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Preface

Roughly 1.6 billion people, 40 percent of the world's popul-
ation, live in urban areas today. At the beginning of the last
century, the urban population of the world totaled only 25 mil-
lion. According to recent United Nations estimates, about 3.1
billion people, twice today's urban population, will be living
in urban areas by the year 2000.

Rapid rates of urban demographic and economic growth in-
crease the difficulties of providing a population with adeguate
supplies of food, energy, employment, social services and infra-
structure. The investment needed just to maintain present
standards in many apidly urbanizing countries calls for a doubl-
ing or tripling of institutional plant within the next 25 years.

Scholars and policy-makers often disagree when it comes to
evaluating the desirability of current rapid rates of urban
growth in many parts of the globe. Some see this trend as
fostering national processes of socioeconomic development, partic-
ularly in the poorer and rapidly urbanizing countries of the
Third World; whereas others believe the consequences to be largely

undesirable and argue that such urban growth should be slowed
down.

Professor Nathan Keyfitz of Harvard University spent the
month of May this year collaborating with HSS scholars in their
research on migration, urbanization and development. During his
stay, he formulated a model of the urbanization process that
stimulated a number of us. 1In particular, Jacgques Ledent re-
sponded by writing a series of three vapers dealing with exten-
sions of the Keyfitz model. This paper, the third of the series,
focuses on the dynamics of urbanization under varyving regimes
of natural increase and migration.:

A list of related papers in the Population, Resources and
Growth Series appears at the end of this publication.

Andrei Rogers
Chairman

Human Settlements
and Services Area

November 1978
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Abstract

This paper is the third and last of a series seeking
to shed some light on the question of whether a nation's
urban population grows mostly by rural-urban migration or
by natural increase. Again, the discussion evolves
around an analytical study of the Keyfitz model of urban-
ization (Keyfitz, 1978) and the Rogers components-of-
change model (Rogers, 1968) applied to a rural-urban
system. Here, in contrast to the preceding papers in
which rates of natural increase and migration were con-
stant, the present paper allows these rates to vary.

A larger part of the analysis is based on the Key-
fitz model, shown earlier to be less meaningful than the
alternative model but lending itself to an easier tracta-
bility when rates are allowed to vary. In particular,
the Keyfitz model is used in an attempt to connect the
variations of rural-urban (net) migration rates to eco-
nomic changes through a simple scheme of wage differen-
tials, later supplemented by the Todaro hypothesis.
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The Forces of Urbanization
Under Varying Natural Increase and Migration Rates

INTRODUCTION

In a recent paper, intended to examine whether cities grow
mostly by inmigration or natural increase, Keyfitz (1978) pro-
posed a two-region continuous model of population growth and
distribution in which migration between the rural and urban re-

gions was viewed as a net flow out of the rural region.

This model was criticized by Ledent (1978a), who pointed
out the existence of an asymmetry between the two regions capa-
ble, in some circumstances, of leading to some undesirable long-
term evolution. As an alternative, he suggested the use of a
continuous version of the Rogers multiregional components-of-
change model (Rogers 1968), a model whose dynamics he showed to

be more suitable for studying the scurces of urban growth.

Ledent implemented his suggestion in a further paper
(Ledent 1978b), in which he examined the evolution of urbaniza-
tion in an initially entirely rural population system. He
conducted his analysis in a manner closely following Keyfitz's
original analysis, thus allowing a simple and immediate compar-

ison of the results yielded by both models.

With regard to their ability to shed some light on the
sources of urbanization, the two alternative analyses pre-

sented a common drawback stemming from their reliance on con-
stant rates of natural increase and migration. Thus, following

Rogers, who argues that "...ocne of the fundamental aspects

of the 'mobility revolution' experienced by nations undergoing
the structural transformation from =2grarian te industrial soci-
eties is an increasing rate of migration® (Rogers, 1978, p. 1),
we reexamine here both models, in which we allow migration (as

well as natural increase) rates +to vary over time. An attempt




is even made to connect the variations of migration rates to
economic changes through a simple scheme of wage differentials,

later supplemented by the Todaro hypothesis,

However, the inclusion of varying rates increases the com-
plexity of the alternative models. Their analytical tractabil-

ity reguires the assumption of an identical rate of natural in-

crease in both the rural and urban regions.

The first part of the paper deals with the Keyfitz model,
examined under various evolutive patterns of natural increase
and rural-urban migration. The second part focuses on the two-
region Rogers model whose analysis is, however, less developed
due to additional considerations which seriously hamper the
mathematical tractability of the model in the case of varying

rates.



I. ANALYSIS BASED ON THE KEYFITZ MODEL

Let us consider a population system divided into two re-
gions - urban and rural - which exhibit the same positive rate
of natural increase, r(t). 1In addition, suppose that internal
migration can be viewed as a net migration flow from rural to

urban defined as a positive fraction m(t) of the rural popula-

tion.
The evolution of this system is entirely described by
dPp (t) = r(t)PnL(t) . (1)
dp_(t) = [r(t) - m(t)]P_(t) (2)
where

PT(t) is the total population at time t

[

P_(t) is the rural population at time t

Once PT(t) and Pr(t) have been obtained by integrating (1)
and (2) respectively, the urban population Pu(t) is simply
given by:

P (£) = Pn(t) - Pr(t) . (3)

Suppose now that the initial population is entirely rural.
Then the integration of (1) leads to:

and the intecration of (2) to:




i frw) - m(uwlau
P (t) = p(0)e’ . (5)

It thus follows from (3) that

[t r(u)du( -t m(u)du) (6)
0
L ’

P(t) = p(0)e’ e

so that the ratio of urban to rural population is

S(t) = e -1 . (7)

Note that the first derivative of S(t)

ft m(u)du
= m(t)e’ , (8)

is always positive {(since we assumed m(t) to be positive). Con-

sequently, whatever the specification of the migration function

m(t), S(t) appears to be an increasing function of time.*

Now, let us define the ratio R(t) of urban net migration

to natural increase:

*Differentiating (8), we obtain

a relationship which shows that, if m(t) is an increasing
function, the curvature of S(t) is directed upward.



m(t)Pr(t)
R(t) = oy ) (10a)
u
which can be rewritten as
_ m(t)
R(t) = s - (10b)
The variations of this ratio depend on the sign of
dR(t) _ dm(t) _ dr(t) _ ds(t) (11)

R(t) m(t) r(t) s(t) -~

Indeed, the variations of R(t) which deﬁend on the values of
r(t) and m(t) are not necessarily monotonic. However, for a
large choice of the functions r(t) and m(t), R(t) can decrease

monotonically. Let us suppose first that

dr (t)
e 20 - (12)

Clearly, we have from (11),

dR(t) dm(t) ds (t)
R(e) < m(®) " S5 (13)

The right-hand side of this inéquality has the sign of

ft m(u)du

[ [* m(u)du J
y(t) = dm(t) |e° - 1] - )Y el L (18)

Differentiating y(t) with respect to time, we obtain

ft m(u)du
&0

[ [* n(wdu
dy(t) = d2m(t)

- 1] - m(t)[dm(t) + (m(t))?]e?

(15)




Consequently, if the migration function m(t) is such that

2
dm(t) d"m(t)
ac 0o and —gc <0 (16)
é%%}l decreases monotonically. Since d(ﬁf) = 0, it follows that
dv(t) . ) . . .
—3yg ~ 1s always negative, 1l.e., y(t) decreases monotonically.
Finally, since y(0) is negative, y(t) only takes negative values
and Q%%é) is always negative. To summarize, if the natural

increase rate r(t) and the migration function m(t) are such that
(12) and (16) respectively hold, R(t) monotonically decreases,
which indicates the larger importance taken by natural increase

vis-a-vis migration as the urban region grows.

In what follows, we attempt to study the evolution of the
above system according to various schemes of variations for
r(t) and m(t). Of major interest are the wvariations of R(t),
which permit one to determine the time at which natural increase

starts exceeding inmigration in accounting for urban growth.

Case of Constant Rates

We can assume that r(t) and m(t) remain constant and equal

to r and m respectively: this is the hypothesis made by Keyfitz
(1978) .

Under these conditions, the integration of (1) and (2)

leads to:

6]

PT(t) = P (0 , (17)

for the national population at time t, and

P (t) = p(0)e' T ME (18)



for the rural. Then, the urban population is

P_(t) = p(0)efE(1 - ™M (19)

and the ratio of urban to rural population is

S(t) = e -1, (20)

which shows that S(t) monotonically increases from zero (for
*
t =0) to + » (as t > + »).

