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Introduction

Let us consider a resource W > O is to be divided in
n
parts Wysen W where (] LA W) and consumed in the follow-
1
ing way: at the first step, an amount Xy

can be consumed; at the second step, one can consume x2,

@y S Xy ¥yt W, T by,
where

SRS S B
and, generally, at the kth step, consumption is X

+ W - b, (1)

<X K K

ak_

K = V-1

where ak, b, are some non-negative constants and Vo

k

k k
Vo=0 , ¥, = Z W, - .g X5 kK = 1,...,n,



Of course, all parameters ak’bk and W k = 1,...,n) are such
that there 1s at least one feasible resource distribution,

say

The problem is to find the "best" distribution of resources,
If it is possible to assume that the distribution XqseersXy

of resources gives us a total benefit

u(x) =} CLXy s

where ¢ »C, are some coefficients, then the finding of

12 ee
the best feasible distribution of resources becomes a
classical linear programming problem.

But suppose there are, in some sense, independent con-
sumers who are not very much interested in the total benefit,
and the desirable purpose of each of them is to receive as
much as possible. Suppose these consumers (who are not

living in a jungle!) want to reach a compromise based on some

reasonable demands.

*

Namely, suppose it is given that some demands x{,...,xn

are considered as quite reasonable by all consumers, yet these

demands are not feasible: xi,...,x; do not satisfy the con-
n

straints (1). For example, the total demand ] x} can be

w, . The

much more than the total resources amount W = Kk

—
[l er io1



problem is how to distribute our resources Wy, ... ,W accord-
ing to the demands xi,...,x;, which contradict each other in
the sense that if we satisfy one group of consumers, then we
leave too little for others.

A solution of this problem may be based on minimization
(in the proper sense) of some "distance" between resource
distribution vector x = (xl,...,xn) and the demand vector
x* = (xi,...,xg). This is considered below.

We wish to say that our problem on a compromise for
many consumers which was described above arose in the water
resource distribution field.

Examnle. One can realize a problem of water storage
and of water distribution during some n sequential periods
of time. Suppose during each kth period, the storage re-
ceives the water amount Wi and some amount Xps Xy Z ap, is

taken in such a way that the rest of water resource will not

be less than bk >0; k=1,...,n. If we are given the
desirable demands xi,. .,x; for the water from this storage

(xﬁ for the kth period of time), then we have to deal with
the problem described above.

Example. Let us consider a big river basin which is
divided, according to geographic or economic principles, in
n sequential parts (along the main river). Let the total
available amount of water (in the prcper scale) at the kth
region of this basin be W, . Suppose at every region one can

consume a corresponding water amount Xps X 2 2o such that



the rest has to be not less than some b, > 0. Obviously, if

k 2
at the first (k-1) parts it consumed amounts X s e esXp 1o
k k-1
then x_ is bounded with the value § w, - J x. - b_.
n L& J L& J n
J=1 J=1
Under the desirable but non-realistic water demands xi,...,x;

for all n regions of the river basin, we have to deal with
the problem on a compromise concerning the actual water dis-
tribution.

In the general situation of the resocurces shortage, when

it is reasonable to assume that

X, < xﬁ 3 k=1,...,n, (2)

we suggest that to determine a distance between distribution

vector x = (Xl”"’xn) and demand vector x* = (xi,...,x;) as

R(x, x*) :\[? )\k(xk - xi)2 . (3)

where Aq,...,A are some non-negative coefficients. The

n
choice of the proper Al,...,An may be considered as re-
evaluation of different demands XI,...,X; under certain cir-
cumstances. For example, some demands x; may be neglected
completely (under the choice of Ak = 0). But we suppose

the choice of weight-coefficients Al,...,kn is such that all

consumers agree to consider the corresponding metric r(x, x*)

as the loss function, i.e. a vector x' is preferable with



respect to a vector x" if

r(x',x*) < r(x",x*)

According to this agreement, the most preferable distribtution

vector will be

0
x° = (x]se %)),
for which
r(x%,x*) = min r(x,x*) , (u)
X
where x runs all possible distribution, i.e. x = (xl,...,xn)

satisfies to the constraints (1) and (2).

Unfortunately, all components xi,...,xg of such minimum
points generally depend on all resource components Wise oW,

and if we have to choose the amount X only with our know-

ledge of WiseeesWps Xq,s.. then we actually choose

o Xp-1

the proper XE; k = 1,...,n.

