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Foreword

In this paper, assuming noncooperative behavior of the decision makers, we consider so-
lution methods for decision making problems in hierarchical organizations under fuzzy
random environments. Taking into account vagueness of judgments of decision makers,
fuzzy goals are introduced into the formulated fuzzy random noncooperative two-level
linear programming problems. Considering the possibility and necessity measure that
each objective function fulfills the corresponding fuzzy goal, we transform the fuzzy ran-
dom two-level linear programming problems to minimize each objective function with
fuzzy random variables into stochastic two-level programming problems to maximize the
degree of possibility and necessity that each fuzzy goal is fulfilled. Through the use of
absolute deviation minimization in stochastic programming, the transformed stochastic
two-level programming problems can be reduced to deterministic two-level programming
problems. It should be emphasized here that the absolute deviation minimization model
is suitable for risk-averse decision makers and it is more tractable than the variance min-
imization model. For the transformed problems, extended concepts of Stackelberg solu-
tions are introduced and computational methods are also presented. It is significant to note
that the extended Stackelberg solutions can be obtained through the combined use of the
variable transformation method and theKth best algorithm for two-level linear program-
ming problems. A numerical example is provided to illustrate the proposed methods.
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Abstract

This paper considers fuzzy random two-level linear programming problems under non-
cooperative behavior of the decision makers. Having introduced fuzzy goals of decision
makers together with the possibility and necessity measure, following absolute deviation
minimization, fuzzy random two-level programming problems are transformed into deter-
ministic ones. Extended Stackelberg solutions are introduced and computational methods
are also presented.

Keywords: Two-level linear programming problem; fuzzy random variables; Stackelberg
solutions; possibility; necessity; absolute deviation minimization.
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Fuzzy Random Noncooperative Two-level Linear
Programming through Absolute Deviation Minimization

Using Possibility and Necessity

Masatoshi Sakawa (sakawa@hiroshima-u.ac.jp)* **

Kosuke Kato(kosuke-kato@hiroshima-u.ac.jp)*

1 Introduction

In the real world, we often encounter situations where there are two or more decision
makers in an organization with a hierarchical structure, and they make decisions in turn
or at the same time so as to optimize their objective functions. Decision making problems
in decentralized organizations are often modeled as Stackelberg games [46], and they are
formulated as two-level mathematical programming problems [45, 44]. In the context
of two-level programming, the decision maker at the upper level first specifies a strat-
egy, and then the decision maker at the lower level specifies a strategy so as to optimize
the objective with full knowledge of the action of the decision maker at the upper level.
In conventional multi-level mathematical programming models employing the solution
concept of Stackelberg equilibrium, it is assumed that there is no communication among
decision makers, or they do not make any binding agreement even if there exists such
communication. Computational methods for obtaining Stackelberg solutions to two-level
linear programming problems are classified roughly into three categories: the vertex enu-
meration approach [5], the Kuhn-Tucker approach [3, 4, 5, 15], and the penalty function
approach [51]. The subsequent works on two-level programming problems under nonco-
operative behavior of the decision makers have been appearing [34, 35, 14, 36, 9, 11] in-
cluding some applications to aluminum production process [33], pollution control policy
determination [2], tax credits determination for biofuel producers [10], pricing in com-
petitive electricity markets [12], supply chain planning [39] and so forth.

However, to utilize two-level programming for resolution of conflict in decision mak-
ing problems in real-world decentralized organizations, it is important to realize that si-
multaneous considerations of both fuzziness [41, 42, 43] and randomness [48, 6, 47]
would be required. Fuzzy random variables, first introduced by Kwakernaak [25], have
been developing [24, 37, 29], and an overview of the developments of fuzzy random vari-
ables was found in [13]. Studies on linear programming problems with fuzzy random
variable coefficients, called fuzzy random linear programming problems, were initiated
by Wang and Qiao [50], Qaio, Zhang and Wang [38] as seeking the probability distribu-
tion of the optimal solution and optimal value. Optimization models for fuzzy random

* Graduate School of Engineering, Hiroshima University.
** Corresponding author.
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linear programming problems were first considered by Luhandjula et al. [30, 32] and fur-
ther developed by Liu [27, 28] and Rommelfanger [40]. A brief survey of major fuzzy
stochastic programming models was found in the paper by Luhandjula [31]. As we look
at recent developments in the fields of fuzzy random programming, we can see continuing
advances [16, 18, 20, 17, 19, 22, 40, 21, 1, 52].