Substituting (20) in (10) yields

R(t) = o , ' (21)
r(emt - 1)

so that R(t) monotonically decreases from + « (for t = 0) to
zero (for t - + »). The role of migration, initially preponder-
ant in accounting for the growth of the urban region, diminishes
as time passes by so that natural increase is eventually the

unique source of urban growth.

Keyfitz (1978) refers to the point in time T, at which
point natural increase is equal to migration, as the cross-over
point. By definition,

R(T) =1 , ' : (22)

and thus we have from (10)

S(T) =§ } (23)

*Note that the two populations are monotonic. However, if
Pu(t) increases and becomes infinitely positive, Pr(t) presents

similar variations only if r > m; it decreases, tending toward
zero, if r < m.




An expression of T is then obtained by substituting (20) in

in(1 + %y . (24a)

T:l
m r

Keyfitz observes therefore that:

The more rapidly the population as a whole increases

the sooner the cross-over, and more surprisingly, the

larger the value of m, the fraction of the country side

migrating, the sooner comes the day when natural in-

crease exceeds migration as a factor (Keyfitz, 1978, p. 5).

The problem just examined is visualized in Figure 1, whose
schema (i) displays the straight line with ordinate % and, by

contrast, the curve describing the variations of S(t).

A particularly interesting observation is generated by a
scenario involving the trajectory of the country that starts
with an entirely rural population of 1 million, and is exposed
to an unchanging rate of natural increase of r = 0.03 and a
fixed fraction of migrating of m = 0.02. In this scenario, the
role of natural increase, in accounting for urban growth. in-

creases rapidly and exceeds that of migration after

= 1 -
T = 902 In 1.66 = 25.5 years

At this point, the ratio of urban to rural population is
S(T) = 0.66 ,

so that the part of the population which is urban is exactly

40 percent. (Table 1).



a S(t) ¢ S(t)
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(i) r(t) = r. (ii) r(t) = £ + (ro - rl)e (B < 0),
m(t) = m,
m(t) = m.
Y S(t)
i}
- - - ——__-
|
!
l
I
[
|
I >t
T
. . Bt
(iii) r(t) = r. (iv) r(t) = r, + (rO - rl)e (B <0).
N __-at
m(t) = mo(l e Y(B > 0). m(t) = mo(l _ e—OLt) (@ > 0).
'Y
m(t) Ste)
r(t)
!
— - — = - - -
|
I
|
|
v-r\ *'L
(v) r(t) = r. (vi) r(t) = r.
m(t) given by (68) (g > a). m(t) given by (68) (g < a).

Figure 1. The Keyfitz model: variations of ?Et; and S(t)

contrasted according to various natural increase and

migration patterns.
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Table 1. Urbanization of an initially rural population of
1 million, with r = 0.03 and m = 0.02.

Percentage m

Year Total Rural Urban Urban SO R(t)
0 1 1 0 0 + o + @
1 1.03 1.01 0.02 0.020 0.990 33.00

2 1.06 1.02 0.04 0.039 0.490 16.34

3 1.09 1.03 0.06 0.058 0.323 10.78
4 1.13 1.04 0.09 0.077 0.240 8.00

5 1.16 1.05 0.11 0.095 0.190 5.23
10 1.35 1.11 0.24 0.181 0.090 3.01
15 1.57 1.16 0.41 0.259 0.057 1.91
20 1.82 1.22 0.60 0.330 0.041 1.36
25 2.12 1.28 0.83 0.394 0.031 1.03
30 2.46 1.35 1.11 0.451 0.024 0.81
35 2.86 1.42 1.44 0.503 0.020 0.66
40 3.32 1.49 1.83 0.551 0.016 0.54
45 3.86 1.57 2.29 0.593 0.014 0.46
50 4.48 1.65 2.83 0.632 0.012 0.39
75 9.49 2.12 7.37 0.777 0.00¢€ 0.19
100 20.09 2.72 17.37 0.865 0.003 0.10

Suppose now that we observe an actual population system
submitted to rates of natural increase and migration equal to r
and m respectively, and presenting a ratio of urban to rural
population equal to s. From a result established by Ledent

(1978a)*, it appears that this observed population system is

*He demonstrates that, when the rates of natural increase in the
rural and urban areas are different (r and u respectively), a
necessary condition for the observed population system to cor-
respond to the subsequent state of a hypothetical population

. . 1 + s . L
system, defined as above, is r < u + m —— . This condition

S

, a condition which always holds

reduces here to 0 < m l{;ii

s
(independently of the specifications of r(t) and m{(t)).
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identical to a subseguent state of the above hypothetical popu-

lation system.

The time tD’ at which this correspondence occurs, is simply

observed as the root of S(t) = s, which is unique due to the
course of the evolution of S(t). It is readily established
that
-1 In(1 + s) 2ub
%) m T ( )

Consequently, if, around the observation period, the actual
population exhibits the constant regimes of natural increase and
migration defined by r and m, we can simply determine whether
this system has already reached or will reach the cross-over

point.

Letting T' denote the time span necessary to reach the

cross-over point from the observation period, we have

and finally (Keyfitz, 1978),

+
B3

1n . ' (24c)

gl=
-
+
wl

This relationship shows that the sign of T' depends on the rel-
ative values of % and s. 1In particular, if s > %, the cross-

over point appears to have been passed.

Suppose now that we observe an actual population in which
r = 0.03 and m = 0.02, and the part of the population which is
urban is 0.2 (i.e., s = 0.25). Then, if this population is
submitted to the constant regime of natural increase and migra-
tion defined by r and m respectively, it will reach the cross-

over point at which natural increase and migration contribute
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equally to urban growth

v 1 1.66 _ R
T! = 03 In 1.5 = 14.4 years later

Case of a Rate of Natural Increase Varying Exponentially

Let us suppose that

r(t) = r, + (rO - r1)eBt , (25)

in which r, and r, are both positive but such that, if r, is

larger (smaller) than Ty, B is negative (positive).

The ensuing model can again be considered as evolving from

an initial state in which the population is entirely rural. It
is simple to establish that the total population is given by:
r. - r
e A CLASE R
PT(t) = P(0)e ' (26)
and the rural population by
r. - r
(r.l -mt + —g—g——l (eBt -1
Pr(t) = P(0)e . (27)
It follows that the urban population is:
r, - r
re+ S - “mt
(1 - e ), (28)

Pu(t) = P(0)e

so that the ratio of urban to rural population is again given

by:
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s(t) = ™t -1 . (29)*

As expected, since the rate of natural increase is the same
in both regions, a change in r has no impact on the distribution

of population, which depends solely on m.

Substituting (25) and (29) in (21) yields:

R(t) = L . (30)
(ry + (r0 - r,])eBt)(ernt - 1)

Since m(t) is here a constant, (11) reduces to:

drR(t) _ _ dr(t) _ ds(t) (31)
R(t) r(t) S(t) :
dr(t)

Clearly, if 8 > 0, AN is positive and thus dR(t) is negative.

By contrast, if B < 0, the sign of dR(t) cannot be derived with-
out expliciting (30). In such circumstances dR(t) has the same

sign as the following expression:

BE™ - 1) |, (32a)

1

E = - memt[r + (r0

- r1)eBt] - B(r0 - r1)e

in which r0 - r1 > 0.

Two subcases must be considered. Let us first suppose that
B8 +m > 0 and let us rearrange E as

(B+m) t _ Bt . (32b)

- r,l)e (--B)(r0 - r1)e

*The urban population always becomes infinitely positive. The
rural population tends toward + = (if B > 0 or if B < 0 and
ry > m), and toward zero (if B < 0 and ry < m) .
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Then, it follows that E is negative since all the terms of (32b)

which are positive have a negative sign.

Now, if we suppose B + m < O, we may rearrange E as

E = - mr, e - (—8)(rO - r1)(eBt - e(B+m)t)
- m(r r )e(B+m)t (32c)
0 1
Since m and B are such that B < B + m < 0, we clearly have
eBt > e(8+m)t. Consequently, all the terms of (32c) which are

positive have a negative sign and thus E is negative.

Consequently, whatever r(t) increases or decreases exponen-
tially, R(t) monotonically decreases from + « (for t = 0) to zero
(as t » + »): again, the importance of migration in accounting
for urban growth monotonically decreases to vanish in the long
run. As in the case of a constant natural increase rate, there
exists a cross-over point T characterized by equal natural in-

lahal=tcEel
— L e

(6]

and migration in the urban region, i.e., such that

s(t) = N0 , (33)

which, after substituting (25) and (29), defines T implicitly

-1 = il . (34) *
r, + (r -r )eBT
1 0 1

The above problem is visualized in Figure 1, whose schema (ii)

shows the variations of E%%T (for B < 09) and S(t).

