looked for in temporary storage ~~yiQ.~~

form is used for the attribute value. If

declared. Rules for this reference form

3.2.

-20-



Arrays are of four kinds:

(1) A ~ec~~~, introduced by the following line

VECTOR: symbol(n) [,II~IF] [,PACK] [,INDEXED]

where

,(a) "symbol" is the P-form attribute referent;

(b) n is the vector length;

(c) IIEIF defines the number form, E being the default;

(d) PACK may be used only with F; only nonzero values

are stored and each one is truncated to a precision of

16-10 ;

(e) INDEXED indicates that only nonzero values are sup­

plied with phrases of the form

index=value

The actual values are entered in following lines in free

form, either

valuel, value2, ... , valuen

or

index=value, index=value, ...

if INDEXED is specified. If the indexed form is used for a

vector to be packed, enough values should be given to allow

for the maximum number of nonzeros expected in later revi­

sions. If an additional index is subsequently specified for

an already full packed vector, an extension will be created

but this is very likely to be in a remote section of the

data bank which will lead to great inefficiency. Zero

values may be used to reserve positions. This cannot be

done with unindexed input for which only nonzero values will

be packed.

(2) A ~~~~i~, introduced by the following line:

HATRIX: symbol (m,n) [,II.E;,IF] [,PACK] [,INDEXED]

where the meanings are the same as for VECTOR but m,n are

the two dimensions. Each row is entered as a vector, start­

ing with ROW: on a new line. Every row must be represented,

whether in full or indexed form. Only one :END is used to

terminate the entire matrix, not each row.

-21-



necessary)

A list is

(3) A list which is a vector of words (enquoted if

which must be given in full and cannot be packed.

introduced with

LIST: symbol(n)

(4) A t~bl~ which is a rectangular array with a symbolic stub

and head. The stub is regarded as column 0 and the head as

row 0 and these are not counted in the dimensions m,n.

Tables are of three kinds: those with numeric elements,

those with symbolic elements, and those whose rows consist

of character strings. All tables are stored in full array

format.
(a) Numeric tables. There are three sizes, form I, form E or

form F. The stubs are always 8 characters in length but the

heads contain 2-character, 4-character or 8-character

strings, respectively. These characters may be form C but

enquoted if not like truncated or full symbols. A numeric

table is introduced with the line

TA3LE: symbol(IIEIF)=headl, ... headn

defining n columns and each row is introduced with the line

ROW: stubi =elemil [, elemi2, ... ]
that is, right-hand dropoff is permitted.

(b) Symbolic tables. These are also of three sizes, indicated

by a number. The introductory line is

TABLE: symbol(21418)=headl, ... , headn

Otherwise the forms are the same as for numeric tables ex­

cept that elements are character strings (of length 2, 4 or

8) and not numbers.

(c) Character string tables. These tables contain up to 8

strings in each row where each string contains up to 64

characters in increments of 8. The head is stylized to de­

fine these strings, as follows.

TABLE: symbol(S)= Aa [, Bb ... Hh]

As many (capital) letters, in sequence, are used as the

number of strings per row. The lower-case letters here

stand for digits from I to 8, independently. The digit

specifies the number of 8-character increments (words) in

-22-



the string. For example,

A3, Bl, C2

specifies three strings: the first 3*8=24 ch3racters long,

the second 1*8=8 characters long, and the third 2*8=16 char­

acters long. In defining the rows, strings ~~st Q~ ~~gQ~t~~

and separated by commas. The strings may be shorter than

the specification in which case the recorded string is blank

filled on the right. Right-hand dropoff is also permitted

in which case missing strings are set to blanks. Each row

is specified by

ROW: stubi = 'string A' ['string B' ••• ]

Strings are addressable down to individual words. A table

reference index-pair such as (stubi,Cl) for the above exam­

ple of a head definition would get the first 8 characters of

the third string in the i-th row. This is also the fifth

word in row i so the index pair could be given numerically

as (i,S). Table references are explained more fully later.

The data bank proper is a file which is buffered through

high-speed (virtual) storage where it is used and modified. Ad­

ditionally, however, a large block of high-speed storage is used

as working storage to hold variables, arrays and other informa­

tion. This working storage is actually organized in threaded

sets of similar entities but the user need not be concerned with

this. However, the user must be aware of the distinction between

the data bank, which has a permanent status, and working storage,

which is transient and disappears on exit from TEXTAG. (Arrays

may be saved in and restored from an auxiliary file.)

Most of the work done with and by the system is actually

handled in working storage. A fairly complete programming

language is provided which can be used for calculations either on

operands from the data bank or independently of it. (Indeed,

TEXTAG is a good general-purpose computing system for interactive

-23-



or semi-automatic use.) In this section, the kinds of variables

and arrays

described.

wnich may be defined and used in working storage are·

The set of basic operations available are described

in section 4.11.

5 ix types of single-valued variables are provided. These

correspond to a subset of the datum forms and the type of vari-

able to be used or created is always indicated by the datum form

letter used as a prefix to its name. with one exception, vari-

able names are always symbols (form N) but, within that restric­

tion, are arbitrary. Variable names must be unique within a

type. The exception occurs for bits (form B); only 26 of these

are available and they have the predefined names A,B, ... ,Z. A

27~th one with the name $ is set by find and search commands to

indicate sucessful (1) or unsuccessful (0) completion. It may be

tested but not assigned.

A p.!~ti~ is a letter- followed by a full colon which immedi­

ately precedes the symbol it specializes. The six types of vari­

ables and their reference forms are as follows:

B:letter a bit (B form)

I:symbol an integer (I form)

E:symbol a short floating-point value (E form)

F:symbol a full floating-point value (F form)

N:symbol an a-byte word (N or W form)

S:symbol a character string of defined length.

With the exception of a bit or an S-variable, a variable is de­

fined when it first appears on the left of an assignmnet state­

ment. If it occurs on both left and right on first appearance,

the value in the expression on the right will be zero for a

numeric variable and blanks for an N-variable. The predefined

B-variables are initially all 0.

An S-variable must be defined with the command FO~1,

FORM S:symbol= nlI:symbol

-24-



where n or the I-variable defines the length of the string. The

string is initially all blank. The length of a string previously

defined can be recovered with the command DIMEN (meaning "get the

dimension") in a statement of the form

DIMEN I:symbol=S:symbol

The I-variable may also be defined with such a statement. FORM

and DIMEN have more general uses for arrays.DIMEN could have

been defined as a function rather than a command but would have

been more awkward in practice that way even though more "read­

able" in this case, i.e. the (in~.Q.£~~~~)

I:symbol=DIMEN(S:symbol)

In the more general uses, the nonstandard syntax in a functional

form would lead to undue complexity in the parser and no signifi­

cant benefit to the user.

There is a seventh prefix to refer to the attribute values

of toe node pointed to by the STOP pointer. This can be regarded

as a generalized variable prefix. It has the form

D:attribute

where "attribute" is the name of the attribute. The meaning of

such a reference obviously depends on what node is currently

available. (If none, the reference results in an error being de­

clared.) Since not all attribute forms have corresponding vari­

able types, it is necessary to define how different attributes

are treated by a D-reference. This is given in the following

table.

-25-



attribute

form

B

X

I

E

F

LIDIA\C

Nlw
S

PIR

equivalent variable

to ~y.l2.~

B:

I: (nonnegative only)

I:

E:

F:

N: (left justified)

N:

S:

(see next subsection)

These equivalences are r.ever.sible but not one-one. The possible

(automatic) reverse conversions are given in the following table.

variable

~

B:II:IE:IF:

B: I I: (0, ... ,255)

I :

E:IF: ±-03, •. ,32767)

E: IF:

N: (first character)

N: (form N)

N: (general)

S:

possible attribute

datum forms

B (standard rule)

X

IIEIF

I (whole number part only)

ElF

LID I A IC (i f pr ope r)

NlwlR
W\S

S

When filling an S-form datum, the source string is either trun­

cated or extended with blanks if the lengths differ. The above

rules can be roughly summarized by the statement: node datum

~al!:!es can be ass.!3.!:!.~9. from va!:~abl~~ ~b.er~~e~ it makes ~en~~

within established rules._._-- - ---

-26-



There are likewise six types of arrays which may be used in

working storage. These correspond to the six types of arrays

which may be attached to a node with a P-form attribute. Howev­

er, since single-letter designators are not used for such at­

tached arrays, prefixes for working storage had to be assigned.

They are as follows:

V:symbol vector (IIEIF form)

M:symbol matrix (IIEIF form)

L:symbol list (W form)

T:symbol numeric table (IIEIF form)

A:symbol symbolic table (2, 4 or 8 byte)

H:symbol character string table

(The last prefix is H both as a reminder of the special head for­

mat and also because such strings are often used for headings of

various kinds.)

All ~~~~ in ~o~ki~ ~to~~q~ are ~~c~~_~ and must be

~~plici~!y ~~.ated. They may be created in two ways: either by

direct definition which establishes both structure and some or

all values, or by use of the command FORM which establishes only

structure and leaves null values in the body. (The head and stub

of a table are part of its structure.) No maiter how a table is

created in working storage, it must be done while outside the

span of any other command, such as DEFINE or CREATE.

Arrays may be directly defined in either of the following

ways:

(1) By use of in-line packets of lines exactly as used for at­

tached arrays under CREATE except that PACK is ignored. For

example, the lines

MATRIX: symbol(10,S) E

ROW: elem(l,l), elem(1,2), ... , elem(l,S)

ROW: elem(10,1),elem(1r:1,2), ... , elem(10,S)

:END

define a 10 by 5 matrix whose elements can then be refer-

-27-



enced with the form M:symbol(i,j). The elements are E forIT..

One or more packets can be executed from a card-image file

by use of the command RUN.

(2) By use of the READMOD command which uses similar packets but

can also modify existing arrays in various ways. It is ex­

plained in Appendix B due to its variety of rules and for­

mats.

The command Fom~ permits a variety of options including use of

existing heads and stubs to form a new table, generation of styl­

ized head and stub symbols. and boolean functions on existing

heads and stubs regarded as sets. ~ simple use would be

FOP~ M:symbol(I)=m,n

which would form an m by n matrix of integers with zero values.

FORM is fully explained in Appendix A due to its many options.

An existing array can be copied to a node attachment under

the command CREATE merely by reference as mentioned in an earlier

section. The known definition of the array in working storage

can be used instead of explicit instructions under CREATE. A

difficulty arises, however, since the ~p~ of array is unspeci­

fied. This is overcome by using a prefixed form to specify a P­

form attribute value:

attribute = p:symbol

where' p=VIMILITIAIH. If a packet for an array named "symbol U

follows. and it is of a different type, the packet specification

overrides and the above prefix is ignored. Indirect references

as explained in the following subsection may be used, e.g.

attribute = M:N:ABC

means the attribute is a matrix whose name is the value of the

variable N:ABC.

The use of D:symbol to refer to an attribute of type P im­

poses an unavoidable burden on the user, namely, he must know it

is a P-form attribute and what ~~p~ ~f ar~~y it refers to. The

referent forms used in expressions require this and there is no

way to avoid it. Moving the array to working storage does not

help since the user still must know what it is. Due to the flex­

ibility in evaluation of expressions and assignment of values in

-28-



the T~XTAG language, it is not even possible to guarantee that

all errors will be caught. To alleviate this situation somewhat,

the QUERY command is provided. (It is also used for other pur­

poses.) For the present purpose, the following form of the com­

mand is sufficient:

QUERY TYPE N:symboll = D:symbo12

The value assigned to N:symboll will be one of the following:

VECTOR.k Array is a vector

MATRIX.k a matrix

LIST ... 8 ,. list

TABLE .. s

ATABLE.s

HTABLE.8

bbbbbbbb

REFER ...

REFERbbb

********
where

;, numer ic table

" symbolic table

" character string table

Attribute form is P but array is undefined

Attribute form is R and symbol is not blank

" II is blank

Attribute form is neither P nor R

k=IIEIF

s=21418

b=blank character

Note that initial letters, except for errors, correspond to array

types and the eighth character gives the kind or size of ele­

ments. These can be extracted with standard symbolic functions.

The DIMEN command, further explained in the seguel, can be used

to obtain array dimensions if necessary.

When the type of array is known, the D-prefix is used as

though it were the proper type of prefix. For example, if the

array is a matrix, a referent to an element of the matrix would

be of the form

D:symbol(i,j)

If the array is packed, necessary searches are made. For exam­

ple, the phrase

M:WORK(2,3)=D:ATTACHED(2,3)

is valid even though the node-attached matrix is packed and the

working storage matrix is not. This continues to be,true with

-29-



However,automatic indexing features introduced in the sequel.

the reverse phrase

D:ATTACHED(2,3)=M:WORK(2,3)

can lead to difficulty. The packed matrix must have an assigned

position for element (2,3) or either an error is declared or an

extension to the array must be made. (Which is controlled by a

mode switch.) Extensions can lead to great inefficiency in file

handling. Although the use of packed vectors and matrices can

lead to great space saving in some cases, they must be used with

foreknowledge of what is to be done with them.

A reference to an R-form attribute presents a possible

misconception. First, a phrase of the form

D: refer,=N: symbol

where "refer" stands for an R-form attr ibute name, is perfectly

valid to define or redefine the name of an annex for reference.

(The value of N:symbol must be form N.) Similarly, the phrase

N:symbol=D:refer

is valid but it mere~y ~ssigns th~ a~nex nam~ to N:symbol. It

does not access the annex or even determine if it exists. An an­

nex can be displayed or printed with appropriate commands, for

which purpose saving its name with the above command may be use­

ful.

3.3 Indirect References

Any of the prefixes previously introduced may be appended

with N:symbol to form an indir~~~ ref~~~~c~. The variable
N:symbol must have already been defined, and its value must be

form N. This value is then the name of the variable or array

whose type is denoted by the first prefix. For example, if the

value of N:IND is VAR, then

I:N:IND is the same as I:VAR

T:N:TND is the same as T:VAR

and so one. In the case of a boolean variable, only the first

letter is used; thus with N:IND as above

-30-



B:N:IND is the same as B:V

Tnis capability is critical for effective use of the language.

It permits a referent symbol to be itself a variable. The con­

cept is not extended to further levels; doubly indirect refer­

ences would have to be programmed. However, it is the first in­

direction which is the critical capability.

An indirect reference may be used on the left of an assign­

ment statement as well as on the right. For example, if I:VAR

has not been defined,

I:N:IND = expression

will define I:VAR under the above assumptions. ~n array may be

indirectly referenced on the left provided it has already been

formed.

4.0 BASIC OPERATORS AND FUNCTIONS

Most of the usual elementary operators and functions

some less common ones are provided in the TBXTAG language.

can be classified as

arithmetic operators,

elementary (numerical) functions~

relational and boolean operators, and

symbolic operator and functions.

and

They

The standard four binary arithmetic operators and the unary

minus sign are provided in normal fashion. If a and bare

single-valued operands and c is a single-valued result, then all

-31-



the following assignment statements are recognized:

c=a+b , c=-a+b

c=a-b , c=-a-b

c=a*b ,

c=a/b ,

c=a

c=-a*b

c=-a/b

c=-a

The restriction to sing~e-valued quantities is rigid but toe ef­

fect of multiple-valued quantities is achieved with automatic in­

dexing features presented in the next section. Exponentiation as

a binary operator is not provided but the equivalent capability

is presented in the next subsection.

Automatic conversion of quantities in mixed-form expressions

and in assignment to a result is provided in all circumstances

sUbject to valid ranges and the rules of pairing. The latter was

discussed in preliminary fashion in section 2.1. The full set of

rules is summarized in the next two tables.

:e.aired form~

B,BIB,I\I,I

B,EIB,FII,E\I,F

E,EIE,FIF,F

calculated as

I

F

F

calculated value

I IF (units position)

IIF (mag < 32768)

IIF (I floated)

boolean B

~.§.§.!.g~~b.!.~ !.Q
B

I (whole no. par t)

ElF (truncated for E)

BIIIEIF (floated for ElF)

Attempted division by zero is detected and results in an error

being declared. Underflow in multiplication or division of F

forms gives a zero result. Overflow in multiplication of I or F

forms and division of F forms give a system error. Attempted as­

signment of a magnitude equal to or exceeding 32768 to an I-form

is detected and results in an error being declared.

Four "finite limits" are provided for E and F forms and may

-32-



be referenced with the following preempted constructions:

+INF. 16 30 (plus "infinity")

-INF. _16 30 (minus "infinity")

+NIL. 16-15 (plus "nil")

- NIL. -16 -15 (m inUS" nil" )

Values within these magnitudes cannot cause machine overflow in

one operation.

Parentheses may be used in standard fashion to control pair­

ings and order of computation. Thus

a+b/c is equivalent to a+(b/c)

(a+b)/c must be used if so intended.

Note that division of an integer by a larger integer gives zero,

and by a smaller integer gives the content not the residue. Thus

3/5=0 , 5/3=1

The residue must be programmed; for example

5-(5/3)*3=2

A pair of vertical bars is also recognized as indicating ab­

solute value and they rank as a pair of parentheses. Thus, the

expression

7-(6-11-13-511)

has value 2.

4.2 Numerical Functions

Arguments to all numerical functions are converted to F form

before evaluation of the function and the result is in F form.

Exponentiation has traditionally been a source of nuisance

in programming. The use of ** to denote it in FORTRAN was due to

unavailability of a suitable character. The double asterisk is

both visually displeasing and a bothersome special case in scan­

ning. The up-arrow is better but still not universally avail­

able. If these objections are thought trivial, two others are

not. First, an integer exponent is handled much faster by multi­

plication but finding out it is an integer is itself expensive; a

non-integer exponent requires use of a logarithm. Second, ex-

-33-



ponentiation is not truly an operator but a function.

In TEXTAG, exponentiation is treated as a function but two

additional functions are provided for the most common integer ex­

ponents, squaring and cubing.

rrhe functions provided are the following where ';arg" is any

numeric-valued expression (including B form) within the ranges

shown.

SQRT (arg) arg~0

SQUARE(arg) largl<16 15

CUBE(arg) largl<161~

LOG(arg) log on e +nil.<arg

EXP(arg) e to arg -36.0<arg<72.0

LOG10(arg) log on 10 +nil.<arg

EXP10(arg) 10 to arg -18.0<arg<36.0

SIN(arg) arg in radians (any)

COS(arg) arg in radians (any)

ATAN(arg) result in radians (any)

The last gives a result in the first or fourth .quadrant. Argu­

ments outside specified ranges result in an error being declared.

Obviously, fourth and fifth powers, etc., can be formed by

nesting .. For example,

SQUARE(SQUARE(F:X))

gives the fourth power of F:X.

The specification of relational and boolean operators has

also traditionally been a nuisance in programming. Almost none

of the commonly available keyboards have an adequate set of

graphics and internal codes are not fully standardized. Attempt­

ing to define queer combinations of standard special characters

is unsatisfactory. The use of short abbreviations delimited in

some way seems to be the only practical solution. The scheme

used in FORTRAN is satisfactory in principle but the use of the

period as a delimiter leads to difficult-to-read and all-but-

-34-



a <LE> b

a <EQ> b

a <NE> b

a ,<GE> b

a <GT> b

ambiguous constructions (which would be ambiguous with other

TEXT~G conventions) such as

IF(A.LT .. 5.AND.B.N~.1.0)

Two relational operators, < and >, are provided on all keyboards

and, since they are not a complete set but make excellent en­

closers, they are used in TEXTAG to enclose relational and boole­

an operators.

The unary boolean operator NOT is not provided separately.

