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Preface 

Interest in human settlement systems and policies has been 
a critical part of urban-related work at IIASA since its incep- 
tion. Recently this interest has given rise to a concentrated 
research effort focusing on migration dynamics and settlement 
patterns. Four sub-tasks form the core of this research effort: 

I. the study of spatial population dynamics; 

11. the definition and elaboration of a new research 
area called demometrics and its application to 
migration analysis and spatial population fore- 
casting; 

111. the analysis and design of migration and settle- 
ment policy; 

IV. a comparative study of national migration and 
settlement patterns and policies. 

This paper, the sixteenth in the dynamics series, studies 
the long-term properties of the nonlinear model of interregional 
population growth and distribution proposed by McGinnis and 
Henry. Intended as an alternative to the linear model which un- 
derlies a large number of earlier IIASA publications, this model 
displays peculiar properties which hinder its usefulness in the 
study of the dynamics of multiregional population systems. 

Related papers in the dynamics series, and other publica- 
tions of the migration and settlement study, are listed on the 
back page of this report. 

Andrei Rogers 
Chairman 
Human Settlements 
and Services Area. 

May 1978 





Abstract 

In this paper, a general components-of-change model for a 
multiregional demographic system is proposed. Characterized by 
independently derived retention probabilities, it subsumes two 
of the previously proposed models of population growth and dis- 
tribution: the linear model studied by Rogers and the nonlinear 
model put forward by McGinnis and Henry. These two special cases 
are shown to be symmetrical variants of the proposed general 
model for a similar consideration of the independently derived 
retention probabilities. 

The long-term behavior of the nonlinear model, partially 
looked at by McGinnis and Henry, is further examined here and 
then contrasted with the long-term behavior of the linear model. 
Unfortunately, the existence of a long-term equilibrium could 
not be fornally proved. However, the derivation of various 
properties concerning the stable state of the system made possi- 
ble the development of a methodology permitting the a priori 
determination of all acceptable equilibrium distributions. The 
ZPG (zero population growth) and non-ZPG specifications are sep- 
arately examined, because the non-ZPG case is not as straight 
forward an extension of the ZPG case as in the linear model. 

The long-term properties of the linear and nonlinear models 
are contrasted by applying these properties to the analysis of 
migration between the four U.S. Census regions over the period 
1965-1970.  

Because of its peculiar-properties, we conclude that the non- 
linear model cannot be a useful substitute for the linear model in 
the study of the dynamics of multiregional population systems. 
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S t a b l e  Growth i n  t h e  N o n l i n e a r  Components-of-Change Model 

o f  I n t e r r e g i o n a l  P o p u l a t i o n  Growth a n d  D i s t r i b u t i o n  

INTXOilUCTION 

The demographic  components-of-change model h a s  been  a p p l i e d  

t o  t h e  problem o f  i n t e r r e g i o n a l  p o p u l a t i o n  g rowth  a n d  d i s t r i b u -  

t i o n  by Rogers  (1968)  and  Liaw (1975)  . Both  o f  t h e s e  s c h o l a r s  

have  u s e d  a  l i n e a r  f o r m u l a t i o n  c h a r a c t e r i z e d  by a n  a l l o c a t i o n  o f  

o u t m i g r a n t s  f rom any  r e g i o n  i n  c o n s t a n t  p r o p o r t i o n s  among p o s s i b l e  

d e s t i n a t i o n  r e g i o n s .  Such a  f e a t u r e  h a s  been  c r i t i c i z e d  o n  t h e  

g r o u n d s  t h a t  o u t m i g r a n t s  d i s t r i b u t e  t h e m s e l v e s  among r e g i o n s  i n  

p r o p o r t i o n  t o  economic o p p o r t u n i t i e s  o f f e r e d  by t h e s e  r e g i o n s  