*Tt is readily established that, if B is negative (positive),
this T-value is higher (smaller) than the T-value that would be
obtained if r(t) would keep the constant value ry-
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In Table 2, we display the results of a scenario correspond-
ing to the case of a country which has an m = 0.02 rural-urban
net migration rate and exhibits an exponential decrease of r(t)

with parameters Iy = 0.045, r, = 0.01, and B = -0.05.

Table 2. Urbanization of an initially rural population of 1

million with m = 0.02 and r(t) = 0.01 + 0.035 e-O'OSt.
Year Total Rural Urban percentage n r(t) R(t)
Urban S(t)

0 1 1 0 0 + ® 0.045 + ©
1 1.05 1.02 0.02 0.020 0.990 0.043 22.90

2 1.09 1.05 0.04 0.039 0.490 0.042 11.78

3 1.14 1.07 0.07 0.058 0.323 0.040 8.07

4 1.18 1.09 0.09 0.077 0.240 0.039 6.22

5 1.23 1.11 0.12 0.095 0.190 0.037 5.11
10 1.45 1.19 0.26 0.181 0.090 0.031 2.90
15 l.68 1.24 0.40 0.259 0.057 0.027 2.16
20 1.90 1.27 0.63 0.330 0.041 0.023 1.72
25 2.11 1.28 0.83 0.394 0.031 0.020 1.54
30 2.32 1.27 1.05 0.451 0.024 0.018 1.37
35 2.53 1.26 1.27 0.503 0.020 0.016 1.23
40 2.73 1.23 1.50 0.551 0.016 0.015 1.11
45 2.93 1.19 1.74 0.593 0.014 0.014 1.00
50 3.13 1.15 1.98 0.632 0.012 0.013 0.89
75 4.19 0.93 3.25 0.777 0.006 0.011 0.53
100 5.44 0.74 4.71 0.865 0.003 0.010 0.31

Note that, in contrast to the scenario of Table 1, the
rural population reaches a maximum at about the 25th year and

then tends to vanish (since m > r1).

Now, returning to our actual population system (r = 0.03,
m = 0.02, s = 0.25), we would like to know when it reached or

will reach the cross-over point if, around the observation
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period, the natural increase rate follows the pattern embodied

in (25) with r, = 0.01 and B = -0.05.

Indeed, the answer to this problem requires the knowledge
of the value of rj which permits one to build the hypothetical
population submitted to the natural increase pattern just de-
scribed and which, at some point in time, is characterized by a
natural increase equal to r and a regional distribution corre-
sponding to s. The time t, at which the hypothetical population
presents characteristics identical to those of the actual popu-

lation is again given by t_ = 1 1n(1 + s). Since r(t.) = r,
Bt D m D
+ (r0 - r1)e D= r, we have that
— _ - m
ry=rq+ (r r1)(1 + s) (35)

It follows that ry = 0.045, which is precisely the value
we chose when generating the scenario corresponding to Table 2.
Again, the hypothetical population presents the same character-
istics as the observed population for ty = 5%5? lIn 1.25 = 11.2
years. It appears that the cross-over is reached for T approx-
imately equal to 45.1 years. Then the time span necessary to
reach the cross-over is T' = 33.9 years from the observed peri-
od (against T' = 14.4 years in the case of r(t) remaining equal
to r). Thus, the exponential decrease of r(t) delays the cross-
over point by 19.5 years. Indeed, the delay in the occurrence
of the cross-over point causes natural increase to take over in
a more urbanized country. At the cross-over, the ratio S(t) of
urban to rural population is equal to 1.46 (versus 0.66 in the
case of a constant rate of natural increase): this corresponds
to an increase in the part of the population which is urban

from 40 percent to over 59 percent.

Case of a Rural-Urban Migration Rate Increasing Exponentially

We again assume r(t) to be constant but suppose that m(t)

increases exponentially:
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-at

m(t) = m0(1 - e ) , (36)

in which m0 and o are positive.¥*

The ensuing model can again be considered as evolving from

an initial state in which the population is entirely rural.

The total population is again given by (17), whereas the

rural population is obtained by integrating

dp_(t)
r - _ _ —ot
p(gy 0 F T M -e ) (37)
which leads to:
m
(r - myt + 7?—(1 - e70%
Pr(t) = P(0)e (38)
It follows that the urban population is given by
m -
. —mt+39(1-e°‘t)]
p_(£) = pP(g)et |1 - e O , (39)

and the ratio S(t) of urban to rural population is

*Two remarks are in order here: first of all, the case of a
migration rate decreasing exponentially could be treated in a
similar way using

ot

m{t) = m0(1 +e 7y,

in which m, and a are again positive.

Secondly, note that, unlike the varying migration rate consid-
ered by Rogers (1978) which becomes infinitely positive as t
increases, the present rate tends toward a limit mgy-
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S(t) = e O -1 . (40)

Thus S(t) monotonically increases from zero (for t = 0) to +

(as t » + «) . %

Substituting (36) and (40) in (25) yields

1 - e

(
= m -
mt - —2 (1 - e—at)
rl\e © @ -1

What are then the variations displayed by R(t)? As t is close

(41)

to zero, the numerator and denominator of R{t) are equivalent to
moat and rm%;tz respectively. Consequently, R(t) is infinitely
positive.

On the other hand, as t increases infinitely, the denomina-
tor of (41) also increases infinitely and R(t) tends toward

Zero.

Are the variations of R(t) monotonic between the above ex-
treme values? Differentiating m(t) with respect to time, we

obtain

ac = myae ’ (42)
whose first derivative 1is

2
2_
Q_E%;L = - mya e ot . (43)

dt

*Pu(t) monotonically increases toward + @ while P_(t) can

either become infinitely positive if r > my Or vanish if

r < m,.
0
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The migration function m(t) is then such that (16) holds. It
immediately follows from one of the properties established when
dealing with the generalities of the model, that R(t) monotoni-

cally decreases from + = (for t = 0) to zero (as t + + =),

As in the preceding cases, there exists a cross-over point
T characterized by equal natural increase and migration in the

urban region, i.e., such that

s(r) =B ()

which, after substituting (36) and (40), defines T implicitly:

3
3
|
sﬂo
®
=

e 0 -1= 2 - (45)*
The occurrence of the cross-over is visualized in Figure 1, whose

schema (iii) indicates the variations of E%;l and sS(t).

In Table 3, we display the results of a scenario corre-
sponding to the case of a country in which the rate of natural
increase is r = 0.03 and the rural-urban net migration rate is

given by (36) where my = 0.12 and a = 0.0084.

Observe again that the rural population reaches a maximum
at about the 34th year before decreasing toward zero (since

m0 > r).

We now return to our actual population system (r = 0.03,
m= 0.02, s = 0.25) and ask ourselves when the cross-over point
occurred or will occur if the rural-urban migration rate follows,
around the observation period, the pattern embodied in (36) with
m = 0.12.

0

*It can easily be established that this T-value is smaller than
the T-value that would be obtained if m(t) would have the con-
stant value mO
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Table 3. Urbanization of an initially rural population of
1 million with r = 0.03 and m(t) = 0.12 (1 -
e-0.0084t).
Year Total Rural Urban Per[;:rebnatr?ge (t) S_(%)— R(t)
0 1 1 0 0 0 + o + ®
1 1.03 1.03 0.00 0.001 0.001 1.996 66.54
2 1.06 1.06 0.00 0.002 0.002 0.996 33.20
3 1.09 1.09 0.00 0.005 0.003 0.662 22.07
4 1.13 1.12 0.01 0.0U8 0.004 0.495 16.51
5 1.16 1.15 0.01 0.012 0.005 0.395 13.16
10 1.35 1.29 0.06 0.048 0.010 0.192 6.41
15 1.57 1.41 0.16 0.103 0.014 0.124 4.12
20 1.82 1.51 0.31 0.174 0.019 0.088 2.94
25 2.12 1.58 0.54 0.255 0.023 0.067 2,22
30 2.46 1.62 0.84 0.342 0.027 0.052 1.72
35 2.86 1.63 1.23 0.430 0.031 0.041 1.35
40 3.32 1.61 1.71 0.516 0.034 0.032 1.07
45 3.86 1.56 2.30 0.596 0.038 0.026 0.87
50 A.18 1.4° .52 U.o0y 0.041 0.021 0.68
75 9.49 0.93 8.56 0.902 0.056 0.006 0.20
100 20.09 0.41 19.67 0.980 0.068 0.001 0.05

To answer this question, we must know the value of o that
permits us to build the hypothetical population (a) submitted to
a constant rate r of natural increase and to the migration
scheme just described, and (b) presenting a state characterized

by a rural-urban migration rate equal to m, and a regional dis-

0
tribution corresponding to s.