It also leads to awkward constructions which create ugly excep­

tions in scanning and parsing. (The unary minus sign does too

but one never writes a+-b.) Instead, the func~ion of NOT is com­

bined with the other operators to refer to the second operand.

(Also, both conditionals IF and IFNOT are provided.)

The relational operators apply to either numeric or symbolic

operands except S-form strings but both operands must be either

numeric or symbolic. The result is a bit, 0 (false) or 1 (true).

a <LT> b is a less than b?

is a less than or equal to b?

is a equal to b?

is a not equal to b?

is a greater than or equal to b?

is a greater than b?

An additional operator is provdided for strings. The left

operand is either a literal string or an N-variable of which only

the initial characters up to the last consecutive nonblank are

used. The right operand is an S-variable. For example,

N:TEST <IN> S:WHAT

means "does the string of characters in N:TEST occur in S:WHAT?".

The <IN> operator is regarded as a relational operator.

The boolean operators, strictly speaking, apply only to B­

form operands. However, since numbers have the parity of their

whole number part converted automatically to a bit for use as a

-35-



boolean operand,

a <AND> b

a <ANOT> b

a <XOR> b

a <XNOT> b

a <OR> b

a <ONOT> b

effectively any numerical values can be used.

logical product of a and b

logical product of a and complement of b

exclusive OR of a and b

exclusive OR of a and complement of b

logical sum of a and b

log ical sum of a and complement' of b

The order of execution of operators and functions is as fol-

lows from first to last:

unary minus to function argument

function

unary minus outside function

multiplication and division

addition and subtraction

relational operators, indifferently

<AND>, <ANOT>

<XOR>, <XNOT>

<OR>, <ONOT>

Lacking any other distinction, operations proceed from left

to right. Note that definition of order for <XOR> separately is

important, a point often overlooked. For example,

(1 <XOR> 1) <OR> 1 = 1

1 <XOR> (1 <OR> 1) = 0

The order given implies that

1 <XOR> 1 <OR> 1 = 1

Similar ly,

(0 <AND> 1) <XOR> 1 = 1

(3 <AND> (1 <XOR> 1) = 0

The order given implies that

o <AND> 1 <XOR> 1 = 1

-36-



These functions are different in nature from the others and

very few languages provide them. They are extremely useful and

powerful for some kinds of work.

The arguments to these functions always include at least one

character-word and such arguments can be obtained from any suit­

able source. The possible operand sources are:

literal input strings up to 8 characters

N-variables

elements from lists

elements from A-tables

8-character increments from H-tables

result of a symbolic function

stub or head value from any table except H-table heads

If the source does not provide 8 characters, it is overlaid on

the left end of 8 blanks.

Final results may be assigned to an N-variable, list ele­

ment, A-table element or H-table Increment. If the destination

is less than 8 characters long, the result is truncated on the

right. Intermediate results may be used wherever a character­

word is required in an expression. Table stubs and heads are not

assignable except by table creation commands. Use of S-variables

is explained below.

The functions are as follows where "arg a is an operand as

described above.

rw1ASK (arg ,mask)

where "mask" is also an 8-character word in which the

zero and blank char:acters are "deleters'l. For every

deleter in "mask", the corresponding character of "argo.

is set to blank. Unless nested within the LEAVE func­

tion, the result is closed up to the left, blank filled

-37-



on the right, called!:!.~rmal~~~9..

FILL(argl,arg2)
For every blank character in "arg l", the corresponding

char acter in" arg 2" replaces it. Resul t is nor mal ized

if not nested within LEAVE.

SHIFT (arg, n)

where n is an integer literal or variable. The "arg "

word is left circularly shifted by n character posi­

tions. Result is normalized if not nested within

LEAVE.
BUMP (arg [,n])

where n is an integer literal or variable, 1 implied if

not specified. The "arg a word is processed from right

to left as follows. Every character not a digit or

letter (A through Z only) is left alone. If a digit

not '9', the character is replaced with the next higher

digit. If 19 1, it is replaced with 10' and a carry­

left generated. If a letter not 'Zl, the character is

replaced with the next higher letter. If IZI, it is

replaced with IA I and a carry-left generated. This

continues until no carry-left is generated or until the

first (left-most) 90sition has been processed. The

whole procedure is done n times. The result is normal­

ized if not nested within LEAVE.

LEAVE(funct(args))

The result of the function is not normalized. LEAVE is

effective only for the first nested level. Thus in

LEAVE(fnl (fn2(args), ... )
result of fn2 is normalized but that of fnl is not.

A few examples will clarigy these function. Literals will

be used for simplicity. The equals sign here means ·'gives".

MASK(ABCDEFGH,X0X) = 'ACbbbbbb'

LEAVE(MASK(ABC,X0X)) ='AbCbbbbb'

FILL(LEAVE(MASK(ABC,X0X)), ' .... ') = 'A.C.bbbb'

MASK (ABCDEFGH, '0~~0000X') = IHbbbbbbb'

SHIFT(ABCDEFGH,7) = IHABCDEFG'

-38-



right to left for the first

then "arg2" is appended up to a

is normalized if not nested

examples should make the action

~ASK(SHIFT(ABCDEFGH,4),X) = 'Ebbbbbbo'

BUMP(A$9Z7,3) = 'B$0A0bbb\

skip 3 blanks at end

7+3=0, carry one

Z+l=A, carry one

9+1=0, carry one

skip $ but carry still in effect

A+l=B

One symbolic operator is provided: concatenation denoted by

the ampersand &, e.g.

argl & arg2

Tne "argl" string is scanned from

nonblank (i.e., on the end), and

maximum of 8 characters. Result

within LEAVE. The following

clear.

ABC & XYZ = 'ABCXYZbb'

'AbbC' & XYZ = 'ACXYZbbb'

LEAVE('AbbC' & 'XbZ') = 'AbbCXbZb'

ABCD & '12345' = 'ABCo1234'

'bABCD i & '1234' = 'ABCD123b'

The last illustrates that truncation occurs before normalization.

Normalization is actually a symbolic function itself but is au­

tomatic if not inhibited. It can be forced as follows:

'bAbBbC' & 'b' = 'ABCbbbbb'

5-variables cannot be processsed as units by basic operators

and functions. However, two devices for handling them are pro­

vided. The referent form for an S-variable uses two indices

which are integers:

S:symbol(i,k)

where i indicates the first character to be used and k the

number. Thus if S:LETTER has length 26 and the value of all the

letters, 'AB ... Z',

S:LETTER(10,4)

Hence any part of a

operand or result.

produces 'JKLM'

string up to 8 characters can be a

Shortest length appearing, explicit

-39-

symbolic

or impli-



cit, controls. Thus

N:ALPHA = S:LETTER(24,3)

assigns 'XYZbbbbb' to N:ALPHA.

N:ALPHA = S:LETTER(l,lO)

assigns 'ABCDEFGH' to N:ALPHA; the overflow is ignored. If the

value of S:HEX is all blanks with a length of 16, and the length

of S:OCT is 8 with value '01234567', then

S:HEX(1,10) = S:OCT(1,10)
is an error since S:OCT is only of length 8, but

S : H£ X(1 , 10 ) = S: OC T (1 , 8 )
is valid; the ninth and tenth characters of S:HEX remain blank.

If N:OCT has the same value as S:OCT, then

S:HEX(1,10) = N:OCT

has the same effect as the previous statement. The statements

S:HEX(9,2) = '89'

S:HEX(11,6) = S:LETTER(1,6)

would finally result in a value of

'0123456789ABCDEP'

for S:HEX. Extraction from a string is ~~~ norQalized before use

and, if no sYQbolic function or operator is used, final result

remains unnormalized.

Note that substrings up to 8 characters long from an S­

variable can be compared.

Strings are treated as units by the command ASSIGN which

takes what appears to be a normal assignment statement as its ar­

gument fields. The operand(s) and result are full strings, how­

ever. They may be either S-variables or H-table strings. The

referents for the latter require a nonstandard column index. The

concatenation operator (only) is recognized but may be repeated.

The forms of the command are as follows:

ASSIGN S:symbol = argl [& arg2 ... ]

ASSIGN DIH:symbol(s,h) = argl [& arg2 .. ]

-411-



where

done blindly; no normalization takes place.

field is full, remaining source characters

If the destination field is not filled,

are filled with blanks regardless of their

the destinationWhen

or terms are ignored.

remaining positions

prior values.

Macros (explained in Appendix C) are easily written for more

complicated symbolic functions. Such macros become essentially

new commands. Since they take substitutable arguments, their use

can be generalized to a considerable degree. A preliminary exam­

ple of a macro for numeric functions appears in the next subsec­

tion.

argi is a literal string up to 50 characters (all on 1 line)

an S-variable

an H-table string (see indexing below)

s is ahy standard table stub designator, i.e., a row in­

dex, stub sy~bol, or automatic index (all explained in

the next section).

h is AIB\cIDIEIFIG!H referring to the corresponding

string in the row of the table.

An H-table may be in working storage or attached to current node

(STOP pointer). In the latter case, the o-prefix is used as ex­

plained earlier.

The "column" designator h is nonstandard because reference

is usually to a word (increment) requiring forms such as A3, Bl,

etc. The letter used alone for the whole string is valid only

with ASSIGN.

Concatenation is

4.6 Other Functions

Functions for special purposes are easily created by packets

of command lines. If these are put in~o the form of macros, they

become generally available. A few such macros are provided as

standard adjuncts to the system but the user may modify them if

he wishes. The general concept will be illustrated with three

-41-



elementary statistical functions. (Details of syntax and crea­

tion of macros are given in Appendix C.)

Suppose we define three F-variables

F:SUM, F:MEAN, F:STD.DEV

and point to a vector V:X The vector may be IIEIF form and of

unstated length. We will also assume a vector in F-format of

length 1 or more, called say V:WORK, has been formed and is

available for use. (It is necessary to formally use an array and

not a simple variable, a trick explained in the next section.

The trick can be avoided but would require more commands.) We an­

ticipate the next section by introducing an automatic index

denoted by 11. This means to run over all indices of a vector.

We also need to be able to use an I-variable, say I:WORK. The

sum, mean and standard deviation are then computed as follows.

V:WORK(1)=0.0

V:WORK(l)=V:WORK(l)+V:X(!l)

DIMEN I:WORK=V:X

F:SUM=V:WORK(l)

F:MEAN=F:SUM/I:WORK

V:WORK(l)=O

V:WORK(l)=V:WORK(l)+SQUARE(V:X(ll)-F:MEAN)

F:STD.DEV=SQRT(V:WORK(1)/(I:WORK-l.0))

The variables F:SUM, F:MEAN, F:STD.DEV and the vector V:X (also

V:WORK and I:WORK if desired) can be' replaced with substitutable

arguments in a macro. If the macro is called STATS, the above

computation could be done with one statement such as

STATS F:SUM, F:MEAN, F:STD.DEV, V:X

Hore clever arrangements can be easily devised, especially by us­

ing a conventionalized vector or T-table instead of the F­

variables. The last statement could then be reduced'to something

like

STATS OF V:X

-42-



5.0 REFERENCES TO ELEMENTS OF ARRAYS----_._-- ..- --- ---- ----- ----- ._.-- --_ .. -

Much of the power of the TEXTAG language derives from the

flexibility of referent forms for arrays and node structures.

The latter was ex?lained in section 3.1 but a few additional

points will be brought out here.

In effect, the last node found -- the one pointed to by STOP

constitutes a temporary set of variables which may be refer­

enced via the D-prefix. This is made possibl~ by the fact that

the only way to reach a node is via the D(Q) of its superior.

This is always pointed to by START and contains the definition of

infer ior nodes essentially a "symbol table". (The root node

is an exception but its structure is known to the system.) Actu­

ally, D(Q) of the superior is retained in working storage until

START is changed.

Arrays attached to nodes (but not annexes) may be referenced

just as arrays in working storage except that the user must know

which D-reference points to an array attachment and what type it

is. The QUERY command can be used to check on this. A form of

the DISPLAY command will also display the D(START) , i.e., the

names and forms of the attributes of the inferior set, but of

course this does not help in automatic execution.

The indices into tables may be of four types: numeric, au­

tomatic indexing, symbolic, and head and stub matching. The

first two apply to all forms of arrays vectors, matrices,

lists and tables -- and will be presented first.

A ~~meri~ in~ex into, say, a vector means essentially what

it has traditionally meant. If V:X denotes a vector X, the first

element is referenced by V:X(l). If the length is m, the last

element is referenced by V:X(m). In TEXTAG, a vector is by de­

finition numeric, although three number forms may be used for

different vectors. The user need not pay any particular atten­

tion to the number form, once it is defined, except for the gen-

-43-



eral limitations on integers if I-form is used and the lack of

precisiion if E-form is used.

The index need not be an integer, no matter what form the

elements. A general numeric-valued expression is allowed so long

as the value is not less than one and less than m+l where m is

vector length Thus,

V:X(I:IND), V:X(E:END), V:X(F:IND)

are all valid provided l<I\EIF:IND<m+l. Expressions and nesting
I

of referents are allowed, e.g.,

V: X ( I : I ND+ I), V: X(V: Y(I: I ND) )

provided all resulting ranges are valid. An index out of range

results in an error being declared.

A matrix is a two-dimensional array of the same kinds as for

vectors and customary indexing is used with the same freedom as

above. Thus

1-1 : X ( 2 , 3 )

is the element of matrix X in the second row and third column.

Such forms as

M: X ( I : ROW I I: CO L), M: X (V: R (2), I: CO L)

and so one, are allowed. A matrix element may be used, e.g.

M:X(M:INDEX(I:ROW,I:COL) ,2)

and, in general, any numeric valued expression.

The symbolic form of a vector is the list but each element

is always 8 bytes (characters) long. A list is referenced just

like a vector, e.g.,

L:NAMES(I) , L:NAMES(I:PTR), L:NAMEStI:IND+2)

subject to the same index limits as for a vector of the same

length.

There is no symbolic form of matrix; a table must be used

instead. As will appear, a symbolic matrix would be of minimal

utility. Lists, on the other hand are very useful and much less

of a nuisance than a table with only one row or column. There is

a fundamental distinction between a vector and a list; a value

obtained from a vector is treated as a number, a value from a

list as a character-word. This is the same distinction as

between an I-variable, say, and an N-variable. In several uses

-44-



the difference must be known by the system. Prefixes also permit

the same symbol to be used for different forms. I:X, F:X, L:X,

M:X, for example, may all exist simultaneously without confusion.

In using arrays, one frequently wants to loop over an entire

index range. TEXTAG does not provide a DO-loop in the usual

sense although a LOOP command exists. However, looping through

an array is usually done with automatic indexing. This is not

quite as flexible as a DO-loop but much briefer and more con­

venient in most cases. When automatic indexing is inadequate, a

loop is easily programmed with other instructions.

An ~~tQ~~~i~ !~~~~ is indicated. by a flagged integer of the

form !n where n=l, ... ,9. There is no difference in meaning among

the digits except, if more than one occurs in the same expres­

sion, the smallest digit indicates the outermost loop. Generally

speaking, a row should be outer to a column (for efficiency) but

the differenc~ is usually minor.

An automatic index runs over all values from 1 to m where m

is the shortest vector length to which it refers. Thus

M:X(!l, !2)=0.0

clears the entire matrix to zero. The statement

~1 : X( ! 1 , ! 1 ) =1 . 0

puts ones down the main diagonal. The matrix need not be square;

the shorter dimension governs. The statement

M:X(!l, !2)=M:Y(!1,!2)

puts as much of matrix Y as possible in the upper left hand

corner of matrix X (possibly filling it or possibly using all of

matrix Y). Rows and columns of the result matrix not referenced

because of shorter limits on the right are not changed. Transpo­

sition lean be used; thus

M:X(!1,!2)=M:Y(!2,!1)

transposes some or all of Y into some or all of X. In effect,

one almost has matrix operations without DO-loODS or subroutines.

There is a difference, however. If one is alccumulating values,

the addition must be explicitly stated. For example, for matrix

-45-



multiplication,

M:PROD(!L 12)=M:LEFT(11, !3)*M:RIGHT(!3, !2)

is incorrect. The proper statements would be

M:PROD(!l, !2)=0.0

M: PROD ( ! 1 , ! 2) =M : PROD ( ! 1 , ! 2) +11: LEF'r ( ! 1 , ! 3) *M: RI GHT ( ! 3 , ! 2 )

Note that these two statements amount to generalized multiplica­

tion of (possibly) nonconformal rna ~rices.
~

An automatic index can be used on the right of a phrase,

e . g • ,

V:X(!l)=!l

fills vector X with its row indices, in appropriate form. Such

expressions are meaningful only when the automatic index is ac­

tive. The statement

I:X=!l

is meaningless and results in I:X being assigned the value 0 (un­

less the statement is in the range of a LOOP command, in which

case it is meaningul). An automatic index may never appear alone

on the left, that is, jt ~~i n~t ~~ eXE~~citly 9~~iq~~9 ~ ~~~~.

A limited form of arithmetic is perwitted with an automatic

index (used as an index). This may take only one of four expli­

cit forms:

!n+k

!n-k

!n+I:symbol

!n-I:-symbol

where k is a literal integer. Thus

M:X(!l, !1+1)=1.0

puts ones down the superdiagonal and

M:X(!1,!1-1)=1.0

puts ones down the subdiagonal. In the first case, the column

index exceeds its valid range and, in the second, it has value 0

the first time. These exceptions are automatically blocked and

no error results.

The above limitations do not

used as a variable (when this

used like an I -var iable . Further

apply to an automatic index

is meaningful). It may then be

examples are given in the sub-

-46-



section on LOOP.

Any of the three forms of tables can be indexed numerically

and automatically just like matrices. A T-table is essentially a

matrix with symbolic row (stub) and column (head) names. An A­

table contains character words (2, 4 or 8 bytes in length) but

can be treated like a matrix with respect to indexing. AT-table

element can be used to index another table, or a vector, matrix

or list, for that matter. Thus

V:X(T:IND(!l,l))

will use all elements of column 1 of T-table IND in succession as

indices into vector X. Of course, they must all be in the range

of the vector length. By having different permutations of the

indices in various columns of T:IND (presumably form I), one can

select elements of V:X in different orders by changing the column

index of T:IND.

There would be little point in having tables, however, if

only numeric indexing were used. (An array of symbolic values

could still be useful.) The main point of tables is their stubs

and heads which, among other things, permit one to index symboli­

cally. Thus if the third row of T:PROD has the stub COAL and the

fifth column the head YR1967, either of the referents

T:PROD(COAL,YR1967), T:PROD(3,5)

give the same element, but the first is more readable and one

need not know the numeric indices. Any valid symbolic expression

can be used for a symbolic index. Thus if N:TYPE has the value

COAL and N:YR has the value 167',

T:PROD(N:TYPE,YR19&N:YR)

gives the same element as the prior two referents.

Undefined symbolic indices give a different result than nu­

merical indices wnich are limited by a shorter vector length in

another reference or are out of range. If T:X has a stub value A

and a head value B but T:Y lacks one or the other or both, then

-47-



T:X(A,B)=T:Y(A,B)

results in zero being assi~ned to T:X(A,B); no error is declared.

This point should be carefully noted with automatic symbol match­

ing or nested table referents. The presumption is that a nonex­

istent element should be taken as zero for a T-table and blanks

for an A- or H-table. This is consistent with the purpose of

symbol matching but can be a trap.

