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 3 

Size-selective fishing may induce rapid evolutionary changes in life-history traits such as size at maturation. A 4 

major concern is that these changes will reduce population biomass and detrimentally affect yield and 5 

recruitment. While marine reserves have been proposed as a tool for fisheries management, their evolutionary 6 

implications have as yet attracted little scrutiny. Here we use a simple model to investigate whether marine 7 

reserves can be expected to mitigate the evolutionary impacts of fishing on maturation size. We analyze the 8 

adaptive dynamics of size at maturation based on a stage-structured population model including size-selective 9 

fishing and marine reserves with different retention rates. As has been shown before, imposing higher fishing 10 

mortality on the largest individuals promotes an evolutionary change towards smaller maturation size. We find 11 

that, in our model, protecting part of a fish stock using a marine reserve can prevent such fisheries-induced 12 

evolution. We demonstrate that this protection critically depends on the type and extent of movement between 13 

the reserve and the fished area. Specifically, while the frequent movement of large adults increases catches of 14 

large adult fish outside a marine reserve, it also reduces the reserve’s effectiveness in preventing fisheries-15 

induced evolution. By contrast, when the exchange between protected and fished areas occurs through juvenile 16 

export alone, a marine reserve can effectively prevent evolution towards smaller maturation size, but does so at 17 

the expense of reducing the yield of large adult fish. We conclude that differences in the movement behaviour of 18 

successive life stages have to be considered for marine reserves to help making fisheries to be more 19 

evolutionarily sustainable. 20 
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1 Introduction 31 

 32 

Commercial fisheries have caused declines in fish stocks and catches around the world (e.g., Hilborn et al., 33 

2003; Pauly et al., 2005; Pauly, 2008). Besides reduction of abundances, fishing truncates the age and size 34 

structure of populations (e.g., Jackson et al., 2001; Berkeley et al., 2004b; Ottersen et al., 2006). The removal of 35 

old and large adults decreases the reproductive potential of fish stocks and thereby their ability to withstand and 36 

recover from overexploitation (Begg and Marteinsdottir, 2003; Aubone, 2004a; Law, 2007). In particular, large 37 

females contribute disproportionately to recruitment, due to their production of higher numbers of eggs that are 38 

also larger and of better quality (Marteinsdottir and Steinarsson, 1998; Vallin and Nissling, 2000; Berkeley et al., 39 

2004a; Carr and Kaufman, 2009). Juvenescence in fish stocks was found to contribute to increased variability in 40 

stock dynamics and abundance (Anderson et al., 2008). 41 

 42 

In addition to demographic effects, fishing may induce evolutionary changes in life-history traits, which may 43 

decrease a population’s reproductive potential, resilience, and sustainable yield (e.g., Law and Grey, 1989; 44 

Heino and Godø, 2002; Walsh et al., 2006). Evolution towards maturation at smaller sizes and younger ages has 45 

been inferred for wild fish stocks by estimating probabilistic maturation reaction norms (Heino et al., 2002b; 46 

Dieckmann and Heino, 2007; Heino and Dieckmann, 2008) for North Sea plaice Pleuronectes platessa (Grift et 47 

al., 2003; Grift et al., 2007), North Sea sole Solea solea (Mollet et al., 2007), Newfoundland American plaice 48 

Hippoglossoides platessoides (Barot et al., 2005), and stocks of Atlantic cod Gadus morhua (Heino et al., 2002a, 49 

c; Barot et al., 2004; Olsen et al., 2004; Olsen et al., 2005). According to life-history theory, the reproductive 50 

value of age classes decreases with survival probability so that elevated mortality favours reproduction early in 51 

life (Michod, 1979). It has also been shown experimentally that when large individuals are harvested, 52 

populations evolve towards smaller body size, whereas harvesting small fish induces evolution towards larger 53 

body size (Reznick et al., 1990; Conover and Munch, 2002; Conover et al., 2005). 54 

 55 

There are additional circumstances that may contribute to the observed changes in size at maturation in fish 56 

stocks. For example, as population density decreases in exploited stocks, more food becomes available to the 57 

remaining fish, so that their growth rate increases. This may imply that they mature earlier, as a phenotypically 58 

plastic response to the altered growth conditions (Trippel, 1995). On the other hand, life-history theory predicts 59 

that maturation should be postponed when resource levels increase, because the payoff of future reproduction 60 
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then also increases. Although conclusive genetic evidence for fisheries-induced evolutionary changes is lacking, 61 

studies support considerations of evolutionary effects (Jørgensen et al., 2007; Kuparinen and Merilä, 2007; 62 

Browman et al., 2008; Hutchings and Fraser, 2008; Jørgensen et al., 2008; Kuparinen and Merilä, 2008). 63 

Independent of other environmental factors that also influence the size at maturation in wild stocks, size-64 

selective fishing represents an evolutionary force that should be considered and managed in accordance with the 65 

precautionary principle (Lauck et al., 1998; Ashley et al., 2003). 66 

 67 

The classical tools of fisheries management include catch quotas, as well as restrictions on landing sizes, gears, 68 

and number of vessels. These measures can be inadequate to release stocks from fishing pressure under 69 

conditions of poor enforcement, discard of bycatch, misreporting, and illegal landings (Roberts, 2000). It has 70 

been pointed out that scientific advice on total allowable catches has been repeatedly ignored, causing fish stocks 71 

to remain overexploited (Cardinale and Svedäng, 2008). As fish stocks decline, more selective fishing-gear 72 

technology is often likely to be used (Madsen, 2007), which may aggravate the demographic, ecological, and 73 

evolutionary implications of fishing. 74 

 75 

Marine reserves have been suggested as an alternative management tool in support of a precautionary approach 76 

to the protection of marine diversity, aquatic habitat, and fish stocks (Roberts, 1997; Apostolaki et al., 2002; 77 

Aubone, 2004b). The prohibition of fishing in marine reserves may help to rebuild fish stocks and their age 78 

structure by allowing individuals to survive longer and grow larger (Berkeley et al., 2004b). Examples such as 79 

the Apo Island reserve in the Philippines (Russ et al., 2004; Abesamis and Russ, 2005) and the Merritt Island 80 

National Wildlife Refuge in Florida (Roberts et al., 2001) demonstrate that marine reserves can benefit both fish 81 

stocks and adjacent local fisheries. Besides positive effects of marine reserves in the tropics, benefits have also 82 

been demonstrated in temperate regions. A number of small reserves in the Mediterranean Sea had positive 83 

effects on population structure and density, with the greatest effect on large-bodied and target species (García-84 

Charton et al., 2008); these reserves also resulted in the spill-over of fish from protected to fished areas (Goñi et 85 

al., 2008; Harmelin-Vivien et al., 2008). 86 

 87 

Different processes affect the spatial connectivity of protected and fished areas, and therefore influence the 88 

effects of marine reserves. These processes include larval dispersal, juvenile and adult mobility, as well as 89 

movement of fishers (Botsford et al., 2009). In particular the dispersal abilities of fish determine whether there is 90 
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a net export of individuals from the marine reserve to the fished area (Baskett et al., 2005; Gerber et al., 2005). 91 

