
DIF: AUTOMATIC DIFFERENTIATION OF

FORTRAN-CODED POLYNOE.IIALS

W. Orchard-Hays
I. Butrimenko

September 1978

Research Memoranda are interim reports on research being conducted
by the International Institute for Applied Systems Analysis, and as such
receive only limited scientific review. Views or opinions contained
herein do not necessarily represent those of the Institute or of the
National Member Organizations supporting the Institute.

Copyright @ 1978 IIASA

,411 ' hts resewed. No part of this publication may be 3 repro uced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without
permission in writing from the publisher.

Preface

In considering possible implementation of a software system

for nonlinear programming problems, one of the first practical

difficulties met was the necessity t.o incorporate, for each model

and version, a set of nonlinear multivariate functions and their

partial derivatives. These functions are not known to the system

designer and even simple ones are not readily expressed in convenient

input formats; at least, no standard, widely accepted formats of

this kind exist.

Essentially the only standard available for such a purpose

is the FORTRAN language, and it appears most reasonable to require

a system user to program his functions in FORTRAN. Although this

creates another problem -- how to link compiled subroutines to a

large, integrated application system -- that is not the difficulty
in this paper. The linking of user-supplied subroutines to a stand-

ard control program or package of routines is fairly standard prac-

tice for many purposes.

If it is reasonable to expect a user to write (possibly se-

veral), functionsof several variables in FORTRAN, it is not so

reasonable to also require him to write subroutines for all the

partial derivatives. At the same time, differentiating a function

defined only by a subroutine during execution of an algorithm is

close to an impossibility. The answer seemed to be to provide a

separate preprocessor which accepts a FORTRAN routine in source

code along with an indication of desired partials, and produces

other FORTRAN source code which, when compiled and executed, com-

putes the required derivatives. That is what the set of routines

(also written in FORTRAN) described in this paper do.

iii

Summary

The program described creates the first derivative functions

of given function of limited complexity, namely generalized poly-

nomials, but involving possibly many variables. Neither nested

functions nor general rational forms are handled. However, par-

tials to such functions can usually be readily programmed utilizing

those forms produced automatically. Similarly, if a function of

many variables is nonlinear in only a few, only derivatives of

nonlinear terms need to be created; the constant derivatives can

be added with ordinary DO-loops or similar standard programming

techniques.

Three main files are used, indicated by integer variables IN,

IFIN and IOUT. Using these symbols to denote the files, IN con-

tains the FORTRAN source code representing one or more functions

f(X) to be differentiated, where X is a vector. The code must

contain special comment lines delimiting and identifying each

function, File IFIN contains additional comment lines which are

really statements in a stylized language which specifies differen-

tiation, referring to the functions defined in IN. File IFIN can

be a preprogrammed (but incomplete) .FORTRAN routine which includes

the differentiation statements at appropriate points. File IFOUT,

the output, contains the program from IFIN elaborated with state-

ments to compute the derivatives specified. The comment lines are.

retained and serve as useful comments in the final routine.

After an explanatory foreword, usage of the program is ex-

plained. This can be regarded as a users manual. Thereafter, de-

tailed explanations of the method, including flowcharts, are given.

DIF -

Automatic Differentiation of FORTRAN-coded Polynomials

FOREWORD

The program described in this document for automatically

creating the derivative functions of given functions is not

intended for functions of arbitrary complexity. The initial

version described here handles only a highly restricted class

of functions, namely generalized polynomials (i.e. exponents may

be any nonzero real numbers) in many variables. It is the

"many variables" that is important. The idea is related to non-

linear programming models of the type in which the functions may

be linear in most variables or where each nonlinear function

involves a relatively small subset of the variables. Such models

may be partially represented in the matrix form of linear pro-

gra~~ing, and supplemented by nonlinear partial functlofis. For

example, the constraint functions Gi might have the form

Thus, the matrix of partial derivatives at a point X = X would

that is, the last n - p columns are constant.

If i has the range 1,2, ..., 50 anJ p = 15, then 50 functions

i in up to 15 variables each must be written in some programming

language--and here FORTRAN is assumed. (The remaining parts of

the Gi are readily evaluated with simple DO-loops). This is a

tedious and error-prone task. If one must additionally write

by Rand the (up to) 750 functions agi , the burden is almost
3

intolerable. It is this part which the program described

automates.

We are considering adding a few common functions to the

allowable terms of the gi. If the program in its present form

is found useful, we will consider this more earnestly. However,

once the possibility of nested functions or general rational forms

is opened up, the complexity increases enormously. For example,

consider the relatively simple function

Differentiating this with respect to, say, XI, introduces entirely

new dimensions of complexity in the differentiating program over

what is now required. It is not clear how much value there would

be in providing functions restricted to the form

where t(X) is a product of powers of the X . This would be
j

relatively easy to add for fn = exp, sin, cos, log and perhaps

one or two more.