Tables can also be degenerate. A table with only a stub but

no head is ,call a stu~ tab!~; if it has a head but no stub, it is

called a head tabl~. In either case it has no body and is called

null. If it has neither a stub nor head, the table is called

void. The use of lists obviates the need for null or void tables

in most cases but occasionally one is used to give a zero or

blank result for any possible symbolic reference, as in a general

program where other tables to be processed are meaningful. Also

a 2-byte or 4-byte head table takes less storage than a list. An

H-table, however, must have a head. An attempt to define or form

an H-table without a head is treated as an error.

The stub of a table is referenced with an explicit zero for

the head index (i.e., column 0) and the head of a table is refer­

enced with an explicit zero for the stub index (i.e., row 0).

Such referents may never be used in a left member ~- stubs and

heads may not be assigned new values -- but may be used in an ex­

pression on the right. (The use of (0,O) is illegal.) The value

obtained is a character-value for any type of table referenced.

Tne following example of a nested referent using automatic

indexing shows one possible use of such symbols for selection.

-48-



§~?I!!P'~_~. :
T: PART (A: SELECT (0 , ! l) , 12) = T: WHO LE(A : SELECT ( (3 , 1l) , ! 2)

§~~Cl.._Q~!:i~~: The head of A:SELECT should be a subset of the stub

of T:PART and have a non-empty intersection with the stub of

T:WHOLE. Par each head symbol of A:SELECT, the row of

T:PART with that stub symbol is either:

(a) set to zero if the symbol is not in the stub of T:WHOLE

or

(b) set to the values of the row of T:WHOLE with the same

symbol.

If T:PART and T:WHOLE do not have the same number of

columns, the shorter head limits the range of !2 in both

cases. The order of the head of A:SELECT and the stubs of

T: PART and 'I' :WHOLE need not be the same. The head s of

T:PART and T:WHOLE are irrelevant except for length, i.e., a

row or partial row is copied in its physical order. Opera­

tions similar to this example are sometimes better done with

direct symbol matching.

~utom~~ic ~~po~ ~atching is specified with a flagged in­

teger in the form "n where n has the same meaning as for automat­

ic indexing. If both !n and "n appear in the same statement with

the same value of n, indexing is stepped before symbol matching.

However, nine values of n have never been known to be used at one

time so that it is better practice to use different values for

each purpose.

Symbol matching has quite a different effect from automatic

indexing and the two should not be confused, although the previ­

ous example has the effect of symbol matching. If that example

were changed to the following

T:PART("l,12) = T:WHOLE("I, !2)

then all rows in T:PART whose stub symbol occurs in the stub of

T:WHOLE would be set to the values of that row of T:WHOLE. Any

other rows would be set to zero with the same ~imit on 12 as in

the prior example. The hierarchy of control is left to right,

that is, unmatched rows are not left alone but cleared.

-49-



Essentially symbol matching for T-tables permits general­

ized matrix algebra for nonconformable tables. For A- and H­

tables, analogous symbolic manipulations are possible but are

difficult to describe. The reader should test the effects for

himself after symbolic operations have been carefully studied.

The following example does generalized matrix multiplica-

tion. It is assumed that the tables have appropriate non-empty

intersections of stubs and heads.

T:PROD(!1,!2) = 0.0

T : PROD ( "1 , " 2) = T: PROD ( "1, "2) +T: LEF'I' ( "1 , "3) *T: RIGHT ( "3, " 2)

The product table, T:PROD, is first cleared to zero. Then

for each stub symbol in T:PROD which occurs in T:LEFT and

each head symbol in T:PROD which occurs in T:RIGHT, the

inner product of the corresponding row of T:LEFT and column

of T:RIGHT is put in the body element of T:PROD (summed pro­

duct by product). Each inner product is itself subject to

symbol matching between the head of T:LEFT and the stub of

T:RIGHT. Order of occurrence of symbols in all stubs and

heads is immaterial.

Symbol matching nearly always requires at least two tables

whereas automatic indexing is often useful for one. (Symbol

matching could conceivably be used on one table whose stub and

head contain some common symbols but it is hard to imagine for

what purpose.)

Use of the LOOP verb is often required for full control of

both automatic indexing and symbol matching.

~·~·l g~~ ~f Qummy Arr~L~ f9-~ ~~~~i~~

In section 4.6, the vector V:WORK was used for summing V:X

with an automatic index. The reason is as follows. A variable

is evaluated only once for an entire assignment statement since

it can only change if it appears as the left member after all

computation is complete. An array, on the other hand, may be

subject to looping due to an automatic index or name matching.

Hence any referenced element of an array is evaluated for each

-513-



pass of the implied loop and, if .the array appears on the left,

it is assigned its new value at the end of each pass. The state­

ment

F:WORK=F:WORK+V:X(11)

results in F:WORK being assigned the sum of its original value

and the last element of V:X which not what is wanted. By using a

dummy numeric array, e.g.,

V:WORK(1)=V:WORK(1)+V:X(11)
the intended summation is performed since V:WORK(l) is evaluated

on the right and assigned on the left for each pass over 11 even

though the index for V:WORK is constant. No test is made to see

if an index actually changes; an element of an array is evaluated

and assigned if necessary for each pass of any implied loop.

5.3 The LOOP and CONTINUE Commands__________ 44 _

Several commands are meaningful only in the context of a

program entity since they involve transfers or spans of control.

These are called execution control commands. Any other commands

may be executed from immediate type-ins but, in fact, one usually

executes programs or parts of programs automatically from a pre­

typed card-image file. Execution from such a file is initiated

by either the command RUN or a SOURCE phrase in other statements.

The location of program files is explained in the next section.