Home ranges of fish may vary within and among species (Kramer and Chapman, 1999; Chateau and Wantiez, 92 

2009). Le Quesne and Codling (2009) describe the differential effects of larval dispersal and adult mobility and 93 

conclude that reserves were more efficient for sedentary stocks with dispersing larvae. The effects of marine 94 

reserves have been analyzed to determine their optimal size and level of fragmentation, and to assess their 95 

impacts on abundance, catches, age structure, spatial structure and species interactions (Gerber et al., 2003; 96 

Pelletier and Mahévas, 2005; Costello and Polasky, 2008). Marine reserves were found to be especially useful 97 

for the management of late-maturing and long-lived species (Kaplan, 2009). 98 

 99 

Few studies to date have taken into account the evolutionary implications of marine reserves for changes in life-100 

history traits. Models based on quantitative genetics theory have been used to examine the effects of marine 101 

reserves on the evolution of life-history traits and to explore how marine reserves may benefit fisheries yields 102 

and protect stocks against evolution towards early maturation (Trexler and Travis, 2000; Ratner and Lande, 103 

2001; Baskett et al., 2005; Dunlop et al., 2009a). In the individual-based models by Baskett et al. (2005) and 104 

Dunlop et al. (2009a), genotype and phenotype dynamics were coupled, resulting in complex models that are 105 

analytically intractable. 106 

 107 

In this paper, we instead explore the evolutionary implications of marine reserves using relatively simple 108 

deterministic population models with a small number of parameters. We combine the simple difference-equation 109 

model studied by Gårdmark et al. (2003) of an age-structured harvested population with a metapopulation model 110 

applied by Pitchford et al. (2007). Our models describe, in a simple form, basic life-history processes of growth, 111 

maturation, reproduction, mortality, and movement with a stage-specific dimension (Metcalf and Pavard, 2007). 112 

Through a reduction of detail, we develop a comprehensible model that facilitates the analysis. On this basis, we 113 

investigate whether marine reserves can prevent the evolution of maturation size in response to size-selective 114 

fishing. In particular, we compare different stage-dependent movement scenarios, such as juvenile export and 115 

adult spill-over, to elucidate the expected efficacy of differently sized marine reserves in terms of ensuring 116 

evolutionary protection and providing yield for adjacent fisheries. 117 

 118 

2 Model description 119 

2.1 Single-population model 120 
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Gårdmark et al. (2003) analyzed an age-structured population model in discrete time, which we here transform 121 

into a stage-structured model with a size-based interpretation. The deterministic model comprises four difference 122 

equations representing the dynamics of a population with three size classes and two alternative life histories 123 

(Equations 1a to 1d; Figure 1). Time steps are interpreted as annual. We distinguish two adult classes, 2 and 4. 124 

Depending on the probability   to mature at small size, after one year juveniles of class 1 can either enter the 125 

mature class 2, with fecundity 2f , or spend a year being immature in class 3 before maturing at large size and 126 

entering class 4, with fecundity 24 ff  . Although in reality fish grow indeterminately, in our simple model fish 127 

stop growing after reaching maturity. Individuals of class 2 therefore do not grow to class 4 (for an extension see 128 

Appendix B). The survival probabilities, 1s  to 4s , describe the fractions of a class surviving to the next year. 129 

The description so far implies that juveniles remain in class 1 for a year before potentially spending several years 130 

as adults, maturing at the age of 2 or 3 years in the reproductive classes 2 or 4, respectively. Fishing mortality is 131 

size-dependent and differs between intermediate-sized fish in class 2 or 3 experiencing a harvest proportion of 132 

3,2h , and large fish in class 4 experiencing a harvest proportion of 4h . Density-dependent survival is considered 133 

at the juvenile stage in class 1 (Myers and Cadigan, 1993; Cushing and Horwood, 1994), with a parameter m  134 

determining the strength of density dependence, so that 1m  measures the density of juveniles at which the 135 

natural survival probability is halved (Gårdmark et al., 2003). Parameters, their descriptions, and their default 136 

values for the numerical illustrations are summarized in Table 1. 137 

The dynamics of the population densities 1N  to 4N  are given by 138 
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Provided  *
1N0 , which includes all biologically relevant cases, there exists a unique non-trivial 149 

equilibrium. This equilibrium is locally stable, because the dominant eigenvalue J  of the respective Jacobian 150 

matrix J  of Equations (1) has an absolute value that is smaller than 1 (Kot, 2001). This can be confirmed 151 

analytically by deriving the characteristic equation of J  evaluated at the local equilibrium and finding J  as the 152 

zero of a linear Taylor approximation around the threshold 1J  . 153 

 154 

2.2 Marine-reserve model 155 

We extend the single-population model described above to a metapopulation model by linking two identical 156 

populations. This mimics a situation in which a fished area is combined with a marine reserve (Gerber et al., 157 

2005; Pitchford et al., 2007). In the first part of our analysis below, we assume the fished area and the marine 158 

reserve to be of equal size ( 5.0r  ). We then go on to consider different fractions of area protected by a marine 159 

reserve. For this extension, the metapopulation model is modified by scaling the movement probability of 160 

individuals in each area to be proportional to the relative size of the destination area (Figure 2). The two 161 

populations are connected by individual movement, either through juvenile export with movement probability 162 

1d  or through large-adult spill-over with movement probability 4d . Below we show the results of these two 163 

movement scenarios. Movement of individuals of the intermediate size classes 2 and 3 produces intermediate 164 

results. 165 

Population 1, with densities 11N  to 14N , is exposed to the size-selective harvest proportion 4h  in size class 4, 166 
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Equations for the densities 21N  to 24N  in population 2, which is protected by the marine reserve, are analogous 171 

and are derived from the equations above by setting 0h4   and exchanging 1d  and 4d  with )d1( 1  and 172 

)d1( 4 , respectively. In both populations of the marine-reserve model, the harvest proportion 3,2h  of small 173 

individuals is set to 0 to allow focusing on the evolutionary effects of harvesting large fish. The stage-dependent 174 

fecundities and survival probabilities for each size class are equal in both areas, while the density-dependent 175 

survival of juveniles depends separately on their density in each population, and the factor 1m  in each area is 176 

scaled by the area’s relative size. 177 

 178 

2.3 Evolutionary analysis 179 

The life-history trait   evolves in our models and measures the probability that an individual starts reproduction 180 

at small size (this is analogous to the corresponding parameter for age at maturation used by Gårdmark et al., 181 

2003). Small-maturing individuals are assumed to have invested in early reproduction rather than in further 182 

growth; they gain neither the higher fecundity of large individuals, nor do they suffer from the fishing mortality 183 