General rational forms in polynomials do not appear feasible

at present. This is largely due to the difficulty of multiplying

polynomials symbolically. However, it is readily programmed

in the skeleton routine by the user. For example, suppose p(X)

and q (X) are polynomial and g (XI = p (X) /q (X) . The derivatives

of p(X) and q(X) can be obtained automatically with respect to

as many variables as necessary. Suppose they are evaluated in

the variables DP (J) and DQ(J) and the polynomials in P and Q.

Then the FORTRAN statement

a can be incorporated in a subsequent DO-loop to obtain the &.
j

This is the purpose of the copy function in the program, since

the definitions of P and Q are required as well as their

derivatives.

This program, written for the PDP-11 in FORTRAN, was designed

for differentiating a commonly used class of polynomial functions

when a differentiable function can be written in a form such as

where m, k are integer constants and ci, n might take on both
j

real and integer, positive and negative values.

The differentiation program, denoted as DIF, is organized as

a main program with three fundamental files being involved. The

numerical identifiers for these files are in the variables called

IN, IFIN, IOUT.

As a result of running DIF, a sequence of formulae in the

form of FORTRAN expressions are written to the file IOUT which

represents the derivatives of the given functions with respect

to the given variables. Obviously, after the file IOUT is

created it can be compiled and run as an independent program

(or subroutine). Consequently, any legal FORTRAN program name

can be used to denote this file.

To facilitate the program's use, the section "outer specifi-

cation for DIF" follows below. It is intended for those who want

to use the program and are not interested in the programming

problems. The rest of the document is intended for those who are

either interested in the method proposed or perhaps might wish to

change the program for some specific problems.

Outer S~ecifications for DIF

The functions to be differentiated are supposed to be defined

in the form of conventional FORTRAN expressions, which are written

to the file - IN. This may be an executable program itself or simply

a set of function definitions.

The identification of the beginning of a specific function

is organized as a comment card to be followed by the expression

mentioned above. The comment card must be written in the following

form:

(col)

1 5

CFN, f

where the first four characters are used as the beginning identi-

fier and f is a sequence of maximum four characters, which must

include a left-hand parenthesis if the function name is indexed.

There is no restriction to the dimension size of the provided

functions. Any number of continuation lines can be used to

specify a given function. (A maximum of 400 nonblank characters

is currently in effect. This is readily changed by enlarging 2

dimension parameter and recompiling DIF).

To identify the end of the appropriate function expression,

it is followed by an ordinary comment card where only the

character in the first column is important.

The program requires that all the functions be specified in

an analogous way in succession. In the following example of IN

file, three function, F, G, G3 are supposed to be given with

function G to be indexed.

Example 1:

(col)

1

CFN, F
F = -3O.*X(I)**(-3.54)+10.*~(1)**(-2)*~(2)**2*~(3)

CFN, G3
G3 = 45.*X(l) **3-24*X(1) **2*X(2) **3*X(3)

All the variables X (1) ,X (2) , . . . ,X (N) with respect to some of which
the differentiation is to be performed, are denoted as illustrated

and X might be a sequence of maximum t h r e e c h a r a c t e r s , t h e f i r s t

of which must be X .

The f i l e IFIN c o n t r o l s t h e sequence of a c t i o n s . A l l informa-

t i o n about t h e f u n c t i o n s t o be d i f f e r e n t i a t e d and v a r i a b l e s wi th

r e s p e c t t o which t h e d i f f e r e n t i a t i o n i s t o be performed i s s p e c i -

f i e d by a p p r o p r i a t e c o n t r o l s t a t emen t s . A l l e x i s t i n g l i n e s of

t h i s f i l e a r e cop ied ve rba t im t o I O U T , i n t e r s p e r s e d a s a p p r o p r i a t e

w i th t h e o u t p u t from DIE'. Th i s f a c i l i t y enab l e s one t o w r i t e t o

IOUT a l l a d d i t i o n a l i n fo rma t ion , f o r i n s t a n c e t o d e f i n e t h e dinen-

s i o n a l i t y o f v a r i a b l e s handled and p rov ide any p r i n t i n g wanted.

I n IFIN f i l e , s i n g l e s t a t e m e n t s o f t h e fo l l owing form appear

1
A A A A A A A A A A A A A

CDIF--v(T,J) = f (I) , I = i , m , J = j , k

A

where x i n d i c a t e s t h a t x i s o p t i o n a l , and - i n d i c a t e s a b lank

(b l anks a r e i g n o r e d) , and t h e whole exp re s s ion r e p r e s e n t s t h e

fo l lowing :

The f u n c t i o n f , i f it i s n o t indexed o r a l t e r n a t i v e l y , each o f

t h e f u n c t i o n s f (1) ; I = i , i + l , ..., m , i f they a r e indexed, a r e

supposed t o be d i f f e r e n t i a t e d w i t h r e s p e c t t o v a r i a b l e s X (J) ;

J = j + 1 k . The r e s u l t o f t h e d i f f e r e n t i a t i o n i s w r i t t e n

a s t h e a s s o c i a t e d v a r i a b l e s v (J) , o r a l t e r n a t i v e l y v (1 , J) . I f

m does n o t appear t h e fo r ego ing r e f e r s t o t h e indexed func t i on

w i t h t h e f i x e d index number. I f k does n o t appea r , t h e d i f f e r e n -

t i a t i o n i s performed w i th r e s p e c t t o on ly one v a r i a b l e X (j) .