The time ty at which the hypothetical population presents
characteristics identical to those of the actual population is
such that

-at
D>=mo<1—e D)=m : (46)
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and

m —atD _
m t. - ?? 1T - e -1 =35

e 0P (47)

Eliminating tD between these two equations yields:
m 1n(1 - li) + m
0 m
a = - 0. : (48)
In(1 + s)

Consequently, a = 0.0084, which is precisely the value we chose
when generating the scenario displayed in Table 3. It follows

that the hypothetical population presents the same character-

istics as the observed population for

t, = - - ln<1 --EL> = 21.7 years
e

It appears that the cross-over is reached for T approxi-

mately equal to 41.6 years. Then, the time span necessary to

reach the cross-over is T' = 19.9 years from the observed period
(against T' = 14.4 years in the case of r(t) and m(t) remaining
constant). Thus, as expected, the exponential increase in m(t)

delays the cross-over point by 5.5 years.

Again, the delay in the ocﬁurrence<xfthe Cross-over causes
natural increase to take over migration in a mbre urbanized
country. At the cross-over, the ratio S(t) of urban to rural
population is equal to 1.18 (versus 0.66 in the case of constant
rates): this corresponds to an increase in the part of the
whole population which is urban from 40 percent to roughly 54

percent.

Case of varying Natural Increase and Migration Rates

We may now combine the assumptions of the two preceding

cases so as to have an exponentially decreasing rate of natural
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increase (given by (25)) and an exponentially increasing rate of

rural-urban migration (given by (36)).

Again, starting from an entirely rural population, the to-
tal population at time t is given by (26). The rural population
is now cbtained by integrating

dPr(t)

—P—(W = r.l + (r - r1)e8t - m0(1 - e_at) r (49)
r

0

in which mo >0, 0 < r, < rO, a > 0 and B < 0, which leads to:

r - r m
(ry - mt + 0 1 Bt - 1) + 0 (1 - &7BY
P (t) = P(o)e &
(50)
The urban population is now obtained from
r - r m
rot ¥ —0—8——1 (eBt - 1) -m,t + 0 (1 - 7ot
P (t) = P(0)e 1 - e @

(51)

Consequently, as expected, since r(t) does not affect it, the

ratio S(t) of urban to rural population is again given by (40).*

Thus, the ratio R(t) of urban migration to natural increase

can be expressed as

-ot)
m0(1 - e

mO -at
t - — (1 - e )
[r1 + (rO - r1)e8t:| l:emo @ - 1} . (52)

*¥p (t) monotonically increases toward + « while Pr(t) can either
[V}

R(t) =

become infinitely positive if r, > my or vanish if r,< mgy.

Biit, S{t) monotonically increases from zero (for £t = 0) to + «
(for t =+ + o),
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What are then the variations of R(t)? Since t is close to
zero, the numerator and denominator of R(t) are equivalent to
2
moat and romoat respectively: R(Q) is then infinitely positive.
2
By contrast, as t increases infinitely, the denominator of (52)
also increases infinitely and R(t) tends toward zero. Does then

R(t) decrease monotonically from + «» to zero as t » + «?

Unfortunately, the complexity of (52) does not permit us to

establish such a property. Nevertheless, we can establish the

variations of %%%% and S(t) which are pictured on schema (iv) of
Figure 1: both functions monotonically increase since their

first derivatives are positive. As we have shown, S(t) has a

negative first derivative and its curvature is directed upward.
The curvature of %%%%-, however, depends on the parameter val-
ues. Let us assume that a + B < 0. Then we can show in Appen-

. . o . . m(t)
dix 1 that if r, > r0(1 + 7§), the second derivative of T(E)
is always negative and therefore its curvature is directed down-

ward. In the alternative case, r, < r0(1 + %%0, the curvature
m(t)
of

r(t)

In any case, if o + B < 0, as suggested by schema (iv) of
Figure 1, the curve ELEL lies above S(t) for small values of t

r(t)
(since R(t) = m—(El-/s(t) is infinite for t = 0) and therefore,

rt)
whatever the parameter values, the two curves %%%% and S(t) can

1
is first directed upward and then downward.

and do intersect only once.

The resulting cross-over point T is defined by

Mo
7l mT - — (1 - e
%ﬁ + (ro - r1)eBT e 0 o - 1] = m0(1 - e OLT) .

(53)

In Table 4, we display the figures of a scenario corre-

sponding to the case of a country submitted to

r(t) = 0.01 + 0.059¢ 0-0%% (54)
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and
m(t) = 0.12(1 - e 0-0084&, (55)
Returning to our actual population system (r = 0.03,
m= 0.02, s = 0.25), we ask ourselves when the cross-over would

occur if r(t) would decrease exponentially toward r, (with B

1
0*

= =0.05), and m(t) increase exponentially toward m

Table 4. Urbanization of an initially rural population of
1 million submitted to (54) and (55).

Percentage m(t)

Year Total Rural Urban Urban m(t) S(t) r(t) R(t)
0 1 1 0 0 0 0 0.069 + ©
1 1.07 1.07 0.00 0.001 0.001 0.99%6 0.066 30.16
2 1.14 1.14 0.00 0.002 0.002 0.996 0.063 15.70
3 1.21 1.21 0.01 0.005 0.003 0.662 0.061 10.89
4 1.29 1.28 0.01 0.008 0.004 0.495 0.058 8.49
5 1.37 1.35 0.02 0.012 0.005 0.395 0.056 7.05
10 1.76 1.67 0.08 0.04¢2 0.C1¢ C.1%2 C.046 4.20
15 2,17 1.94 0.22 0.103 0.014 0.124 0.038 3.26
20 2.58 2.13 0.45 0.174 0.019 0.088 0.032 2.78
25 2.98 2.22 0.76 0.255 0.023 0.067 0.027 2.47
30 3.38 2.22 1.16 0.342 0.027 0.052 0.023 2.26
35 3.77 2.15 1.62 0.430 0.031 0.041 0.020 2.00
40 4.14 2.01 2.14 0.516 0.034 0.032 0.018 1.79
45 4.51 1.83 2.69 0.600 0.038 0.026 0.01le 1.58
50 4.88 1.62 3.26 0.668 0.041 0.021 0.015 1.38
60 5.60 1.19 3.83 0.787 0.048 0.020 0.013 0.99
65 5.96 0.99 4.97 0.834 0.051 0.010 0.012 0.82
70 6,33 0.81 5.52 0.872 0.053 0.008 0.012 0.67
75 6.71 0.65 6.05 0.902 0.056 0.006 0.011 0.53
100 8.79 0.18 8.61 0.980 0.068 0.001 0.010 0.14
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One can establish that the parameter a of m(t) should be
identical to that of the preceding case and that r, should be

taken as
B
o\
rp = ry *+ (r - r1)<1 - ﬁ;) . (56)
Consequently, ry = 0.069, which is precisely the value we chose

when generating the scenario displayed in Table 4.

Again, the hypothetical population presents the same char-
acteristics as the observed population for ty = 21.7 years. It
appears that the cross-over is reached for T approximately equal
to 59.8 years. Then, the time span necessary to reach the cross-
over is T' = 38.1 years from the observed period (against T' =
14.4 years in the case of r(t) and m(t) remaining constant). In

other words, the exponential decrease of the rate of natural in-

Crease and the exponential increase of the rural-urban migration

rate delay the cross-over point by as many as 23.7 years. In-

deed, this delay causes natural increase to take over migration

in a more urbanized country: S(t) = 3.66 versus 0.66, which
corresponds to an increase of the part of the population which E

is urban from 40 percent to roughly 78 percent.

Exploration of the Todaro Hypothesis

The migration function (36) has been put down above without
any justification. However, can it be given any economic inter-

pretation?

For example, let us consider that the rural per capita in-
come increases exponentially:

w_(t) = wr(O)eO‘t : (57)

If, in addition, we assume that the urban per capita in-

come increases faster than the rural per capita income but in
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such a way that the ratio of the urban to rural growth rates in
per capita income decreases to tend ultimately toward one, we

have

W (t) = wu(o)(e"‘t -1 . (58)

Assume further that the rural-urban migration rate varies in
direct proportion to the ratio of the per capita incomes in the

two regions. Then we have:

w (t) w_(0) Bt
-1
mit) =y e = Y e & , (59)
w_(t) w, (0) Bt
YW, (0)
or, by substituting m, for (0’
u

m(t) = my (1 - e Bt

which is precisely the migration function (36).