Two execution control commands are LOOP and CONTINUE which

form ;'beg in-end" pair s which may be nested. LOOP is not the same

as DO in a DO-loop. A DO statement in FORTRAN has the implica­

tion afor'; referring to an index range. A LOOP statement has the

implication ,Iif" referring to a boolean expression which must

i~vo!~~ ~ith~~ ~utom~~!£ i~dexi~g .Q.~ nam~ !!!~t~.~!ng in an arr~y in

~~~.~i!!9. st2~age. For example,
LOOP M: X(11,1) <GT> ~

means to execute all statements down to the matching CONTINUE for

all values of 11 for which the corresponding element of matrix X

is positive. When the range of 11 is exhausted, i.e. would next

-51-

exceed the row order of X, control passes to the statement fol­

lowing the matching CONTINUE.

It is illegal to use a statement within the span of control

of a LOOP statement (i.e.. before the matching CONTINUE) which

transfers control out of the loop. Doing so will give

~~Ere~ictabl~ re~~~ts. TEXTAG programs are not compiled but are

executed interpretively no matter what the source of the state­

ments. Consequently, it is not possible to detect the kinds of

loop errors which a compiler would catch.

It is perfectly legal to transfer control around an entire

LOOP-CONTINUE sequence, so long as the LOOP statement has not

been executed. This is often done with nested loops where an

inner loop is bypassed within an outer loop. ~~~h LO~~ must have

~ ~at~hing CONTINgE, even if nested loops logically end at the

same point. An example appears below.

If no meaningful condition can be stated for LOOP, a dummy

one can be used. A very common one is of the form

LOOP T:name(0,!1) <NE> '

which means to loop over all head symbols of a table which are

not blank (presumably none are). A name-matching flag is much

less common but a statement like the following is possible:

LOOP T: A(0, "1) <EQ> T: B (h 1 ,0)

which means to execut the loop, in order on head symbols of table

A r whenever the symbol also occurs anywhere in the stub of table

B. The order of B's stub need not match A1s head in any sense.

Within the span of control of a LOOP, the automatic indexing

or name matching indices are fixed. If referenced by statements

in the loop, they do not automatically loop within the state­

ments. An inner LOOP statement must have at least one flagged

index not occurring in any outer LOOP statement. Consider the

-52-

following sequence:

LOOP T:CONTROL(11,12) <NE> 0.O

F:DIV=T:CONTROL(11,12)

N:ID=T:CONTROL(11,0) & T:CONTROL(0,12)

LOOP T:RESULT(!3,0) <NE> N:ID

T:RESULT(13,!4)=T:RESULT(!3,!4)!F:DIV

CONTINUE

CONTINUE

The outer loop is executed over all columns within all rows of

table CONTROL for which the element is nonzero. When it is

nonzero, it is saved as F:DIV (not strictly necessary but faster

in execution). A symbol is also formed as N:ID by concatenating

the current stub and head symbols (presumably short) of table

CONTROL. Both these statements would be nonsense outside of a

loop since there is no index in the left members. However, !l

and !2 are fixed within the outer loop.

The inner loop is then executed for all rows of table RESULT

whose stub symbol is not equal to N:ID. The!3 index is fixed in

this loop. For all other rows, all elements are divided by

F:DIV, by running over the free !4.

Note that each loop requires a CONTINUE even though they are

logically at the same point. The indenting is done to make the

program more readable, a practice to be recommended.

If the required operation had been to divide only the row of

table RESULT whose stub symbol has the value of N:ID (instead of

all other rows), the inner loop would be unnecessary and ineffi­

cient. It could be replaced by the single statement

T:RESULT(N:ID,!4)=T:RESULT(N:ID,!4)/F:DIV

In this case, !3 could be used here instead of !4 but it is a

matter of indifference.

-53-

OTHER

In addition to the data bank proper and the auxiliary file

for annexes, several other files may be used during a TEXTAG ses­

sion. At any moment during normal use of TEXTAG, a maximum of

seven files may be in use simultaneously. (See Appendix F for

maintenance mode.) These seven files all have functional names

which are convenient for reference and are listed below. These

functions are really system variables whose values are the actual

file names. (File names depend on conventions of the host system

and will not be elaborated here. See Appendix D.)

As usual in computing, there are two kinds of files: card­

image (like formatted in FORTRAN but generally free form) and

binary (or unformatted) files. The first designation is awkward

and the second imprecise. They will be referred to as ~~~~~.~~!

and intern~~ files, respectively. External files are prepared by

the user with an Editor (or conceivably a card-punch). Internal

files are controlled by the user but only via system commands.

He cannot edit or otherwise change them directly (except for

changing the name with host system commands).

The seven standard file functions are:

(1) DATABANK, the main data bank file. The user specifies the

name as an argument to the last command issued to the host

interfacing routine used to invoke TEXTAG. This is an

internal file. It is fixed for the session.

(2) ANNEX, an internal file containing text annexes. The name

is specified with the SET command and may be changed during

execution.

(3) ARRAYS, an internal file in which arrays from working

storage may be enfiled and recalled. The name is specified

with the SET command and may be changed during execution.

(4) MACLIB, an external file containing macros in TEXTAG

language. It is specified with the USE command which must

be the first command executed (except LOAD if used). It is

-54-

fixed for the session and may not be changed.

(5) READMOD, an external file containing decks which are pro­

ce"s~d by the REA~MOD command. The file and deck names are

arguments to tne command and may differ on different state­

ments.

(6) PUNCH, an external file produced by the PUNCH command. The

file name is .specified with the SET command and may be

changed. The file mayor may n6t be available for reading

during the session depending on host system conventions.

(7) PROGRAM, an external file of decks of statements which may

be initiated by parameters to TEXTAG, a RUN command or a

SOURCE phrase. Any number may be used but only one at a

time. Default is the user's terminal keyboard.

Three other kinds of files are also involved with use of

TEXTAG. The printed output file is the standard spool file of

the host system. It is made available by a command in the host­

interfacing routine used to invoke TEXTAG. In general, all

internal files must be declared to this routine. This is over

and above use of the SET command or other specification tech­

niques noted above, all of which depend on the file being acces­

sible.

There are also internal scratch files used by certain com­

mands. The user need not be concerned with declaring these; it

is done automatically. However, the user takes advantage of them

with the commands DUMP, RETRIEVE and IDENTIFY. Within TEXTAG

proper, their names are predefined.

The final form of file is a subroutine library. Subroutines

may be called with TEXTAG statements provided they were loaded

initially with a LOAD command which must be the first command ex­

ecuted. The LOAD command is explained in Appendix E. This func­

tion is very important for extending the scope of TEXTAG capabil­

ities. This approach was used very successfully -- though not

with complete generality in the prototype system. The main

difficulty was the sheer size of the system library invoked by

FORTRAN (and PL/I) routines. Using assembler language routines,

no difficulty at all was encountered. They have been used for

-55-

special functions, random number generation, graphic output, and

similar ourposes. The space problem can be overcome by using

sufficient main virtual storage, readily obtained under CP/CMS

(but at extra charge).

Another style of external files is used in connection with

TEXTAG but not by TEXTAG itself. A standard interfacing routine

is provided which is FORTRAN-callable and can access the ARRAYS

file. The input to the FORTRAN program is presumably in external

form, though not necessarily. A program could generate data

directly to load into ARRAYS. However the data is obtained, the

ARRAYS file must already exist with appro~riate (empty) arrays.

This is easily created using TEXTAG interactively in a prelim­

inary session. A FORTRAN or other program can also unload arrays

from ARRAYS to use for some other purpose.

A useful convention has long been used in certain applica­

tion areas. This is the concept of decks in an external file. A

deck is simply a sequence of lines in a card-image file which be­

gin and end with lines of pre-defined and unique format. Several

schemes are in use for these demarcation lines, all of which are

arbitrary. The one used in TEXTAG is the same as that used for

many years for input files to mathematical programming systems.

For simplicity and standardization, the same forms have been used

for a variety of purposes and the scheme is about as good as any,

better than some.

The reason for using decks is to avoid the proliferation of

files and to keep related material together. Frequently, one

creates a file with decks sequenced in expected order of use.

However, the file will be searched if necessary (once circularly

in a forward direction) for a requested deck.

A deck is identified by its first line (card) which has a

very rigid format:

NAME deckname

-56-

where NAMF.: starts in position 1 and "deckname lo in position 15.

(The reason for the latter position is lost in unrecorded history

but there i~ no compelling reason to change it.) The deck is

terminated with an equally rigid format:

EiWATA

starting in position 1. (The word was invented when computers

only handled six characters at a time.) Each deck must have one

and only one (each) NAME and ENDATA lines.

An asterisk in oosition 1 of any line indicates a comment.

These are us~ally ignored and are intended for use in a listing

of the file. TEXTAG has an option for displaying such lines

within a program deck which is sometimes useful in debugging.

Comment lines may also appear between decks but they are always

ignored.

The :END lines used by TEXTAG are within a deck (unless

typed at the terminal) and are a sub-demarcation. Commands for

terminating execution of a program deck deck are given in section

9. However, if control ever reaches the ENDATA card, execution

is terminated anyway. The action depends on circumstances and

hence ENDATA is explained as a command in section 9. It has the

force of "RETURN" or "QUIT".

A TEXTAG macro library (MACLIB) is simply a file of decks,

each macro constituting one deck. Flags for substitutable argu­

ments are recognized but otherwise the statements are like other

TEXTAG statements. The file. as a whole is treated specially,

however. To eliminate searching, the file is scanned when the

command USE is executed and a directory is created in main

storage. Hence invoking a macro never requires a search. Either

a MACLIB file or a program file can be edited and is then immedi­

ately available and suitable for use in a TEXTAG session.

Files used by READMOD have the same deck structure. These

decks are not executed but rather processed by READMOD. The dis­

tinction is minor in a practical sense. READMOD may be regarded

as simply another processor level.

-57-

7 • (1 SEARC II CON:3'r rWC'I' IOt-.JS

We return now to the subject of searches in the data bank,

essentially continuing from section 2.5 but with various needed

facilities explained in the intervening sections now available.

In section 2.3 the commands FIND, FINDSUP and SEARCH were

introduced. The first two are members of a set of six commands,

called FIND commands, which will be explained in the first sub­

section below. They are all simple in concept and are actually

carried out by the file system management routine itself, ap­

propriately interfaced. The SEARCH command, on the other hand,

is much more complex in both conce?t and execution. The TEXTAG

processor utilizes the file system with appropriate FIND commands

and others not directly available to the user to carry out the

search. Search constructions and their actions are explained in

the subsection following the FIND commands.

7.1 FIND Commands

Of the six commands in this set, only FIND itself takes ar­

guments, the meaning of the others being unambiguous. All rely

on the inferior-set structure and use of key attributes. Most of

the options for FIND were presented in section 2.3. A FIND

statement has the following general format where action starts

from the node pointed to by START.

FIND [-nlkatr_lidentifier_chain

where n is an integer indicating the number of levels to back up

katr is a symbolic expression indicating the name of the

key attribute to which to back up

identifier chain is a chain of key attribute val~~~, which

may be symbolic expressions, connected by underlines if

more than one, indicating the path of referents to be

taken.

If the only argument is a single referent, FIND looks for it

among the value of the key attribute for the inferior set of the

-58-

START node. Referring to the example in section 2.3, starting

from START pointing to AUSTRIA and N:COUNTRY=GERMANY, the follow­

ing statement could be used

FIND -WRLD.RGN E.EUROPE N:COUNTRY

to get to the node fot East Germany. Assuming success, START

would then point to E.EUROPE and STOP to GERMANY. Note that one

need not know how many levels up WRLD.RGN is.

The FINDSUP command was fully explained in section 2.3. It

is rarely needed by the user. If for some reason STOP is set to

an old value (e.g., SET STOP=HOLD(i)) and its superior is unk­

nown, then FINDSUP must be used. Resetting START automatically

clears the ISD for STOP. Resetting STOP causes the values to be

available. Arbitrarily resetting STOP without executing FINDSUP

may leave the node incorrectly defined even though available and

neither D:symbol referents nor other commands will execute prop­

erly.
The other four FIND commands are for accessing nodes of an

inferior set in ascending or descending sort order on their re­

ferents. The first two start from the START node which must have

a D (Q) •

FINDLO

This finds the referent in lowest sort and sets STOP to point to

it.

FINDHI

This finds the referent in highest sort and sets STOP to point to

it. The other two commands start from the STOP node (but START

must not have been changed).

FDHIER

("feed higher") gets the node with the next higher referent in

sort order. If none exists, B:$ is set to 0. The last command

is just the opposite

FDLOER

("feed lower') which gets the node with the next lower referent

in sort order. Both commands set B:$ to I and STOP to the node

fed is successful. If not, STOP points to the node with highest

or lowest referent, respectively.

-59-

The purpose of making the last four commands available to

tne user is primarily so he can write his own search macros. The

SEARCH command makes extensive use of them.

7.2 The SEARCH Command

Several commands (e.g. HOLD, SET, DISPLAY introduced in sec­

tion 2.0) use different rules from those explained in preceding

sections for general assignment statements and expressions. This

is particularly true for SEARCH. The differences lie primarily

in the recognition of reserved or key words in different contexts

where they make sense. In a general expression, an unprefixed

symbol is taken as a literal whereas, in many commands, the mean­

ing is implied by usage. This is not really ambiguous or confus­

ing when once understood. Indeed, it would be a nuisance to have

to specially flag key words in a natural context.

Some reserved words are really useless but are allowed for

readability and "correctness". Thus a statement such as "00 X

for n=l,l0" is no more meaningful than if ~for~ were omitted, as

in FORTRAN. Other cases are not so clearcut. Thus the statement

SEARCH DOWN 2 LEVELS FOR LANGUAGE <EQ> GERMAN

is not so clear if .. LEVELS FOR" are omitted, even though the

parsing routine just throws them away. We like a little verbosi­

ty, but not too much. The phrase

TO 20

is undoubtedly preferred by most people to

UNTIL NUMERIC KEY EQUALS 20

even though the first is not understandable until the definition

of the form has been found. Somehow, a little key doesn't

deserve a big long phrase. (As seen below, the form TO K=20

could lead to ambiguity.)

The use of unflagged symbols does pose some problems. In

the first example above, LEVELS, LANGUAGE and GERMAN are all

nouns, but are used in completely different senses. The first is

a reserved word for readability, the second is a user-assigned

-60-

name of an attribute, and the third is a value to be looked for.

The o~erator <EQ> looks a bit out of place but we also need to

permit such constructions as

POPUL <GE> lk1E6

and who wants to type out

POPUL GREATER THAN OR EQUAL TO TEN MILLION

Now LANGUAGE and GERMAN can be substituted with N-variables or

symbolic expressions, which might be very long if written out.

LEVELS and <EQ>, on the other hand, are not substitutable but

must be written literally as shown. The statement formats for

SEARCH are designed so that, if used correctly, no ambiguity

results and most errors will be detected. It is conceivable,

however, that some unanticipated error could slip through and

give incorrect results. This is the price for convenience and

some readability without extensive syntactical and contextual

analysis (which might make the wrong conclusion anyway).

The general formats for SEARCH are

SEARCH locatorldepth-limit [FOR] boolean.exp [,

REPORT] [,HALT [ON HIT]

or

SEARCH RESU[1E

The arguments are explained separately.

(1)!.g~~~.~!:-

A locator is a chain of key attribute names connected with

underlines. Action always starts from the START node which

is not itself counted. This node must have a D(Q) defining

the key attribute name as the same as the first name in the

locator. The inferior set is then searched in ascending

sort order for a node with a D(Q) defining a key attribute

with name equal to the second name in the locator. This po­

sition is remembered and the process continued from this

node until the end of the locator is reached. The last in­

ferior set is then searched in ascending order on key attri­

bute values for the required condition. If found it is out­

put as directed and unless HALT is specified, searching con­

tinues. When the inferior set is exhausted, the procedure

-61-

backs up one level and continues the search there for the

last name in the locator. This process continues until all

nodes at all levels which ~stay on a path H have been

searched.

(2) 9.~!!-lis~

A depth limit is a phrase of one of the following four

kind s :

DOWN TO name

DOWN d [LEVELS]

AT k

TO k

The first form is almost like a locator except all key at­

tribute names are used to form paths until either "name" is

reached (success) or a path stops (failure). This search is

effectively a double one: first to find all possible loca­

tors wh ich terminate wi th "name': and then all nodes satisfy­

ing the condition stated. It can, consequently, be very

long if peer groups have many inferior peer groups.

The second form simply proceeds along paths for all

possible locators having length d+l using the known key at­

tributes.
The AT form proceeds along paths for all possible loca­

tors which terminate with the numeric key equal k. En­

countering key>k before key=k terminates a path search. An

integer variable may be used for k.

The TO form is the most general of all. It proceeds in

the same way as the AT form but looks for the condition at

every level on the way. This involves a search at the level

only if attribute names matching those in the condition oc­

cur in the ISO. This is also true for the end level of the

three other forms of search.

Note that the reserved words DOWN, AT and TO are mean­

ingful; they are P.~~~~E~~~ !!-9-~ use ~~ key attriQ~~~ names.
If K=k were allowed instead of just k for TO or AT and ei­

ther of these were misspelled, ambiguity could result. For

example,

-62-

SEARCH TOO K=lS - - -

where TO is misspelled looks like a one-word locator fol­

lowed by some kind of condition (which is incorrect but is

interpretable and could waste a lot of time). Since k is an

integer, not a symbol, it is immediately recognized. This

is true even if k is represented by an integer variable

which is allowed (but pot ~ g~~~~~l ~~P.~~~~~Q~) .

(3) ~gol~.~~.~xP

This is a boolean expression stating the condition looked

for. The expression is ~~~ compl~~~lY gen~f~l. This is not

a strong restriction in capability but mainly a practical

one to avoid unnecessary complexity and length in the state­

ment and its execution. The most general form allowed is

rel.exp [<bool> rel.exp ...]

where "reI. exp;' is a simple relational expression of the

form

attribute name <reI> comparator

and "attribute name" and "comparatoc' are either literals or

simple var iables, N-form for the fir s t. (Ind irect addr ess ing

may be used.) These are not ultimate restrictions since at­

tr ibute names and - comparator values can be precomputed if

necessary and. by using HALT, any calculations on the node

values can be done. The one capablity that is blocked is

masking of a symbolic value. However, initial characters

can be found by using an S-form for the comparator. For ex­

ample

attribute <EQ> S:COMP(I,3)

limits the comparison to three characters.

Note that such relational expressions are really

~QI?~~I!.!io~~, not true phrases, even though they appear na­

tural. For example, if the attribute name is LOCATION and

the comparator is VIENNA, the phrase

LOCATION <EQ> VIENNA

does not mea~ that the left and right members should be

equal, but rath~£ that the attribute whose name is LOCATION

should have a value which is VIENNA. This important dis-

-63-

tinction is often overlooked by such people as model build­

ers who glibly mix the names of some things with the values

of others. In FORTRAN, it is handled by requiring that both

sides be variables or, in some dialects, that a literal com­

parator be in quotes. It could be done in the TEXTAG

language with the standard phrase

D:LOCATION <EQ> VIENNA

which is properly what is intended but it would be a bit of

a nuisance and not natural-looking. within the condition

expression of SEARCH, left members are simply understood to

be interpreted as if prefixed with D:. However, they may be

prefixed normally if a variable is to be used; thus, if

N:ATTR has the value LOCATION, the phrase

N:ATTR <EQ> VIENNA

gives the same effect as above, i.e. as though the left

member were D:N:ATTR.

A further restriction is imposed on boolean expres­

sions, namely, parentheses are not recognized. Instead, ex­

ecution is left to right. Thus a<AND>b<OR>c is interpreted

as (a<ANO>b)<OR>c. If a<AND>(b<OR>c) is intended, it must

be written b<OR>c<AND>a. The reason for this is that the

general expression evaluator is not available during the

search and. making it so would lead to great inefficiency.

(4) [,REPORT]

This option controls disposition of results. The default is

to display them at the terminal. If REPORT is specified,

results are spooled to the output print file. (Printed out­

put can be duplicated at the terminal or sent only there,

and vice-versa, by using the command MSGCLASS for control­

ling output dispositions.) Format is automatic using prede­

fined conventions. The result is entirely readable and this

approach save a lot of fuss about defining formats and then

-64-

invoking them. Indenting is used to indicate levels

(5) [,HALT [ON HIT]

This option (with its trailing phrase if desired) causes the

search to be interrupted each time the condition is satis­

fied. The option must be used if anything other than simple

displayed or printed output is required. For example, it

may be desired to display the entire node, or to examine at­

tached arrays or to extract data to put in other arrays in

working storage. All facilities of the language which do

not involve changing the STOP and START pointers may be

used.

(6) RESUME

This form of the command simply continues the search after a

prior SEARCH with HALT has halted. If no such prior SEARCH

has been executed or if the data bank pointers have changed,

an error is declared.

RESUME is a key word but not a reserved one since it

preempts nothing. Since nothing follows it, it cannot be

construed as a locator and the word can be the name of an

attribute (a very unlikely one) in other contexts.

Order of the words and phrases is fixed and they must appear in

the order shown. However, HALT can be used without REPORT and

the filler words FOR and LEVELS can be omitted or not

When HALT is used. the automatic display will be intermixed

with other type-ins and displays at the halts. If a clean

hierarchical output is desired, REPORT should be used to produce