The above mentioned assumptions abou t f and X ho ld f o r t h i s

f i l e . The v a r i a b l e V i s i d e n t i f i e d by a symbolic name o f one t o

f o u r l e t te rs o r numbers, t h e f i r s t o f which must be a l e t t e r .

I n t h e example of IFIN f i l e t h a t f o l l ows , each of t h e c o n t r o l

s t a t e m e n t s i s r e f e r r e d t o .each of t h e f u n c t i o n s g iven i n Example 1 .

Example 2:

1

CDIF C(J) = F, J = 112

CDIF A (ItJ) = G(I) I = 112, J = 113

CDIF C(J) = G3, J = 1,3 .

The first statement controls the creation of two functions, which

will be evaluated as variables C(1) and C(2) as the results of the

differentiation of function F (see Example 1) with respect to vari

variables X(1), X(2) respectively. These created functions are

written onto file IOUT during the running of program DIF. The

second statement above controls the generation of functions to be

evaluated in variables A (1,3) , A (3,2) , A (3,3) as the result of

differentiation function G (-3 1 with respect to variables X (1) , X (2)

and X (3) respectively. The variables A(2,3) , A(2,2) and A(2,3)
tire associated with derivatives of the function G(2) with respect

to variables X(3), X(2) and X(3). The last example is concerned

with the differentiation of function G3 with respect to variables

X (1) , X (2) and X (3) , and the results of the differentiation to be

assigned to C (3) , C (2) and C (3) respectively.

An example of IOUT created after running DIF subject to the

files IFIN (Appendix 1) and IN (Appendix 2) is given in the

accompanying Appendix 3.

Obviously, to make IOUT in full accord with accepted FORTRAN

conventions, IFIN should contain all appropriate DIMENSION, END,

STOP, WRITE, READ and FORMAT statements if any. Some of them

are included for illustration in the example program (Appendix

1 , 3).

For the source files involved, DIF, IN, IFIN, and IOUT, the

following names are used: DIM.F, D.F, C.F and O.F. If for some

reason, one of the last three should be changed, it can easily

be done, changing one of the variables NAMFIL, NAMFIN or NAMOUT

in D1M.F. All the functions involved must occur in the same order

in the IN and IFIN files, i.e. IN file is usually searched only

in a forward direction. However, in case of error, if the function

name written in one of the control statements in IFIN is not

encountered in IN file, an error message is printed out and IN

file is rewound. In this case, control transfers to process

the next function in IFIN and the rest will be handled in the

regular way.

The Method Used and DIF Flow Chart

For differentiating a polynomial function, the following

method was found expedient. The whole expression is broken down

into separate terms. A term is associated with the part of an

expression confined between two successive plus or minus signs.

In the first term, a plus sign might not appear; in the last term,

the end of expression means the end for this term. ~ a c h term is

then broken down into separate factors. A factor is associated

with a part of the term confined between two successive multipli-

cation signs. The first factor of each term is confined, however,

betwben plus/minus and multiplication (or plus/minus, if the term

consists of only one factor) signs. In a similar manner, the

last factor of the term is situated between multiplication and

plus/minus or end of expression. A similar mechanism is used to

process both terms and factors with the difference that the

expression derivative is defined as the sum of derivatives of the

terms and the term derivative is defined as the product of factor

derivatives. If the variable with respect to which the differen-

tiation is to be performed, is not encountered at the term level,

t h i s term i s c a n c e l l e d . I f t h i s v a r i a b l e i s n o t encountered a t

t h e f a c t o r l e v e l , t h i s f a c t o r wi thou t any changes i s s t o r e d a s

a p o t e n t i a l m u l t i p l i e r f o r t h e t e r m d e r i v a t i v e . I f t h e f a c t o r

c o n t a i n s such a v a r i a b l e and i s w r i t t e n i n a form X(I)**N, t h e

p o t e n t i a l m u l t i p l i e r f o r t h e term d e r i v a t i v e i s s t o r e d a s

N*X (I) * * (N-I) .
The f i r s t t i m e a p a r t i c u l a r f u n c t i o n t o be p rocessed i s

encounte red , t h e whole exp re s s ion (excep t b lank c h a r a c t e r s) t o

d e f i n e t h i s f u n c t i o n and w r i t t e n on t h e I N f i l e i s s t o r e d i n t h e

a r r a y I C H (660) . The f u n c t i o n index, i f any, i s s t o r e d a s a

v a r i a b l e N F . To d e f i n e t h e end of t h e c u r r e n t e x p r e s s i o n , a

b lank c h a r a c t e r i s w r i t t e n a f t e r it i s f i n i s h e d . For any sub-

sequen t a n a l y s i s a z s o c i a t e d w i th t h e same f u n c t i a n name, and

index , t h e s t o r e d exp re s s ion i s used i n s t e a d of read ing .