But sometimes we can assume that all w cesW actually

12
already are known at the first step. Say for a water storage
or a basin with one big river, the components Woye oo ,W, may

be much less than wy, and in this case we can assume approx-

imately that

wlzw; W2="':W =0 . (5)



Let us consider the case when all resource components
Wys...,W,  are known from the very beginning, and we can as-
sume minimum point x = (xg,...,x%) of the loss function

r(x,x*) as the optimal compromise for our resource distribu-

tion problem.
The demands Xi,...,X;, which generally are implicit

functions of actual resources WyseeasW in this case are

n’
known constants, and the minimization problem for loss func-
tion r(x,x*) of the type (3) is a problem of quadratic pro-

gramming. Namely, after a variables substitution,

Wy - {2y + Dy >y

Wy = (ay + by = by) > W,
Wn ~ (an * by bn-l) T Who
Xpe =2 > X k =1, 511,

the constraints (1) and (2) can be described as

3 k= 1,...,n, (1)

where



or in another form as

W, oo k= 1,...,n. am

(Remember that 0<%y < X[, according to our assumption [2]).

1. Let us try to give some explicit formulas for the
optimal xf,...,xg, using the well-known Bellman's principle
of dynamic programming. (See, for example, [2].)

Namely, let us begin with minimization of

2
PR
An(xrl Xn) ,
where
3 *
0 < x, < min (yn 1t s xn)
Obviously, XS as a function of
n -1
E =y . +w_ = ) w, o= | x
n n-1 n k=1 k k=1 k

(See Figure 1.)
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FIGURE 1
Remember that
n-1 nil
Vo1 = W, - X
nmloogsy K K
Let us fix Xy,...,%,_, and set
n-1 n-2
z = W, - X, + W
n-1 k=1 k k=1 k n
Then we have
O = 1 - *
x2 = min (Zn-l X1 xn)

if Z-1

that %n—l - Xnq

> x;, then there is a feasible amount X1 2 0 such

> x¥ and xQ2 = xf. It bolds true, for exam-

ple, in the case of w, > x;, when the optimal xg_l is ob-

viously similar to xg, namely,

] = *
*n-1 max (yn-2 * Wh-10 Xn—l)

S ose < x*, If z > X¥* + y*
uppose W XA il n-1 X

- n

n-1?

then



and not only the last demand will be satisfied (xg = x*)

o =

but also Xo_q

*
x¥_1- In the case

n-1 - “n-1 n n-1 2

et Gy = 1) 0 g G2 - 5P
X (x - X x* )2 if 0 <x
: n-1 n-1 1 n-1 ? - "n-1
xn—l (Xn—l B Xﬁ—l)e * xn (Cn—l - Xn-l)2 >
if ®h-1 £ *p-1 = X;—l

and for small Axn > 0 the corresponding increment at the

-1
point x . = ¢, -y of our utility function (under fixed
Xl”"’xn—E) is
2x, 1 (e, - xt_) ax + 0 (ax°) <O

. > . o . o
so the minimum point X,-1 1S such that X717 > Cho1v The
. sk .
same argument concerning Ax _, < O and x_, Xp_q glves us
the inequality xgll < x;_l. It means that if we cannot

satisfy both of the demands xﬁ and X;—l’ then under the
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optimal compromise we have the strict inequalities

[e] * (o] *
X < X X < X
? n n

2 o 2
- - - x*
fn—l (Xn-l) An—l (Xn—l Xn—l) * An (x xg)
2 2
— * -
n-1 (Xn—l Xn-l) * An (cn—l Xn—l) ’
where
E n-2
c = W, - X, = X*
n-1 k=1 k k=1 k n

generally is not necessarily positive, but has the absolute

minimum point

*
% - An—lxn—l * Ancn—l
n-1 An—l * An

Because the considered function is monotone descreasing for

X and it is monotone increasing for x _, > X _q>

n-1 < Xn-l

we obviously obtain

° ~n-l <0
(o] - ~ ~
Xn-1 * -1 0 < Xne1 2 Vn-2 * Y
Yn-2 * Wp-1 0 Xpo1 2 Yp-2 Y Wpoa