Under these circumstances, in this paper, assuming noncooperative behavior of the
decision makers, we consider solution methods for decision making problems in hierar-
chical organizations under fuzzy random environments. Taking into account vagueness
of judgments of decision makers, fuzzy goals are introduced into the formulated non-
cooperative two-level linear programming problems involving fuzzy random variables.
Considering the possibility and necessity measure that each objective function fulfills the
corresponding fuzzy goal, we transform the fuzzy random two-level linear programming
problems to minimize each objective function with fuzzy random variables into stochastic
two-level programming problems to maximize the degree of possibility and necessity that
each fuzzy goal is fulfilled. Through the use of absolute deviation minimization [23] in
stochastic programming, the transformed stochastic two-level programming problems can
be reduced to deterministic two-level programming problems. It is significant to note that
the absolute deviation minimization model is suitable for risk-averse decision makers and
it is more tractable than the variance minimization model. For the transformed problems,
extended concepts of Stackelberg solutions are introduced and computational methods are
also presented. It is shown that extended Stackelberg solutions can be obtained through
the combined use of the variable transformation method by Charnes et al. [8] and theKth
best algorithm by Bialas et al. [5].

2 Fuzzy random two-level linear programming problems

Fuzzy random variables, first introduced by Kwakernaak [25], have been defined in vari-
ous ways [25, 37, 24, 29]. For example, as a special case of fuzzy random variables given
by Kwakernaak, Kruse and Meyer [24] defined a fuzzy random variable as follows.

Definition 1 (Fuzzy random variable) Let (Ω, B, P ) be a probability space,F (R) the
set of fuzzy numbers with compact supports andX a measurable mappingΩ → F (R).
ThenX is a fuzzy random variable if and only if givenω ∈ Ω,Xα(ω) is a random interval
for anyα ∈ (0, 1], whereXα(ω) is anα-level set of the fuzzy setX(ω).

Although there exist some minor differences in several definitions of fuzzy random vari-
ables, fuzzy random variables could be roughly understood to be a random variable whose
observed values are fuzzy sets.

In this paper, we deal with fuzzy random noncooperative two-level linear program-
ming problems formulated as:

minimize
DM1

z1(x1,x2) = ˜̄C11x1 + ˜̄C12x2

minimize
DM2

z2(x1,x2) = ˜̄C21x1 + ˜̄C22x2

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0 , x2 ≥ 0


. (1)



– 3 –

It is significant to note here that randomness and fuzziness of the coefficients are
denoted by the “dash above” and “wave above” i.e.,“¯ ” and“˜ ”, respectively. In this
formulation,x1 is ann1 dimensional decision variable column vector for the decision
maker at the upper level (DM1), x2 is ann2 dimensional decision variable column vector
for the decision maker at the lower level (DM2), z1(x1,x2) is the objective function for
DM1 andz2(x1,x2) is the objective function for DM2. Elements˜̄C ljk, k = 1, 2, . . . , nj

of coefficient vectors̃̄Clj, l = 1, 2, j = 1, 2 are fuzzy random variables characterized by
the membership function:

µ ˜̄Cljk
(τ ) =


max

{
0, 1− d̄ljk − τ

βljk

}
, if τ ≤ d̄ljk

max

{
0, 1− τ − d̄ljk

γljk

}
, otherwise,

whered̄ljk is a random variable that takes an observed valuedljksl under a scenariosl ∈
{1, 2, . . . , Sl} whose probability isplsl , and parametersβljk andγljk, representing left and
right spreads ofµ ˜̄Cljk

(·), are positive numbers. This definition of fuzzy random variables
was first appeared in the literature by Katagiri et al. [20]. Figure 1 illustrates an example
of the membership function of a fuzzy random variable˜̄Cljk.

Figure 1: An example of a membership function of a fuzzy random variable.

Fuzzy random two-level linear programming problems formulated as (1) are often
seen in actual decision making situations. For example, consider a supply chain planning
[39] where the distribution center (DM1) and the production part (DM2) hope to mini-
mize the distribution cost and the production cost respectively. Since coefficients of these
objective functions are often affected by the economic conditions varying at random, they
can be regarded as random variables. In addition, since observed values of them are often
ambiguous and estimated by fuzzy numbers, they are expressed by fuzzy random vari-
ables. Hence, the supply chain planning problem can be formulated as a two-level linear
programming problem involving fuzzy random variable coefficients.

Observing that each coefficient˜̄C ljk is a fuzzy random variable defined as a random

variable whose observed values areL-R fuzzy numbers, each objective function̄̃Clx =
˜̄C l1x1 + ˜̄Cl2x2 is also a fuzzy random variable whose observed values are fuzzy numbers
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characterized by the membership function

µ ˜̄C lx
(υ) =


max

{
0, 1− d̄lx− υ

βlx

}
, if υ ≤ d̄lx

max

{
0, 1− υ − d̄lx

γlx

}
, otherwise.

An example of a membership function of an objective function for DMl is shown in Figure
2.

Figure 2: An example of a membership function of an objective function for DMl.

It should be emphasized here that problem (1) is not a well-defined problem due to
both fuzziness and randomness of the coefficients, and it cannot be minimized in the sense
of deterministic two-level linear programming. Therefore, it is necessary to interpret the
problem from some point of view and to transform the problem into the deterministic
equivalent one. Realizing this difficulty, in this paper, we assume that decision makers
prefer to maximize the degree of possibility or necessity that objective function values
satisfy fuzzy goals.