Below i s given t h e f low c h a r t of t h e program t o c r e a t e t h e

d e r i v a t i v e s o f a l l a l l owab le given f u n c t i o n s wi th r e s p e c t to

t h e a p p r o p r i a t e v a r i a b l e s . Because of i t s s i z e , t h i s flow c h a r t

i s broken i n t o s e p a r a t e f low c h a r t s . The c o n t r o l in format ion

i s i n d i c a t e d by t h e subsequent read ing of c o n t r o l s t a t emen t s i n

I F I N .

A f t e r such a s t a t emen t a s
A A A A O A A A

C D I F - - V (~ ; J) = f (~) , ? = 1, m , J = j: C

appea r s , t h e s t r i n g of c h a r a c t e r s , denoted h e r e by t h e l e t t e r v ,

i s r e t a i n e d and i s c a l l e d L E F T (4) . I f t h e s t r i n g c o n t a i n s less

than f o u r c h a r a c t e r s , t h e rest of LEFT i s f i l l e d w i th b l anks ,

f o r example:

C (J)

AC1 (I , J)

c--- t o LEFT

AC1- t o LEFT

The string of characters denoted above by the letter f, including

the left-hand parenthesis if the function name is indexed, is

retained in NAMF(4), similarly blank-filled if less than four

characters. This string is later used for matching against

similar ones in the IN file. For example:

F

GI

F1O (I)

I?'""" to NAMF

GI-- to NAMF

F10(to NAMF

Both j and k are integers. If k appears, then it must be greater

than j . The value j is the index of the first variable with

respect to which the function f is to be differentiated. If k

appears, then the function is to be differentiated with respect

to all variables with index j,j+l, ..., k.
If the function is indexed, i indicates the index of the

first function, with the function name stored in NAMF, to be

differentiated with respect to all variables indicated by j and

k if any. If m appears, all the functions f(i),f(i+l), ..., f(m)
are subsequently to be differentiated with respect to all given

variables. Obviously, i and m are integers. If m appears then

it must be greater than i. The current index value, taking on

values i,i+l, ..., m is stored as a variable NF and used along
with NAMF for matching against similar ones in the IN file.

The flow chart for reading IFIN control statements is shown

in Figure 1. As a result of this, NAMF is organized to store

the function name with the last significant character " (" and a

variable I91 is set to 2, if the function is indexed. If not,

I91 = 1. i and m are converted into variables NUIBEG and NUIEND

to be used later as the initial and terminal parameters,

respectively, to assign the control variable I276 (Figure 2)

for a DO-loop, the execution of the range of which is repeated

for each function name combined with its index, if any. If m

does not appear, the variable NUIEND is assigned the value

represented by NUIBEG. If i does not appear, the variables

NUIBEG and NUIEND are assigned the value 1; j and k are con-

verted into variables JBEG and JEND to be used later as the

initial and terminal parameters to assign the control variable

NAMX (Figure 2) for DO-loop, nested in the previous one with the

execution range repeated for each given variable. If k does not

appear, the variable JEND is assigned the value represented by

JBEG.

After the current function to be differentiated and the

variable, with respect to which differentiation is to be per-

formed, are defined, the desired function is searched for. This

process is shown in the flow chart (Figure 2). First of all,

the coincidence of the given function name and its index value,

if any, is checked against the one stored in the array ICHA and

the variable NF respectively. If no match is found, the begin-

ning of the given function f is searched by subsequent readings

of IN file to find the comment statement

CFN, f .
The function name and index value for the function must

coincide with one in the IFIN file. If this coincidence is

reached, the subsequent process to read the function definition

and execute the main body of the differentiation program becomes

effective. If not, and an END statement is encountered, the next

function is handled after rewinding IN file and printing an

appropriate error message.

An indication of using ICHA (K10 = 2) or alternatively

reading of IN (El0 = 1) for subsequent execution of the main

body of the differentiation program is recorded-(see Figure 2).

The flow chart of the initial stage for differentiating

the current function f(I276) with respect to a current variable

x (NAMX) is shown in Figure 3.

The initialization work can be separated into four parts.