(Remember, as it was shown above, that under the conditions
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< w < x* the optimal amount xg_

c x*
n-1 n-1° "n

than x* ..)
n-

] is strictly less

1

Let us consider Xg—l as a function of

which is the total amount of available resources at the (n-1)th

step. If the next demand x; is comparatively high and En-l

is too small, namely,

An—l
* - C T uX
0= (Xn wn) A xn--l
and
An-l
* - ok
En—l = <Xn wn) An *h-1
or that is the same as
* .
- An—lxn-l * Xn(gn—l * wn Xn)
X = < 0 s
n-1 ]\ — 3
n-1 n

then xgll = 0. It is easy to verify that the first inequality

always implies

X¥ o - — (x* -w ) <0 , E > %

n n n-1

The function xg_ of &

1 1 may be one of the following types

n-



=12~

X e - n-1 *
0, 0= gn—l hd (Xn wn) kn Xh-1
A
Xp-1 2 XE T oW, T Q-l Xpe1 26
(a) x© = n
n-1 (6)
* *
SXpq X W
L
* -
X;—l ? En—l > *n-1 * Xy Wn
or
A
* _ n * _
(5 ’ 0 < En—l S Xpha1 A (Xn wn)
n-1
Xn
e * - * .
I LTS Bl st b S LS|
o}
(b) Xo_q F (7)
< x* + x* - w
L — "n-1 n n
Xp-1 s En-1 2 Xp-1 * X T Wy

(See Figure 2.)

In particular, we obtain that under the condition of a
non-extreme resources shortage, when we don't use extreme

strategy O or § ("nothing" or "all"), the optimal amount

n-1

xi_l coincides with in—l’ which is the linear function of
. * *
En—l as well as of the parameters Wos o Xps X090 namely,
* - *
Xo i n-1*n-1 n (En—l * “n Xp) (8)
- - - ]
n-1 n-1 An—l + An
where
n-1 n-2
E - =¥ _,+w_ .= ¥ w - X
n-1 n-2 n-1 k=1 k k=1 k
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In a very similar way one can consider the structure of

all other optimal components xi; k = n-2, n-1,...,1, which

are the minimum points of the corresponding functions

2 E 2
£oo(x, ) = &, (x - x¥)7 ¢ Ao (xQ - x*) ,
k k Kk n k ,j:k'l'l J J J
{9)
0 < x, < min (Ek, xﬁ) s
where
k k-1
Ex Vot s LWy - oy
1=1 i=1

is the total resources (available at the kth step).
In particular, it is very easy to discover the following

properties of optimal distributions.

If xp = xp, then x? = x¥ for all j > k; moreover, if
X 0,
x _ O * - 4O
A (xg Xk) > max Aj (xj Xj) . (10)
k<j<n

Indeed in the contrary case,
* o] * Q
Ae (xfpo= x3) < Ay (k- x%)
for some i > k, and if we take

o - 4O :O .
Kk " Ax X5 X3+ Ax X; xJ (j #1i, k) ,
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then we could improve the optimal distribution, because

o) 2 o) 2 o
-y (xk - xﬁ) Ay (xi - x¥) o+ A (xk - AX - xﬁ)

+ . (x@ + Ax - x*.‘)2
i i i

_ *x _ 0 _ * - 0 bt
=2 [Ak (xp - %) Ay (xX i)] Ax + O (A%) < O
for sufficiently small Ax > O.

Suppose that
fi < Xi 5 k = 1,...,n,

what one may expect normally under the resources shortage,

then at each step k = 1,...,n there are three possibilities:

1) x, =0 2) 0 < xp < & 3) % =&

(Remember that €y is the total resources which are available
at the kth step.)

According to the inequality (10), the decision xi =&,
may be optimal only if there is a possibility to satisfy
other demands x}

k+1*"°
in such a way that

* . 3 M
R (with their own resources wk+1,...,w

*x — O * o
max Aj (Xj xj) <Ay (xk Ek)

k<j<n
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So we can check whether or not it is possible that Xi = Ek;
k =1,2,...,n. For example, in the case when

wl:w 5 wzz---zwn:O
and the demands xi; k = 1,...,n don't decrease very much,

we have xﬁ < g kT 1,2, ,0.