one off-line. Other printing commands and options should not, of

course, be used at the halts unless so intended.

To overcome the difficulty of getting a feel for a statement

from its general format description, a small artificial example

is given here. (Real examples that are manageable on a page are

hard to find.) To simplify identification nodes will be labelled

-65-

(not really done) as follows:

NI, N2, N3 for the first level

NIl, N12, ... , N21;.. for the second level

NIII, Nl12 .. , N211, for the third level.

Structure will be indicated by indenting and order will be by key

attribute names. Attribute names will be indicated by Tn, Un,

Vn, Wn where n=I,2, An ISO is indicated by a list of attri­

bute names followed by K=k all enclosed in parentheses and in­

dented to the level which it defines. Attribute value will be

denoted by small letters followed by digits.

Consider then the following structure.

ROOT

(TI, UI, VI, WI K=12)

NI=tl, ul, vI, wI

(T2, U2, V2, K=14)

NII=t21, u21, v21

N12=t22, u22. v22

(T3, U3, K=21)

NI21=t31, u31

NI22=t32, u32

NI3=t23, u23, v23

N2=t2, u2, v2, w2

(U2, V2, W2, K=15)

N21=u21,v21,w21

(T3, V4, K=22)

N211=t31, v31

N212=t32, v32

N22=u22, v22, w22

N3=t3, u3, v3, w3

(T2, W2, K=15)

N31=t25. w21

N32=t26, w22

N33=t27, w23

(T4, V5, W5, K=23)

N331=t41, v5, w5

N332=t42, v5, w5

-66-

The results of the following searches are as shown. It is as­

sumed they all start from the root.

SEARCH Tl T2 T3 FOR U3 <EO> u32

Unique result is N122.

SEARCH DOWN TO T4 FOR V5 <EO> v5 <AND> W5 <EO> w5

Both N331 and N332 are found.

SEARCH DOWN TO T3 FOR V3 <NE> X <OR> V4 <EO> v3l

Nodes N12l, N122, N2l1 are found.

SEARCH DOWN 3 FOR W2 <EO> w21

Nodes N21 and N3l are found.

SEARCH TO 22 FOR V5 <EO> v5

No match is found. (One occurs at 23).

SEARCH AT 15 FOR W2 <EO> w2

Nodes N22 and N31 are found.

Determination of the search paths followed to find these is

left to the reader.

8 0 REPORTING FACILITIES

TEXTAG provides very flexible reporting facilities. The

commands DISPLAY and REPORT output current values of working

storage or the STOP node and its ISD (superior's 0(0)) or the ISO

for its inferior set. These are all output in predefined formats

which, however, are usually adequate for working purposes and

even intermediate reports. For more complex or precise format­

ting, the PRINT (also PUNCH) and FORMAT statements can be used.

The latter are slightly modified versions of FORTRAN FORMAT

statement, familiar to most computer users. Finally, there is a

powerful command called AUTOFORM for producing either numeric or

symbolic tabular output with full stub and head, and long and

wide page, ·facilities. In addition to tabular heads, page and

section heads and a footnote are provided with the commands HEAD­

ING and FOOTING. There are also a set of NOTE commands for out­

putting arbitrary lines of text with single or doubie spacing.

The command PAGE both starts a new page and defines page length.

-67-

Consequently, virtually any type of report can be produced.

The reporting facilities may be extended to graphs by using

a subroutine available (loaded with LOAD command) and the use of

TEXTAG macros. In one standard use of the prototype system, six

graphs are output on one page with this approach. (Resolution is

only fair; output is to a standard line printer.)

Results of various kinds may also be enfiled in arrays and

then accessed with a FORTRAN (or other) program by means of a

standard interfacing routine which accesses enfiled TEXTAG ar­

rays. This is also, probably, the best way to output results to

drive a plotting or other graphic device.

8.1 Use of Annexes

Facilities for handling textual material in annexes are

rather meagre in TEXTAG. No attempt is made to duplicate the fa­

cilities of a context editor or page formatting system. Such

processors are widely available and specialized for the purpose.

An annex is loaded into the ANNEX file with the command READ.

The only rules applied are the following:

A. Input is stored in lines of 64 characters.

B. If neither the 64-th character is punctuation, blank or

last on input line nor the following character is blank,

the line is cut back to a preceding blank and the remainder

put on the next line.

C. An input line starting with one or more blanks causes any

prior input to be stored and a new line started.

If the input has been produced by a formatting routine with page

width of '64 characters, then TEXTAG will store it as is. Other­

wise, the result will be ragged on the right.

An annex may be displayed or printed with the command SCAN.

No output editing is done; the 64-character stored lines are just

printed verbatim.

Character strings or lines can be found in an annex with the

command LOCATE and strings in a line can be replaced with strings

-68-

of equal length with the command CHANGE. An option' for substi­

tuting an entire line is provided. Deletions and insertions are

not possible.

9.0 COMPLETE LIST OF COMMANDS'---' -_._--

TEXTAG is a two-level system (which sits on top of the two­

level CP/CMS host). The first TEXTAG level is called the

!n~erf~~~ Level. From the user's viewpoint, only five standard

commands are recognized at this level and, excepting QUIT, only

at this level (Some additional maintenance commands appear in

Appendix F.) These commands are ~l~ay~ ~YE~d at the terminal.

From the standpoint of program structure, the interface level is

considerably more important. It contains many routines and func­

tions which are either executed automatically or provide services

to the second level. In particular, the File Management Program

resides at the first level.

The second level is called the Q~~ti~~~l Lev~l and com­

mands may be executed from the user's terminal or from an exter­

nal file, and these modes may be intermixed. The operational

level recognizes 65 commands, subcommands and special lines (sub­

ject to later expansion). These commands are presented in seven

functional groupings in the subsections below. The grouping is

arbitrary in some respects. There are no restrictions between or

among groups except two commands which must be executed first if

used and those which can only be executed from an external file.

These all occur in the Execution Control group, presented first,

but some commands in this group can be issued from the terminal

as well.

All command names longer than four characters except FORMA'r,

FINDSUP, FINDLO, FINDHI and variants on NOTE may be abbreviated

-69-

to four characters. These commands must be spelled in full.

The level-l commands are presented first. They are

TITLE Define page title and activate output spooling.

DECLARE Declare internal user files.

EXECUTE Invoke the operational· level.

READ Load an annex.

QUIT Retur n to CMS.

(This assumes

first announces

TEXTAG is invoked by simply typing its name at CMS level.

the TEXTAG residence disks are accessbile.) It

itself with a display at the terminal and then
I

gives the prompt

READY:

a wa it ing a typed-in command. (Prompts at the ope rat ional level

consist of simply ">;'.)

The first command normally issued is called TITLE. It

serves two functions: to define a title line (first header) for

all pr inted output f and ~g ac.!:-!.~at~ the §.~.C?!!.!!9. !!!ech~nism. The

title line can be changed subsequently but unless TITLE is is­

sued, all offline printing will actually be output only at the

terminal. There are three classes of output, called message

classes, which are explained in section 9.8 under the command

MSGCLASS. TITLE also sets these classes to default dispositions.

The format of TITLE is simply

TITLE 'any text up to 64 characters in length'

The surrounding single quotes are mandatory and single quotes may·

not appear within the title. The entire statement must end by

position 72 and no continuation is allowed. (At the operational

level, up to 8~ characters can be used for a new title line.)

The second command, which !!!~st be issued, is DECLARE which

is used to declare all the user's internal files to be accessed.

The file functions DATABANK, ANNEX and ARRAYS are the usual ones.

If more than one ANNEX or ARRAYS file is to be used, they must

-70-

may be

The com-

all be declared. The DECLARE command is explained in Appendix D

since it involves host system conventions.

Unless one is loading an annex, the next command is simply

EXECUTE DATABANK=filename [,SOURCE=file,deck]'

This invokes the operational level for the named data bank

(filename). If the optional SOURCE phrase is used, the first

commands at the operational level will be taken from the source

specified. This is not necessarily the same as issuing a RUN

command from the terminal at the second level. If LOAD and/or

USE commands are required, they must be issued first. When it is

'desirable to incorporate such commands in program decks, the

operational level must be entered with the above SOURCE phrase.

The operational level will eventually be exited and return

is to the interface level. Another EXECUTE statement may then be

issued for a different data bank. This is necessary in some res­

tructuring sessions when parts of an old data bank are to be used

in a new one. See Appendix F for details on this and also cer­

tain other maintenance functions at the interface level.

The command QUIT causes all open files to be' closed and con­

trol to revert to CMS.

Annexes are used at the operational level but they

loaded to the ANNEX file only at the interface level.

mand to do this is

READ filename,deckname TO annexfile

where "filename,deckname" specify an external file and a deck in

it containing the text, and "annexfile" is the ANNEX filename

which must have already been declared. The external source file

has a standard deck structure. The first line of the deck (after

the NAME card) must be as follows:

ANNEX: symbol [LINK TO oldsymbol]

where "symbol" is the unique name by which the annex is to be

known (the name used for R-form attributes). More than one annex

can be loaded by ending each one with a :END line followed by

-71-

wnother ANNEX: line. The last one need not have a :END line

since the ENDATA will terminate loading anyhow.

I f the optional LIl~K phrase is used, "o ldsymbol" must be the

name of an existing annex. The new annex will be linked to the

old one and the two may be accessed in sequence with LOCATE and

SCAN commands at the operational level.

There is no absolute limit on length of text but one annex

should not contain more than about 2000 characters (about 30

lines) for convenient and efficient use. See section 8.1 regard­

ing line packing.

9.2 Execution Control Commands__ .__ -.__0- _._. .__

There are 14 true commands, one immediate instruction and

three special line formats in this group. Eleven of these may be

used only in a program deck or macro, but all may be except as

explicitly noted. To clarify the different senses in which "exe­

cution control" is used here, the group will be presented in four

subgroupings.

The two commands in this subgroup must b~ is~~ed first on

entering the operational level if they are to be used. If both

are used: they must be issued in the order here presented. They

!!I~Y !!~~ g~. ~~e~~~~g·

The LOAD command is used to obtain subroutines in assembled

or compiled form which are to be used. The format is simply

LOAD subroutinel [,subroutine2 ...

Appendix E gives details on the source of the subroutines and

various considerations about order and number of subroutines

loaded.

The USE command specifies an external file containing macros

which are to be available for the session. Each macro is a deck.

-72-

The format is

USE MACLIB=filename

An in-core directory is built to avoid further searching of the

file and to establish limits for each macro. Macros are then in­

voked by using their names as commands. See Appendix C for rules

for creating and using macros, and Appendix D for file naming

conventions.

9.2.2 Transfers of Control in a Deck

All seven commands in this subgroup, plus label lines, are

errors if issued from the terminal.---- - _.._--- -- -- ----_._--
Since TEXTAG is completely interpretive no compilation

phase is used -- the only possibility for transfers of control is

by skipping forward or backward over the lines constituting a

program deck or macro. To make this have the appearance of

transfers to labelled statements separate label lines are used

since most TEXTAG statements are free form and no label field is

available. Transfer of control to a label line really means to

the li.!!e !ollo~ing. (The use of some queer mark or spacing con­

vention on a statement line to indicate a label is undesirable

for a number of reasons.) A label line is one of the few rigid

formats (along with NAME, :END, ENDATA and three more presented

below). The format of a label line is

//label

where "label" is limited to six characters constituting a symbol.

In referring to a label line, the slashes are not used, just "la­

bel" .

Transfer to a label may be done both conditionally and un­

conditionally, both forward and backward. There are two uncondi­

tional forms, one of which is completely different in execution

from true commands, and it will be explained first. The instruc­

tion format is

GOTO label

where GOTO is spelled as one word in positions one to four. GOTO

is executed directly by the line scanning routine and is very

-73-

fast. It is often exactly what is wanted, in spite of its rigid

format. For example, at the end of a section, of code whose exe­

cution is conditional, it is often required to jump over a fol­

lowing section. GOTO is the better choice for this. Further­

more. in a macro, GOTO is the only means of transferring to a la­

bel.

The other unconditional transfer of control is a true com-

mand called SKIP. Its format is the basis for the conditional

forms as well. The format is

SKIP nl-nlTOPllabel

where

n (an integer) means to skip the next n lines

-n means to skip back n lines

TOP means to start again from top of deck

label has the meaning "GOTO label".

The la~!: form !!!.~ !!Q~ be uses! in a macro. This applies to the

conditional forms as well.

Note the difference in counting for nand -no If the skip

is on line 15, SKIP 5 skips lines 16-20 and transfers control to

line 21. SKIP -5 skips to 15-5=10 and execution begins there.

The n may be any integer-valued expression. In counting lines,

all lines must be used including comment and label lines.

The arguments for SKIP will be referred to as ;'skip" in the

conditional commands which take the same forms. The three com­

mands are ~s follows:

I F boolena - e xpre s s ion, "skip ..

If the boolean-expression has value 1 (true) the skip occurs,

otherwise control passes to the next line.

IFNOT boolean-expression, "skip"

If the boolean-expression has value 0 (false) the skip occurs,

otherwise control passes to the next line.

TALLY I:symbol, "skip"

The I-variable is decremented by 1. If still positive, the skip

occurs, otherwise control passes to the next line. Note that an

(almost) endless loop does not occur if the I-variable is ini­

tially zero or negative.

-74-

In program decks' (but not macros) a dynamic location table

with U[). to 16 entries is maintained. Whenever a label line is

encountered in passing (but not skipping), it is ignored but the

label and line position are recorded. If the table fills, the

oldest entry is replaced. (A label is not entered again if it is

already in the table.) Thus a backward GOTO or skip is usually

found in the table. If not, a forward circular search is done,

at most once around the deck. If not found, an error is declared

and control returns to the terminal. A GOTO in a macro always

involves a search but these decks are usually short and most

references are forward.

The LOOP and CONTINUE commands, discussed in detail in sec­

tion 5.3, are also in this subgroup. Execution control is main­

tained separately for loops, using a stack. ThE maximum nesting

level is five. (This is easily expanded if it becomes neces­

sary.) Skips or GOTOs which transfer control outside the loop

are not only illegal but fatal error$. They would hopelessly

confuse the processor and the session would probably have to be

aborted. (Essentially, the stack would never clear.)

In this group, only ENDATA and interactive responses are

illegal from the terminal but the interpretation of these in­

structions may depend on where they are issued.

The RUN command is equivalent to a SOURCE phrase and takes

the format

RUN filename, deckname

Execution always starts from the top of the program deck. If a

RUN command (or an equivalent SOURCE phrase) is executed within a

program deck, the existing program file is closed and the new one

opened. There is no provision to return to the first program

deck. BQ~ ~r ~ SOU~~~ Eh~~~~ i~ il~~~~~ in a ~ac~~. However,
READMOD may be used.

The interpretation of QUIT depends on where it occurs. The

-75-

general format is

QUIT [OPTION]

where the option (named OPTION) applies only to a program deck.

(It is ignored elsewhere.) The interpretations are as follows.

(a) In a macro, QUIT means "return to main program" whether this

is the terminal or a program deck. Macros may not be nested.

(b) In a program deck, QUIT means to return to the terminal. If

OPTION is not specified, this is absolute and the program

file is closed. If OPTION is used, the following display oc­

curs at the terminal

QUIT COMMAND IN PROGRAM. SHALL WE CONTINUE? (YIN)

If the response is Y, execution continues from the program

deck~ if N, the file is closed and the next command taken

from the terminal.

(c) At the terminal, QUIT = EXIT.

(d) At the interface level, QUIT means to return to CMS~ the

TEXTAG session is finished.

The command EXIT has no arguments and is absolute wherever

it occurs. The line

EXIT

causes the operational level to be closed out and control to re­

turn to the interface level. If any internal files are open, any

modified pages are first rewritten to the file ~nd then all files

are closed. All of working storage is released and lost.

ENDATA is not properly a command but an end-of-deck but it

is interpreted if control ever reaches it:

(a) In a macro, ENDATA = QUIT (i.e. ;'return").

(b) In a program deck, ENDATA = QUIT with no option.

(c) From the terminal! ENDATA elicits the response "?".

It is often desirable to be able to make decisions or to

enter parameters from the,terminal while a program is executing.

Two special line types are provided for this purpose. These are

in the program deck but have the effect of taking input from the

terminal. A NOTE command (see section 9.8) should precede to in­

dicate what is expected, for example,

NOTE IDO YOU WANT TO ... (YIN) I

-76-

NOTE 'TYPE IN NAME\VALUE OF

'1'111' fir::t w()IJld ht~ followed hy the line

l '(IIJ

in positions one to four. This line is interpreted as

h IF RESPONSE <EQ> Y, l"

By phrasing questions properly, the action for a negative

response can often be put in the following line. Any response

but Y (yes) is interpreted as N (no).

The second special form is equivalent to a literal expres­

sion of one term. The second NOTE statement above would be fol­

lowed by something like

p: symbol = ?INP

where p is an appropriate prefix (IIEIFIN but not S). The value

typed in replaces "?INP n.

Subroutines made available with the LOAD command can be exe­

cuted in two ways: with a CALL command or with the prefic C,

i. e. , C: rou tine where "rou tine" is the name of a loaded routine.

The prefix C can be thought of as an abbreviation for CALL but

routines so used must be single-valued like function subprograms

in FORTRAN. The result is returned in "floating register 0 1i and

is treated either as F-form (consistent with IBM's FORTRAN) or

N-form. A CALL statement can be used for multiple-valued func­

t ions, or almost anything, in usual fashion. However,

subroutines called in either way should not do I/O. This may, in

fact, be possible if sufficiently extensive arrangements have

been made but is not guaranteed to work. (An exception exists

for printed output produced by an assembler-language subroutine

using the standard TEXTAG output routine. Linkage for this is

provided and is used by some standard subroutines available.)

A call statement has the format

CALL routine (arguments)

and a function call the format

C:routine(arguments)

-77-

The latter can be embedded in a general expression, for example

F:result=SQRT(EXP(C:routine(F:argument)))

but function calls may not themselves be nested. (The subroutine

may call other subroutines in normal fashion however.)

Arguments can be almost any quantities in working storage

~xc~ tabl~~. Vectors, matrices and lists may be passed and in­

dividual elements of tables may be passed, even in a loop. For

example,

T:name(11,ANS)=C:routine(T:name(11,ARG))

is legal but not

T:result=C:routine(T:argument)

The former results in as many calls of "routine" as the row di­

mension of T:name. The latter implies multiple values and is

nonsense in the context of the language. Nevertheless, in the

case of a vector, matrix or list used as an argument, the entire

array is passed. Two situations occur, for example:

CALL routine(M:symbol(1,3), F:result)

CALL routine(M:symbol, V:result)

Both are legal but tl].~ fi~st does not:. acc:~!!}£lish what is intende~

(presumably). The values of the element of matrix M:symbol in

row 1, column 3 and the variable F:result will be passed to the

routine but in te~Q~~ locations. The routine may put new

~a.l~~~ in these locations but they are ignore~. The proper

statement (assuming the subroutine appropriately written) would

be

F:result=C:routine(M:symbol(1,3))

In 'the second CALL statement above, the locations of the matrix

and vector themselves are passed to the routine. Assuming the

dimensions are understood, the routine may put new values direct­

ly into the arrays. A matrix in working storage is ordered as in

FORTRAN.

Note: This is the transpose of everything else including a matrix

attached to a node and a PL/I matrix but FORTRAN programming

predominates. This decision is subject to change. If an

array is only for the called routine's own use, it makes no

difference which way it treats it. This occurs in existing

-78-

routines which only need so much working space.

The origin of TEXTAG's own print and punch output routine is

automatically passed with every CALL statement but this is only

usable at assembler language level.

A number of CMS commands of the host system can be executed

while in TEXTAG environment. This is done with the command CMS,

as follows:

CMS ems-command and arguments

One CMS command recognized is CP so the following is possible

CMS CP cp-command and arguments

The list of CMS commands which may be executed is given in Appen­

dix G, along with certain restrictions and added syntax necessary

to prevent double conversions. (Essentially, everything but sym­

bols must be enclosed in quotes.) The CP level can always be

reached by pushing an interrupt key on the terminal.

The line introducing a packet of array definition lines for

working storage is actually a command even though under CREATE it

appears to be merely a packet header. The ROW: lines are subcom­

mands. All these commands have a colon as the last character of

their name. As commands, they may be· abbreviated to four charac­

ters but under CREATE they must be ~~lle~ i~ full since the

colon is meaningful. The complete list follows.

VECTOR: symbol(n) [,II~IF] [,INDEXED]

MATRIX: symbol (m,n) [,II§.IF] [,INDEXED]

ROW: (as appropriate)

LIST: symbol(n)

TABLE: symbol(IIEIF)=headl, ,headn (a T-table)

TABLE: symbol(21418)=headl, ,headn (an A-table)

TABLE: symbol(S)=Aa [,Bb, ,Hh] (an H-table)

ROW: (as appropr ia te for any table)

Note carefully that the sequence for a table differs from that

for a vector, matrix or list. The type indicator for a table is

-79-

essential whereas for a vector or matrix it is optional and for a

1 is t mer ely impl ied The FORM command, however·, uses the table

sequence for ~ll arrays, since it is natural in that context.

(In the above, a construction such as LIST: symbol=n would appear

awkward or incorrect.)

All the packets following any of the above except ROW: are

terminated with

:END

Section 2.5.1 gives full details on the formats as used under

CREATE. They are the same for entering arrays into working

storage except that PACK is not recognized. (If it appears, it

is ignored, not treated as an error. Hence the same packet may

be used for both purposes.)

The command READMOD is also considered to be in this group.

It has the format

READMOD A:symbol, filename,deckname

This command may be considered a subenvironment. It takes input

from the file and deck named and either enters arrays into work­

ing storage or modifies those already there. It can add or

delete rows in tables (only) but not columns. The A-table speci­

fied is created with a stub consisting of the names of all (oth­