4h . We use adaptive dynamics theory (Metz et al., 1992; Dieckmann and Law, 1996; Metz et al., 1996; 184 

Dieckmann, 1997; Geritz et al., 1997; Geritz et al., 1998; Meszéna et al., 2001; Diekmann, 2004) to determine 185 

the outcomes of evolution in γ , and thus in size at maturation. This approach assumes a separation of timescales 186 

for the ecological and evolutionary dynamics, with population dynamics getting sufficiently close to equilibrium 187 

during successive invasions of variant phenotypes favoured by selection. Evolutionary outcomes can thus be 188 

inferred from assessing the eventual fate of a rare variant γ  trying to invade in an environment determined by 189 

the resident population with phenotype γ . The fitness )γ,'γ(w  of the variant, and thus its potential for such 190 

invasion, is given by its geometric growth factor )γ,'γ(λ  (Metz et al., 1992). The selection pressure towards 191 

small maturation size is then calculated as 192 

.
γ'γ
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γ'γγ'γ
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
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


 
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     (4) 193 

 194 

3 Results 195 

3.1 Single-population model 196 

To establish a baseline for our evolutionary analysis of the marine-reserve model, we start by summarizing 197 

salient results for the single-population model. In this model, the geometric growth factor )γ,'γ(λ  of a rare 198 
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variant phenotype 'γ  in a resident population with phenotype γ  can be calculated analytically as the dominant 199 

eigenvalue (in terms of absolute values) of the variant’s population projection (or Leslie) matrix )γ,'γ(L , 200 
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 204 

The environment for the variant’s invasion is defined by the resident population, with the variant’s density-205 

dependent survival being a function of the equilibrium number of juveniles )γ(N*
1  of the resident population. 206 

The variant can only invade if 1)γ,'γ(λ  . Under this condition, the variant population on average grows in 207 

density and can eventually replace the previous resident population (Geritz et al., 2002). 208 

 209 

We find that the evolutionary dynamics of the single-population model exhibit frequency-independent selection 210 

and follow an optimization principle. This can be inferred from the fact that )γ(N*
1  is the only term in Equation 211 

(6) through which the resident’s phenotype γ  influences the variant’s geometric growth factor )γ,'γ(λ  (Heino et 212 

al., 1998). Moreover, following the selection pressure in Equation (4), the single population gradually evolves 213 

either to maturation at large size ( 0γ  ) or to maturation at small size ( 1γ  ). The latter happens if the 214 

following inequality is fulfilled, 215 

)h1(s1
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
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Also, when this equality is fulfilled (not fulfilled), the outcome 1γ   ( 0γ  ) is globally evolutionarily stable. 217 

 218 

We can interpret the left-hand side and the right-hand side of this inequality, respectively, as the lifetime 219 

reproductive success resulting from maturation at small size ( 1γ  ) and at large size ( 0γ  ). Since the right-220 

hand side decreases as 4h  increases, increased harvesting of large adult individuals favours maturation at small 221 

size. In contrast, the harvest proportion 3,2h  in the intermediate size range appears twice in the inequality, 222 



 9

decreasing reproductive output at large as well as at small size. Fishing intermediately sized fish alone may 223 

favour maturation at large size or small size as detailed in Appendix A. 224 

 225 

For the evolutionary analysis of the marine-reserve model, we focus on analyzing the effect of the harvest 226 

proportion 4h , because fishing of the large adult individuals induces a stronger selection pressure than fishing of 227 

intermediate-sized adult individuals, and because fisheries-induced evolution towards smaller maturation size is 228 

a widely observed empirical phenomenon (e.g., Rijnsdorp, 1993; Trippel, 1995; Olsen et al., 2004). 229 

 230 

3.2 Marine-reserve model: large-adult spill-over 231 

The effect of marine reserves on the evolution of size at maturation was analyzed with the help of the marine-232 

reserve model, consisting of eight equations with an 88  population projection matrix )γ,'γ(LMR  for the 233 

variant. The marine-reserve model shows richer evolutionary dynamics than the single-population model. In 234 

particular, the evolutionary dynamics no longer follow an optimization principle. Instead, frequency-dependent 235 

selection may lead to a stable dimorphism. We start our analysis by focusing on the effects of large-adult spill-236 

over, measured by 4d , in the absence of juvenile export, 0d1  . 237 

 238 

Without movement, 0dd 41  , the two populations in the protected and fished areas are uncoupled, and 239 

therefore evolve independently. The matrix )γ,'γ(LMR  becomes reducible, and its dominant eigenvalue 240 

describes the variant’s local geometric growth factor in only one area, with evolutionary dynamics as described 241 

by the single-population model for that area. Two resident phenotypes may then coexist, each being adapted 242 

separately to the ecological conditions in one of the two areas. 243 

 244 

With movement, 0d4  , small phenotypic steps result in gradual evolution towards one of the extreme 245 

maturation strategies. Figure 3A shows how gradual evolution towards maturation at small size switches to 246 

evolution towards maturation at large size in dependence on the movement probability 4d  of large adults and on 247 

the harvest proportion 4h  of large adults. 248 

 249 
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The grey area in Figure 3B shows, in contrast, the conditions under which non-gradual evolution through large 250 

phenotypic steps can lead to the coexistence 0γ   and 1γ  . Increasing large-adult spill-over diminishes the 251 

range of harvest proportions 4h  over which the two extreme maturation strategies can coexist. 252 

 253 

3.3 Marine-reserve model: alternative movement scenarios 254 

Figures 4A and 4B show how the selection pressure towards small maturation size depends on the harvest 255 

proportion of large adults when movement between the protected and fished areas occurs either through juvenile 256 

export (Figure 4A) or through large-adult spill-over (Figure 4B). The selection pressure is positive whenever the 257 

fitness of a variant phenotype with a higher probability to mature at small size exceeds the fitness of the resident 258 

phenotype (Equation 4). For comparison, the selection pressure that applies in the absence of a marine reserve is 259 

also shown (grey line). 260 

 261 

In our numerical example, a marine reserve with juvenile export alone altogether prevents an evolutionary 262 

switch to small maturation size, even when the harvest proportion of large adults is maximal (Figure 4A). In 263 

contrast a marine reserve with large-adult spill-over prevents such an evolutionary switch only when the harvest 264 

proportion of large adults is low or the movement probability of large adults is low (Figure 4B). Less movement 265 

of large adults leads to lower fishing mortality of large adults, which reduces the selection pressures towards 266 

small maturation size, and therefore shifts the critical harvest proportion to higher values )6.0d( 4  , or even 267 

prevents the evolutionary switch to small maturation size altogether )2.0d( 4  . 268 