On the other hand, it usually is not worth transferring
a large amount Yo © Ek - X, to other consumers when the

demand x; is large. In particular, if yi > 0 and

* > max i. (x¥ - x. 11
A X m ; ( k XJ) (11)
ke<j<n
. . . o)
for some distribution (xk+1""’xn) of the resources vy *
Wi 410 -- e W, then xg $ 0, because in the case xg = 0 with

taking back a sufficiently small amount Ayk Wwe can decrease
our utility funection r(x,x*).
Thus, one can sometimes find out {(without any calcula-

tions) that the optimal distribution has to be the following:
0 < x, <& 3 k = 1,2,...,n, (12)

i.e. at each step k, one consumes something but not all
available amount Ek’
In this case the minimum points xg of the correspond-

ing functions fk(xk)-—see (9)--can be determined in an ob-
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vious way. Namely,

is the absolute minimum point of the parabolic function

f (x )--see (8). The next function f _, (x _,) also is

n-1 n-1
of the same parabolic type because Xg—l = in—l is a linear

n-1 n-2

function of En—l = kxl W o~ kzl X, (as well as of the para-

x}_1)» and under the condition (12): O < x2

meters w
n-1

%)
n’ Xn’

< & .p» the optimum xg_z has to colncide with the absolute

minimum point of the function fn—2 (xn_2), and so on. By
the same arguments, the optimum XE for all other K = n-2,...,1

coincides (under the condition [12]) with the absolute mini-

mum point of the corresponding parabolic function

n
£ 06 = 2 )2 4 E § - xp)°

k) i

where x?, J > k are the proper linear functions of

k k-1
= Z W. - z Xi as well as of the parameters w ,...,wk+1;

n

Remember that under the condition xﬁ < x; there are only
three possibilities at each kth step: 1) XX =0 2)0< x% <« £,
ko k-1 K koK
3) x° = E_, where £, = Y w., - ) x. is the total available
k T Sk T N

resource. So we can describe the type of our decision as the

corresponding sequence (dl, d2,...,dn), where d, means "nothing"
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C _ n . u o " 1 o _

(xk = 0), or "something" (0 < X < gk), or Mall (xk = gk).

Obviously if we know the type of the optimal distribution,
o . 0

then the optimal components X, can be determined as X, = 0,

or as xs = gy, or as the absolute minimum point xi = ik of

the proper parabolic function fk(xk)——see (9)--with the al-

ready chosen xf,...,xﬁ_l, which are the proper linear func-
k k-1
tions of g, = Z wW. - Z X., as well as of the parameters
e k . i . L i
1=1 1=1
W e s Wy g3 x;, ,xﬁ.

FIGURE 3

The tree of the possible decision types under the

resources shortage when xE < xﬁ for all k = 1,...,n.
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Example. For two consumers and resources w, = W,

Wsy = O under the maximum demands xi = W, XS = W for

r(xlx*) = ‘Ril - xi)2 + (x2 - x5)2 ,

we have

O— -
X5 = W Xy

Remember that X, is the absolute minimum point of the cor-

1

responding function

_ 2 o _ 2 _ _ 2 2
(x1 w)< + (x2 W) = (xl W)T + Xy
Because the value il = W/2, it satisfies the constraints
(1) and (2):
0<% < W

We obtain x° = il so our optimization principle gives us

x° = w2 xS = W/2

2. As it was described above, the optimal decision
(even at the first step!) depends very much on all para-
meters WiseresWoo So a new problem arises in the case when

the corresponding decision about a proper amount Xy has to

be made with knowing only about Wyseens Wy and X seersXy e
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Generally, in order to choose the components xﬁ (when

xf,...,xﬁ_l have been chosen already and w are

1o eaWe g

known), it may be recommended to substitute the unknown para-

meters w SsW with the appropriate estimate wk* ee WX

K+1® " k+1°? n

(which can be improved at the next (k+1l)th step when x° will

k

be chosen and w will be known).

k+1

It is possible, for example, to use upper and lower

boundaries for unknown resources. Namely, if we have some

estimates

) (13)

then we can obtain it as it was described above correspond-

ing to optimal distribution vectors

x 7 (Xyseen,x) and X = (Xys..05%))
with respect to the parameters
Wos (W, eee,w) and W = (Wl,...,ﬁn)

under the same demands x¥*

JoeeesX*. By intuition it seems that

|5

and actually it is true.
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Let us show that for any parameters K < Wk; k =1,...,n

the minimum points x = (?1,...,§n) and X = (;1,...,§n) of

the loss function

2 2
r (xlx*) =\/§ )‘k (Xk - Xf{‘)