The first one 4 is concerned with the control of the left-hand 0
side expression and simultaneous setting of those initial assump-

tions which may be done before the right-hand side expression is

processed. The second one 5 is associated directly with 0
analyzing each term which is done in the beginning and repeated

with each reading of a plus/rninus sign. The third part @ is
connected with control of the factor, which is distinguished by

reading a multiplication sign and by the term beginning. The

last part (?) is related directly to raising to a power.
w

On the first step , if I was not encountered in the

control statement (I91 = 1) the following expression is written

to IOUT file:

If I was encountered (I91 = 2) the FORTRAN expression written

to IOUT file is:

By the following process, the derivative of each factor

is searched for under the assumption that the term considered

involves a variable x(NAMX). Until the current term is finished,

all derivatives of each factor are written to a temporary file

ISCR as continuation multiplication statements to the initial

expression:

DIFACT = 1

In the course of the current term process 5 the identification 0
that a variable x(NAMX) is involved on any factor level is

registered as a variable IXX = 1. If in none of the factors

a variable x(NAMX) is encountered, IXX = 0 is not changed. In

the course of the current factor process 6 the identification 0
that the raising to a power is involved, is registered as a

variable IST = 1. If a variable or coefficient without raising

to a power is encountered, IST = 0.

The initial value of the current index value for X, NX = 0,

is written. Obviously, NX is an integer number. The initial

value of the exponent EXP is supposed 7 to be zero. The
' 0

identification of the exponent as an integer number is registered

as a variable K143 = 1, or alternatively, if the exponent is a

real number, K143 = 2. The counter parameters for the current

number characterize the number of subsequent significant digits

(M), an indication of the current number as an integer (IDEC=-I),

or alternatively, a real number (IDEC is equal to the number of

significant digits before the point in this case), and last, the

sign indication. If the current number is positive, ISIGN = 1,

if it is negative, ISIGN = -1. Initially (7.3) M = 0, IDEC = -1,

and ISIGN = 1.

After the initialization is performed the function comes

into the process (Figure 4) as the separate characters IS.

Some characters which carry double information are stored until

the next step as a variable ISN. For instance, plus/minus

being referred to the beginning of the next term simultaneously

characterize the end of the current term and are associated with

the final term handling (Figure 6). Similarly, if the character

multiplication sign is encountered (IS=*), the next character

is read and stored as a variable ISN to define whether it was a

raising to a power (ISN=*) or the end of the current factor

(ISNf *) . The flow chart for this case is shown in Figure 5.

The greater part of the characters, however., are processed

immediately after they are read. In case the variable ISN is

different from zero, the reading process is omitted and the

current character IS is set to be equal ISN. If ISN = 0, in

accordance with the reading conditions specified in Figure 2,

the current character is identified using ICHA(K10 = 2), or

alternatively, reading the current line from IN file (K10 = I),

which is stored in ICHAR. The identification of the function

definition is registered as the first comment card encountered

by subsequent reading of IN file. The entire function defini-

tion except for blank and continuation characters is copied to

ICHA and used for subsequent processing of the same function.

In this case the end of function expression is identified as the

first blank character.

For the first letter X encountered (IS = X) the whole string

to denote a variable name followed by a left-hand parenthesis

is stored in NAMMX(3), blank-filled if less than three characters.

NAMMX is used later for output.

The f u n c t i o n name w i t h i t s index , i f any, fo l lowed by t h e

e q u a l i t y s i g n i s ignored .

The c u r r e n t v a l u e of t h e v a r l a b l e i n d e x i s t o b e found i n

NX and used f o r o u t p u t a s s o c i a t e d w i t h t h e c u r r e n t f a c t o r . For

a new f a c t o r NX i s updated .

When any d i g i t o r p o i n t i s encoun te red , it i s r e g i s t e r e d

i n t h e c o u n t e r .

The i n d i c a t i o n of t h e end o f an i n t e g e r i n d e x v a l u e f o r

any v a r i a b l e i s a c c e p t e d by t h e c o u n t e r a s t h e f i r s t r igh t -hand

p a r e n t h e s i s encoun te red a f t e r I S = X was r e g i s t e r e d . When

e v a l u a t i n g t h e c u r r e n t f a c t o r f e a t u r e s (F i g u r e 5) , i f r a i s i n g

t o a power was encoun te red IST = 1 , t h e i n d i c a t i o n o f t h e end

of exponent i s r e c e i v e d by t h e c o u n t e r . A s t h i s t a k e s p l a c e ,

t h e o u t p u t t o c r e a t e an a p p r o p r i a t e FORTRAN c o n t i n u a t i o n s t a t e -

ment i s s u c c e s s i v e l y s u b j e c t t o t h e e x i s t e n c e o r n o n e x i s t e n c e

o f :

1) any v a r i a b l e invo lved i n t h e c u r r e n t f a c t o r ;

2) r a i s i n g t o a power;

3) s p e c i f i e d v a r i a b l e w i t h r e s p e c t t o which t h e d i f f e r e n -

t i a t i o n i s t o be p r e s e n t e d .