 269 

We can understand these results as follows. Juvenile fish in class 1 have only one year during which they can 270 

move through juvenile export, whereas large-maturing adults can move through large-adult spill-over during 271 

several years they remain alive in class 4. Therefore, over the years large-adult spill-over causes a larger 272 

proportion of each cohort to move outside the marine reserve. This lower retention of the marine reserve results 273 

in a higher exposure of fish to size-selective fishing and thus explains why marine reserves with juvenile export 274 

are more effective in mitigating fisheries-induced maturation evolution than marine reserves with large-adult 275 

spill-over. Movement of large adults occurs later in life, after the annual harvest event on large adults of class 4, 276 

and as such should exert a smaller selection pressure than juvenile export if all individuals die after spending one 277 

year in class 4. However, survival in class 4 for more than a year increases the probability of individuals to be 278 

subject to size-selective fishing mortality, which intensifies the selection pressure. 279 
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 280 

3.4 Marine-reserve model: effects on yield 281 

To complement Figures 4A and 4B showing how marine reserves weaken the selection pressure towards 282 

maturation at small size in dependence on different movement scenarios the corresponding effects on yield are 283 

illustrated in Figures 4C and 4D. As expected, the figures show that catches of large adults collapse whenever 284 

the evolutionary switch to small maturation size is induced. Juvenile export altogether prevents this switch, so 285 

that catches of large adults are ensured at all harvest proportions (Figure 4C). When movement occurs through 286 

large-adult spill-over, yield of large adults is ensured at low movement probabilities, by preventing the 287 

evolutionary switch, while at higher movement probabilities the catch collapses (Figure 4D). With decreasing 288 

large-adult spill-over, the implementation of a marine reserve increases the harvest proportion at which yield is 289 

maximized. In comparison to a fully fished stock, marine reserves thus lead to reduced catches only at low 290 

harvest proportions. When harvest proportions are higher, the marine reserve dramatically improves catches, by 291 

preventing the collapse of catch otherwise resulting from the evolutionary switch to small maturation size. 292 

 293 

We also considered the effects of redistributed fishing effort. When a marine reserve is established, fishing may 294 

intensify in the areas that are still fished to make up for reductions in the accessible area and catches. We 295 

therefore assume that, for a reserve covering 50% of the total area, fishing effort doubles on the remaining 296 

fishing ground. Under the (typically unrealistically high) maximum large-adult movement probability 0.1d4  , 297 

evolutionary outcomes and yields are then equivalent with and without the marine reserve. However, when 298 

large-adult spill-over is smaller than this maximum (assuming realistic values), with reserve implementation the 299 

evolutionary switch occurs at higher harvest proportions. The lower large-adult spill-over then reduces yield 300 

despite the assumption of redistributed fishing effort. 301 

 302 

3.5 Marine-reserve model: reserve size 303 

In the numerical illustrations shown so far, fished and protected areas are equal. Figure 5A shows how the 304 

critical harvest proportion *
4h  of large adults at which the evolutionary switch occurs depends on reserve size r . 305 

We see that the implementation of a marine reserve ( 0r  ) shifts this evolutionary switch to higher harvest 306 

proportions. If the reserve is large enough, evolution towards small maturation size can be prevented altogether. 307 

The critical reserve size needed to prevent the evolutionary switch for any harvest proportion differs for the 308 

different movement scenarios. In general, populations with high movement probabilities require larger reserves 309 
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to achieve such protection. For all movement probabilities, a population with large-adult spill-over requires a 310 

larger reserve than a population with juvenile export. If movement occurs only through juvenile export at low 311 

probability, implementation of a small reserve (in our numerical example, requiring no more than 10% of the 312 

total area) will suffice to achieve evolutionary protection. Larger reserves will be needed to protect populations 313 

with large-adult spill-over or with more juvenile export. Such other movement scenarios necessitate 314 

intermediate-sized reserves, here at between 20% and 40% of the total area. 315 

 316 

To analyze the effect of reserve size on yields, we investigated catch per unit effort 4h/YCPUE  , defined as 317 

the ratio between yield Y  and harvest proportion 4h  (Gulland, 1969). For this, we focused on the CPUE right 318 

above the critical harvest proportion, 
4

hh
*

h

Y
limCPUE *

44 
 , with 1h*

4   when 1h4   does not induce an 319 

evolutionary switch to small maturation size. If intensive harvesting induces an evolutionary switch to small 320 

maturation size, the yield Y  of large adult fish, as well as CPUE, will be zero, implying 0CPUE*   for 1h*
4  . 321 

On the other hand, if no evolutionary switch is induced, 0CPUE*   for 1h*
4  . Since CPUE rises above 322 

*CPUE  for *
44 hh  , *CPUE  describes a worst-case scenario. Figure 5B illustrates, for different movement 323 

scenarios, that *CPUE  attains its maximum once the critical reserve size is reached that prevents evolution to 324 

smaller maturation size. The figure also shows that implementing a reserve larger than the critical size will be 325 

less profitable, by reducing *CPUE  relative to its maximum. 326 

 327 

4 Discussion 328 

Here we have examined the effects of marine reserves on maturation evolution by analyzing selection pressures 329 

on the probability that individuals mature at small size in stage-structured populations exposed to size-selective 330 

fishing. We have shown that an evolutionary switch from large to small maturation size induced by intensive 331 

fishing on large adults can be prevented by marine reserves of sufficient size. We have also demonstrated how 332 

the critical harvest proportion at which the shift occurs depends on alternative movement scenarios, including 333 

large-adult spill-over and juvenile export. While marine reserves with juvenile export better protect against 334 

fisheries-induced maturation evolution, marine reserves with large-adult spill-over can better sustain yields of 335 

large adults. To maximize catch per unit effort, intermediate harvest proportions must be combined with marine 336 

reserves exceeding a critical size. 337 
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 338 

4.1 Single-population model 339 

The single-population model described in section 2.1 results in density-dependent but frequency-independent 340 

selection, so that the resultant evolutionary dynamics follow an optimization principle (Heino et al., 1998). Our 341 

evolutionary analysis of this model (Inequality 7) shows that size-selective fishing can cause an evolutionary 342 

switch from maturation at large size to maturation at small size. This is in agreement with the results for an age-343 

structured model reported by Gårdmark et al. (2003), where a high harvest proportion of the oldest individuals 344 

induced an evolutionary switch from late maturation to early maturation. 345 

 346 

Our results show that the propensity for such an evolutionary switch depends on relative, rather than on absolute 347 

values of the parameters characterizing the harvested species and its harvest regime (Equation 7). This means 348 

that even species suffering from relatively low fishing mortality can undergo an evolutionary switch towards 349 

small maturation size when their relative fecundities, natural mortalities, and the size-selectivity of harvesting 350 

make them vulnerable to fishing. On the other hand, if, for example, the gain in fecundity with size is only small, 351 

or if the survival of small individuals is disproportionately low, an evolutionary switch to small maturation size 352 

may not occur. 353 

 354 

In the numerical example using the default parameter values listed in Table 1, the evolutionary switch from large 355 

to small maturation size occurs at a harvest proportion of 35.0h4  . Notice that it is possible to choose 356 

parameters that favour the survival and fecundity of the large-maturing individuals in class 4 to an extent that 357 