under the corresponding constraints (1) and (2) satisfy the
inequalities x, < ;k; k= 1,...,n.
Obviously, under the resources shortage, more precisely

under the condition (2), the total consumption in the case

of optimal distribution has to be as much as is available:

i
X, = max
7 k

So for the optimal distributionsx = (x,...,x ) and X = (?1,...
with respect to the resources w = (wl,...,wn) and w = (Wl,...
we have

n n

P x, <X

1 k- 1k
1r X; < X; and A, = X; - Xy 2 O for some i (say iel), then
under x; = ;i we have an extra positive amount A = J by

iel

(in comparison with X; = X5 ic¢I) which can be distributed
among other variables Xj’ j¢I (under the same resources

. (j¢4I) we have

.s¥W_). Apparently, for the x, > X

W
n J

X0
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X: = X: = X. — A, iel X. = X: + A,
is feasible with (Xj < ij!) under the resources W,,...,W .
Because x = (Xy,...,x ) is the corresponding minimum point,

we have

2
Tooxs (xs = A, - x¥) - 7 AL (x; - x¥)
ieT * o der TR
> i A (xJ - x3.‘)2 -3 As (xJ s h, = x%)°
Jel J¢I
> Ao (xg - x1)° - Ar (xs ¥ A = x6)° R
because x; > X, J¢I and
2 2 2
. - x% - .+ AL - x¥ < . - x*
(xg = x5 = O+ by = xP)0 < (x5 = x3)
- (%, + A, - x%)°

J4I
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X. = X. - by (ieT) ,

we obtain that

r (x, x¥) =} A; (X

jer 1
> Z A. (X,
jer 71

r (x', x*)

for feasible distribution (under

x' = (xi,...,xh) with components

x! = x. > x. , iel
i

But it contradicts the fact that x = (;1,..

mum point of r(x, x*) with respect to the resources Wl,...

(See Figure 4.)

+

A
J

Thus

(341

for

iel

.,?n) is the mini-

SWn’

so our assumption on the strict inequalities Ei < Xs, iel is

not true and x, <X, for all k =

1,...,n.
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y=(x-x*)2 s

Y

|
i
| 1
! |
: :
| |
O sdesan X

FIGURE &

With knowledge of the inequalities, one can use the fol-
lowing resource distribution strategy in the case when at

eacn kth step it is necessary to keep a good part of the

total resources for the other consumers k + 1,...,n. Namely,

0
k

of the minimum point (xg,...,xg) of the function

one can choose the current amount X, as the first component

2

e~

A, (%, = x*)
57Kk k k k

under the constraints (1) and (2) with the already chosen

xi,...,xi_l and the corresponding parameters Wj =W

L
jJ =k + 1,...,n, which are actually lower boundaries for

the real resources. On the contrary, if one doesn't like to

take great interest in other consumers, it is possible to
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(k)

use in a similar way the upper boundaries w‘j = Wj 5
J = k+l,...,n.
Let us now consider wj""’wn as random variables. 1In

this case one can try to minimize a mean value of the loss

function r(x,x*) and to find x° = (?g,...,ig) such that
Er (?G, x*) = min Er (x,x*)

(Remember that each component Xy is a function of some data
Ty ineluding X1se.esX,_, and wl,...,wk.)
Apparently the optimal decision at the last nth step is

the same as 1t was above:

According to the well-known Bellman's principle of dy-

namic programming, let us minimize the conditional expecta-

tion
£ (ko ) = E O (x_o - x*_ )2 4 A (0 - x¥)°/T
n-1 n-1 n-~1 n=1 n=1 n n n
2 2
= - * -
‘-l Koy = X007 A (g - oxp)
f 0 E LGS - n)%r )
n n n n-1 >
where
- pedo)
Ny = E {Xn/rn—l}

n-1
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obviously, X° - n

n n 8 the function only of L

(x, =n, =w -E {wn/F y o,

n-1

s0 n, coincides with the optimal distribution component

) — .
X, (wl,...,wn_l, wn) with respect to the resources Woseoes W95

Wy }, and the same conclusion we have to make

= E {w /T _,

o]

. -0 -0 B - .
concerning Xn-l’ namely, Xn—l = Xn-l (wl,...,wn_l, wn) 1s the

optimal distribution component with respect to the parameters

wl""’wn—l’ W where
w, " E {w /T _,}
o - . s
Generally, X1 (wl,...,wn_l, wn) is the non-linear
n-1 n-2 _
function of £ _, = Z W, - Z x, as well as of W_. See
k=1 k=1
formulas (6) and (7).
Suppose that for all possible parameters w = (wl,...,wn),
which may be from some known set W in n-dimensional vector
space R", the corresponding optimal distributions x° = (xo,...,xg)

have to be of the same type. (It may be any of A = 3“‘1

different types. For example, it may be of the type [12].)