2.1 Fuzzy goals

Considering vague natures of decision makers’ judgments, it is natural to assume that
decision makers may have vague or fuzzy goals for each of the objective functions. In a
minimization problem, a goal stated by decision makers may be to achieve “substantially
less than or equal to some value.” This type of statement can be quantified by eliciting a
corresponding membership function. In this paper, in view of the linearity of the formu-
lated problems, the fuzzy goals̃Gl such as “zl(x1,x2) should be substantially less than or
equal to a certain value” are assumed to be quantified by the linear membership functions:

µG̃l(y) =


1 , if y ≤ z1

l

y − z0
l

z1
l − z0

l

, if z1
l < y ≤ z0

l

0 , if y > z0
l .

(2)

Figure 3 illustrates a possible shape of the membership function for the fuzzy goal.
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Figure 3: An example of a membership functionµG̃l(·) of a fuzzy goalG̃l.

2.2 Possibility and necessity

Having determined the fuzzy goals of the decision makers, if we regardµ ˜̄Clx
(·) as a

possibility distribution on the basis of the concept of possibility measure, the degree of
possibilityΠ ˜̄Clx

(G̃l) that the fuzzy goal̃Gl is fulfilled under the possibility distribution
µ ˜̄Clx

(·) is given by:

Π ˜̄Clx
(G̃l) = sup

y
min

{
µ ˜̄C lx

(y), µG̃l(y)
}
, l = 1, 2. (3)

Figure 4 illustrates the degree of possibility that the fuzzy goalG̃l is fulfilled under the
possibility distributionµ ˜̄Clx

(·).

Figure 4: The degree of possibilityΠ ˜̄Clx
(G̃l)

Using the degree of possibility, problem (1) to minimize each objective function˜̄Clx
can be transformed into the following stochastic two-level programming problem to max-
imize the degree of possibility for each objective functionΠ ˜̄Clx

(G̃l):

maximize
DM1

Π ˜̄C1x
(G̃1)

maximize
DM2

Π ˜̄C2x
(G̃2)

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


. (4)
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On the other hand, if decision makers are more risk-averse or wish to avoid a risk, de-
cision making using possibility may be inappropriate since the obtained solution becomes
too optimistic. In such a situation, decision making using necessity seems to be suitable
for pessimistic decision makers. To be more specific, the degree of necessityN ˜̄Clx

(G̃l)

that the fuzzy goal̃Gl is fulfilled under the possibility distributionµ ˜̄Clx
(·) is given by:

N ˜̄Clx
(G̃l) = inf

y
max

{
1− µ ˜̄C lx

(y), µG̃l(y)
}
, l = 1, 2. (5)

Figure 5 illustrates the degree of necessity that the fuzzy goalG̃l is fulfilled under the
possibility distributionN ˜̄Clx

(G̃l).

Figure 5: The degree of necessityN ˜̄C lx
(G̃l)

Quite similar to the possibility case, using the degree of necessity, problem (1) can be
transformed into the following stochastic two-level programming problem to maximize
the degree of necessity for each objective functionN ˜̄Clx

(G̃l):

maximize
DM1

N ˜̄C1x
(G̃1)

maximize
DM2

N ˜̄C2x
(G̃2)

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


. (6)

For each of the objective functions in (4) and (6), if we set

z0
l = max

sl∈{1,2,...,Sl}
max
x∈X

2∑
j=1

nj∑
k=1

dljkslxjk (7)

z1
l = min

sl∈{1,2,...,Sl}
min
x∈X

2∑
j=1

nj∑
k=1

dljkslxjk, (8)

the degree of possibility (3) and the degree of necessity (5) can be rewritten as:

Π ˜̄Clx
(G̃l) =

2∑
j=1

nj∑
k=1

{
βljk − d̄ljk

}
xjk + z0

l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l

(9)
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N ˜̄Clx
(G̃l) =

−
2∑
j=1

nj∑
k=1

d̄ljkxjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l

(10)

where denominators in (9) and (10) are assumed to be positive since each ofβljk, γljk and
xjk, l = 1, 2, j = 1, 2, k = 1, 2, . . . , nj is nonnegative andz1

l < z0
l .

In this way, it follows that both of the problems (4) and (6) are stochastic two-level
programming problems whose objective functionsΠ ˜̄Clx

(G̃l) andN ˜̄Clx
(G̃l) are linear

fractional and vary randomly depending on random variablesd̄ljk.

3 Stackelberg solutions through absolute deviation mini-
mization

In this section, assuming the decision makers are risk-averse, we reduce the transformed
stochastic two-level programming problems (4) and (6) to deterministic two-level pro-
gramming problems through the absolute deviation minimization model [23]. It is sig-
nificant to note that the absolute deviation minimization model is suitable for risk-averse
decision makers and more tractable than the variance minimization model.