Following Todaro (1969), Rogers (1978) argues that the
notion of rural-urban migration incorporated in (59) is insuffi-
cient and should include the probability of getting a job at the
region of destination. Then, we could substitute for (59) the

following

m(t) = mop(t) ’ (60)

in which the probability p(t) that a rural-urban migrant will

find a job in an urban center is defined (Todaro 1976) by

1 - u(t)

p(t) = g(t) -, (61)
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where g(t) is the net rate of growth of modern sector employment
opportunities in the urban region and u(t) is the rate of un-
employment that prevails in this region. Here we assume g(t) to

be constant, i.e.,

g(t) =g . (62)
Further, we assume that there is a bias in the growth of popula-
tion, Pu(t), and employment opportunities, Eu(t) in the urban

region, i.e.,

E (8) .8t
P_(D)
u

(63) *
-1 + yeCSt
Then, if the labor force participation is constant, the unemploy-

ment rate

] Eu(t)
u = - = . (64)
pP ()
can be expressed as
St
u(e) = ey - xle - ] (65)
plye” ™ - 1)
Differentiating (65) with respect to time, we obtain:
du(t) _ 1 [ys(1 - &%) +x61e% (66
u(t) P St 2 )
(yem =" - 1)

*The ratio of employment opportunities to population is thus

hypothesized to decrease monotonically from 1X (y > 1)

Try
(for t = 0), to % .
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Thus, u(t) monotonically increases from

Yo T - ;y(l T 2 (67a)
to:
u, = EYD—;_’E X (67b)

Substituting (62) and (65) into (61) leads to:

xeat
St st
-1
plt) = g —LL¥e 5t : = 27 5t . (68)
(py = x)e’~ - 1 (py - x)e° "~ = 1
p(yeSt - 1)
Using (67b), this can be rewritten as
gpy (1 - u1)edt
pl(t) = 5T . (69)
u,pye -1
To eliminate the unknown p, we further assume that p(0) = 1.

We obtain

g(1 - upe’®
p(t) = 5T ¢ (70)
(1 - u.l)('l + g) -1+ ue

and we thus have, after substituting (70) into (60)

—at) e‘St

m(t) =m. (1 - u,)(1 - e .
0 ‘ (1 -up(+9 -1+

(71)
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What are the variations of this migration function over time?

Differentiating m(t) with respect to time, we obtain

_ st
dm(t) _ _ae™" uqde
t —_
m{t) 4 _ oot (1 -up(+g) -1 +ue’t
(72)
This expression has the sign of
2(t) = auy + (o - 8)Ae °F + sae®™O)E (73)

in which A = (1 - u1)(1 + g) - 1 is negative.

Differentiating z(t) with respect to time, we have that

dzd(t) = 6(a - 6)ne Ot (Ot 1) . (74)
t
It follows that diﬂ}) has the sign (§ - a). Two subcases must

then be examined:

(a) & > ¢

df;f) is positive and thus z monotonically increases from

a(u1 + A) = oag(1 - u1), a positive value. Consequently,
z(t) is always positive and m(t) monotonically increases
1 -u

1

0 u1 :

from zero (for t = 0) tom

(b) & <

a
dz (t) . . :
3t 1is negative and thus z monotonically decreases from

ag (1l - u1), which is positive, B - «. In other words,
there exists a value ty of t such that z(t) 1is positive
for t < t; and negative for t > t;. Consequently, m(t)

increases for t varying from t =0 to t = ty and de-

1 - u,
0 u1

creases thereafter to reach the limit m
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The variations of the migration function in both these

cases are visualized in Figure 2.

(a) g > a. (b) g - a.

Figure 2. Exploration of the Todaro hypothesis: the variations
of m(t).

Now, let us consider a population system, initially
entirely rural, in which both regions are submitted to the same
rate of natural increase r. In addition, the economic conditions
are supposed to induce a rural-urban net migration rate m(t)

given by (71).

Then, the natural population at time t is given by (17).
Similar expressions relating to the rural and urban populations
cannot be obtained here due to the difficulty of integrating

equation (2).

In any case, we know from (8) that S(t) monotonically in-

creases from zero (for t = 0); moreover, since m(t) tends toward
1 - u
a limit m, __G__l , S(t) becomes infinitely positive as t + + «.
1
Then, what about the variations of the ratio R(t) of migration

to natural increase in the urban region?

Let us recall that the ratio R(t) of urban migration to

nt) +o s(t). Again,

natural increase is equal to the ratio of —
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it is simple to show that this ratio is initially infinite and
tends toward zero as t - «, so that there exists at least one
point at which R(t) = 1, i.e., natural increase is equal to in-
migration in the urban region (see in Figure 1, schemata (v) and

(vi), corresponding to the two subcases distinguished earlier).

In contrast to the previous cases of varying natural in-
crease and migration rates, the present evolution of m(t) does

not lend itself to an easy derivation of the sign of its second
derivative and therefore does not allow one to conclude whether

R(t) monotonically decreases or not. It is expected that, in
reality, R(t) follows such a pattern and thus that there exists
a unique cross-over point after which the growth of the urban re-

gion is more and more the fact of natural increase.

Because the analytical integration of m(t) is not so
straightforward, we cannot generate here a simple illustration
of the model as in the previous cases. Fortunately, we can re-
sort to using the discrete equivalent of the above model which,
in fact, leads to very similar results. (Compare the results of
Table 3 (stemming from the continuous formulation) with those of
the table in Appendix 2 (relating to the discrete formulation)
in the case of a constant rate of natural increase (r = 0.03)

and a migration rate increasing exponentially).

Indeed the inclusion of the Todaro hypothesis leads to a
reduction in the rural-urban net migration rate whose effect,
for a given rate of natural increase, is to hasten the occurrence

of the cross-over point.

However, the reduction in the pace of the migration rate
increase does not seem to affect so much the trajectory of R(t)
in the useful period of the model (see Appendix 2), even in
case the parameters of the model lead to a turning point in the
variations of m(t) (i.e., when § < a). Therefore, the occurrence

of the cross-over is only slightly hastened.
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It follows that the introduction of the Todaro hypothesis
does not radically modify the results of the case in which the
rural-urban migration rate is a simple function of the wage

differentials between the two regions.

II. ANALYSIS BASED ON THE ROGERS TWO-REGION MODEL

As an alternative to the model examined above, we can use
a continuous two-region version of the interregional components-
of-change model developed by Rogers (1968). In this model, a
more symmetric treatment of the migration flows between the rural
and urban regions is posited: gross migration flows out of the

two regions rather than the consolidated net flow are considered.

Again let r(t) denote the positive rate of natural increase
common to the two regions and let ou(t) and or(t) denote the

migration rates out of the urban and rural regions respectively.

Egquation (1) remains valid so that the total population is

still given by

[t r(uau
P, (t) = P(0)ef . (4)

However, the equation describing the growth of the rural popula-

tion becomes

dP_(t) = [r(t) - o (£)1P_(t) + o (£)P_(t) , (75)
and, after substituting (3),

dPr(t) = ou(t)PT(t) + [r(t) - or(t) - ou(t)]Pr(t) . (76)

Letting

t
g [r(u) - Or(u) - ou(u)]du
Pr(t) = P(0)e y (t) , (77)
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(76) becomes

[ r( - o (uw) - o (u)ldu /¢ r(uau
e? dy(t) = o (t)el ;o (78)
or

ft [o_(u) + o (u)ldu
dy (t) = ou(t)eo . (79)

Integrating (79) leads to

N [V To (w) + o (u)ldu
y (t) =J o, (v)é dv + K,  (80)

©

in which, if the initial population is entirely rural, K = 1.