I f no v a r i a b l e i s invo lved under t h e c u r r e n t f a c t o r t r e a t -

ment c l e a r l y t h i s comprises o n l y t h e c o e f f i c i e n t v a l u e . A f t e r

t h i s v a l u e TERM i s computed u s i n g t h e c o u n t e r it i s o u t p u t t o

t h e temporary f i l e ISCR u s i n g t h e f o l l o w i n g FORMAT

I f t h e s p e c i f i e d v a r i a b l e w i t h r e s p e c t t o which t h e d i f f e r e n -

t i a t i o n i s t o be performed i s involved i n t h e c u r r e n t f a c t o r

NX = NAMX and raising to a power was not encountered, the

derivative of this factor is 1 and output is omitted. With

raising to a power EXP, the derivative of the current factor

is written to ISCR as a continuation line for the initial state-

ment DIFACT = 1 using the following format

with the list

EXPI(NAMMX(I),I=1,3), NX, (EXP-1)

This assumes EXP is a real number.

For simplicity, the output for the cases EXP-1 = 1 or EXP

as an integer is not considered here separately.

If any other variable NX # NAMX is encountered, then with

the raising to a power EXP the derivative of the current factor

is written to ISCR as a continuation line using the following

format

with the list

If NX # NAMX with no raising to a power is processed, then the

derivative of the current term is written using the following

format

with the list

After the current factor is terminated, control is tran-

ferred to an appropriate initialization for the next factor @ *
To identify the end of the current term a variable K240

is set to 2 if plus/minus or end of expression is encountered

(Figure 6). The term is checked for the presence of the variable

with respect to which the differentiation is performed. If this

condition is met IXX = 1, the final analysis of the last factor

is performed followed by the addition of the derivative of this

term to the previous value V for the function derivative

(Figure 7). Again, if V is one-dimensional (I91 = I), the

following record is written to the file ISCR:

7

V(J) =V(J) +DIFACT .
If V is two-dimensional (I91 = 2), this takes the form:

7

V(1,J) = V(1,J) + DIFACT .

The identification of the last record is written to the temporary

file ISCR. Then all the records from the temporary file (after

its rewinding) are transferred to the file IOUT. The temporary

file is rewound again with the result that the next record

associated with the next term is written from the beginning of

the file ISCR.

If the variable, with respect to which the differentiation

is performed, is not involved IXX f 1 (Figure 6) in the current

term, all the information on this term is not ess.entia1. After

rewinding ISCR, a check is made whether the whole expression

has already been processed. If this condition is not met

IEND # 1, control is tranferred to the appropriate initialization

for the next term . If the differentiation of the current

function with respect to the given variable is accomplished

IEND = 1, the next variable with respect to which the differentia-

tion is to be performed, if any, is selected . Otherwise,

the next function is looked for and so on.

Com~arison of Results Obtained with Manual Derivative Pre~aration

For the(examples taken from J. Abadie's program [I], the

comparison was carried out between manually organized programs

and those automatically obtained by DIF program.

In addition to undoubtedly greater ease of use in the

application with automatic differentiation, program size

along with compilation and running time were compared.

Some size and compilation time increases for automatically

obtained programs should not be considered as a shortcoming of

the method because the compilation is a single-shot process.

The difference in size ranges from 5324 to 6348, and from

5164 to 5620. The compilation time increased from 2-6 seconds

to 4.9 seconds for the user and from 3.3 seconds to 4.2 seconds

for the system.

Any increase in size and compilation time are dominated by

practically the same running time for both cases. All the

aforesaid indicates that the automatic differentiation is

preferable to manually coded programs.

REFERENCES

[I] Colville, A.R. "A Comparative Study of Nonlinear
Programming Codes", IBM New York, Scientific Center
Report No. 320-2949, June 1968.

Entry I
&

g e t t h r e e f i l e names
and execute SETFILs

(on END)
read IFIN (1 l i n e , 80 chars)

w r i t e END on IOUT
I\ w r i t e IOUT (same l i n e)

I

c o l s . 1-4 = "CDIF"? LC=II;3
e x i t

scan from c o l . 5 t o l e f t hand
s i d e pa r en the s i s " (" ;
ignore b lanks , " (" and save t h e
r e s t i n LEFT, b l ank - f i l l ed i f
l e s s than 4 chars .

(Any dev i a t i on i n
format is an e r r o r . . . -
Comment and e x i t)

Pass over " I , J)=" . Next non-blank
should be l e t t e r . Scan t o t h e nex t
" (' I i f any o r ", ". Save "fnn (" i n
NAMF, b l ank - f i l l ed i f l e s s than 4
chars .