(Lowry, 1 9 6 6 ) .  T h i s  h a s  l e d  t o  t h e  deve lopmen t  o f  a  n o n l i n e a r  

f o r m u l a t i o n  o f  t h e  model ,  which r e s e m b l e s  t h e  c l a s s i c a l  g r a v i t y  

model (> lcGinnis /Henry ,  1973)  . 
Our p u r p o s e  i s  t o  a n a l y z e  f u r t h e r  t h e  l ong- t e rm f e a t u r e s  o f  

t h e  n o n l i n e a r  f o r m u l a t i o n  p a r t i a l l y  l ooked  a t  by McGinnis/Henry 

and t o  c o n t r a s t  i t s  f e a t u r e s  w i t h  t h o s e  of  t h e  w e l l  e s t a b l i s h e d  

l i n e a r  f o r m u l a t i o n .  T h i s  w i l l  b e  c a r r i e d  o u t  i n  f o u r  s e c t i o n s .  

S e c t i o n  I ,  b r i e f l y  d e s c r i b e s  t h e  g e n e r a l  f o r m u l a t i o n  o f  t h e  

components-of-change model and  p o s i t s  t h e  r e q u i r e m e n t  of  

i n d e p e n d e n t l y  d e t e r m i n e d  r e t e n t i o n  p r o b a b i l i t i e s  t o  g e n e r a t e  

a d e q u a t e  s t a b l e  growth  p a t t e r n s .  I t  t h e n  d e r i v e s  b o t h  t h e  l i n e a r  

and n o n l i n e a r  f o r m u l a t i o n s  o f  t h e  model a s  " d u a l "  v a r i a n t s  o f  

t h i s  g e n e r a l  model ,  and  g o e s  on w i t h  a  summary o f  t h e  l o n g - t e r n  

p r o p e r t i e s  o f  t h e  l i n e a r  f o r m u l a t i o n .  

S e c t i o n  11, i s  a  t h o r o u g h  e m p i r i c a l  a n a l y s i s  o f  t h e  n o n l i n e a r  

model ;  i t s  r e s u l t s  s u p p o r t  t h e  e x i s t e n c e  o f  a  l ong - t e rm c o n v e r -  

gence  toward  s t a b i l i t y ,  s i m i l a r  t o  t h e  l i n e a r  c a s e .  

S e c t i o n  111, c o n c e n t r a t e s  on t h e  s e a r c h  f o r  a c c e p t a b l e  

e q u i l i b r i u m  s o l u t i o n s  i n  t h e  ZPG ( z e r o  p o p u l a t i o n  g rowth )  c a s e * ,  

* I n  t h i s  p a p e r  t h e  ZPG s y s t e m  i s ,  by  o u r  d e f i n i t i o n ,  c h a r a c t e r i z e d  
by z e r o  r e g i o n a l  r a t e s  o f  n a t u r a l  i n c r e a s e .  



e x t e n d i n g  t h e  a n a l y s i s  i n i t i a t e d  by McGinnis/Henry ( 1 9 7 3 ) .  

S e c t i o n  I V  a l s o  d e a l s  w i t h  t h e  same problem, b u t  f o r  t h e  non- 

Z P G  c a s e ,  whose complex i ty  makes it d i f f i c u l t  t o  p r e s e n t  a  l e v e l  

of  a n a l y s i s  a s  comple te  a s  i n  t h e  Z P G  c a s e .  

I n  t h e  c o u r s e  o f  o u r  e x p l o r a t i o n s ,  w e  have a l s o  examined 

a l t e r n a t i v e  s p e c i f i c a t i o n s  o f  t h e  components-of-change model,  i n  

which r e t e n t i o n  p r o b a b i l i t i e s  a r e  n o t  i n d e p e n d e n t l y  de te rmined ,  

t h e r e b y  g e n e r a t i n g  u n d e s i r a b l e  problems.  The a n a l y s i s  of t h e  

growth p a t t e r n  o f  t h e s e  s p e c i f i c a t i o n s  i s  i n c l u d e d  i n  Appendices 

1 th rough  3 .  