Therefore, the rural population at time t is given by

gt [r(w) - o_(w) - o (u)]du . [V lo (@) + o (u)]au
Pr(t) = P(0)e 1+ J ou(v)e0 avl.
0
(81)
It thus follows from (3) that
ftrhndu
P (t) = p(0)e°
-ft [o_(u) + o (u)]du jv [o_(u) + o_(u)]ldu
0 r u t r u v
l-e 1+ J ouhdeo dv ’
0

(82)
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so that the ratio of urban to rural population is

ft [o, (u) + o, (u)ldu

0
s(t) = < - - -1 ,(83)
£ g [or(u) + ou(u)]du
1 + J ou(v)e av
0
or
¢ fv [or(u) + ou(u)]du
I or(v)eO dv
s(t) = —2 . . (814)
c g [or(u) + o (u)ldu
1 + J ou(v)e dv
0

Note that the first derivative of S(t) has the sign of

r t gv[or(u)-+0u(u)]du c gv[or(u)—kou(u)]du
F=o0o_+]o J o (vie dv - o o (v)e dv
r r u u Y

0 0

(85)

Unlike the model of the preceding section, the present mod-
el is not necessarily characterized by a monotonic increase of
S(t). Moreover, since the ratio R(t) of urban net migration to

natural increase 1is

0, (£)S, (£) = o (E)P () o () o (t)

j— r -— -
R(t) = o (£)P (%) T r(x)s(t) r(t)

(86)



-35-

there is, in general, no possibility of studying the sources of

urban growth in an analytical way: recourse to a simulation

analysis is then necessary.

A Tractable Case: The Case of Proportional Gross Migration
Rates

However, if the ratio of or(t) to ou(t) remains constant,

i.e.,

o.(t)
m = k ’ for all t ’ (87)
u

(this assumption is assumed to hold in the rest of this paper),

the analysis is still tractable analytically.

When substituting (87) into (81), the guantity between

brackets becomes

t
. [ @+ xo_ (wau [5 @+ x)o_(w)au

r
1+ | ou(v)eo a&v , d.e., 1+ ,
0

1 +k

so then the rural population at time t is

t .
[Frwau -[® (1 + K)o (u)du
P.(t) = P(0) & 1 + ke 1 .

T + k

(88)

Subtracting (88) from (4) yields

P (t) = p(0)e

[t r(udu ( N k)ou(u)du) . (89)
k
u 1T+ k 1 -e
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Then, the ratio S(t) of urban to rural population is

g —gt (1 + k)ou(u)du)
s(t) = K\l - e (90)

-[% (1 + Ko (uwadu
1 + ke 0

Since substituting (87) in (85) yields F = O+ it is clear that
the variations of S(t) are monotonic: it increases from zero
(for £t = g) to k (for t = «),

The ratio R(t) of migration to natural increase in the ur-

ban region is obtained by substituting (90) in (86). We have

(1 + k)o, (t)
R(t) = (91)

(1 +x [* o (wau )
r(t)le 0 -1

It is clear that the function R(t) is similar to the one obtained

earlier when using the Keyfitz model: o (t) + o () = (1 + k)
ou(t) is substituted for m(t). Therefore, if r(t) monotonically
increases, andbr ou(t) (and therefore or(t)) is such that its

first derivative is positive and its second derivative negative,
R(t) monotonically decreases, which again indicates the greater
importance of natural increase vis-a-vis migration as the urban

region grows.

Case of Constant Rates

We begin with the assumption that r(t), or(t) and ou(t) re-
main constant, equal to r, o, and o, respectively: this is the
hypothesis made by Ledent (1978a), with the further assumption
that the urban rate of natural increase is identical to that of

the rural region.
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Under these conditions, the total population at time t is
Py(t) = P(0)e™™ (17)

and the rural population is obtained as

rt -(o_ + o)t
p_(t) = 20l [o +oe u } : (92)
r u 4
Then, the urban population is
t -{o_ + o)t
_ P(0)e" [ _ r * %y ]
Pu(t) = W Or 1 e ’ (93)

so that the ratio S(t) of urban to rural population is

-(o_ + 0o )t
or(1 - e r u)
S(t) = . (94)

-(o_ + ou)t

r
ou + Ore
ds(t) ’ .
It can be seen that, as expected, ~dt > 0 and thus S(t) in-
o
creases monotonically: from zero (for t = 0) to 5£ (for - + «) .*
u
d°s (t)

Moreover, one can demonstrate that < 0 so that the direc-

a2

tion of the curvature of S(t) is in opposition to the direction

it had in the Keyfitz model with constant rates.

Substituting (94) into (91), we have that

*Note that both the urban and rural populations become infinitely
positive as t > + o,
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R(t) = . (95)

dR(t)
dt
i.e., R(t) monotonically decreases: from + «» (for t =) to

Differentiating (95) leads to the result that is negative,
zero (for t - + =), Again, the role of migration, initially pre-
ponderant in accounting for the growth of the urban region,

diminishes as time passes by so that natural increase is eventu-

ally the unique source of urban growth.

Consequently, there exists a cross-over point T at which
natural increase equals migration in the urban region. Note
that in contrast to the general case, for which rural and urban
rates of natural increase are different (Ledent 1978b), this
cross-over point always exists. At that point, we have, by

substituting (22) into (86)
S(T) = ——— . (96)

An expression of T is then obtained by substituting (94) in
(96)

1 Or + Ou
T = ——— 1In|1 + ——— , (97)

from which we draw conclusions similar to those drawn by Keyfitz
from (24). The higher the common rate of natural increase, the
sooner the cross-over; and the larger the values of both o, and

0 1 the sooner comes the day when natural increase exceeds migra-

tion.

In Table 5 we present a scenario involving the trajectory
of a country that starts with an entirely rural population of
1 million. Its population is submitted to a rate of natural in-

crease r = 0.03 and the gross outmigration rates are respectively
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Or==0.025 and o, = 0.02. In this scenario, the role of natural
increase in accounting for urban growth increases rapidly and

exceeds that of migration after

T = 0,03 In 2 = 20.4 years .

At this point, the ratio of urban to rural population is S(T) =
0.5 so that the part of the population which is urban is equal

to one-third.

Table 5. Urbanization of an initially rural population of 1
million, with r = 0.03, o, = 0.025 and o, = 0.02.

Year Total Rural Urban Pex;}cre;atnage (t) ﬁ)— - “u R(t)
0 1 1 0 0 0.025 + + o
1 1.03 1.01 0.03 0.02 0.025 0.988 32.59
2 1.06 1.01 0.05 0.05 0.024 0.478 15.93
3 1.09 1.02 0.08 - 0.07 0.024 0.311 10.38
4 1.13 1.02 0.10 0.09 0.023 0.278 7.61
5 1.16 1.03 0.13 0.11 0.023 0.178 5.94
10 1.35 1.08 0.37 0.20 0.020 0.079 2.64
15 1.57 1.14 0.43 0.27 0.018 0.047 1.56
20 1.82 1.22 0.60 0.33 0.015 0.031 1.03
25 2.12 1.32 0.79 0.38 0.013 0.022 0.72
30 2.46 1.45 l1.01 0.41 0.011 0.016 0.52
35 2.86 1.60 1.26 0.44 0.009 0.012 0.39
40 3.32 1.78 1.54 0.46 0.008 0.009 0.30
45 3.86 2.00 1.86 0.48 0.006 0.007 0.23
50 4,48 2.25 2.23 0.50 0.005 0.005 0.18
75 9.49% 4.40 5.09 0.54 0.002 0.002 0.05
100 20.09 9.05 11.03 0.55 0.001 0.001 0.02




-40-

Now suppose that the actual population system, considered
in the first section, exhibits a gross migration pattern such
that or = 0.025 and oy = 0.02. When will this system reach the
point at which the urban region grows equally from natural in-
crease and migration, if the parameters of the system remain

constant?

Let us recall that Ledent (1978a) shows that any population
system whose urban (rural) regions exhibit natural increase
and outmigration rates equal u and o, (r and or) respectively,
is identical to the subsequent state of a hypothetical popula-
tion, initially entirely rural and characterized by the same pa-
rameters only if the observed ratioc s urban to rural population is

such that

( 2
u-o_ - (r -o + - - + + 4
T < u ( r) (u °u r Or) °r°y
20 !
u

(98a)

i.e., if u = r, as in the present case,

OIO
at

. (98b) *

o

Substituting the parameters of our population system indicates
that (98b) holds.

The time t at which this correspondence occurs, is simply

D’
obtained as the root of S(t) = s, which is unique since S(t)

monotonically increases. It is easy to establish that

o (1 + 8)
t = in % ) (99)

*Note that the evolution is hardly surprising since the highest

O
value of S(t) is S(w) = 6£ ]
u
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Consequently, if around the observation period the actual
population exhibits the constant regimes of natural increase
and migration defined by r, °4 and OL» the time span necessary
to reach the point at which natural increase and migration are

equal is

(100)

This relationship shows that the sign of T' depends on the rel-

o}
OI' r

+ r + o
r Oul u

urban population growth is primarily due to natural increase

ative position of and 5. In particular, if s >

’

since the cross-over point appears to have been passed.