Inequality 7 is never fulfilled. For instance, using the same survival probabilities as before, but for 32f4  , even 358 

very high harvest proportions will not induce the evolutionary switch to small maturation size. Naturally, default 359 

parameter values used for illustrating the results were chosen to be plausible. For example, the annual probability 360 

of natural survival was chosen to equal 0.8 (Guénette and Pitcher, 1999). The harvest proportion can vary 361 

considerably depending on the commercial value of the fished species, and proportions have been estimated to 362 

rise as high as 0.96 in some heavily exploited populations (Willis and Millar, 2005). 363 

 364 

4.2 Marine-reserve model 365 

The evolutionary switch to small maturation size can be prevented by reducing the harvest proportion of large 366 

adults below a critical value, since this weakens the corresponding selection pressure. As it is often difficult to 367 
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estimate fishing mortalities accurately and to enforce corresponding limits the implementation of a marine 368 

reserve may offer an alternative for reliably reducing fishing mortalities. While the implementation of a marine 369 

reserve eliminates harvesting on part of a population, it also leads to increased spatial heterogeneity in the 370 

selection pressures caused by fishing. As illustrated in Figure 3, this may give rise to an evolutionarily stable 371 

dimorphism in size at maturation, especially when movement between the protected and fished areas is low. 372 

Limited movement and strong differences in selective pressures operating in each area, in conjunction with 373 

suitable frequency dependence promotes the stability of such a dimorphism (Meszéna et al., 1997; Heino et al., 374 

1998; Kisdi and Geritz, 1999; Fox et al., 2001). This potential for dimorphism has important practical 375 

consequences, since it enables a population of large-maturing phenotypes to be successfully invaded by small-376 

maturing phenotypes, which will usually imply a potentially unexpected transition in population composition. 377 

For organisms with sexual reproduction, a maturation dimorphism might of course be gradually eroded by 378 

interbreeding among maturation strategies, unless such interbreeding is limited by some form of assortative 379 

mating (Kisdi and Geritz, 1999). 380 

 381 

High movement probabilities between protected and fished areas increase catches outside the reserve and may 382 

strengthen the evolutionary pressure towards small maturation size (Figure 4). In addition, we have demonstrated 383 

that the evolutionary effects of a marine reserve depend on the stage-specific movement of individuals. 384 

Compared with juvenile export, large-adult spill-over from the marine reserve to the fished area causes higher 385 

selection pressures on maturation size and therefore reduces the reserve-based protection from evolution to small 386 

maturation size. Juvenile export, in contrast, keeps selection pressures lower but does not lead to an increasing 387 

yield of large adults outside the reserve as the juvenile movement becomes more frequent (Figure 4). This 388 

underscores that managing fisheries-induced maturation evolution through marine reserves requires not only 389 

accounting for the differential movement probabilities of a fished species as a whole, but, more specifically, 390 

must be informed also by how such movement is distributed across the species’ life-history stages. 391 

 392 

It should be noted that despite the optimistic message conveyed by Figure 4A, a marine reserve with juvenile 393 

export alone may still fail to protect a fished population from an evolutionary switch to small maturation size at 394 

high harvest proportions. For example, it is possible to choose parameters, such as 5f2   and 10f4  , that 395 

lower the difference in lifetime reproductive success between the two extreme maturation strategies and 396 

strengthen the selection pressure on size at maturation to an extent that the evolutionary switch to small 397 
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maturation size occurs even for marine reserves with juvenile export alone, provided harvest proportions are 398 

sufficiently high. 399 

 400 

If we consider the redistribution of fishing effort from the marine reserve to the fished area, the harvest 401 

proportion in the fished area doubles with reserve implementation when the two areas have identical size 402 

(Guénette and Pitcher, 1999; Baskett et al., 2005). At maximum movement probability, the evolutionary switch 403 

from large to small maturation size then occurs at exactly 7.0h4  , which is also twice the harvest proportion in 404 

the fished area without redistribution of fishing effort. Recognizing that the harvest proportion in the total area is 405 

half of that in the fished area after the implementation of a marine reserve, the resulting selection pressures in the 406 

single-population model are then equal to those in the marine-reserve model with maximum large-adult spill-407 

over (Figure 4B). At maximum large-adult spill-over and redistributed fishing effort, marine reserve 408 

implementation does not affect fisheries-induced changes in maturation size. But the degree of protection against 409 

fisheries-induced evolution is likely to be higher with implementation of a marine reserve at lower movement 410 

probabilities. Nevertheless, additional habitat disturbances resulting from the redistribution of fishing effort may 411 

have undesirable effects (Dinmore et al., 2003; Greenstreet et al., 2009). 412 

 413 

4.3 Model limitations 414 

We highlight that our model includes several simplifying assumptions, some of which may be relaxed without 415 

significantly changing the results. For example, individuals in class 2 may also grow to large size and attain 416 

higher fecundity of large individuals. This will favour the small-maturing life-history strategy, which, relative to 417 

the large-maturing strategy, then has an extra reproductive event at age 2. This reduces the costs of maturation at 418 

small size for fecundity later in life so that the evolutionary switch from large to small maturation size can be 419 

expected at lower harvest proportions. Similarly, if individuals in class 3 are allowed to take more than one extra 420 

year to mature, their reproductive output is reduced relative to that of the small-maturing life-history strategy. As 421 

demonstrated in Appendix B, both of these extensions favour the small-maturing life-history strategy. This 422 

shows that, by leaving out these possible extensions, our simple model does not overestimate the selection 423 

pressures towards small maturation size that result from size-selective fishing. 424 

 425 

Our models predict an evolutionary switch in the size at maturation, resulting in a collapse of catches of large 426 

adults as their harvest proportion is increased beyond a critical value. In natural systems, the pace of this collapse 427 
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will depend on how long it takes the evolving population to adapt its maturation strategy from large-maturing to 428 

small-maturing. Even though the selection pressure on the maturation strategy changes abruptly at the critical 429 

harvest proportion, it will typically take populations many generations to exhibit the full selection response to 430 

such an altered selection pressure. To describe such gradual selection response accurately, one would need to 431 

account for genetic variability among individuals with different maturation strategies (Baskett et al., 2005; 432 

Codling, 2008; Dunlop et al., 2007; Dunlop et al., 2009a; Dunlop et al., 2009b; Enberg et al., 2009; Miethe et 433 

al., 2009; Okamoto et al., 2009). 434 

 435 

Also stochastic effects and uncertainty may greatly affect results and are likely to increase the importance of 436 

marine reserves for the management of fish stocks and fisheries (Mangel, 2000; Gerber et al., 2003; Pitchford et 437 

al., 2007; Codling, 2008). Acknowledging the uncertainty in fishing mortality, implementing marine reserves 438 

can serve as a precautionary strategy even if harvest proportions are assumed to be below critical values 439 

predicted by deterministic models (Lauck et al., 1998). Similarly, evolutionary dynamics may be affected by 440 

demographic and environmental stochasticity. In particular, environmental stochasticity has been found to favour 441 

delayed maturation, especially in semelparous organisms (Koons et al., 2008). 442 