3.1 Possibility case

Following the absolute deviation minimization model, the maximization ofΠ ˜̄Clx
(G̃l) is

replaced with the minimization of its absolute deviation E
[∣∣∣Π ˜̄Clx

(G̃l)− E
[
Π ˜̄Clx

(G̃l)
]∣∣∣]

as follows:

minimize
DM1

ZΠ,AD
1 (x1,x2) = E

[∣∣∣Π ˜̄C1x
(G̃1)− E

[
Π ˜̄C1x

(G̃1)
]∣∣∣]

minimize
DM2

ZΠ,AD
2 (x1,x2) = E

[∣∣∣Π ˜̄C2x
(G̃2)− E

[
Π ˜̄C2x

(G̃2)
]∣∣∣]

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


. (11)

Since each̄dljk is a random variable that takes an observed valuedljksl under a scenario
sl ∈ {1, 2, . . . , Sl} whose probability ispsl , E

[∣∣∣Π ˜̄C lx
(G̃l)− E

[
Π ˜̄Clx

(G̃l)
]∣∣∣] in (11) are

rewritten as:

E
[∣∣∣Π ˜̄Clx

(G̃l)− E
[
Π ˜̄Clx

(G̃l)
]∣∣∣]

= E



∣∣∣∣∣∣∣∣∣∣∣

2∑
j=1

nj∑
k=1

{
βljk − d̄ljk

}
xjk + z0

l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l

− E


2∑
j=1

nj∑
k=1

{
βljk − d̄ljk

}
xjk + z0

l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l



∣∣∣∣∣∣∣∣∣∣∣



=
Sl∑
sl=1

plsl

∣∣∣∣∣∣∣∣∣∣∣

2∑
j=1

nj∑
k=1

{βljk − dljksl}xjk + z0
l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l

−
Sl∑
sl=1

plsl

2∑
j=1

nj∑
k=1

{βljk − dljksl}xjk + z0
l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l

∣∣∣∣∣∣∣∣∣∣∣
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=
Sl∑
sl=1

plsl

∣∣∣∣∣∣∣∣∣∣∣∣

2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

2∑
j=1

nj∑
k=1

βljkxjk − z1
l + z0

l

∣∣∣∣∣∣∣∣∣∣∣∣
.

If we introduce the auxiliary variables

r+
lsl

=
1

2

∣∣∣∣∣∣
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

∣∣∣∣∣∣
+

 2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

 xjk + z0
l


r−lsl =

1

2

∣∣∣∣∣∣
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

∣∣∣∣∣∣
−
 2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

 ,
r+
lsl
≥ 0, r−lsl ≥ 0 and the following relations hold:

r+
lsl

+ r−lsl =

∣∣∣∣∣∣
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

∣∣∣∣∣∣
r+
lsl
− r−lsl =

2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk + z0
l

r+
lsl
· r−lsl = 0.

In this way, through absolute deviation minimization using possibility, (11) can be
reduced to the following deterministic two-level programming problem:

minimize
DM1

ZΠ,AD
1 (x1,x2) =

S1∑
s1=1

p1s1

(
r+

1s1
+ r−1s1

)
2∑
j=1

nj∑
k=1

β1jkxjk − z1
1 + z0

1

minimize
DM2

ZΠ,AD
2 (x1,x2) =

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
2∑
j=1

nj∑
k=1

β2jkxjk − z1
2 + z0

2

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (12)
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It should be noted here that for noncooperative two-level programming problems,
DM1 first specifies a decision and then DM2 determines a decision so as to optimize the
objective function of self with full knowledge of the decision of DM1. According to this
rule, DM1 also makes a decision so as to optimize the objective function of self. The
solution defined as the procedure is called a Stackelberg solution.

Realizing that (12) is a deterministic two-level programming problem, we are now
ready to introduce the extended concepts of Stackelberg solution for the original fuzzy
random two-level linear programming problem (1).

Definition 2 (AD-P-Stackelberg solution) A feasible solution(x∗1,x
∗
2) ∈ X is called

an AD-P-Stackelberg solution, meaning a Stackelberg solution through absolute deviation
minimization using possibility, if(x∗1,x

∗
2) is an optimal solution to the following two-level

linear fractional programming problem:

minimize
x1

ZΠ,AD
1 (x1,x2)

wherex2 solves
minimize

x2

ZΠ,AD
2 (x1,x2)

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (13)

Observing that (13) is a two-level linear fractional programming problem when com-
plementary conditions are relaxed, it is now appropriate to consider some effective com-
putational methods for obtaining AD-P-Stackelberg solutions.

Following the definition of Stackelberg solutions, for any feasible decisionx̂1 given
by DM1, DM2 is assumed to select a decisionx2(x̂1) which is an optimal solution to the
following problem:

minimize

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
n2∑
k=1

β22kx2k − z1
2 + z0

2 +
n1∑
k=1

β21kx̂1k

subject toA2x2 ≤ b− A1x̂1

n2∑
k=1

 Sl∑
sl=1

plsldl2k − dl2ksl

 x2k − r+
lsl

+ r−lsl

= −z0
l −

n1∑
k=1

 Sl∑
sl=1

plsldl1k − dl1ksl

 x̂1k, l = 1, 2, sl = 1, 2, . . . , Sl

r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



.