In this case ig and ig—l are known linear functions of the

variables En and En—l’ Wn. Obviously, the conditional ex-
pectations

- <o
n, = E{x /T >} and
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are of similar types and coincide with the corresponding opti-

mal distribution components

0 = yxO
T *n (wl’ sWpps Who1s wn)
and
o -
Xpa1 = Xpoy (WpseeenWy os Wy o)
with respect to the resources WyseresWo 55 where
W, 7 E {wn_l/F _2} R W, = E {wn/Fn_2}
We have
f (x__,) = E {A (x - xr )% rf A (X0 - x4}
n-2 n-2 n-2 n-2 n-2 . J n
j=n-1
2 n 2
= Ao (x5 4+ x*_)7 + 7 Ar (n. = x¥)
n-2 n-2 n-2 jen-1 J J
) %0 - 02
+ A: E {(X% - n.)°/T__J}
J=n—l J J J n-2

Here the last term is the constant (because i? is the

proper linear function, in particular, the linear functions
: - 4O

of the variable xn_2), so nj = Xj (wl,.

the optimal distribution components with respect to the

. w W

sWpeos Woo1s w) are

resources W.,... W w nd x© . also has to be the
1°? sWhops Wnops Wy 8 n-2 a t

optimal component with respect to parameters WiseesWo 55
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Now it seems clear that at each kth step the optimal

amount x° as the minimum point of the function
k

n
, - 2
fo(x) =B Oy (x, - x)° + ¥ . (%9 - x0)/1}
k k k k k 5=k+1 J J J k

coincides with the optimal distribution component with re -

spect to the parameters W,,...,w, , Wk+l,...,ﬁnl_where

Wj = E {wj/Fk} 5 j = k+l,...,n, (14)
namely,

-0 _ 0 - = ) _

X=Xy (wl,...,wk, wk+l”"’wn) ; k= 1,...,n, (15)

(Remember we assumed above that for all possible parameters

WiseoooW the corresponding optimal distributions are the

n

same type!)
Note that in the case when, for different groups of

parameters (wl,...,wn) the corresponding optimal distributions

0
127

functions of the variables w

0]

(x .,xg) are of different types and ;j are non-linear

K2 k < j, the optimal distribu-
tions (xg,...,ig)-—concerning mean value of the loss func-
tion--is more complicated than it was described above.

It is worthy to note also that the mean value criterion
is not uniformly good for any probability distributions of
the parameters (wl,...,wn).

Example. Let us consider two demands XI, x§ for
resources with independent components Wiy Wse Suppose W # 0
with a very small probability p (say, p = 0.001), so we al-

most can be sure that W, = 0.



_29_

In order to make this more clear, let us assume that

E L > XE. Then on the basis of mean value criterion we

have to choose §f = w, and ig = 0 (with a big probability

I-p). Obviously, such a decision is not good in the case

* has to be

when with a good guarantee the second demand x3

partly satisfied.

3, Suppose that under a condition of unknown resources

LA the corresponding demands x{,...,xé are given in
the form
k
* = * . =
x* j§1 af W, ; X l1,...,n,
where a;j, 0 < u;j < 1, are some coefficients (i.e. the kth
consumer demands “ﬁjﬁﬁ part of the resource wj, J <k). Of
course, these coefficients aﬁj may be non-feasible. Namely,
n
it may be 7} a;j > 1, and the problem is to find feasible
k=]
coefficients a_.:
nj
n
a . >0 2a.<l (16)
nj K=j nj —

which are optimal in some reasonable sense for the resource

distribution
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Note that the conditions (1l6) for arbitrary parameters

w »W, are equivalent to the following:

120

According to our general principle of optimality, we

propose as an optimal compromise the resource distribution

k
o 0
X0 = ) ol.w, ; k =1, ,n
k 571 kj"J
with the coefficients agj for which
n k P n n "o
Toa, 7 (@, -ar) = ) 7 A, (af. - a*.)
k=1 K i1 K K j°1 k=j KM
Obviously, the optimal coefficients agj, k = j,...,n
for any j = 1,...,n can be determined from the condition
n o 5
- * = s
kZl Ak (akj akj min . (17)
Let us fix j = 1,...,n., Under the substitution
Oi T Ok-je1 o
Ak > Ak—j+l s k = j,...,n,
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let us consider a = (al,...,am) as vectors in m-dimensional

space with the inner product
m
(a,B8) = ] A,0.8
K=1 k'k™n
and the metric

m 2
[la - 8] :‘/;Zl A (ap = B

Let Sm be a simplex of all vectors a = (a

l,...,am) which

satisfy the constraints (1), namely,

m
o, >0 7oa, <1 . (161)
k k=1 kK —
The problem is to find a vector o = (ai,...,ag) €S such
that
0 .
[la” = a*|] = min |]a - a*|] . (171)
aeSm

Of course, a? = a* if a* eSm. Suppose o* ¢Sm. Let us

consider a half-line from the point o*, which is perpendicular

m
to the hyperplane L = {a! ] a, =1 4}. It is all points p
k=1

with coordinates

- 5 k=1,...m (v >0, (18)
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Let I = (Hl,.

,Hm) be a projection of the point a* onto
the hyperplane L:

tn
Hk:a‘:_xﬂ’ K = 1,...,0
? (19)
a¥ - 1
¢ = k21 K
1T ? ?
1/
k=1 K
| B -
and Sm = LrWSm be a set of all vectors a = (al,...,am) such
that

ES
ne~15
—

[e

w %

]

'_l

then uo = 1.

{See Figure 5.)

Suppose H¢Sﬁ. This means that some of the coordinates
Hl,...,Hm are negative. Let us consider

B; = a; - 7; N k= 1l,...,m, (20)
where
* 3 *
t* = min Ak oy
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v

%1

(a)

FIGURE

5

(b)
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m
Obviously, Z B; > 1 and the hyperplane L separates g*
k=1

and S_. Because a® is the minimum point of

min ||a - 8]|°

€S !
aeS aeSm

min |l - 8]]°

= min |]a - M)|% + |]8 - 1]}

aeS'!
m

. 2
= min |la - 8][% + || - T[]

€S
QESy

for any 8 of the type (3),
k

nes-15

. o)
Bn > 1, we can determine o
1
from the condition

[1a® - 8*|] = min |[a - 8*]]

aeS
€°n

From the very beginning we could set coordinates in such

a way that

Then
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m > m'z‘l 5
min ¥ A, (a, - B*¥)° = min Ay, (@, = BX)S + A a
k=1 k k k k=1 k k k kK% %
aeSm a:Sm
mi'l >
= min A (a,, — BX)
k=1 k Kk k 2
aeSm_1

where S _, denotes the set of all vectors a = (aj,... 0 ;)

in (m-1)-dimensional space for which

m-1
a, > 0 7 o <1 . (16™)
k- ki1 M
Thus aﬁ = 0 and the question on af,...,a;_l can be considered

in the same way as it was done above, because the problem now

. . o _ o o
is to find a vector o~ = (al,...,am_l) €S _; such that
|la® - 8*[| = min [|a - B[] . (7
aeSm_l

Similarly, as it was above, we can determine a® =

(ag,...,a%_l) at this second step or reduce our problem to
the case of (m-2) unknown components ag,...,a§_2. Not more
o

. . o]
than in m steps can we determine all components Qyse-es0p.

According to the formulas (19) and (20), at every step

we have to reduce a*

hs B ete. to zero or with subtraction
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of a value which is preoportional to the corresponding 1/Ak.

Thus the optimal ag,...,af are the following:

14}

o

aﬁ = max (0, af - %;) 5 k = 1,...,m, (21)

where the constant t° can be determined from the condition

m
T el =1 ; (22)

i.e. there is the crucial level t° such that

+©
O 3 if aii)\—k—
al =
k- o o
t . t
oX* - R if aX > +—
k Ak kK = Ay,

The same result holds true in the case when, in addition

to the constraints (16), we assume--according to (2)--that
oy < ai 5 k = 1,...,m

because af; k =1,...,m of the type (21) satisfies these

"extra" constraints.