Substituting the parameter values of our actual population
system into (100) indicates that the cross-over at which natural
increase and migration contribute equally to urban growth will be

reached in
T' = 10.4 years .

Case of a Rate of Natural Increase Varying Exponentially

Let us suppose now that

Bt

r{t) =r, + (r. - r1)e , (25)

1 0

in which r, and r, are both positive but such that, if I, is
larger (smaller) that Ly 8 is negative (positive); and let the

gross migration rates remain constant.

Substituting (25) into (4), we obtain the total population
at time t:
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r, r
r,t+ 0 5 L (eBt 1)
PT(t) = P(@0)e . (26)
The rural population is given by
r r
0 1 Bt
r.t + ——— -
P(o)e i K mlop t o)t
Pr(t) = = o_+ o Oy * o° !
r u
(101)
and the urban population by
r r
0 1 , 8t _
Tt B (e h ~(o_ + 0t
P (t) P(O)e : o 1 - e u ,
u o. o, r

(102)

so that the ratio S(t) of the urban to rural population is as

-(o_ + 0t ’
or(1 - e * 4 )
S(t) = (94)

— r
o +oe(or+ou)t
u r

above

which was expected, since natural increase has no impact on pop-
ulation distribution. The variations of this function have been

described above. *

Substituting (25) and (94) in (86), we have that

*Again, note that both Pr(t) and Pu(t) become infinitely positive
as t » + =,
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—(or + ou)t

+ e
(or ou)

-(o_ + o)t !
[r1 + (r0 - r1)e+Bt][}— e r u ]

R(t) (103)

or

O + O
r u

(o + o)t
[r1 + (rO - r1)e8€][e r u - 1]

Note that (104) is identical to (30) in which (or + ou) is sub-

R(t)

(104)

stituted for m. Then, without further calculations, we can state
that R(t) decreases monotonically from + « (for t = 0) to vanish
in the long-run. There exists a cross-over point T characterized
by equal natural increase and migration in the urban region, at

which

O
_ r

Pursuing further the analogy of the present model with the

Keyfitz model, T is implicitly defined by an equation similar to
(34) :

(o + o )T ’ o)
e T ol [ * r s ) (106)
r1 + (rO - r1)e

+ O
u

Table 6 shows the evolution of a hypothetical country of 1
million which is characterized by the same gross migration rates
as in Table 5, and having a rate of natural increase decreasing

from ry = 0.043 to ry = 0.01 with parameter B = -0.05.
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Table 6. Urbanization of an initially rural population of
1 million with o 0.02, 0.025 and r(t) = 0.01
+ 0.033 &7 0- 03¢,

Year Total Rural Urban Pex;}c::::ge '§(—f-:)- - r(t) R(t)
0 1 1 0 0 + © 0.043 +
1 1.04 1.02 0.03 0.02 0.98 0.041 23.71
2 1.09 1.03 0.05 0.05 0.48 0.040 12.03
3 1.13 1.05 0.08 0.07 0.31 0.038 8.14
4 1.17 1.07 0.11 0.09 0.23 0.037 6.19
5 1.22 1.08 0.14 0.11 0.18 0.036 5.01
10 1.43 1.14 0.29 0.20 0.08 0.030 2.65
15 1.64 1.20 0.45 0.27 0.067 0.026 1.83
20 1.85 1.24 0.61 0.33 0.031 0.021 1.40
25 2.05 1.28 0.77 0.38 0.021 0.019 1.11
30 2.25 1.32 0.93 0.41 0.016 0.017 0.91
35 2.44 1.37 1.08 0.44 0.012 0.016 0.75
40 2.63 1.41 1.22 0.46 0.009 0.014 0.62
45 2.82 1.46 1.36 0.48 0.007 0.014 0.51
50 3.01 1.52 1.50 0.50 0.005 0.013 0.42
75 4.02 1.86 2.16 0.54 0.002 0.011 0.15
100 5.22 2.35 2.87 0.55 0.000 0.010 0.05

Note that in this scenario, the rural population keeps in-

creasing as time goes by instead of reaching a maximum and then

vanishing as in the similar scenario based on the Keyfitz model.

Indeed, the value of

has been chosen so that one state

of the system in this scenario will be identical to our actual

population system.*

natural increase, this state is reached for t

*Once B8 and r

or + o, is substituted for m.

are chosen,

D

As in the case of a constant rate of

= 9.9 years.

is obtained from (35) in which
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Moreover, the cross-over appears to be reached for T approxi-
mately equal to 27.6 years. Then, the time span necessary to
reach the cross-over is T' = 17.7 years from the observed period
(against T' = 10.4 years when r(t) remains equal to r). Thus,
the exponential decrease of r(t) delays the cross-over point by

7.3 years.*

Case of Gross Migration Rates Increasing Exponentially

Again, we assume r(t) = r (for all t), but we now allow

ou(t) and Or(t) to vary such that (87) holds. We posit:
) . (107)

The total population is again given by (17) whereas the rural

population is obtained by substituting (87) and (107) intoc (81)

_[m (‘| + k)(t + &;1)]
0 o

_ rt 1 + ke
p.(t) = P0)e T

and then integrating:

(108)

Thus,

P _(t) = pP(0)

*Tndeed, the cross-over is now reached in a more urbanized
nation: almost 40 percent of the population appears to be ur-
ban if r(t) is allowed to decrease (versus one third if r(t)
remains constant).
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and

~my (1 + k)(t + 9——-———1)]
k\1 - e ~ o

s(t) = . (110)

-at _ 1
“[my (0 + K e+ e
1+ ke - C o

tt is readily established that both P_(t) and P _(t) increase
r u

monotonically and that S(t) increases monotonically as well:
from zero (for t = 0) to k (for t = + »). 1In the long run, the
ratic of the urban to rural population thus tends to become

equal to the constant ratio of gross migration rates.

Now, what about the variations of R(t)? Substituting (107)

in {(91), we have

my (1 + k) (1 = e™F
R(t) = . (111)

m,(1 + k)(t + E:EE_:_l> ]
0 o -1

H
1]

14

Note that R(t) ie ident

221 &0 (U1) in which m  hag been renlaced

o~ (U » which m, has been
oy m0(1 + k). Thus R(t) monotonically decreases: from + » (for
t = 0) to zero (as t + + ). There exists a cross-over point T
characterized by equal natural increase and migration in the ur-

ban region, i.e., such that

—at)

r + km0(1 - e—at)

km (1 - e
S(t) = 0

(112)

Equating (112) with (110) finally defines T implicitly.

In Table 7, we disrlay the results of a scenario correspond-
1ng to the case of a country in which the rate of natural in-

crease 1s r = 0.02 and the ratio of the rural and urban migration

0.025

is equal to 02 - 1.25. 1In addition, the maximal value of the
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urban gross migration rate was taken as mO = 0.12 and we chose

the parameter o to be 0.0122.

It appears that the cross-over point takes place at time t
= 27.8 years, when the ratio S(t) of urban to rural population
appears to be ecgual to about one half (i.e., about one third of

the population is urban at the cross-over point).

Table 7. Urbanization of an initially rural population of 1
million with a constant rate of natural increase and
gross migrations increasing exponentially.

Year Total Rural Urban Pei;zii?ge E;%T - o4 R(t}
0 1 1 0 0 + © +
1 1.03 1.03 0.00 0.001 34.164 1138.82
2 1.06 1.06 0.00 0.003 8.560 285.33
3 1.09 1.09 0.01 0.007 3.807 126.92
4 1.13 1.11 0.01 0.011 2.144 71.36
5 1.16 1.14 0.02 0.018 1.368 45.59
10 1.35 1.26 0.09 0.066 0.333 11.08
15 1.57 1.36 0.21 0.136 0.139 4.64
20 1.82 1.43 0.39 0.215 0.072 2.38
25 2.12 1.50 0.62 0.293 0.041 1.34
30 2.46 1.57 0.89 0.362 0.024 0.80
35 2.86 l.66 1.20 0.420 0.013 0.43
40 3.32 1.78 1.54 0.464 0.009 0.29
45 3.86 1.94 1.92 0.497 0.005 0.18
50 4.48 2.16 2.33 0.519 0.003 0.10
75 9.49 4.24 5.25 0.554 0.000 0.00

100 20.09 8.93 11.16 0.555 0.000 0.00

The values of k and o were chosen so that one state of the

system in this scenario presents the same characteristics as our
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actual population system. Indeed, the parameter k was taken
equal to the ratio of the gross outmigration rates in the ob-
served population. Moreover, once my was chosen, o was obtained
by eliminating t between (107) and S(t) = s in the same way that

we eliminated t between (46) and (u47).