(14)
The optimal solutionx2(x̂1) to (14) is called a rational reaction forx̂1. Let us denote the
set of rational reactions for̂x1 byRR(x̂1). Then, DM1 should select a solution(x1,x2)
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to optimizeZΠ,AD
1 (x1,x2) from among the inducible regionIR = {(x1,x2) | (x1,x2) ∈

X, x2 ∈ RR(x1)}. To be more explicit, DM1 selects an optimal solution to the following
problem:

minimize ZΠ,AD
1 (x1,x2)

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ∈ RR(x1), r
+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl


.

(15)
It should be emphasized here that the optimal solution to (15) is an AD-P-Stackelberg
solution.

For two-level linear fractional programming problems with linear fractional objec-
tive functions and linear constraints, it is shown that Stackelberg solutions exist at some
extreme point of the feasible region [7]. Although (13) is not a two-level linear frac-
tional programming problem, if complementary conditionsr+

lsl
· r−lsl = 0, l = 1, 2,

sl = 1, 2, . . . , Sl in (13) are relaxed, it should be emphasized here that the resulting re-
laxed problem becomes a two-level linear fractional programming one. Hence, from the
property of Stackelberg solutions to two-level linear fractional programming problems,
we can omit complementary conditions from (13) since these conditions automatically
hold at any extreme point of the feasible region. In this way, we can consider the follow-
ing relaxed problem:

minimize
x1

ZΠ,AD
1 (x1,x2) =

S1∑
s1=1

p1s1

(
r+

1s1
+ r−1s1

)
2∑
j=1

nj∑
k=1

β1jkxjk − z1
1 + z0

1

wherex2 solves

minimize
x2

ZΠ,AD
2 (x1,x2) =

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
2∑
j=1

nj∑
k=1

β2jkxjk − z1
2 + z0

2

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
x1 ≥ 0, x2 ≥ 0, r+

lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (16)

Observing that (16) is a two-level linear fractional programming problem, we can
construct the following computational method for obtaining AD-P-Stackelberg solutions
through the combined use of the variable transformation method by Charnes and Cooper
[8] and theKth best algorithm for two-level linear programming problems by Bialas et
al. [5].
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The computational method for obtaining AD-P-Stackelberg solutions

Step 1: Let i := 1. Removing the objective function of DM2 from (16), solve the
following problem:

minimize ZΠ,AD
1 (x1,x2) =

S1∑
s1=1

p1s1

(
r+

1s1
+ r−1s1

)
2∑
j=1

nj∑
k=1

β1jkxjk − z1
1 + z0

1

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
x1 ≥ 0, x2 ≥ 0, r+

lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



.

(17)
Observing that (17) is a linear fractional programming problem and the denomina-
tor of the objective function is positive as discussed in (9), it can be transformed into
an equivalent linear programming problem by the variable transformation method
by Charnes and Cooper [8]. To be more specific, introducing the variable transfor-
mation

t =
1

2∑
j=1

nj∑
k=1

β1jkxjk − z1
1 + z0

1

and lettingy1 = t · x1, y2 = t · x2, q+ = t · r+, q− = t · r−, (17) is transformed
into the following linear programming problem:

minimize
S1∑
s1=1

p1s1

(
q+

1s1
+ q−1s1

)
subject toA1y1 +A2y2 − bt ≤ 0

2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

 yjk − q+
lsl

+ q−lsl + z0
l t = 0,

l = 1, 2, sl = 1, 2, . . . , Sl
2∑
j=1

nj∑
k=1

β1jkyjk − (z1
1 − z0

1)t = 1

y1 ≥ 0, y2 ≥ 0, q+ ≥ 0, q− ≥ 0, t ≥ 0



. (18)

Observing that (18) is a linear programming problem, we can obtain an optimal
solution by the simplex method. Using the optimal solution to (18) denoted by
(yT1[1],y

T
2[1], (q

+
[1])

T , (q−[1])
T , t[1])T , we can obtain

(xT1[1],x
T
2[1])

T := (yT1[1]/t[1],y
T
2[1]/t[1])

T

which is an extreme point of the feasible region of (17) as shown in [49]. LetW
be a set of feasible extreme points to be searched andU a set of feasible extreme
points that had been searched. LetW := {(xT1[1],x

T
2[1])

T} andU := ∅. Go to step
2.
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Step 2: In order to check whether the present extreme point(xT1[i],x
T
2[i])

T exists in the
inducible regionIR, i.e., x2[i] is a rational reaction forx1[i] or not, we solve the
following problem:

minimize

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
n2∑
k=1

β22kx2k − z1
2 + z0

2 +
n1∑
k=1

β21kx1k[i]

subject toA2x2 ≤ b− A1x1[i]

n2∑
k=1

 Sl∑
sl=1

plsldl2k − dl2ksl

 x2k − r+
lsl

+ r−lsl

= −z0
l −

n1∑
k=1

 Sl∑
sl=1

plsldl1k − dl1ksl

 x1k[i],

l = 1, 2, sl = 1, 2, . . . , Sl
x2 ≥ 0, r+

lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (19)