 443 

The movement of fish tends to exhibit richer dynamics and detail than accounted for in our study. Our model 444 

treats movement as a simple diffusive process. As one example of a complication encountered in nature, 445 

movement that is correlated among individuals was found to lead to greater dispersal distances (Codling, 2008). 446 

These may in turn imply a higher degree of population connectivity, which could affect evolutionary outcomes 447 

in our model by decreasing the evolutionary protection provided by marine reserves. In our model, both 448 

reproduction and movement occur once per year. Le Quesne and Codling (2009) point out that this may be 449 

unrealistic. While reproduction is often a seasonal event, movement tends to occur continuously throughout the 450 

year. If movement occurs more than once per year, the movement probabilities in our model must be interpreted 451 

as effective annual movement probabilities, integrating over multiple movements. 452 

 453 

Recruitment depends on the abundance or biomass of spawning stock (Myers and Barrowman, 1996). There are 454 

different ways to model stock-recruitment relationships. We use a nonlinear density-dependent recruitment 455 

function of Beverton-Holt type (Gårdmark et al., 2003). This relationship implies a consistently high mean 456 

recruitment when the spawning stock is large. In contrast, stock-recruitment functions of Ricker type, also 457 
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commonly used in fisheries models, describe dome-shaped relationships with negative effects of density 458 

dependence increasing as the spawning stock becomes larger (Needle, 2002). As in our model the density-459 

dependent survival of juveniles of class 1 affects small-maturing and large-maturing phenotypes equally, the 460 

shape of the stock-recruitment function has no impact on the evolutionary outcomes. Nevertheless, different 461 

relationships need to be taken into account when fitting a model to data. Beverton-Holt stock-recruitment models 462 

assume an increase in recruitment per spawner as a stock’s density decreases, which may lead to overestimating 463 

a stock’s carrying capacity (Barrowman and Myers, 2000). 464 

 465 

Another important simplification made in our study results from its focus on a single species. The resultant 466 

model is easily understood, straightforward, and may still help achieving some ecosystem objectives (Mace, 467 

2004). While fisheries management based on multi-species models is desirable, such models are still very 468 

difficult to design and parameterise. It has actually been suggested that the lack of political will to implement 469 

scientific advice is more important for understanding failing fisheries management than the traditional focus on 470 

single-species approaches (Cardinale and Svedäng, 2008). 471 

 472 

4.4 Stage-dependent mobility and reserve size 473 

Ecological effects of juvenile movement were observed in marine reserves on the Australian Great Barrier Reef 474 

reserves, where the abundance of sedentary coral-reef fish increased inside the reserve because dispersal in these 475 

fish occurs only at the larval stage; no adult spill-over was observed (Williamson et al., 2004). For obvious 476 

reasons, adult spill-over has a stronger positive effect on the yield of adult fish. This is in agreement with a study 477 

by Le Quesne and Codling (2009), who found that adult spill-over has a greater potential to improve yield than 478 

juvenile export. Strong positive effects of adult spill-over on yield were observed where the protected and fished 479 

areas feature the same habitat and adult fish are mobile (Russ et al., 2003). As shown above, however, the 480 

protection afforded by a marine reserve with adult-spill-over from evolution towards small maturation size is 481 

weaker. Adult spill-over directly increases the number of large-maturing adults reaching the fished area and 482 

suffering from size-selective mortality. 483 

 484 

We have shown that juvenile export alone, or low to moderate large-adult spill-over between the protected and 485 

fished areas, prevent an evolutionary switch to small maturation size (Figures 4A and 4B). This finding gains 486 

extra significance when considering how the implementation of a marine reserve may result in selection for 487 
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shorter dispersal distances. This gradually decreases the movement out of the reserve and thereby diminishes the 488 

reserve’s beneficial effect on yield (Botsford et al., 2001; Baskett et al., 2007). Modelling the joint evolution of 489 

size at maturation and mobility Miethe et al. (2009) confirm the gradual reduction of large-adult spill-over 490 

through selection for lower dispersal within the marine reserve. 491 

 492 

We verified that movement of only intermediately sized individuals leads to results that lie between the two 493 

extreme scenarios of juvenile export and large-adult spill-over analyzed above. Moreover, movement of several 494 

size classes leads to a higher connectivity between the protected and the fished area; this reduces the scope for a 495 

stable dimorphism of maturation strategies and also lessens the evolutionary protection provided by the marine 496 

reserve. 497 

 498 

In the study by Baskett et al. (2005), reserve size did not affect evolutionary outcomes when movement was low; 499 

whereas high movement resulted in decreased protection from maturation evolution. We show that reserve size 500 

affects populations with low as well as high movement probability but in different ways (Figures 5A and 5B). 501 

Movement processes at different life stages differ in the net transfer rates of harvestable large adults. For stocks 502 

with mainly juvenile export or with very low fishing mortality, we recommend small reserves, while populations 503 

with high adult movement that suffer from high exploitation require large reserves. The effects of a marine 504 

reserve increase with its size and with the time since its implementation (Botsford et al., 2003; Claudet et al., 505 

2008; Le Quesne and Codling, 2009). 506 

 507 

For the management of mixed fisheries that include species with different movement and other life-history 508 

characteristics, one reserve size will not be optimal for of those species (Sale et al., 2005). We recommend 509 

adapting the degree of protection, and thus the size of the considered marine reserve, to the most vulnerable 510 

fished species, where a species’ vulnerability should be defined in terms of its sensitivity to the demographic and 511 

evolutionary effects of harvesting. While such an approach may lead to the implementation of a large reserve 512 

reducing the catch per unit effort of other species, it respects the precautionary approach and will buffer the 513 

fished community against uncertainty, not the least against uncertainty with regard to choosing the most 514 

appropriate reserve size. Furthermore, for preventing evolutionary changes towards small maturation size it may 515 

be effective to combine the implementation of a reserve with a reduction of fishing mortality outside of the 516 

reserve. 517 
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4.5 Marine reserves as a management tool 518 

Use of natural home ranges as reserve boundaries reduces spill-over and increases the resultant protection 519 

(Chapman and Kramer, 2000; Topping et al., 2005). A network of protected areas on spawning and nursery 520 

grounds of haddock Melanogrammus aeglefinus and cod Gadus morhua off the east coast of Iceland helped to 521 

increase haddock abundance and mean size without affecting species richness and composition (Jaworski et al., 522 

2006). Nevertheless, the positive effects were quickly reversed after reopening of the temporary closure. 523 