Scan t o t h e nex t 2 non-blank- cha r s
II I= II (i f any) o r "J="

o r blank and pu t it t o JBEG

Are next 2 non-blank cha r s

Is next char a comma?

/\

I Scan f o r m t o t h e f i r s t comma no (i f no t
and pu t t o NUIEND blank , e r r o r)

Pass over "J=" S t ep over comma, scan
f o r k t o t h e next blank

1 and pu t it t o JEND I --r-

I f JEND <
JBEG, e r r o r

F igure 1

I276 = NUIBEG - 1 e
Given t h e f u n c t i o n name
s t o r e d i n NAMF, choose
t h e c u r r e n t index v a l u e
f o r t h i s f u n c t i o n 1276.
I f . the f u n c t i o n i s n o t
indexed, I276 = 1 is a
parameter o f a DO-loop

I276 = I276 + 1
I276 < NUIEND?

NAMX = JBEG -

Choose t h e c u r r e n t v a r i -
a b l e w i th r e s p e c t t o which no

t h e d i f f e r e n t i a t i o n i s t o
be performed. The v a r i -
a b l e index NAMX = NAMX + 1 Yes

NAMX < JEND?

Compare NAMF (4) w i th
ICHA scanned from c o l - 1

t o " (" matchinq?

Read I N (I l i n e)
Is t h e c u r r e n t func-
t i o n indexed?

Col -1-4 = "CFN"?
Yes no I n d i c a t i o n o f

w us ing ICHA in-

Scan from co1.5 t o Y (" o r t o b lank s t e a d o f read-

A& i n g (K10=2) i s

l1 (I 1 o r "BL" a g a i n s t NAMF (4) . Are
r e g i s t e r e d .

t h e r e any o t h e r c h a r s excep t BLs yes'
which do n o t match?

4L 1
\ no

Yes
The l a s t c h a r was " I " ? V

I
no (t h e l a s t cha r .

C 1 was "BL")

Read t h e number NF i n parenthe- VI

s is I W = I276 = ? . ,
Yes 7 I

I n d i c a t i o n o f u s ing r e a d i n g I N f i l e f o r sub-
s equen t execu t ion main body DIF (K10=1) i s
r e g i s t e r e d .

F i g u r e 2

Initialize

1. Indication that the function definition is not finished
IEND = 0 (alternatively IEND = 1).

2. Indication that the equality sign was not encountered
IEQ = 0 (alternatively IEQ = 1).

3. Indication of the current char. number to be read K = 0,
and the normalized current char number in the current
line KNOR = 0.

4. Indication of the current non-blank char number to be
read K60 = 0.

5. WRITE to IOUT the initialization of V(1,J) if I91 = 1
WRITE (IOUT, 121) (LEFT(I), I = i,4), NAMX

121 FORMAT (" 114~1,11(11, ,11) = 011)
with result that the statement is written

V(J) = 0
If I91 = 2

WRITE (I O U T , ~ ~ ~) (LEFT(I), I = 1,4), 1276, NAMX
123 FORMAT (" "4A1," (",13,",13,") = 0"
with result that the statement is written

V(1,J) = 0

1. An indication that beginning term does not include any
factor with variable X(NAMx)

- IXX = 0 (is set to 1 if any).

2. An indication that the current term is being processed
K240 = 1. Alternatively, if either the chars " + / - " I

referred to the beginning of the next term, or end of
expression are encountered-; that characerizes the end
of the current term and K240 is set to 2.

3. An indication that the next char to read ISN = 0 (alter-
natively ISN = *, or +/-, if those are referred to the
beginning of the nect term).

4. An indication that the current char IS is not * and
K10 # 1

K194 = 1 (K194 is set to 2, when IS = * and K10 = 1

5. WRITE to ISCR the initial value of DIFACT = 1
WRITE (ISCR, 28)

2 8 FORMAT (" DIFACT = 1")

J +
1. An indication that the beginning factor does not involve

the raising to a power IST = 0 (is set to 1 if any).

2. Setting the initial value of the current integer index
value for X NX = 0

I
I

1. Setting the initial value of the exponent EXP = 0

2. An indication of the exponent as an integer number
K143 = 1 (is set to 2, if exponent is a real number).

3. Counter Parameters:

M = 0 the sebsequent number of significant
digit

IDEC = -1 an indication of the current number to
be read as an integer (IDEC # -1 if it is
not)

ISIGN = 1 an indication of the current number to be
read as the positive one (ISIGN = -1, if it
is negative).

Figure 3

-24-

Current char number
K = K + 1

IN file (K10 = 1) or
Read current READ IN current line

--- char from ICHA (80 char) in temporary
ICHAR (80)

K10 = 2 The entire current
line was processed?