Observing that (19) is also a linear fractional programming problem and the denom-
inator of the objective function is positive, we can apply the variable transformation
method by Charnes and Cooper [8] to (19). Namely, introducing the variable trans-
formation

u =
1

n2∑
k=1

β22kx2k − z1
2 + z0

2 +
n1∑
k=1

β21kx1k[i]

and lettingw2 := u · x2, o+ := u · r+, o− := u · r−, (19) is transformed into the
following linear programming problem:

minimize
S2∑
s2=1

p2s2

(
o+

2s2
+ o−2s2

)
subject toA2w2 − (b− A1x1[i])u ≤ 0

n2∑
k=1

 Sl∑
sl=1

plsldl2k − dl2ksl

w2k − o+
lsl

+ o−lsl

+

z0
l +

n1∑
k=1

 Sl∑
sl=1

plsldl1k − dl1ksl

 x1k[i]

 u = 0,

l = 1, 2, sl = 1, 2, . . . , Sl
n2∑
k=1

β22kw2k −
(
z1

2 − z0
2 −

n1∑
k=1

β21kx1k[i]

)
u = 1

w2 ≥ 0, o+ ≥ 0, o− ≥ 0, u ≥ 0



. (20)

Observing that (20) is a linear programming problem, we can obtain an optimal
solution(wT

2[i], (o
+
[i])

T , (o−[i])
T , u[i])T by the simplex method. Ifw2[i]/u[i] is equal to

x2[i], then the current extreme point(xT1[i],x
T
2[i])

T exists inIR, i.e., it is an AD-P-
Stackelberg solution and the algorithm is terminated. Otherwise, go to step 3.

Step 3: Let W[i] be a set of feasible extreme points which is adjacent to(xT1[i],x
T
2[i])

T

and satisfiesZΠ,AD
1 (x1,x2) ≥ ZΠ,AD

1 (x1[i],x2[i]). Let U := U ∪ {(xT1[i],x
T
2[i])

T}
andW := (W ∪W[i])\U , and go to step 4.
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Step 4: Let i := i+ 1. Choose an extreme point(xT1[i],x
T
2[i])

T such that

ZΠ,AD
1 (x1[i],x2[i]) = min

(xT1 ,xT2 )T∈W
ZΠ,AD

1 (x1,x2),

and return to step 2.

It should be noted here that the proposed computational method uses nothing but the
variable transformation method, the simplex method and the pivot operation for obtaining
an AD-P-Stackelberg solution.

3.2 Necessity case

Quite similar to the possibility case, following the absolute deviation minimization model,
the maximization ofN ˜̄Clx

(G̃l) in (6) is replaced with the minimization of its absolute

deviation E
[∣∣∣N ˜̄Clx

(G̃l)− E
[
N ˜̄Clx

(G̃l)
]∣∣∣] as follows:

minimize
DM1

ZN,AD
1 (x1,x2) = E

[∣∣∣N ˜̄C1x
(G̃1)− E

[
N ˜̄C1x

(G̃1)
]∣∣∣]

minimize
DM2

ZN,AD
2 (x1,x2) = E

[∣∣∣N ˜̄C2x
(G̃2)− E

[
N ˜̄C2x

(G̃2)
]∣∣∣]

subject toA1x1 +A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


, (21)

where E
[∣∣∣N ˜̄Clx

(G̃l)− E
[
N ˜̄Clx

(G̃l)
]∣∣∣] is rewritten as:

E
[∣∣∣N ˜̄Clx

(G̃l) − E
[
N ˜̄Clx

(G̃l)
]∣∣∣]

= E



∣∣∣∣∣∣∣∣∣∣∣
−

2∑
j=1

nj∑
k=1

d̄ljkxjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l

− E


−

2∑
j=1

nj∑
k=1

d̄ljkxjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l



∣∣∣∣∣∣∣∣∣∣∣



=
Sl∑
sl=1

plsl

∣∣∣∣∣∣∣∣∣∣∣
−

2∑
j=1

nj∑
k=1

dljkslxjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l

−
Sl∑
sl=1

plsl

−
2∑
j=1

nj∑
k=1

dljkslxjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l

∣∣∣∣∣∣∣∣∣∣∣

=
Sl∑
sl=1

plsl

∣∣∣∣∣∣∣∣∣∣∣∣

2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

 xjk + z0
l

2∑
j=1

nj∑
k=1

γljkxjk − z1
l + z0

l

∣∣∣∣∣∣∣∣∣∣∣∣
.
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Introducing the auxiliary variablesr+
lsl

andr−lsl as defined in the possibility case, (21) can
be reduced to the following deterministic two-level programming problem:

minimize
DM1

ZN,AD
1 (x1,x2) =

S1∑
s1=1

p1s1

(
r+

1s1
+ r−1s1

)
2∑
j=1

nj∑
k=1

γ1jkxjk − z1
1 + z0

1

minimize
DM2

ZN,AD
2 (x1,x2) =

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
2∑
j=1

nj∑
k=1

γ2jkxjk − z1
2 + z0

2

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (22)

Observing that (22) is a deterministic two-level programming problem, we can intro-
duce the extended concepts of Stackelberg solution for the original fuzzy random two-
level linear programming problem (1).