er) arrays created or modified and one column showing, in coded

form, what action occurred. Appendix B gives full details.

The elements used in an array definition may be in form of

expressions in variables or arrays already defined in working

storage. There are restrictions on this feature under READMOD

however.

9.4 Node Definition

The following commands and subcommands in this group have

-80-

already been fully explain~d in prior sections as indicated:

See sectiun 2.5 for the following:

DEFINE LOWER K=k [NP] [SOURCE=file ,deck]

ATTRIB: symbol [AS] form [, ...]

CREATE INFERIOR K=k [10] [SOURCE=file deck]

NODE: [attribute-name=] value [" .]

See section 7,1 for the following:

FIND [-nlkatr]identifier_chain

FINDSUP

FINDLO, FDHIER, FINDHI, FDLOER

See section 7.2 for the following:

SEARCH locatorldepth-limit [FOR] boolean.exp [,

REPORT] [,HALT [ON HIT]]

or

SEARCH RESUME

There are four further commands in this group which have not

been mentioned thus far. They are for modifying the structure.

as opposed to the content, of an existing data bank. The first

one is PRUNE which has the format

PRUNE STOplLOWERID:attribute

The first option deletes the STOP node and all its substructures

of any kind Its neighboring peers are re-linked. The second

option deletes the D(Q) and the entire inferior set of the STOP

node but leaves the latter and its own arrays intact. The third

option refers to a P-form attribute and prunes only the

corresponding array attached to the STOP node.

The PRUNE command leaves dead space in the DATABANK file

which may not be reusable. This can become a dead weight on file

handling j . using up disk space and slowing down execution. Appen­

dix F discusses further commands at the interface level for

correcting this condition and other purposes.

The other three commands are for ~taking a data bank apart

and putting it back together". They utilize two temporary

(scratch) files available to the system and take advantage of a

special argument to DEFINE, which has the format

DEFINE REBUILD=name [, NP] [,SOURCE=f ile ,deck]

-81-

followed by the usual ATTRIB: lines. These new attribute names

are presumed to contain a subset of the old ones in the D(Q) of

the STOP pointer. Only one such definition may exist at a time.

The name specified must be a unique label. The following

command can then be issued:

DUMP dumpname [,OLD]

The branch consisting of the inferior set of the STOP node will

be written to the first scratch file, restructured according to

the lates~ REBUILD definition and identified by (name,dumpname).

If no REBUILD definition exists or OLD is specified, the existing

node structure is kept and "name 1/ will be the key attr ibute value

of the STOP node.

The next command forms the complete identifier for the STOP

node and this and the node itself can be saved on the second

scratch file. It has the format

IDENTIFY [SAVE] [, DISfL~~ I REPORT]

The identifier and node can be displayed or reported with the op­

tions, DISPLAY being the default if no arguments are given. If

the SAVE option is used, the identifier chain and end node are

built into an abbreviated tree on the scratch file which is, in

fact, a new data bank. (See below.)

After having issued appropriate DEFINE, DUMP and IDENTIFY

commands (after any required PRUNE commands), the operational en­

vironment should be exited. The scratch files will remain intact

at the interface level. One then initiates a new data bank by

returning to the operational level with an EXECUTE command. The

command RETRIEVE can now be used to retrieve dumped, rebuilt

branches and graft them onto a new structure. The format is

RETRIEVE (name,dumpname), K=k

The retreived branch will be grafted onto the current STOP node

as though DEFINE and CREATE commands were issued. The K number

redefines the numeric key for the first inferior level. Lower

levels will be left as they were unless their k-values are equal

or lower than the specified k in which case they will be incre­

mented to make the lowest value one greater than the specified

number.

-82-

The scratch files do not stay around for ever. They can be

~aved as explained in Appendix F. However, one special case oc­

curs for the second one which is explained below.

The second scratch file written by the IDENTIFY command with

SAVE option does not appear to serve much purpose as described

above. In order to utilize it, it is necessary to return to ei­

ther the operational or CMS level and issue the following CMS

command, where the options must be used at the operational level:

[CMS] COPY[FILE] SCRATCH2 DBFILE Dl filename2 DBFILE Al

(If the first scratch file is also to be retained, th~n

[CMS] COPY[FILE] SCRATCHI DBFILE DI filenamel DBFILE Al

must also be issued before returning to TEXTAG.) See Appendix F

for details; the DI and Al arguments may change in some cir­

cumstances. Then one can invoke TEXTAG again, using filename2 in

the EXECUTE command.

The reason for this seemingly round-about approach is due to

limitations on the number of files which may be declared at once

and to free the user from concern about whether he needs too

many. Furthermore, if he had forgotten to declare a needed file

until the time the IDENTIFY command is to be issued, a great deal

of work might be lost. The scratch files are always available

but they cannot safely be renamed within TEXTAG or copied at the

operational level for immediate use. Since only a minimum of ef­

fort is required at the interface level to re-invoke TEXTAG, this

seems the lesser of two evils.

The structure of the file is a legitimate data bank but each

superior node which does not lead directly to an end node (in its

inferior set) is abbreviated to its key attribute only. The D(Q)

of the superior to an end node (the STOP node when IDENTIFY was

executed) is recorded in full along with the full node. Several

end nodes may in fact be peers, in which case only one identifier

chain and one D(Q) are required for the set.

-83-

A general assignment statement has the form

result = expression

where the result is single-valued but, if automatic indexing or

name matching is involved, this is interpreted as applying to

each indexing combination. In principle, there are three kinds

of quantities -- arithmetic, symbolic and logical (boolean) -­

but the distinction is largely blurred due to TEXTAG's liberal

interpretations. The following combinations are possible with

the results shown.

(1) arithmetic result = arithmetic value

Form conversion is automatic, the only restriction being that

if the left member is an integer, then Ivaluel<32768 must

hold.

(2) arithmetic result = symbolic value

,!,hi-§. is i-l:.!..~q~J.. However, for a spec if ic case, see the CVTR

command below.
(3) arithmetic result = logical value

The 0 or 1 is floated if necessary.

(4) symbolic result = arithmetic value.

This is illegal only if Ivaluel~10n where n is the length of

the result in characters (n=2,4,8). Otherwise, the whole

number part of a nonnegative number is converted to character

code with leading zeros if necessary. For example, if n=8

and value=45132.67, the value is converted to

'00045132'

If the number is negative, tens complement form is used. For

example. the negative of the above number is converted to

'99954868'

This feature is sometimes handy for creating coded forms.

For example: if I:NO is between 1 and 99, the following

statements create a symbol NO.01---NO.99 in N:NO.

N:NO = I:NO

N:NO = NO. & MASK(N:NO, '000000XX 1
)

-84-

(5) symbolic result = symbolic value

This is always valid but truncation may occur if the result

is a shorter form than the value.

(6) symbolic result = logical value

This always results in '0' or 'I' preceded by the necessary

number of '0' characters, i.e., the same as (4).

(7) logical result = arithmetic value

The bit (B:letter or a B-form attribute) is set to the parity

of the whole number part of value.

(8) logical result = symbolic value

This is i~le9:~l.

(9) logical result = logical value

Obviously unambiguous.

An expression may contain subexpressions of all kinds. For

example,

T:ARG(N:PREFIX & N:I,I:J) <GT> E:TEST+l

has a symbolic expression to denote a row, an arithmetic expres­

sion for a comparand (in fact both comparands are) t and the whole

thing is a logical expression. Consequently, it makes little

sense to talk about kinds of expressions, except with respect to

final value.

Four commands may be regarded as specifying the use of spe­

cial assignment statements. These are

ASSIGN, CVTR, DIMEN, TIME

(The command SET uses phrases like assignments but they refer to

system quantities.) The command ASSIGN applies only to strings

and has the form

result.string = arg.string [& arg.string ... J

as already fully explained in section 4.5.

9.5.1 CVTR Command

The CVTR command (ConVert To Real) converts a symbolic value

which looks like a number to a real number. The statement struc­

ture is

-85-

CVTR arithmetic. result = symbolic.expression

If the left member requires an integer, the real number is con­

verted to integer format in the usual way. The symbolic value

must conform to the following rules:

(a) Maximum total length is 8 characters.

(b) Either + or - may be the first nonblank character. At most

one of either but not both may appear and must be immediate­

ly followed by a digit or a decimal point.

(c) One decimal point may appear anywhere after a sign, if any.

(d) Leading blanks are ignored; first blank after a nonblank

terminates the string.

(e) Any other character except the digits 0,1, ... ,9 is an error.

Note that exponential format is not allowed.

9.5.2 DIMEN Command

The DIMEN command takes the following formats:

(a) DIMEN I: [N:]symbol = VIL: [N:]symbol

The length of the vector or list is assigned to the integer

variable. If the vector or list does not exist, the result

is -1.

(b) DIMEN I: [N:]symbol = M: [N:]symbol(ROWSICOLS)

the row or column order of the matrix is assigned to the in­

teger variable. If the matrix does not exist, the result is

-l.

(c) DIMEN I: [N:]symbol = T\AIH: [N:]symbol(ROWSICOLS)

The row or column order of the table is assigned to the in­

teger variable. A result of 0 indicates a head or stub

table, respectively. A result of -1 indicates the table does

not exist. (The synonyms STUB=ROWS and HEAD=COLS may be

used.)

-86-

(d) DIMEN I: [N:]symbol = TIAIH: [N:]symbol(stub,0)

where "stub" is a stub symbol. The result is one of the fol­

lowing:

-1 the table does not exist;

o the stub symbol does not occur;

i the stub symbol is for row i.

(e) DIMEN I: [N:]symbol = TIAIH: [N:]symbol(0,head)

Same as (d) reading "head" for "stub" and "column" for "row".

For an H-table, . head" must be of the form

All A21 ... IA8 IBli ... IB81 cli ... IH8
(f) DIMEN I: [N:]symbol = TIA: [N:] symbol (SIZE)

Result is 2, 4 or 8 if table exists, else -1. This refers to

the size (number of bytes) of the elements.

(g) DIMEN I: [N:]symbol = H: [N:]syrnbol (AIBICI ... IH)

The result is one of the following:

-1 the table does not exist;

o the indicated string does not occur;

j the indicated string is j words long.

(h) DIMEN I: [N] symbol = S: [N:]symbol

The result is the number of characters in the string unless

it does not exist; then the result is -1.

For any of the above except (h), the prefixed symbol on the right

can be replaced with D: [N:]symbol to refer to an array attached

to the STOP node. If the reference is not to a P-form attribute,

the result is -2; if it is P-form but the array does not exist,

the result is -1.

9.5.3 TIME Command

The TIME command assigns the time of day to an N-variable.

The statement is simply

TIME N: [N:]symbol

The N-variable is defined if necessary. The value assigned is in

the form

hh:mm:ss

(hour:minute:second) on a 24-hour clock.

-87-

REPOR'l' is

disposi-

Note: The full time and date can be displayed, but not stored,

with the command DISPLAY TIME.

9.6 Miscellaneous Commands

Seven commands are included in this group:

MSGCLASS for output disposition.

SET and QUERY for a variety of functions.

DISPLAY and REPORT for preformatted output.

LOCATE and CHANGE for annexes.

9.6.1 MSGCLASS

Three classes of printed output are predefined in the sys-

tern:

ERR [OR] Reporting of detected errors

LOG Short informational messages and dialogue

REP[ORT] Printed material usually wanted off-line

The definition of these classes is not a prerogative of the user

but he can control their disposition and the command

simply a synonym for DISPLAY which changes the latter's

tion from LOG to REP.

There are three dispositions of printed output:

ON[LINE] to the terminal display unit,

OFF [LINE] to the output spooling file which is eventually

routed to a line printer,

BO[TH] both ON and OFF.

Until a TITLE command is issued at the interface level, or until

a MSGCLASS command is issued at the operational level, al! output

is to the terminal. (If MSGCLASS is used without TITLE to ac­

tivate OFF, a canned title is used.) When TITLE is executed, it

sets the ?t~nd~rd ~iSp~~!~iQ~~ as follows:
ERR class to BOTH

LOG class to BOTH

REP class to OFF

-88-

The MSGCLASS command is used to change these. It has the format

MSGCLASS class = disposition

(Any class or disposition name can be abbreviated to 2 charac­

ters.) The only ~nal!Q.wed fQI~_Q!..r.!atioI'! is

ERR = OFF

MSGCLASS can be used as often as desired. A title line can be

changed at the operational level with the command HEADING ex­

plained in section 9.8. However, this command does not activate

output spooling of itself.

9.6.2 SET and QUER~

These two commands, which have been mentioned a number of

times, are used for setting a variety of system variables and

controls and for finding out the status of some of them. SET al­

ways implies an action; QUERY never implies any action except to

display information. (All its output is LOG class.)

The functions performed by SET will be given separately

since a general format is meaningless. QUERY will be discussed

with SET where appropriate; its independent functions will be

given last.

(1) SET PRINT = ONICOMM[ENT] IOFF

This action refers to the printing of lines executed or

passed in a program deck or macro. The default setting is

OFF (don1t print lines). If ON is specified, every executed

line, including comment lines (* in position 1) will be

printed LOG class. This is only useful for debugging as it

will normally be very voluminous. If COMM[ENT] is specified,

only comment lines will be displayed. This is sometimes use­

ful in monitoring progress of a job if comments have been put

at the right place in the deck. (Don't put them in an inner

loop unless debugging.) The option OFF cancels either or

both the other s . (If ON and COMM are spec if ied in succes-

-89-

sion, comments appear twice.)

(2) SET EXTEND = YESINO
This action refers to extending packed arrays attached to

nodes. The default is YES. If NO is specified, a new entry

for an already full packed vector causes an error instead of

an extension. The command

QUERY EXTEND

displays YES or NO according as which is currently set. This

is sometimes necessary to determine if extensions may have

been created (inadvertently).

(3) SET HOLD(i) = START ISTOP

SET START ISTOP = HOLD(i) /sTopISTARTIROOT

These were fully explained in section 2.3.

(4) SET ARRAYS IANNEX = filename

If an existing ARRAYS or ANNEX file is open, any changed

pages are rewritten and the file closed. The new file is

then opened. The command

QUERY ARRAYS IANNEX IDATABANK

displays the filename currently in effect. Note that DATA­

BANK may not be set.

(5) SET PUNCH = filename

Here filename refers to an external file used for output from

the PUNCH command. If an old file is open, it is closed.

The new file is then made available for punch output. (A new

one is not actually created until PUNCH is executed.) A

punch file cannot be read on the same session. (This is a

deficiency which may be correctable.) An old file is extend­

ed, not rewritten. An open file may be closed without speci­

fying a new one by using

SET PUNCH = I

(One or more blanks between single quotes.) If the PUNCH

command is executed without a filename being set, output goes

to the card punch at th~ ~omputiryg cent~r. The command
QUERY PUNCH

displays the filename currently set.

-90-

(6) QUERY TYPE N: [N:]symbol = D: [N:]symbol

This was explained fully in section 3.2.

(7) QUERY class

This command is used to get a list of all names

variables or arrays in working storge. "class"

the following:

INTE [GERS] all I-variables

SHOR [T] II E- "
FULL II F- "
SYMB[OLS] II N- "
STRI[NGS] II S- II

VECT[ORS] all vectors

MA'I'R [ICES] " matrices

LIST[S] II lists

TTAB[LES] II T-tables

ATAB[LES] II A- li

HTAB[LES] ,1 H- "

of a class of

may be any of

The optional endings may be omitted or spelled differently.

Thus MATRIX and MATRICES are equivalent.

The DISPLAY command is used to display values and REPORT to

print them.

Several phrases can appear on one SET line and several argu­

ments on one QUERY by separating them with commas. They are pro­

cessed left to right as encountered.

9.6.3 DISPLAY and REPORT

These two commands are identical except that DISPLAY

duces LOG class and REPORT produces REP class output.

DISPLAY will be shown.

-91-

pro­

Only

The command has four different formats:

(i)

(i i)

(iii)

(iv)

where

DISPLAY

DISPLAY

DISPLAY

DISPLAY

class [, .•.]

class=symbol [,]

Dlp:[N:]symbol [,]

LOWER [(STQ~I START)] I NODE [(STOP)]

class is any of the classes used with QUERY under (7) in

subsection 9.6.2, or BITS

symbol is the unprefixed name of a variable or array in

working storage, or a letter for BITS

p is BIIIEIFINlslvIM\LITIAIH corresponding to BITS and the

QUERY classes

The different formats can be intermixed on one line, for example:

DISPLAY SHORT, MATRIX=name, B:A, NODE

will display all defined E-variables, the named matrix, the bit

B:A, and the current STOP node.

All displays are in formats fixed in the system, all quite

neat and readable except that matrices and tables with more

columns than will fit across a page produce multiple (indented)

lines for each row. Where this is not satisfactory, the commands

AUTOFORM or PRINT must be used.

Further explanations follow.

(1) The format (i) should be clear. All defined variables or ar­

rays in the class are printed out in succession.

(2) Formats (ii) and (iii), except the D-prefix, are equivalent

except the prefixed name is output for identification with

(iii). When it is desired to produce output without prefixed

forms, (ii) should be used.

(3) Format (iii) with D:symbol produces the output implied by the

attribute form equivalent to format (ii), i.e., unprefixed.

The following have no equivalent in working storage and are

displayed as shown:

X-form at tr ibute=integer (in dec imal)

LIDIAIC-form attribute=character

RIW-form (same as symbol)

P-form the implied array format

-92-

as necessary until

checked for 'string i
•

(4) Format (iv) without the parentheses always means the STOP

node. The three combinations are as follows:

DISPLAY LOWER (START)

produces the definition of the structure of the STOP node

with the phrases

attribute-name = form

DISPLAY NODE [(STOP)]

displays the node as though all D:symbol specifications had

been listed.

DISPLAY LOWER[(STOP)]

produces the definition of the structure of the STOP node's

inferior nodes.

9.6.~ LOCAT~! SCAN and CH~NGE

These three commands refer only to an annex. A SET ANNEX

command must have been executed previously. Then the following

command must be issued:

LOCATE R:annexIR:N:symbol

where "annex" or the value of N:symbol is the name under which

the annex was enfiled by READ. LOCATE is then used in one of the

following forms:

LOCATE n

where n is line number;

LOCATE $+k

move k lines forward;

LOCATE $-k

move k lines backward; or

LOCATE 'string'

find the first occurrence of the string, looking forward only.

The quotes are required and the string may not contain a quote.

The SCAN command has the format

SCAN nl'string' [,REPORT]

Either n lines will be displayed or as many

'string' occurs. The starting line is not

-93-

REPORT produces REP class output.

The CHANGE command is-used after a line is located and has

the format

CHANGE 'stringl', 'string2'

meaning replace 'stringl' with 'string2'. The two strings must

be the same length. To replace an entire line, write

CHANGE $, 'new line text'.

The line found or changed is displayed after any of the

above except the first LOCATE which displays the name and crea­

tion or last modification date of the annex.

The six commands in this group perform the following func­

tions:

FORM

DELETE

ENFILE

REPLACE

Form an array (or string) in working storage

Delete an array in working storage

Enfile one array, or all of a class, or all arrays

on ARRAYS.

Replace an array or arrays in situ on ARRAYS

(leaves no dead space)

RECALL Recall one, several or all arrays of a class, or

all arrays from ARRAYS to working storage. Also

used to list arrays existing on ARRAYS.

ERASE Erase a specific array on ARRAYS.

The FORM command has the following general format

FORM p:[N:]symbol[(typelsize)] = [stub.exp] [,head.exp]

but the above is so general that it says very little. A full

discussion is found in Appendix A which should be consulted.

The other commands in this group will be presented in ap­

propriate subgroupings.

-94-

9.7.1 The DELETE Command

This command deletes arrays in working storage. The state­

ment format is simply

DELETE p:[N:]symbol l [,p: [N:]symbo1 2 •..]

where p=VIM!LITIAIH.

DELETE does not guarantee that released array space is reus­

able. When working storage is assigned for various requirements,

an attempt is made to re-use space from deleted entities but it

may not exist in suitable blocks. There is no facility for com­

pacting working storage.

9.7.2 The ENFILE and REPLACE Commands

The command ENFILE has the general format

ENFILE p:symbol [AS new-symbol]

or

ENFILE classlALL [,LIST]

With the first form, one array is written to the file. It may

optionally be renamed (but not changed in type). The second form

writes all arrays of a class or all arrays of any type

(VIM/LITIAIH) in working storage to the file. A list of names

within types may optionally be displayed.

In both cases, an existing array of the same name and type in

the file is logically, but not physically, replaced. This leaves

dead space in the file which can grow to troublesome size over

time. When this happens, all arrays should be recalled and writ­

ten to a fresh file.

When modifying only the values of an old array or arrays,

and not changing their dimensions or types, the verb REPLACE

should be used instead of ENFILE. (Syntax is otherwise identi­

cal.) This avoids the dead-space problem by rewriting arrays to

the same physical space in the file.

The file of arrays to be written to is specified by use of

the verb SET, with the ARRAYS phrase. Every file to be used must

be declared at the interface level with DECLARE. Several files

-95-

may be used by repeated use of SET provided all have been de­

clared at the interface level.

9.7.3 The RECALL Command

Arrays may be

the verb RECALL,

statement has three

recalled from ARRAYS to working storage

or all arrays in a file may be listed.

forms:

with

The

RECALL p:symbol [AS new-symbol]

This recalls a single array with optional name change. The

"new-symbol" may be a symbolic expression.

RECALL class IARRAYS [= 'mask'] [, LIS'r]

This recalls all arrays of a class or all arrays of any type. If

the optional mask is used, only those in a class or in all

classes whose names match the selection mask will be recalled.

The asterisk is used as a universal character. A list of all ar­

rays recalled may optionally be displayed. The mask must be a

literal enclosed in single quotes.

RECALL ,LIST

This does not actually recall any arrays but only lists all those

in the file, by name within type.

If an array of the same name and type as one recalled al­

ready exists in working storage, it is first deleted. If " new­

symbol" is used, this rule applies to it, not to the original

name on file.

The file or files accessed are governed by the same rules as

for ENFILE.

9.7.4 The ERASE Command

The ERASE command logically deletes a single array from the

file of arrays currently set. This is its only function and it

does nothing to working storage. It has only one rigid form:

ERASE p:symbol

The symbol must be a literal, not indirectly referenced, and only

one may be specified per statement. This rigidity is intentional

-96-

report writing

for variants of

the simplest to

presentation.

to prevent inadvertent destruction of a file. ERASE leaves dead

space in the file.

In this section, options will be denoted vertically within

braces (like a set) instead of being separated with a vertical

bar. This is necessary to reduce line length in some format

descriptions.
The commands DISPLAY and REPORT were given in section 9.6.3

but may also be considered as Report Generation commands.