+ O
r

moln<l— =
k My
. (113)

+

nflts

1 -

|+

(0]
ol ! N

Note that the hypothetical population presents the same charac-

teristics as the observed population for

1 °r
t, = - = ln<1 - ——->= 19.1 years .
a m

P 0
Recalling that the cross-over occurs for T = 27.8 years, it
follows that the time span necessary to reach it is T' = 8.7

vears from the observed period (against 10.4 vears i» the cace
of all rates being constant). Then, rather surprisingly, a
proportional increase in the gross migration rates hastens the

cross—over point.

CONCLUSION

In this paper, we examined the relative importance of in-
migration and natural increase in the growth of urban areas
with the help of two alternative urbanization models, in which
rates of natural increase and migration were allowed to vary.
Table 8 displays a comparison of the time spans necessary to
reach the cross-over as obtained from both models under alter-
native patterns of natural increase and migration. Indeed, the
difference between the numerical values offered by both models

ig guite considerable.
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Table 8. Numerical comparison of the time spans necessary to
reach the cross-over.

THE THE TWO-REGION

KEYFITZ MODEL ROGERS MODEL

T' S (T) T! S(T)

14.4 0.66 Constant 10.4 0.50
Rates

Varying Rate

33.9 1.46 of Natural 17.7 0.65
Increase
Varying
19.9 1.18 Migration 3.7 0.50
Rates

The problem is then one of knowing which of the two models
provides better insights into the urbanization process. On the
one hand, the Rogers model appears to be more appropriate because
its symmetrical consideration of gross migration flows in both
regions prevents the rural population from vanishing in the long
run, as in some applications of the Keyfitz model. On the other
hand, in contrast to the Keyfitz model, the Rogers model does not
lend itself to an analytical use if the model parameters vary
over time. As seen in this paper, the analytical tractability
of this model requires making the additional assumption that the
urban and rural outmigration rates are in constant proportions,

which is a rather restrictive assumption.

' In conclusion, the Rogers model is in theory more desirable
than the alternative model (see Ledent 1978a, b for a longer
discussion of this statement), but its slightly more complicated
specification prevents, in the case of varying rates, the devel-
opment of an analytical study similar to the one carried out
with the Keyfitz model and shown in the first part of this
paper. Consequently, further insights into the process of urban-
ization seem to require a simulation analysis with the help of

the Rogers model.
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APPENDIX 1. The Keyfitz Model with Varying Rates of Natural
Increase and Migration: Derivation of the Sign of
the Second Derivative of %%%%

EE; is given by

=

In this case, the ratio

N

m(t) m0(1 - e-at)

r(t)

(A1)
at '/
r, + (r0 - r1)e

in which o > 0 and B < 0.

Differentiating this expression with respect to time leads

m(t)
d (r(t)>

to

- Bt
dt _ ae-at _ (ro r1)8e
m(t) - ~ _-at Bt
) (1 e ) r, + (r0 - r1)e
_ o (r0 -r,8
T ot - -Bt : (A2)
{e 1) r.e + (r0 - ;1)
Differentiating again with respect to time gives
2
2 (m(t)
< r—(ET) a (Bie)
2 I (t) 2 at ) (r, -~ r, )r Bze_Bt
dt _ dt - _ a"e _ 0 1771
m(t) m(t) - at 2 -Bt 2
Tty T (t) (e - 1) (r1e + ry - r1)
(A3)

When substituting (A2) into (A3), we have
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2 m(t)>
d (r(tl_ 2 "
dfi _ 0L2 N (r0 - r1)8[%0 - r, - r,e BJ
m(t at i -Bt
ey e -1 (r1e B + rb - r1)2

(Al4)

m(t)

Multiplyving both sides of (A4) by ey and substituting (A1)

gives

2{m(t) -(a + B)t
d (r(fT) _ Mo€ F () (25)
2 - ’
at (r1e Bt + rO - r1>3
in which
2 -Bt\2 -
-8t
- pet - 1)(ro S B )] (A6)

Differentiating (A6) yields
dr(t) = e(a - B)t[82r1(r0 ~ r1)(a - B) + Br1(rb - r1)

(82 - 20(a + ES))e_O‘t - aBZ(r

o ~ T1) e

- 7
- ZazBrie (o + B)t] ! (AT)



whose variations have the sign of

G(t) = -aBry(r - r1)(82 - 2a(a + B))e *F - aBB(rO - r1)2eBt
+ 2028 (0 + B)r%e—(a * Bt (28)

If we suppose that o + B < 0, then the three terms of G(t) in

(A8) have a positive coefficient and thus F(t) monotonically in-

creases. Its smallest value, F(0) = aro[ocr0 + ZB(rO - r1)],
can be either positive or negative. In the first case, i.e.,
ry > r0(1 + %%) , F(t) is always positive and thus the second

derivative of %%%% is negative for all t. In the second case,

i.e., r, < r0(1 + é%) , F(t) is negative for t < same value tr

and positive thereafter. It follows that the second derivative

m(t) . o .
of () 1S positive for t < tr and negative thereafter.
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An Illustration of the Todaro Hypothesis

Year Total Rural Urban S(t) m(t) Sty R(t)
0 1 0 0
1 1.03 1.03 0.00 0.001 0.001 1.039 34.32
2 1.06 1.06 0.00 0.002 0.002 0.770 25.68
3 1.09 1.09 0.01 0.005 0.003 0.569 18.97
4 1.13 1.12 0.01 0.008 0.004 0.446 14.89
5 1.6 1.15 0.01 0.012 0.005 0.366 12.20
10 1.34 1.28 0.06 0.050 0.009 0.198 6.27
15 1.56 1.40 0.16 0.115 0.014 0.123 4.09
20 i.81 1.49 0.31 0.210 0.018 0.088 2.94
21 1.86 1.51 0.35 0.233 0.0194 0.083 2.77
22 1.92 1.52 0.39 0.258 0.0203 0.078 2.62
25 2.09 1.5 053 0,342 0.023 0.067 2.22
30 2.43 1.60 0.83 0.519 0.027 0.052 1.73
35 2.81 1.60 1.21 0.755 0.031 0.041 1.36
40 3.26 1.58 1.68 1.066 0.035 0.032 1.08
45 3.78 1.53 2.25 1.477 0.038 0.026 0.86
50 4.38 1.45 2.93 2.023 0.042 0.021 0.69
75 9.18 0.88 8.30 9.428 0.068 0.006 0.20
100 19.22 0.38 18.84 49,988 0.069 0.001 0.04
25 2.09 1.56 0.53 0.341 0.022 0.065 2.18
30 2.43 l.61 0.82 0.509 0.025 0.050 1.65
35 2.81 1.63 1.18 0.721 0.028 0.039 1.29
40 3.26 1.64 1.62 0.990 0.030 0.031 1.02
45 3.78 1.63 2.15 1.325 0.032 0.025 0.82
50 4.38 1.60 2.78 1.743 0.034 0.020 0.66
75 9.18 1.30 7.88 6.071 0.041 0.007 0.23
100 19.22 0.91 18.30 20.008 0.046 0.002 0.08
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The upper part of the above table displays the evolution of
an initially rural population system submitted to a rate of nat-
ural increase r(t) = 0.02 and to a migration rate increasing ex-
ponentially as in the scenario of Table 3. The difference with
the scenario shown in Table 3 is that the calculations have been

made using the discrete equivalent of the Keyfitz model.

Note that, by about the 22nd year (as in the continuous
case), the system reaches a state whose characteristics are sim-
ilar to those of our actual population system (m = 0.02 and s =
0.25).

The implementation of the Todaro hypothesis after this 22nd
year (with s = 0.007, g = 0.05 and u = 0.12), leads to an evolu-
tion of the population system shown in the bottom part of the
above table. As expected, since the inclusion of the Todaro
hypothesis contributes to diminish m(t), the cross-over point is
reached faster than when the Todaro hypothesis is not considered:
it occurs 18.4 years after the observation period against 19.7
years in the alternative case. This difference is rather small
when one considers the more important consequences that the im-
plementation of the Todaro hypothesis has on Pr(t) and especially

on m(t).

Note that, in spite of the favorable choice of ¢, m(t) con-
tinually increases in the above table. The decline in m(t)
occurs for high values of t, long after natural increase has

taken over migration in the urban region.
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