Definition 3 (AD-N-Stackelberg solution) A feasible solution(x∗1,x
∗
2) ∈ X is called an

AD-N-Stackelberg solution, meaning a Stackelberg solution through absolute deviation
minimization using necessity, if(x∗1,x

∗
2) is an optimal solution to the following two-level

linear fractional programming problem:

minimize
x1

ZN,AD
1 (x1,x2)

wherex2 solves
minimize

x2

ZN,AD
2 (x1,x2)

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (23)

Similarly to the possibility case, for any feasible decisionx̂1 given by DM1, the ratio-
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nal reactionx2(x̂1) of DM2 can be obtained by solving the following problem:

minimize

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
n2∑
k=1

γ22kx2k − z1
2 + z0

2 +
n1∑
k=1

γ21kx̂1k

subject toA2x2 ≤ b− A1x̂1

n2∑
k=1

 Sl∑
sl=1

plsldl2k − dl2ksl

 x2k − r+
lsl

+ r−lsl

= −z0
l −

n1∑
k=1

 Sl∑
sl=1

plsldl1k − dl1ksl

 x̂1k, l = 1, 2, sl = 1, 2, . . . , Sl

r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x2 ≥ 0, r+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



,

(24)
and DM1 should select an optimal solution(x1,x2) to the following problem:

minimize ZN,AD
1 (x1,x2)

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
r+
lsl
· r−lsl = 0, l = 1, 2, sl = 1, 2, . . . , Sl

x1 ≥ 0, x2 ∈ RR(x1), r
+
lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl


.

(25)
Observe that the optimal solution to (25) is an AD-N-Stackelberg solution.

As discussed in the possibility case, we can consider the following relaxed problem:

minimize
x1

ZN,AD
1 (x1,x2) =

S1∑
s1=1

p1s1

(
r+

1s1
+ r−1s1

)
2∑
j=1

nj∑
k=1

γ1jkxjk − z1
1 + z0

1

wherex2 solves

minimize
x2

ZN,AD
2 (x1,x2) =

S2∑
s2=1

p2s2

(
r+

2s2
+ r−2s2

)
2∑
j=1

nj∑
k=1

γ2jkxjk − z1
2 + z0

2

subject toA1x1 +A2x2 ≤ b
2∑
j=1

nj∑
k=1


Sl∑
sl=1

plsldljk − dljksl

xjk − r+
lsl

+ r−lsl = −z0
l ,

l = 1, 2, sl = 1, 2, . . . , Sl
x1 ≥ 0, x2 ≥ 0, r+

lsl
≥ 0, r−lsl ≥ 0, l = 1, 2, sl = 1, 2, . . . , Sl



. (26)

The computational method for obtaining AD-N-Stackelberg solutions follows very much
in the same fashion as that for obtaining AD-P-Stackelberg solutions and will, therefore,
be omitted.
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4 Numerical example

In order to demonstrate the feasibility and efficiency of the proposed computational meth-
ods, consider the following two-level linear programming problem involving fuzzy ran-
dom variable coefficients:

minimize
DM1

z1(x1,x2) = ˜̄C11x1 + ˜̄C12x2

minimize
DM2

z2(x1,x2) = ˜̄C21x1 + ˜̄C22x2

subject to a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

a41x1 + a42x2 ≤ b4

x1 = (x11, x12, x13)T ≥ 0
x2 = (x21, x22, x23)T ≥ 0



(27)

where ˜̄Clj, l = 1, 2, j = 1, 2 are vectors whose elements˜̄C ljk, k = 1, 2, . . . , nj are fuzzy
random variables.

Values of coefficients in constraints, values ofdljksl for eachsl, βljk andγljk, l = 1, 2
are shown in Tables 1, 2 and 3, respectively.