Recalling the definition of message classes, it was stated

under the interface level command TITLE that initial defaults of

all three classes are actually on-line but execution of TITLE es­

tablishes an output page heading and sets the normal defaults.

TITLE is almost always executed before calling the operational

level unless it is desired to use TEXTAG in an ad hoc way. There

are also commands at CMS and CP levels which control the actual

disposition of output print files but we can assume here that

these have been appropriately used to deliver the output where

the user expects it.

The page header defined by the TITLE command is regarded as

"Header ~". Seven more header levels can be defined for subti­

tles, column identification, etc. All eight levels may be set,

changed and cancelled with level-2 commands.

There are essentially only seven different

commands although three have alternative symbols

the funtions, giving ten altogether. Going from

the most complex happens to be a logical order of

9.8.1 The PAGE Command.

This command has two purposes: to start following output on

a new page and to set page length (an option rarely used). The

statement has the form

-97-

PAGE [{~: [N:]symbol}]

If the integer. argument is used, it sets the number of lines per

page to that value. Default is 54 lines per page, including all

headers and spaces. Maximum paper size is 66 lines for American,

72 lines for European.

9.8.2 The NOTE Command.

This command is used to write notes or comments as LOG class. It

has the basic format

NOTE lany printable string without single quotes'

The single quotes are mandatory; neither they nor the command

will be printed. (Single quotes are not printable except with

the command PRINT.) Normally, NOTE double spaces but there are

three variants:

NOTEI Single space

NOTEIR Single space and output as REPORT class

NOTE2R Double space and output as REPORT class

The maximum length of the string is 69 characters minus the

length of the command. A blank must appear between the command

and leading quote; the final quote must not be farther right than

position 72.

NOTE is often used with an interactive response sequence,

descr.ibed in section 9.2.3. To be effective, LOG class must in­

clude on-line.

9.8.3 HEADING and FOOTING Commands.

The HEADING command establishes a new title line (level e)

or page headers and sub-headers. It has the format

HEADING level, 'any text not containing single quotes' [,]

['continuation']

where "level;' is a literal integer 0,1, ... ,7. The level number

establishes the heading for that level and cancels all prior

headers with a higher level number. A level 0 header may have up

-98-

to 80 characters between quotes, all others may have up to 127

characters.

Since maximum-length text will not fit on one line, it may

be continued on one more line as indicated.

The FOOTING command defines a footing for use with AUTOFORM.

It is not recognized elsewhere. The format is

FOOTING 'any text not containing single quotes' [,]

['continuation']

A footing may have a maximum length of 127 characters and uses up

three vertical spaces on the page (triple spacing).

9.8.4 FORMAT Statements.

FORMAT statements are used with PRINT and PUNCH; they are

almost identical to those of FORTRAN but AUTOFORM uses a stereo­

typed form.

FORMAT is exceptional in TEXTAG in four ways:

(a) FORMAT statements may be continued over as many lines as

desired. A FORMAT statement is considered to be complete

when left and right parentheses balance. If this neve£

~cc~rs or if right parenthese are left over, ac~io~ i~

!:1~!.~~!.~~~~!.~.

(b) A single quote may be represented by two adjacent single

quotes in conventional fashion.

(c) FORMAT statements may appear anywhere before they are used

(in time). They are executed, even though in a special way,

and hence may not be in a loop. Encountering the same FOR­

MAT label twice is an error.

(d) A label symbol is used which is limited to a length of 4

characters, the first of which must be a letter.

The general statement structure is

FORMAT label, (sl,s2' ...)

where sl' etc. are format items. The following format items are

-99-

(Requires

identical to standard FORTRAN:

alw, aFw.d, aEw.d, aAw, wX, Tw, 'text', a(...)

where

a is an optional repeat count; if omitted, the repeat

count is taken to be 1. It must be an unsigned integer

constant.

w is an unsigned non-zero integer constant which speci-

fies the total number of characters in the field.

d is an unsigned integer constant specifying the number

of decimal places.

The following are also allowed:

aCw.d Like aFw.d but with commas after thousands, millions,

billions, etc.

a$w.d Like aCw.d but with leading currency sign.

1 more position.)

aLw This is not logical conversion (T or F) as with some

systems. It is used only with AUTO FORM and produces

"picture'l output, i. e. 1 and -1 print as such, 1'.1 is not

printed, and all other values are encoded in the form

'1 ' or -'I' where

represent <10, <100, <1000, <10000, ~10000,

respectively and

represent ~.l, ~.01, ~.001, ~.0001, <.0001,

respectively.

For output to printer or terminal, the first character is inter­

preted as a carriage control in almost standard fashion and is

not printed:

b advance one line and print

o advance two lines and print

advance three lines and print

1 throw to new page and print, but for terminal, same as ­

Note that the usual + code for printing on the same line is not

recognized since this is incompatible with system details.

Other restrictions are that a format item must not specify

either an integer or a fractional part in excess of 9 digits,

that not more than 132 characters per line (not including car-

Source

I:symbol
EIF:symbol

riage control) must be required for use with PRINT, and not more

than 80 characters for use with PUNCH.

9.8.5 The PRINT Command.

A statement with this command is essentially like the

FORTRAN statements PRINT or WRITE(6,fmt) but the TEXTAG syntax

imposes some differences. The statement structure is

PRINT fmt, data list

where II fmt 01 is a label def ined in a FORMAT statement. Val id

members of the data list, which are separated by commas, are the

following:

fQRMAT ~peci~ication

I-format
F, C, $ or E formats, or I-format

if only integer part wanted.

B:letter I-format
N:symbol A-format

L:symbol(i) A-format

{iJ:SymbOl(stUb,0) A-format
H:symbol(stub,0) A-format

{iJ:SymbOl(0,head) A-format
A:symbol(stub,head) A-format

V: symbol (i) Same as E:symbol

T:symbol(stub,head) Same as E:symbol

M:symbol(row,col) Same as E:symbol

Any of the above may be indirectly referenced. Automatic index­

ing may be used (In) for any stub or head, the order being deter­

mined by the n, higher n changing faster. However, automatic in­

dexing will give multiple output lines over all index combina­

tions (except for flags fixed within the range of a LOOP com­

mand). This is not ordinarily what is desired, but rather the

kind of implied DO-loop used in FORTRAN. This is accomplished by

use of dummy indices of the form <1> where 1 is a letter. Thus

the referent

T: A (<I >, <J»

-101-

will give the list

T:A(l,l), T:A(2,1),

T:A(1,2), T:A(2,2),

.... ,

... ,
T:A (m, 1) ,

T:A(m,2) ,

T:A(l,n), T:A(2,n), ... , T:A(m,n)

(Note that T:A with no indexing is illegal, unlike FORTRAN.) The

indexing may be further controlled by forms such as

((T: A (<I) , <J») , <I) =b, e , d) , ... , <J) =b I , e I , d I)

where b (beginning index), e (ending index or limit), d (incre­

ment) must be integers or I-variables. All table and array in­

dexing (whether dummy indices or not) must consist of single

terms, i.e. no expressions will be evaluated. No further

parentheses other than those indicated are allowed and those im­

plied are required. The increment d may be omitted, in which

case 1 is inplied. In this case, the limit e must be followed by

a closing parenthesis.

A dummy index may appear by itself and its current value

will be output. However, the definition of the range of a dummy

index must appear last and terminates the range of the loop. For

example, the following statement

PRINT fmt, («I),M:A(<I),<J») ,(1)=1,5,2) ,<J)=2,4)

produces the list

1,M:A(1,2) ,3,M:A(3,2) ,5,M:A(5,2) ,1,M:A(1,3), •.. ,5,M:A(5,4)

A check is made for balancing of parentheses at the end of the

statement as well as for conformity with the associated FORMAT

statement. Any discrepancies result in an improper-syntax error.

9.8.6 The PUNCH Command.

This command is identical to PRINT with the following excep­

tions:

(a) Line length is limited to 80 characters.

(b) Output is either to the virtual punch or to a card-image

file of type DATA.

(See also SET PUNCH in section 9.6.2)

-HJ2-

9.8.7 The AUTOFORM Command.

This command automates tabular reports. Using it is the

easiest way to prepare such output once the command is under­

stood, but it is the most difficult to explain.

First, one must prepare a T-table containing all the numeri­

cal values to be printed. It is possible that one might wish to

piint only symbolic values in which case an A-table would be

prepared instead. In either event, no arithmetic or symbolic

manipulations are done within AUTOFORM except those described for

formatting purposes. To simplify discussion, it will be assumed

a T-table is used for values.

Essentially, AUTOFORM prints the T-table as class REPORT

but, if it did only this, it would be no different from the RE­

PORT command. AUTOFORM has the following features:

(1) A FORMAT statement is used for external field definitions.

(2) Both long-page and wide-page extensions are automatic. For

example, suppose a report requires 12e lines vertically and

200 positions horizontally. If page length is 54, this re­

quires 3 pages vertically and 2 pages horizontally. The 3

vertical pages for the left-most 13e positions or less

(depending on the FORMAT statement) are printed first. This

is call a strie. Then the strip for the rightmost positions

is printed.

(3) Both head text for tabular columns and stub text for rows of

values are inserted automatically. Head text is inserted on

the first page of every strip and stub text is repeated on

all strips.

(4) One or two H-tables may also be used, one for stub text and

one for head text. Head text may have multiple lines.

(This is in addition to the eight levels of heading avail­

able with the HEADING command.)

(5) A footing line may be inserted at the bottom of all left­

most strips. This is done automatically if the FOOTING com­

mand has been executed.

-le3-

By using Tn for both left

text could be placed on the

(6) If H-tables are used, the order in which tables are speci­

fied determines both selection and sort order for output,

either by rows or by columns or both.

(7) Both the AUTOFORM statement and the FORMAT statement it

references are relatively simple.

The AUTOFORM command (and its predecessors in other systems)

is the outgrowth of extensive experimentation and discussion to

try to achieve a reasonable compromise between elegance of re­

ports and simplicity of specification. In principle, one could

produce an AUTOFORM report using PRINT statements but the pro­

gramming would be horrendous. On the other'hand, some types of

reports are not handled by AUTOFORM at all or only with unsatis­

factory compromises in page arrangement. AUTOFORM represents

about the most that can be done with one command for a fairly

broad class of requirements. When it is not suitable, PRINT may

be used for full generality.

A FORMAT statement used with AUTOFORM has the following

stereotyped structure:

FORMAT label, ([left margin,]stub, [reset,]body)

where

left margin is either Tn or nX.

margin and reset, stub

right.

stub is either Aw or nAw which is interpreted as An*w. This

must accommodate maximum stub-text width.

reset is either Tn or nX and provides extra space between

stub-text and first value, or for resetting first value

position.

body is any of the following: aIw, aLw, aFw.d, aCw.d or

a$w.d for T-Tables, or aAw for A-tables. The initial

"a" in these items determines the number of columns per

strip. These format items may also take the form

a(nX,Fw.d), etc. to provide more space between

columns. As previously noted, aLw produces "picture

format" with AUTOFORM. A typical specification would

-104-

X,X,BODY

be 50L2. Vertical headers can be created by program­

ming with an H-table.

The format item for body also determines maximum column header

width. Multiple-line headers are specified differently but each

line must fit within body width.

The structure of the AUTOFORM statement is
TAUTOFORM fmt,BODY={A}:symbol [,STUB=H:symbol] [,HEAD=H:symbol]

If only the BODY phrase is used, the table is printed in natural

order using its stub symbols for stub text and head symbols for

head text. (This amounts to REPORT with a FORMAT statement.) If

STUB or HEAD phrases are used, order of al~ thre~ ~~ses is

~ea~ing!.ul. The scheme works as follows.

1. The stub of the STUB table must contain a subset of the stub

of the BODY table. Automatic name matching is implied. On­

ly those rows whose names appear in the stubs of both the

STUB and BODY tables will be printed.

2. The rows of the STUB table with matching names are used for

stub text.

3. The stub of the HEAD table must contain a subset of the head

of the BODY table. Only those columns whose names appear in

both the stub of the HEAD and the head of the BODY tables

will be printed.

4. The rows of the HEAD table with matching names are used for

head text.

5. The order in which the phrases appear determines which table

rules the order of stub and head:

BODY only Natural order, all rows and columns.

STUB,BODY Stub order for rows, BODY order for columns,

row selection only (all columns).

HEAD,BODY HEAD order for columns (based on stub of

HEAD), BODY order for rows, column selection

only (all rows).

STUB order for rows, HEAD order for columns

(based on stub of HEAD), selection of both

rows and columns.

-105-

BODY,X,X Full selection but BODY order for rows and

columns.

STUB,BODY,HEAD Same as STUB,BODY but using HEAD for head

text with column selection.

HEAD,BODY,STUB Same as HEAD,BODY but using STUB for stub

text with row selection.

Thus the form of the command which gives the most selection

and reordering is:

AUTOFORM label,STUB=H:SymbOll,HEAD=H:Symbo12,BODY={~}:symbOl

forms:the following

Al

AI-A3

A3&Bl

head e.g.

head-head e.g.

head&head e.g.

and, for HEAD only,

hlist/hlist e.g. AI-A3/BI-B3

In the examples to the right above, the meanings are as follows:

Al use the 8 characters of A! for text

AI-A3 use the 24 characters of Al,A2,A3 for text

AI-A3/BI-B3 use AI-A3 then space a line and use BI-B3

These can be combined, as for example, for a HEAD

The use of the H-tables for stub and head text can be furth­

er controlled by appending specifications to the H-tables names

in the form

H:symbol(hlist)

where hlist can have

AI-A3&Bl/Cl-C4/Dl&D3

9.8.8 AUTOFORM Variants

Two variants for AUTOFORM exist. If A-format is specified

for a T-table BODY, this is interpreted as a predefined field

format similar to G-format in FORTRAN. The minimum field size is

10 positions, as follows from left:

position 1: sign

positions 2-10: most significant 8 digits with embedded

point if magnitude is in range [10- S ,a0 8-1]

Larger magnitudes are printed in E-format with five significant

-106-

digits, Le.

+.xxxxxExx

and smaller values as

+.xxxxE-xx

However, very small values are printed as

+.0000bbbb
and identical zero as 'b0.0bbbbbb ' . If more than 10 positions

are specified, the above forms are right justified in the field.

The other variant is the command AUTOFILE. This punches to

a file (SET PUNCH must have been previously executed). Line

length is 130 and no carriage control is created. The BODY table

name is placed in the stub position for the (first) head line.

AUTOFILE with A-format is very useful for preparing files for

special transmissions.

-107-

APPENDIX A: Details of the FORM Command------

The FORM command is used to create an empty string or array

in working storage. In all cases, if a string or array of the

same type with the same name already exists, it is first deleted

just as though DELETE had been used. The space which was occu­

pied by a deleted array mayor may not be reusable. An attempt

to use such space is made when new space must be allocated, even

to the extent of trying to find an old block which most nearly

fits the new requirement. However, an exact fit is often impos­

sible and an accumulation of small "scraps" of storage may gradu­

ally eat into available space. No compacting is done.

It should be noted that the above rules apply only to arrays

and strings. Other types of variables, all of which are fixed

length, are never deleted or have their space reallocated. The

user should avoid proliferating ad-hoc variables for temporary

use. A better practice is to use a few standard names for such

purposes, e.g., I:WORK, F:WORK, etc. The same applies to arrays

if the same dimensions can be used. For example, if is often

handy to form a vector, say V:WORK, with perhaps five elements or

so for general use, particularly for accumulations.

Strings are somewhat of an exception in that DELETE does not

apply to them but an old one of the same name will be deleted by

FORM. A working string is very suitable since sUbstrings can be

specified in referents. Thus a string called, say, S:WORK with a

length of 32 bytes, can be used in pieces for different require­

ments. For example,

S:WORK(9,3)

uses the 9-th through ll-th characters.

It is particularly important to adopt some convention for

working variables and arrays for use in macros. A macro should

almost never contain a FORM statement (unless its primary func­

tion is to set up a number of arrays initially). Similarly, a

macro should not cause definition of a new working variable every

time it is invoked. In addition to wasting space, it is a nui-

A-I

sance to have to specify a substitutable argument for what should

be a common work variable. It is important to realize that mac­

ros are not like FORTRAN subroutines; they have no local vari­

ables. All va~iab!es ~~g ~~£ay'~ a~e glo~~~.

The FORM command uses several formats and conventions. The

simplest use is to define a string:

FORM S:symbol=nII: [N:]symbo12

A string of n blank character is created; n may be specified with

an integer variable; indirectly referenced if desired. The max­

imum length is 255. The space actually occupied by a string, as

with all variables and arrays, is more than the length. A

string, for example, occupies (n+13+r) bytes, including its name,

where r is the number of bytes necessary to make the entire

length congruent to zero (mod 8). The r bytes are wasted space.

Thus only strings of length n congruent to 3(mod 8) waste no

space. (Such wastage does not occur in nodes except possibly for

the last attribute since nodes are "assembled" in an order which

guarantees appropriate boundaries.)

The uses of FORM for lists, vectors and matrices are the

next simplest cases, in that order.

FORM L:symbol=nII: [N:]symbo12Idexp

where n or the integer variable here refer to the number of

8-byte words in the list. Thus

FORM L: WORK = 10

forms a list of ten 8-character blank words which may then be

referenced as L:WORK(i) .

The "dexp" form needs more explanation. It is used in

further cases and its full scope will be presented first. The

abbreviations stands for "dimension expression". as with the com­

mand DIMEN, and refers to another array. Thus for example,

FORM L:WORK = L:SOURCE

forms L:WORK with the same length as L:SOURCE which must already

exist. Any array referenced in a "dexp" must already exist. It

need not be the same kind of array. Thus

FORM L:WORK = V:REFER

forms L:WORK with the same number of word elements as the number

A-2

of elements in the vector REFER, regardless of whether the latter

refers to a matrix or table, it must be spe­

to number of rows or number of columns. The

is of type I, E or F.

When a "dexp"

cialized to refer

various forms used are

M:symbol(ROWS), M:symbol(COLS)

T:symbol(STUB), T:symbol(HEAD)

A:symbol(STUB), A:symbol(HEAD)

H:symbol(STUB), H:symbol(HEAD)

However, it is sometimes desirable to be able to use a "dexp"

without knowing whether it refers to a matrix or a table. Conse­

quently, ROWS and STUB are treated as synonyms, and likewise COLS

and HEAD. The reason one may be uncertain is that aD-prefix

referring to a P-form attribute is allowed in a "dexp". Thus

FORM L:WORK = D:attribute(ROWS)

gives L:WORK the same length as the number of rows in the array

attached to the STOP node regardless of whether it is a matrix or

a table.

The use of H:symbol(HEAD) refers to the number of 8-charac­

ter increments, not the number of strings. (When forming an H­

table, the use of this form involves further rules described

below.)

For vectors and matrices, the element form must be specified

unless the default E-form is desired. This is done by use of a

parenthesized form designator following the name of the array.

Thus

(zero) elements as

latter is form I, E

ties.) Names of

form; the same is

FORM V:WORK(I) = V:REFER

forms the vector of integers named WORK with the same number of

the vector REFER, regardless of whether the

or F. (These are the only three possibili­

vectors must be unique regardless of element

true of matrices and lists and of each of the

three types of tables.

The general format for forming a vector is

FORM V:symbol(f) = nil: [N:]symbol2Idexp

where f=IIE\F. The general form for a matrix is

A-3

toissimplestThe

[, h]

[, h]

FORM M:symbol(f) = r, c

where either of rand c (number of rows and columns, respective­

ly) may be any of the right members used for a vector. Thus

FORM M:WORK(F) = I:ROWS, T:REFER(STUB)

creates the matrix WORK with the number of rows equal to the

variable I:ROWS and as many columns as the T-table REFER has

rows. The elements of WORK are F-form, all zero as formed.

Forming tables involves not only dimensions and element form

but also creating stubs and heads. The general formats for the

three types of tables are:

FORM T:symbol(IIEIF) = [s]

FORM A:symbol(21418I) = [s]

FORM H:symbol = [s] ,hlist

where s denotes a stub expression, h denotes a general head ex­

pression, and hlist denotes one of two special head expressions

for H-tables. Tables may be null which is why either s or h is

optional but an H-table must have a head. If both sand hare

omitted, then the table is void, an option rarely if ever needed.

Null tables are usually better replaced with lists but not in­

variably.

Both sand h may take several forms.

create a stereotyped list,

characters & integer

This is a ~onvent~_~~~lized ~!PEession and means to form all sym­

bols start ing wi th "character s" suff ixed with '1', en' or 1001'

up to 'characters " /suff ixed with "integer". For example,

FORM T:WORK(F) = R&l~, C&S

forms a l~ by 5 T-table of F-form elements (all 0.0) with stub

symbols

Rell, R02, ... , R10

and head symbols

Cl, C2, C3, C4, CS.

Note that the size of "integer" determines how many characters

are used for the "running index". Maximum length is 999 and to­

tal symbol length must not exceed 8 for the stub or 2, 4 or 8 for

the head depending on element type or size. "characters" may be

A-4

an N-variable and "integer" may be an I-variable.

It is frequently convenient to use a blank string for uchar­

acters". For example, if twelve time per iods are to be referred

to symbolically by number, the expression
I , & 12

forms the list '01 1
, '02 1

, •• or '12'.

Either s or h may be a hdexp" provided it refers to another

table or a list (not a vector or matrix). Thus

FORM A:WORK(B) = T:REFER(STUB) ,A:UNITS(HEAD)

creates the A-table WORK with B-character (blank) elements having

the same stub as T-table REFER and the same head as A-table UN­

ITS. An H-table head may not be used this way except for the

head of an H-table being formed.

A udexp" for a list is interpreted differently. The state-

ment

FORM A:WORK(B) = L:ITEMS, L:MAKES

uses the ya~~e~ of the list elements. Since a list may be com­

puted (symbolically), this is a useful convention for preforming

the stub and head of a table with programming.

Finally s or h may be a ~onv~~!iona~ized boolean ~!E£e~sion

in stubs or heads regarded as sets. The possible forms are:

dexpl <OR> dexp2

dexpl <XOR> dexp2

dexpl <AND> dexp2

dexpl <ANOT> dexp2

where dexpl and dexp2 are one of the forms

TIAIH:symbol(STUB)
TIA:symbol(HEAD)

L:symbol

A-S

The interpretation of the boolean operators is as follows:

<OR> all symbols in the first list followed by all those in

the second list not also in the first (original list

order in both cases).

<XOR> all symbols in the first list not in the second fol­

lowed by all in the second not in the first.

<AND> all smbols in the first list which are also in the

second list.

<ANOT> all symbols in the first list which are not in the

second list.

(Note that <ONOT> is undefinable since the universe is unknown.)