Check the end of function
definition as a blank char
in ICHA

Current char IS = ICHAR (KNOR)

!--- *--- -- Check the end of function definition >
as the comment card

no 4 I end

Check ID for BLANCK Register end in ICHA
or continuation sign ICHA (K60 + 1) = IBL

Set IEND = 1

Store IS in ICHA: ICHA (K60+ 1) = IS

if less than 3 chars. This string is stored
o ~ l y for the first variable encountered and

using counter I
I L
I

Figure 4

I D

-25-

i g u r e 4 c o n t .

0 It

w

1s = "-"? -

n o t -

Yes -

L

ISIGN = -1

no

Yes
IS = 11*117 '

P r i n t e r r o r command
A

READ t h e n e x t c h a r ISN u s i n g
ICHAR (o r ICHA) depending on
K10 = 1 (K10 = 2) -

> E x i t

u Yes

w
1s = " . I *?

no

Yes
I S = d i g i t ' -' R e g i s t e r I S i n c o u n t e r - -.

C

-U -

' To s e t up t h e i n d i c a t i o n of a
r e a l number t o be r e a d IDEC

Figure 5

ISN = "* I *

@ nob b

Check if the raising
to a power was encoun-
tered in the current

Indication of the
reading to a power
for the current term
IST = 1
ISN = 0 .

< yes

Yes NX = NAMX?

Check for the variable
presence in the current
factor NX # O?

A

factor IST = l?

no . J ,

Reading function from
IN file K10 = l?

W

not

The derivative of Using a counter, com-
the current factor
is created as the
continuation line
for DIFACT and is

yes

written to ISCR

* #

Store IS = ISN in ICHA

.

pute and write to ISCR
the coefficient value,
preceeded by *, as the
continuation line

-
4

& ----- * X(NX) !I
J w *

Using counter
compute and

--+

Check if the last factor
of the current term has
just been processed store as a

variable EXP K240 = 2?

no
b

the exponent . T Yes
Ib

to c I
Set up IST = 0

r

J.
NX = NAMX?

no

-

I b

\

EXP - 1 = l? Write to ISCR the derivative
of the current factor, which
is equal to the factor itself,
and written as the continua-
tion line, for DIFACT pre-
ceeded by * & ----- (NX)**(EXP)

not \ f

Yes *
d w C

L

Write to ISCR the
derivative of the
current factor
created as the
continuation line
for DIFACT (see 5.5) >-

-

preceeded by multi-
plication sign *
& ------ *EXP*X(NX)
** (EXP-1)

,
The derivation of
the current factor
created as the con-
tinuation line for
DIFACT (see 5.5) is
written to ISCR
& ----- *EXP*X(NX)

I

1

w

Store the char which was read
ISN = IS

Set up the indication of the
end for the current term

K240 = 2

Check if the variable X (NAMX)
was involved under processing
the current term

IXX = l?

Check if the whole
expression has been
processed

I IEND = I? I

Figure 6

Check i f t h e v a r i a b l e X (NAMX)
w i t h r e s p e c t t o which t h e
d i f f e r e n t i a t i o n is t o be per -
formed was involved by t h e
p roce s s ing of t h e c u r r e n t
term

I X X = l ?
I

Yes

V

Check i f t h e f u n c t i o n t o be
d i f f e r e n t i a t e d i s indexed

I 9 1 = 2?

Write t o ISCR t h e i d e n t i f i -
c a t i o n o f t h e l a s t r e co rd I

I

Rewind ISCR f i l e ~

Crea t e i n ISCR f i l e t h e
s t a t emen t t o add t h e de-
r i v a t i o n of t h e c u r r e n t
term t o t h e express ion

Copy a l l t h e r eco rds from
t h e f i r s t t o t h e las t one
from ISCR t o IOUT f i l e

C rea t e i n ISCR f i l e
t h e s imula r s t a t e -
ment

F igu re 7

dar ivative
V (J) = V (J) + DIFACT

V (I , J) = V (I , J) + DIFACT

A P P E N D I X I

- n 1 ~ E : ~ S T O N X (51 , A (S t f) ,CI5Z
- -- -

I O l j T no -
N A M F ~ ~ H I O U

- - -

- - - - - - CALL S E T F I L (I O U T f N A M F I - - - - - - - -

no 1s I11,5
1 a X C (I > @ I + I ~ -- ~ - . -~ .. - -

CBIF L;[J I IF ,J I~>
- -- W R I O E [I O U T , Z B I (C (I I , 1 8 1 I 2 IT~, .trP,Fg-l

. ,- , f11,5)-~
. - - - . - - -- --- - -

28- - -~- ~ ~ M ~ T (% D ~ / ~ ~ C I ' ~ 8 1 1 , ~ 1 5 m 5 ,
- - C D I F A [I , J) I G (I] , I ~ ~ ~ ~ , J . ~ ~ ~ ~ ~ - - ~ . . - ~ . - -~ ~ .~ - - mr c(J)~iG3, J8 l , f ~