Although marine reserves were generally found to be efficient as management tools (Halpern, 2003), there are 524 

also examples of unsuccessful reserve implementation. The “plaice box” was set up to protect undersized fish on 525 

the nursery grounds of North Sea plaice Pleuronectes platessa (Pastoors et al., 2000). The observed reduction of 526 

juvenile density within this reserve was attributed to changes in the spatial distribution of North Sea plaice and 527 

possibly also to deteriorating feeding conditions through reduced abundance of small invertebrates resulting 528 

from diminished trawling (Hiddink et al., 2008). A protected area in a haddock nursery ground on the Scotian 529 

Shelf, Canada, failed to protect juveniles, but benefited haddock adults as well as other local fish stocks of 530 

American plaice Hippoglossoides americanus and winter flounder Pseudopleuronectes americanus (Frank et al., 531 

2000). 532 

 533 

In our models, we specifically analyzed a sedentary population with a marine no-take reserve. The effect of 534 

protection afforded by a marine reserve may indeed be critically affected by the occurrence of seasonal spawning 535 

migrations and ontogenetic habitat shifts (Horwood et al., 1998; Dunlop et al., 2009a; West et al., 2009). Kelly 536 

et al. (2006) found that seasonal protection of spawning grounds, in the context of the recovery plan for Atlantic 537 

cod in the Irish Sea, did not succeed, probably because some fisheries were still allowed in the area, causing cod 538 

bycatch, increased fishing effort outside the protected area, and data uncertainty. Reversal of evolutionary 539 

changes in life-history traits is expected to be a slow process, although lab experiments show that reversal is 540 

possible (Law and Grey, 1989; Law, 2000; Swain et al., 2007; Conover et al., 2009; Enberg et al., 2009). After 541 

the collapse of Canadian cod, a fishing moratorium was declared that so far did little for demographic recovery 542 

(Hutchings and Reynolds, 2004) or evolutionary recovery (Olsen et al., 2004; Olsen et al., 2005). Currently, only 543 

a small fraction of the sea has been set aside for protection, and long-term protection is rare. Therefore, 544 

evolutionary effects of marine-reserve implementation have not been documented to date. 545 

 546 
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Part of a reserve’s benefit in terms of enhanced yield may accrue through improved habitat quality inside the 547 

reserve, which supports larger populations and increases spill-over. Lundberg et al. (1999) used habitat-selection 548 

theory based on the ideal free distribution to show that differences in habitat quality between a marine reserve 549 

and a fished area lead to increased catches, especially at high movement. This is important in situations in which 550 

fishing activity deteriorates the habitat. Gårdmark et al. (2006) showed that marine reserves do not increase yield 551 

when density-dependent growth inside the reserve limits yield outside the reserve, despite movement between 552 

the areas. Their model, however, did not account for the potential prevention of evolutionary changes towards 553 

smaller maturation size through the implementation of a marine reserve. 554 

 555 

Our model describes a life cycle with three size classes, a mean life expectancy of about 7 years, and an age at 556 

maturation of about 3 years in the absence of fishing. Life expectancy and age at maturation decrease as 557 

harvesting increases resulting in the life history of a relatively short-lived species. Baskett et al. (2005) found 558 

similar patterns in the modelled effects of marine reserves on evolutionary outcomes for species with different 559 

life histories, while pointing out that evolutionary protection is lower for long-lived species exhibiting high 560 

movement and facing strong selection. The model by Dunlop et al. (2009a) confirmed the potential of marine 561 

reserves to mitigate the evolutionary impacts of fishing on several life-history traits, while pointing out that for 562 

the effective protection of fish stocks with spawning migrations, the reserve must be located in the stock’s 563 

feeding grounds, rather than its spawning grounds. Together, the results presented here and in the two 564 

aforementioned studies cover a range of different life histories, indicating the robustness of the concordant 565 

findings. 566 

 567 

An evolutionary switch from large-maturing to small-maturing phenotypes as reported above has also been 568 

found when an evolving population’s size structure is described continuously, instead of in terms of discrete size 569 

classes (Taborsky et al., 2003; Gårdmark and Dieckmann, 2006). Such a switch may occur repeatedly within a 570 

larger spectrum of size classes when fecundity and fishing mortality increase with size. As the largest adults 571 

disappear in the wake of such a switch, fisheries then may shift their targeted size range, exploiting the next-572 

largest size class in an effort to maintain yield. This could result in an analogous evolutionary switch in that size 573 

class. As these evolutionary switches cascade through the relevant size classes, the stock is sent on an ecological 574 

and evolutionary death spiral, resulting in smaller sizes and lower abundances until collapse occurs. This 575 



 21

conceivable scenario is the evolutionary counterpart of the well-known phenomenon of “fishing down the food 576 

web” (Pauly et al., 1998) and may affect species as well as entire communities. 577 
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Appendices 1 

 2 

Appendix A: Harvesting the intermediate size classes 3 

The evolutionary switch from large to small maturation size occurs when Inequality (7) becomes fulfilled. 4 

Rearranging that inequality and defining a function F  leads to an equivalent condition for the evolution of 5 

small maturation size, 6 

4 3 2,32

2 2,3 4 4

f s (1 h )f
F 0

1 s (1 h ) 1 s (1 h )


  

   
,       (A1) 7 

with the switch from large to small maturation size happening at F 0 . To predict the evolutionary effect of 8 

increasing 3,2h , we determine the slope of F  with respect to 3,2h , 9 

4 32 2
2
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Using the fact that F 0  at the evolutionary switch point allows this expression to be simplified (at the switch 11 

point) to 12 

4 3 2 2,3

2,3 4 4 2 2,3
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Since both factors in the right-hand side’s denominator are strictly positive, 2,3F / h   is positive if and only if 14 

2

1
)h1(s 3,22  .          (A4) 15 

Under this condition, increasing 3,2h  close to the switch point causes F  to increase and therefore inequality 16 

(A1) to be fulfilled. Thus, when Inequality (A4) is satisfied, harvesting more strongly on the intermediate size 17 

classes favors maturation at small size. Conversely, when Inequality (A4) is not satisfied, increasing 3,2h  18 

favors maturation at large size. 19 

Harvesting only mature intermediate-sized fish ( 0h2   with 0h3  ) always favors maturation at large size. 20 

Such a harvest regime can occur if immature fish stay in feeding grounds and move to strongly fished 21 

spawning grounds only when they reach maturity, as observed, e.g., for migratory cod (Begg and 22 

Marteinsdottir, 2003). 23 

 24 

 25 



 