For H-table heads, only the following two forms are admiss­

able for hlist:

Aa [,Bb ... ,Hh]

Just as for the TABLE: command, or

H:symbol(HEAD)

which copies the head of another H-table. The latter form is not

admissable for any stub or the head of a T- or A-table. (The

first form would be interpreted as a list of up to 8 symbols for

a stub or a T- or A-table head.)

An abbreviated forma~ is also recognized. This is simply

one of the following:

FORM p:symbol = p:symbol2

FORM p:symbol = D:attribute

where the attribute must be an array. The array named on the

left is formed as an empty duplicate of the one named on the

right. This is particularly useful for saving an array attached

to a node while further searching is done. For examp,le, the

statements

FORM T:WORK = D:TABLE

T:WORK(!I,!2) = D:TABLE(!I,!2)

saves the table attached to the STOP node for attribute TABLE in

working storage as table WORK. All features are copied exactly

except the name. (A packed vector or matrix is expanded in work­

ing storage.)

The prefix on the left (new array) must be the same as the

A-6

one on the right or implied by the D-prefix. That is, there is

no way to avoid knowing whether it is a list, vector, matrix, T­

table, A-table or H-table. Element sizes and dimensions need not

be known.

A-7

READMOD creates or modifies arrays in working storage and,

for tables only, can add or delete rows (but ~o~ columns). This

facility serves three major purposes, here listed in order of in­

creasing importance:

1. For initial loading of either a voluminous or a special set

of arrays, using regular formats without individual com­

mands. In fact, however, this is almost equally well done

with a standard RUN command or an initial SOURCE phrase.

2. For reading in modifications and extensions to a standard

set of arrays for special runs or analyses. For example,

one might want to replace certain values in enfiled arrays,

after executing RECALL, and to load special comparands.

3. If regular runs are to be made with standard programs, as

for periodic updating of the data base, the standard program

can incorporate checks on the validity or reasonableness of

values read in via READMOD. Actual preparation of the input

deck can then be more safely entrusted to clerical personnel

or others not fully familiar with conventions used in the

particular data bank.

The format for READMOD is

READMOD A: [N:]symbol, filename, deckname

Either or both filename and deckname may be literals or variables

N:[N:]symbol. The A-table specified will be ~~~~~~d by READMOD.

If a table by this name already exists in working storage, it

will be deleted and a new one created. This same rule is also

applied to any entire array read in by READMOD but not, of

course, to modifications. On the other hand, if an array to be

modified does not already exist, the modifications are ignored

8-1

out an entry is made in the created A-table.

One can most easily regard READMOD as a sUbenvironment which

recognizes only the following commands and subcommands:

VECTOR: Define a new vector

MATRIX: matrix

LIST: "list

TABLE: ,f table

ROW: Start row of matrix or table

:END Terminate a packet

UPDATE: Update an existing array

ADDROW: Add one or more rows to an existing table

DELROW: Delete one or more rows from an existing table

ENDATA Terminate READMOD execution

All of these except UPDATE:, ADDROW: and DELROW: are exactly the

same commands as given in section 9.3 with the formats detailed

in section 3.2. The ENDATA line terminates READMOD execution and

returns control to the next line of the program source which

called it"
The three new commands use a prefixed format since they

refer to existing arrays. The latter two are most easily

disposed of first. They are single-line commands.

ADDROW:--_ ..~~---

ADDROW: TIAIH:symbol = stubl [,stub
2

...]

The new rows are defined as an extension to the row order of the

existing table specified. They are set to zero (T-table) or

blank values of appropriate length. Note that ADDROW: only de­

fines the stub, not values. It may be followed by UPDATE: to

specify values for new rows already added.

DELROI'J:-_.__._---

DELROW: TIAIH:symbol = stub l [,stub2 ...]

The named rows of the existing table specified are deleted from

the table. The row order is modified to reflect the deletions.

Deletions should be done before additions since the same space is

guaranteed reusable.

B-2

UPDATE:

'Chis command introduces a racket and has two formats; for

iJ((<.J.--;:: oth(;(th<:l11 tables

UPDAT~: VIMIL:symbol

and for tables of any type

UPDATE: TIAIH:symbol = head a [,head b ...]

The following lines of the packet depend on the

For vectors and lists, indexed notation is used

type of array.

in the form

i l = value [,i 2 = value ...]
The values are adjusted to the proper form, IIEIF, for a vector

(and also a matrix below). Size of list elements is unique.

For a matrix, each row to be modified is introduced with the

line

Row:=L jl = value [,j2 = value ...]

where J k are the indices of the columns (in row i) to be changed.
Since indices are used for all the above, they need not be

in monotonic order, either by i or j. In preparing the deck,

changes can be written down as they are determined. The same i

can appear more than once for a matrix.

The style for tables is entirely different. The head sym­

bols specified on the UPDATE: line are a subset of those existing

in the table. The rows are then specified as

ROW:=stub i , value a [,valueb ...]

where the values are for the columns denoted by the head subset,

in the same order. The rows (stub.) can be presented in any ord­
1

ere

As with the standard commands, a ROW: line both terminates a

previous row (if any) and starts a new one. A :END line is used

only at the end of all modifications for an entire array.

The Created Table

The stub of the created table consists of the names of all

arrays defined or modified, in order of first appearance in the

deck. Note that duplicate names may occur for arrays of dif­

ferent types. The table nas one column with head symbol MODIFIED

and 8-character elements. At least the first two characters will

B-3

of) event are not

will show either pN or

be nonblank for each entry. The first character is simply the

array prefix, VIMILITI~IH. After this first character, the

remaining character (s) and their order depends on what was en­

countered in the deck. The codes are as follows.

N array is new and no old one existed

R array is new replacing an old one

U an UPDATE: line appeared for the (existing) array

X an UPDA~E: line appeared for a nonexistent array

Y an ADDROW: or DELROW: appeared for a nonexistent table

Z a mismatch occurred (see below)

A an ADDROw: line appeared (properly) for the table

2 an ADDROW: line appeared for an existing row

D a DELROW: line appeared (properly) for the table

o a DELROW: line appeared for a nonexistent stub name

A mismatch means an index was out of range or a head or stub sym­

bol for a modification did not exist.

Multiple occurences of the same (kind

shown. A new array, not later modified,

pRo

8-4

The structure of a file of macros is more fully described in

sections 6.1 and 9.2.1 but each macro is a "deck" in the file

which starts with a NAME card specifying the name by which the

macro is to be invoked. A deck ends with a card (line) contain­

ing ENDATA in positions 1-6. Each macro has exactly one each of

these lines. Exit from a macro occurs when either the ENDATA

line is reached or a QUIT command is encountered. QUIT is

described in section 9.2.3.

In between NAME and ENDATA, lines in a macro are standard

TEXTAG statements with two exceptions: use of flags to denote

substitutable arguments and certain restrictions on transfers of

control explained in section 9.2.2. Here we are concerned only

with substitutable arguments.

A substitutable argument is indicated with a flagged integer

of the form %n where n:1,2, ... ,9 and refers to the position in

the string of values supplied when the macro is invoked. (Hence

one macro can have at most nine such arguments.) The question

here is what can be substituted. To begin with, a command may

!lQ.1. be substituted. Otherwise, the restrictions are of a dif­

ferent sort.

What a substitutable argument represents is a fi~lg in the

statement. A substituted argument in a macro call overrides most

parts of the corresponding field(s) represented by ~n in the mac­

ro. A field consists of the following parts:

f~~[i~. Any of the 15 letter prefixes or double prefixes

for indirect addressing, or any of the following:

0-4 for literals of various kinds

5 fo r ! n

6 fo r 1I n

other codes for special forms not important to detail

here.

~g~in. A code representing leading plus or minus signs,

left parentheses or leading absolute value bars.

[~g. A code representing right parentheses or ending abso-

C-1

I~r.m.·

lute value bars

A code representing any of the following:

concatenation,(a) a following arithmetic,

boolean operator.

(b) a following equals sign,

line mark.

comma,

relational or

underline or end-of-

Number of characters for any form of al-

pha, otherwise conventionalized.

The numerical, logical or symbolic value of the re-

Some fields have a null value and zeroferent proper.

length.

Ih~ ~Q£L~~QQn1ing Q~Li~ Q[~ ~~Qstit~~Q argQm~nt ~lw~y~ ~yerLiQ~

underlines,gn1~£ I~£m. Equals signs, commas,

and blanks never override.

Consider the following table reference:

T:TAB1(1 1,N:COL) = ...

This breaks into three fields as follows:

end-of-line marks

f.£~fiK ~M.in ~nd .I~£m 1.engih y.~1J!~

Field 1 : T: 4 TAB1

Field 2 : 5 8

Field 3 : N: = 3 COL

As an example of a macro, consider the followin~:

NAME REPLACE

CALC %1 = FILL(LEAVE(MASK(%2,%3)),%4)

ENDATA

Then the statement

REPLACE N:RESULT N:ARG '*000****' XABC

replaces the 2-nd to 4-th characters of the value of N:ARG with

ABC and assigns the result to N:RESULT. Note that the macro call

could equally well be written in either of the two following

forms:

REPLACE N:RESULT=N:ARG, '*000***', 'XABC'

REPLACE N:RESULT = (N:ARG, '*000****', XABC)

Clever design of macro model statements can make their invocation

C-2

;qJp':;U' J·;k': n':tI.IJra] phranjn~.

11a(~ros without subsUtutabl<; ar~uments are often useful too.

All previously defined objects are available to the macro and de­

finitions of variables, arrays, etc. made in a macro are avail­

able afterwards. There are no symbols local to a macro except

the %n fields. (Macros differ in this respect from ordinary

subroutines, which must be kept in mind.)

Note the use of CALC in the second line of the example.

This is a ~ummY comm~nQ. It is needed only when a line would

start with a flag which can only occur for a substitutable argu­

ment in a macro. A line may not start with a flag. The dummy

command CALC simply indicates an ordinary assignment statement.

It could be used for any such statement but is ordinarily un­

necessary.

Note that the following statement does nQt require CALC,

T:RESULT(%1,%2) =

It is required only when the first fi~lQ is flagged.

C-3

All files used in connection with TEXTAG are CMS files.

(For archiving or transferring files on tape, the CMS command

TAPE is used. Refer to CMS documentation for this.) All CMS

files have a three part designation

filename filetype filemode

abbreviated to

f n ft fm

(When the entire designation is referred to without distinction

of its parts, it is called merely "file-id"

Of the three parts, only fn is completely arbitrary and both

fn and ft are always restricted to a symbol containing nothing

but letters digits and the currency symbol ($). The first char­

acter must be a letter or $ but $?l:!ou~d !!().!:!2~ the first charac­

ter since this has a special meaning in the CMS editor.

The fm has the form "dn" where

d=AIBICIDIEIFIGIHlslxIYlz
and n=112131415. The letter refers to an accessible disk and the

digit to access restrictions. ~!!.!!<2§'~ a~.!_ ~.§.~!:. fi~_~~ hav~ fm=Al

although BICIFIGIH followed by 112 are possible. Fixed conven­

tions are as follows:

A-disk the main user disk normally available

D-disk a temporary scratch disk

E-disk residence disk for TEXTAG modules

SIXIYIZ-disks system disks
The digit following has nominal meanings for access control but

these are not very effective. (See below.)

If not specified otherwise, all files are created with

fm=Al. The TEXTAG scratch files are normally specified automati­

cally as fm=Dl. If no temporary disk space is available, the

user is asked if he wishes to proceed using his A-disk. If yes,

tne scratch files have fm=A5 and the user is reminded to erase

0-1

all such files after the session. D-files disappear at log-off.

The actual access restrictions are controlled in a different

way from the nominal meanings for n above. The user should nor­

mally use only n=l for his own files. He may use BICIFIGIH-disks
only if they have been linked and/or accessed with appropriate CP

and C~lS commands. That subject is outside the scope of this pa­

per; see CMS documentation or consult the responsible account

manager. In any event, no user account can write on disks other

than its own without explicit permission.

Although ft is in reality arbitrary, i.e., vis-a-vis CMS, in

fact both CMS and TEXTAG use a number of conventions which have

meaning at the corresponding system levels. An arbitrary ft

should be used only for purposes of temporary manipulation (sav­

ing a file under a concocted file-id) and should be a garbled or

specialized mnemonic which does not conflict with standard con­

ventions.
For most purposes in -TEXTAG, only fn need be specified, and

assigning these symbols is the user's prerogative. The only ex­

ceptions are for the DECLARE command when fm must be specified or

in using CMS commands where CMS rules apply.

The ft conventions used in TEXTAG are as follows:

TXTRUN A TEXTAG program, external file.

TXTMAC A TEXTAG MACLIB, external file.

DATA Input to READ or READMOD or output from PUNCH,

external files.

DBFILE Any internal TEXTAG file.

TMODULE The executable modules for TEXTAG.

The user has no access to the last except as they are invoked by

commanas. The DBFILE files are not editable nor printable. All

the external files are. Tab conventions (horizontal spacing) are

the same for all editable files and are those of ft=DATA which is

a type recognized by the CMS Editor.

Q~!Y i!!~~~!!~l ~il~s ~~e~ Q~ ~.~~J~r~d. The format for the
DECLARE command is

DECLARE ftl fml [ft2 fm2 ...] $

where the ~~~mi~~ting $ is ~~q~~£~d and must be preceded by at

0-2

least one space. For example, suppose the user needs the follow­

ing files:

DA'I'ABAL\JK

ANNEX

ARRAYS

fn = RESOURCE

fn = RESREFS

fn = RESWORK

Then, assuming all have fm=AI, the following statement is re­

quired

DECLARE RESOURCES AI, ANNEX AI, ARRAY Al $

(The commas are optional.) They must all have ft=DBFILE.

In using the CMS command RENAME, one of the three following

forms is sufficient.

RENAME fnl ftl fm fn2 = =

The filename only is changed, from fnl to fn2.

RENAME fnl ftl fm = ft2 =

The f iletype only is changed, from ftl to ft2.

RENAt\1E fnl ftl fm fn2 ft2 =

Both filename and filetype are changed. The £~~~~~de must not be

~!::l~~9_~Q. (The "=" means "same as before".)

A file may be copied to another disk with the CMS command

CO.l?Y[FILE]. It does not admit the "=" convention. The format is

as follows where the options must be used when in TEXTAG and

[CMS] must not be used when in CMS.

lCt1S] COPY[FILE] fnl ftl fml fn2 ft2 fm2

The user must have read access to the fml-disk and write access

to the fm2-disk.

The following filetypes have special meanings in CMS and

should not be used (unless so intended).

D-3

Language Input: ASSEMBLE, MACRO, FORTRAN, FREEFORT,

PLI, PLIOPT, BASIC, BASDATA, COBOL

Data input and output: FTnnF00l, LISTING, MEMO, T£STFORT

Special system files: MACLIB MAP, TEXT, TXTLIB,

MODULE, SYSUTn, CMSUTl

Special application files: DATARUN, DATAMAC: MPFILE,

SMODULE, TMODULE (the TEXTAG system)

Miscellaneous: ASM3705, AUXxxxx, CNTRL, COPY, DIRECT,

LKEDIT, LOADLIB SCRIPT, SYNONYM, UPDATE,

VSBASIC, VSDATA.

DBFILE should never be used except for renaming or copying.

EXEC filetype is a special case. Tnese files are the CMS

equivalent of TEXTAG's program files and macros. Use them only

if you know what you are doing. However, they soon become almost

a necessity if one does much work with CMS.

D-4

AP~ENDIX E: Use of the LOAD Commana

If machine-language subroutines are to be used, they must be

loaded with tne first TEXTAG statement executed at the operation­

al level. 'rhe command used is called LOAD and takes the state-

ment structure

LOAD subrtnl[,subrtn2""]
The sUbroutine names must be literals and refer either to TEXT

files on an accessible CMS disk or to members of a TXTLIB (text

library) which has been declared at CMS level. A maximum of 19

subroutines may be listed but this number should probably never

be approached.
If any of these subroutines refer to other subroutines, the

latter will be loaded and linked automatically, subject to the

same accessibility rules as the ones named. (The indirectly

loaded subroutines cannot be called directly with TEXTAG state­

ments,) If routines from a large integrated library are speci­

fied, they may cause indirect loading of a large number of

subroutines which may exceed available space or leave insuffi­

cient room for TEXTAG to operate. (Order of specifying routines

can also be critical in case a named routine is itself indirectly

referenced. Lowest levels should be specified it..!='.s!.)

Routines specified by LOAD may be used either as functions,

with C:subrtn(args) expressions, or with the CALL verb which has

standard FORTRAN format. Arguments may be any single-valued

TEXTAG referents or TEXTAG arrays identified by the prefixes L:,

V: or M:. Tables ~~~~Q~ be passed as entities. Elements of

tables may be passed.

TEXT files are created by the assembler or one of the com­

pilers available in CMS. Note that this use of the word "TEX'l'''

is misleading; it is not text in the ordinary sense but actually

executable machine code. It is usually better to put TEXT files

in a "text library" (TXTLIB) which can be declared with the CNS

command GLOBAL which controls order of search. Consult CMS docu­

mentation or the account manager for further details on this.

E;-l

Remodelling an old structure is frequently more difficult

than building a new one. This is certainly true for data banks.

Computerized files have one great advantage, however; they can be

easily duplicated. So the first thing to do in restructuring an

old data bank is to copy it and then work from the copy. This

provides two safeguards:

A. The old data bank can still be used while the new one is

being created.

B. If a fatal error is made, all is not lost. One can start

again from a fresh copy.

Next, one should use the PRUNE command to get rid of as much

of the old structure as necessary and desirable. If the pruning

is extensive, this will leave a great deal of dead space in the

file which will impair its efficiency of use. If this is the

case, or when any data bank file has accumulated too much dead

space, the following command should be used at the interface lev­

el:
COMPRESS oldfile TO newfile

This will create a new version with no dead space. This is for

DATABANK files only and both must have been DECLAREd.

COMPRESS does not apply to ARRAYS or ANNEX files (or any

other kind but data banks). To compress an ARRAYS file, the fol­

lowing commands can be used at the operational level:

SET ARRAYS = oldfile

RECALL ALL [.LIST]

SET ARRAYS = newfile

ENFILE ALL [,LIST]

The files must have been declared, of course.

In order to remove annexes from an ANNEX file, the command

?URGE is used at tne interface level. The format is

PURGE oldfile TO newfile

(after declaring the files). This causes the name of each annex

to be displayed at the terminal followed by a question, viz ..

F-l

annex-name PURGE? (YiN)

Any response but Y keeps the annex. A Y response causes it to be

purged. If another annex is linked to it and is to be retained,

the link will be broken and a message to this effect displayed at

the terminal. New annexes can be added at the end with normal

use of READ.

Returning to a data bank file proper, suppose it has been

copied, pruned and compressed. One can now use the commands DUMP

and IDENTIFY at the operational level to create the scratch files

described in section 9.4 if this is appropriate. (This may have

been done while pruning, depending on circumstances.) These two

files can be used to create a new data base or the pruned origi­

nal file can be used with the dump file to put substructures back

in different places. Sometimes one may have to iterate on this

process to achieve the final structure desired.

The IDENTIFY file, while formally a data bank, is mostly

useful for reviewing old relationships. The FIND and SEARCH com­

mands can be used in normal fashion for this. It is also fre­

quently'useful for preparing reports, that is, it is not treated

as a restructuring but a subset of a larger data bank.

f-2

A numoer of CMS commands may be executed from the operation­

al level of TEXTAG with the pre-command CMS, e.g.

CMS ems-command arguments

The available commands, not to be confused with TEXTAG commands

of the same name in some cases, are:

PRINT

PUNCH

QUERY

GLOBAL

RELEASE

FILEDEF

RENAME

access a disk already linked

enter debug environment; generally not useful

erase a file; be careful with this

execute a CMS program. ft=EXEC; may be useful but

can be dangerous

equivalent to an OS DO-card; needed for FORTRAN

but unlikely in TEXTAG

declare one or more TXTLIBs; logically impossible

of use in TEXTAG

LISTFILE lists (i.e., shows existence and other info) of

one, several or all files of various types on

various disks; often highly useful

prints a CMS (printable) file off-line; sometimes

useful

punches a CMS file; can be useful if one knows how

to use but be careful

obtain info on CMS and some CP system status; very

useful if one is familiar with the system

READCARD reads a file from virtual card reader (spooled);

sometimes very useful after a transmission of data

from some source but usually this requires editing

with CNS Editor

releases a device; might be needed sometime but

requires knowledge of CP and current status

rename a CMS file; discussed in Appendix D and may

be useful but use with care

SET, STATE, SVCTRACE, SYNONYM, TAPPDS; these require exten­

sive knowledge of CMS and are unlikely to find a

ACCESS

DEBUG

ERASE

EXEC

G-I

'i'APE

use within TEXTAG environment

used for archiving and transmitting on tape but

should not be attempted within TEXTAG except under

very unusual circurstances

TYPE type all or part of a (printable)

times very useful

The CMS command CP is also available, e.g.

CMS file; some-

however, by pushing the inter-

The CPcommands available.

CMS CP cp-command arguments

This "makes the entire range of CP

level is always available anyway,

rupt button.
All arguments except symbols must be enclosed in single

quotes when using the CMS command in TEXTAG. This is necessary

to prevent the TEXTAG scanning routine from converting them be­

fore passing to CMS or CPo For example, to type the first five

line of file MYDATA (ft=DATA, fm=AI), the following is necessary

CHS TYPE MYDATA DA'rA Al I I' '5 '

since CMS expects the numbers in character form.

~~l!'es!i~!~ ~n~ §!n~;:qe~£y f0!!lJ!l9n~~

There is a set of commands somewhere intermediate between CP

and CMS called "immediate" commands. To get at these commands,

push the interrupt key once to get to CP level, and then once

?g~i~. The useful commands are:

HT halt typeing at the terminal. Notning else if effect­

ed. The command may not appear to work because of

several lines being already stacked for output but

eventually it will stop typing.

kT resume typing at the terminal.

HX halt execution. The TEXTAG session is abruptly ter­

minated and control reverts to CMS. Files may be left

in partially updated state.

If HX does not work for some reason, the following can be done.

Push the interrupt key to get to CP and then type I CMS (initial

load of CMS). This kills the entire session and leaves one in

the same state as at log-in except that any linked disks remain

G-2

linked (but not accessed). This is the most drastic action pos­

siole and should only be used in an emergency.

Sometimes line noise causes CP to be entered, as though the

interrupt button had been pushed. To resume execution, type B

(oegin) .

One other emergency action is possible but may not always be

effective. If in some kind of loop in a TEXTAG program, push in­

terrupt and at CP level type EXT (external interrupt). This has

approximately the same effect as a QUIT command in the deck.

This interrupt is also checked in the File Management program in

case of a long loop in one instruction. Control returns to the

terminal after the program file (if any) is closed.

G-3