Table 1: Values of coefficients in constraints

x11 x12 x13 x21 x22 x23 b

a1 2 3 1 2 3 3 65
a2 4 4 2 3 2 1 80
a3 2 4 3 3 2 2 105
a4 −3 −2 −2 −4 −1 −4 −70

Table 2: Values ofd1jks1 for eachs1 ∈ {1, 2, 3}, β1jk andγ1jk.

x11 x12 x13 x21 x22 x23

Scenarios1 = 1 (p11 = 0.25) 2.3 −1.0 1.3 −1.3 −1.8 2.0
Scenarios1 = 2 (p12 = 0.40) 2.0 −1.3 2.0 1.1 −2.1 2.4
Scenarios1 = 3 (p13 = 0.35) 1.9 −2.4 2.7 −1.5 −1.2 3.8

β1jk 0.8 1.2 0.7 0.9 1.3 0.6
γ1jk 0.8 1.1 0.5 0.6 0.9 1.0

Calculatingz0
l andz1

l from (7) and (8) yieldsz0
1 = 121, z1

1 = −48, z0
2 = 76 and

z1
2 = −81. Considering these values, membership functions of fuzzy goals for objective

functions are determined as shown in Figure 6.
For illustrative purposes, we first derive an AD-P-Stackelberg solution to (27). For

this numerical example, in step 1, after transforming (17) into (18) by the variable trans-
formation method, (18) is solved by the simplex method. For the obtained value of
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Table 3: Values ofd2jks2 for eachs2 ∈ {1, 2, 3}, β2jk andγ2jk.

x11 x12 x13 x21 x22 x23

Scenarios2 = 1 (p21 = 0.45) 3.0 1.7 −1.6 −1.4 −1.6 1.7
Scenarios2 = 2 (p22 = 0.15) 1.7 1.3 −2.3 −0.8 −1.9 2.6
Scenarios2 = 3 (p23 = 0.40) 2.3 0.9 −1.0 −2.0 −1.2 3.5

β2jk 0.7 1.2 0.8 0.5 0.9 1.1
γ2jk 0.7 0.9 0.6 1.0 0.8 0.9

Figure 6: Membership functionsµG̃l(·), l = 1, 2.

(xT1[1],x
T
2[1])

T = (14.58, 0.00, 0.83, 3.88, 9.08, 0.00)T , letW := {(xT1[1],x
T
2[1])

T}, U := ∅.
In step 2, after transforming (19) into (20) by the variable transformation method, we
solve (20) by the simplex method in order to obtain the rational reaction forx1[1]. Since
the optimal solution to (20)̃w2[1]/u[1] = (3.23, 11.70, 0.00)T is not equal tox2[1] =
(3.88, 9.08, 0.00)T , the current extreme point(xT1[1],x

T
2[1])

T is not an AD-P-Stackelberg
solution. In step 3, we enumerate feasible extreme points(xT1 ,x

T
2 )T which are adjacent

to (xT1[1],x
T
2[1])

T and satisfyZΠ,AD
1 (x1,x2) ≥ ZΠ,AD

1 (x1[1],x2[1]), and makeW[1]. Then,
let U := U ∪ (xT1[1],x

T
2[1])

T andW := (W ∪ W[1])\U . In step 4, we find a feasible

extreme point(xT1 ,x
T
2 )T in W whoseZΠ,AD

1 (x1,x2) is the least and let it be the next
extreme point(xT1[i+1],x

T
2[i+1])

T . Then, leti := i + 1 and return to step 2. By repeating
the procedures, we can obtain an AD-P-Stackelberg solution

(xT1,ADP ,x
T
2,ADP )T = (0.00, 12.67, 10.30, 1.36, 0.00, 4.66)T

where

ZΠ,AD
1 (x1,ADP ,x2,ADP ) = 0.0163, ZΠ,AD

2 (x1,ADP ,x2,ADP ) = 0.0745.

On the other hand, using the computational method quite similar to that for obtaining
an AD-P-Stackelberg solution, we can obtain an AD-N-Stackelberg solution

(xT1,ADN ,x
T
2,ADN)T = (4.92, 11.34, 0.47, 3.05, 0.00, 4.85)T

where

ZN,AD
1 (x1,ADN ,x2,ADN) = 0.0287, ZN,AD

2 (x1,ADN ,x2,ADN) = 0.0338.



– 18 –

5 Conclusions

In this paper, assuming noncooperative behavior of the decision makers, computational
methods for obtaining Stackelberg solutions to two-level linear programming problems
involving fuzzy random variable coefficients have been presented. Considering vague
natures of decision makers’ judgments, fuzzy goals were introduced into the formulated
fuzzy random noncooperative two-level linear programming problems. On the basis of the
possibility and necessity measure that each objective function fulfills the corresponding
fuzzy goal, the fuzzy random two-level linear programming problems to minimize each
objective function with fuzzy random variables were transformed into stochastic two-
level programming problems to maximize the degree of possibility and necessity that each
fuzzy goal is fulfilled. Through the use of absolute deviation minimization in stochastic
programming, the transformed stochastic two-level programming problems were reduced
to deterministic two-level programming problems. For the transformed problems, AD-
P- and AD-N-Stackelberg solutions were introduced and computational methods were
also presented. It is significant to note here that AD-P- and AD-N-Stackelberg solu-
tions can be obtained through the combined use of the variable transformation method
and theKth best algorithm for two-level linear programming problems. To illustrate the
proposed computational methods, a numerical example for obtaining AD-P- and AD-N-
Stackelberg solutions was provided. Extensions to other stochastic programming models
will be considered elsewhere. Further considerations from the view point of fuzzy random
cooperative two-level programming will be required in the near future.
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