Appendix B: Extensions of the single-population model 26 

In Equations (3a) to (3d), it is assumed that individuals maturing at large size grow directly from class 3 to 27 

class 4. Instead, they could be allowed to remain more than one year in class 3 by introducing an annual 28 

probability p  for an individual to remain in class 3 before entering class 4. Furthermore, many fish exhibit 29 

indeterminate growth, so individuals maturing at small size could be allowed to grow to large size by 30 

introducing an annual probability q  for an individual to remain in class 2 before entering class 4. These 31 

parameters are assumed to be set at 0p   and 1q   in the models we describe in Section 2, but these 32 

restrictions can be relaxed. 33 

Analysis of this more general model is analogous to that leading to Inequality (7), and reveals that for 0p   34 

and 1q   evolution favors maturation at small size when 35 

4 1 2 2,3 4 1 3 2,3
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,  (A5) 36 

with the switch from large to small maturation size happening at G 0 . As in Appendix A, we can predict 37 

the evolutionary effects of allowing 0p   and 1q   by examining the corresponding partial derivatives of G  38 

close to the evolutionary switch point. Differentiating G  with respect to p  gives 39 
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Since this partial derivative is strictly positive, the arguments in Appendix A enable us to conclude that 41 

allowing 0p   makes evolution at small maturation size more likely. The evolutionary conclusions of the 42 

simpler model based on Equations (3a) to (3d) are therefore conservative in this respect. 43 

Differentiating G  with respect to q  gives 44 
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Since 2,3 1 2(1 h )s s  and both factors in the right-hand side’s denominator are strictly positive, G/ q   is 46 

negative if and only if 47 
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.        (A8) 48 

Using the fact that F 0  at the evolutionary switch point (Appendix A, Equation A1) allows this inequality to 49 

be simplified (at the switch point) to 50 



 

4 3 2,3 4

4 4 4 4

f s (1 h ) f

1 s (1 h ) 1 s (1 h )




   
        (A9) 51 

and hence to 3 2,3s (1 h ) 1  , which is true. We can thus conclude that decreasing q  from q 1  increases G , 52 

so that allowing 1q   favors (at least close to the switch point) maturation at small size. Again the 53 

evolutionary conclusions based on Equations (3a) to (3d) are conservative in this respect. 54 

In summary, increasing p  (allowing individuals to spend more than one year in class 3) and decreasing q  55 

(allowing individuals to move from class 2 to class 4) both cause the evolutionary switch from large to small 56 

maturation size to occur at lower harvest proportions. This implies that the simpler model we analyze in the 57 

main text does not overestimate fisheries-induced maturation evolution. Numerical results show that the 58 

effects of p  and q  in the marine-reserve model are analogous to their effects in the single-population model. 59 

 60 
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Figure 4 73 
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Captions 81 

 82 

Table 1. Parameters, their description, and their default values used for the numerical illustrations. 83 

 84 

Figure 1. Schematic illustration of single-population model. Fish are born into class 1 (small juveniles) where 85 

they experience density-dependent survival. They then grow to class 2 (small adults) with probability γ , or to 86 

class 3 (large juveniles) with probability ( γ1 ). Fish maturing at small size start reproduction in class 4, 87 

while fish maturing at large size do not start reproduction until they reach class 4 (large adults). The evolving 88 

trait γ  thus describes the probability of fish to mature at small size. Due to size-selective fishing, harvest 89 

proportions 3,2h  and 4h  can differ between intermediate-sized and large-sized fish, respectively. The 90 

harvested classes are indicated by shading. 91 

 92 

Figure 2. Schematic illustration of marine-reserve model. Populations inhabit two areas; one is harvested 93 

(above) and while the other is protected by a marine reserve (below). Only large adults in the harvested area 94 

are subject to fishing in accordance with the harvest proportion 4h . Movement between the two areas can 95 

occur in class 1 (juvenile export with movement probability 1d ) or in class 4 (large-adult spill-over with 96 

movement probability 4d ). The per capita movement probabilities are scaled with the relative size of the 97 

destination area, r  for the marine reserve and ( r1 ) for the harvested area. Other details as described in the 98 

caption of Figure 1. 99 

 100 

Figure 3. Evolutionary outcomes of maturation evolution in the marine-reserve model in dependence on the 101 

movement probability 4d  of large adults and on the harvest proportion 4h  of large adults. A) Gradual 102 

evolution through successive invasion of variant phenotypes that slightly differ from resident phenotypes. 103 

When movement probabilities or harvest proportions are low, the population evolves towards maturation at 104 

large size ( 0γ  ). When movement probabilities and harvest proportions are high, the population evolves 105 

towards maturation at small size ( 1γ  ). The continuous line depicts the bifurcation points at which the 106 

switch between the two evolutionary outcomes occurs. B) Non-gradual evolution through the successive 107 

invasion of variant phenotypes that arbitrarily differ from resident phenotypes. The shaded area indicates the 108 



 

conditions under which the two extreme maturation strategies 0γ   and 1γ   can coexist. Outside the 109 

shaded area, the evolutionary outcomes are monomorphic ( 0γ   below or 1γ   above the shaded area). 110 

 111 

Figure 4. Selection pressure at 5.0γ   and yield at evolutionary outcome in dependence on movement 112 

probabilities 1d  or 4d  and on the harvest proportion 4h  of large adults. 0d1   describes juvenile export (left 113 

column), while 0d4   describes large-adult spill-over (right column). For comparison, the results in absence 114 

of a marine reserve are shown in grey. A), B) Selection pressure at 5.0γ   as given in Equation (4). When 115 

the selection pressure is negative, selection favors the decrease of γ  towards 0, resulting in maturation at 116 

large size. When the selection pressure is positive, selection favors the increase of γ  towards 1, resulting in 117 

maturation at small size. The critical harvest rate at which the sign of the selection pressure changes is the 118 

same for different values of γ . C), D) Yield at the evolutionary outcome 0γ   (negative selection pressure) 119 

or 1γ   (positive selection pressure). 120 

 121 

Figure 5. Critical harvest proportion and catch per unit effort in dependence on movement probabilities 1d  or 122 

4d  and on the reserve size r . 0d1   describes juvenile export (grey curves), while 0d4   describes large-123 

adult spill-over (black curves). A) Critical harvest proportion *
4h  at which the switch from large to small 124 

maturation size occurs. B) Catch per unit effort *CPUE  right above the critical harvest proportion *
4h . 125 

Catches of large adults collapse to 0 whenever harvesting induces an evolutionary switch to small maturation 126 

size. 127 

 128 

Table 1. 129 

Parameter Description Default value 

2f  Per capita annual fecundity at intermediate size 5 

4f  Per capita annual fecundity at large size 15 

1s , 2s , 3s , 4s  Per capita annual survival probabilities in classes 1 to 4 0.8 

3,2h  Per capita annual harvest proportion of intermediate-sized 0 



 

individuals 

4h  Per capita annual harvest proportion of large adults [0, 1] 

1d , 4d  Per capita annual movement probability in class 1 or 4 [0, 1] 

r  Fraction of total area protected by a marine reserve [0, 1] 

m  

1m  

Factor to scale strength of density-dependent juvenile survival 

Factor to scale strength of density-dependent juvenile survival in 

fished area 

0.001 

m

1 r
 

2m  Factor to scale strength of density-dependent juvenile survival in 

marine reserve 
r

m
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