I .  BACKGROL.3  SECTION 

I n  o r d e r  t o  c l a r i f y  t h e  c o n t r a s t s  between t h e  l i n e a r  and non- 

l i n e a r  f o r m u l a t i o n s  o f  t h e  components-of-change model o f  i n t e r -  

r e g i o n a l  p o p u l a t i o n  growth and d i s t r i b u t i o n ,  w e  b e g i n  w i t h  s e v e r a l  

i m p o r t a n t  g e n e r a l i t i e s .  

The Com~onents-of-Chanue Model: G e n e r a l i t i e s  

Suppose t h e r e  a r e  n  r e g i o n s  i n  a  c l o s e d  m u l t i r e g i o n a l  popula-  

t i o n  sys tem.  L e t  w i ( t )  and w i ( t  + 1 )  be t h e  p o p u l a t i o n  s i z e s  o f  

t h e  ith r e g i o n  a t  t i m e s  t and t + 1 ; W .  ( t )  > 0 be t h e  number o f  l i  - - 
people  p r e s e n t  i n  r e g i o n  j a t  t i m e  t + 1  and i n  r e g i o n  i a t  time 

t ;  and N i ( t )  b e  t h e  ~ o p u l a t i o n  change due  t o  n a t u r a l  growth i n  

r e g i o n  i d u r i n g  t h e  u n i t  t i m e  i n t e r v a l  ( t , t  + 1 )  . The f low 

e q u a t i o n s  of  t h e  m u l t i r e g i o n a l  p o p u l a t i o n  sys tem c a n  t h e n  be  

w r i t t e n  a s  

T h i s  e q u a t i o n  s t a t e s  t h a t  t h e  p o p u l a t i o n  s i z e  i n  r e g i o n  i a t  

t i m e  ( t  + 1 )  i s  o b t a i n e d  from t h e  p o p u l a t i o n  p r e s e n t  i n  r e g i o n  i 

a t  t i m e  t by add ing  n e t  p o p u l a t i o n  change due t o  n a t u r a l  i n c r e a s e  

growth o v e r  t h e  p e r i o d  ( t , t  + 1 )  t o  t h e  f lows  of  i n m i g r a t i o n  from 

a l l  o t h e r  r e g i o n s ,  and by s u b t r a c t i n g  t h e  f lows  o f  o u t m i g r a t i o n  

t o  a l l  o t h e r  r e g i o n s .  



I n  what fo l lows ,  N i ( t )  i s  assumed t o  vary wi th  t h e  s i z e  of  

t h e  a t - r i s k  popula t ion  w i ( t ) ,  i . e . ,  

The migra t ion  f lows a r e  assumed t o  depend on populat ion 

s i z e s  a t  t h e  o r i g i n  and d e s t i n a t i o n  a s  w e l l  a s  a  r e l a t i o n a l  term 

s tanding  f o r  t h e  i n t e r v e n i n g  o b s t a c l e s  between o r i g i n  and d e s t i -  

n a t i o n  r eg ions  : 

- 
M i j  ( t )  = a i j  ( t )  w i ( t )  w .  ( t )  V i l j  - I . .  . . , n  

3 
( 3 )  

i n  which a  ( t )  i s  t h e  r e l a t i o n a l  t e r m  l i n k i n g  r eg ions  i and j .  i j 

S u b s t i t u t i o n  of  ( 2 )  and ( 3 )  i n t o  t h e  flow equa t ion  ( 1 )  then 

y i e l d s  

w .  ( t +  1 )  = [ l  + n i ( t ) l  w i ( t )  + w i ( t )  [ 1 a . .  ( t )  w j  ( t ) ]  
1 j # i  3 1  

This  may be r e w r i t t e n  i n  a  more compact format a s :  

i n  which 

{w( t )}  i s  a  v e c t o r  whose t y p i c a l  elements i s  w i ( t ) ;  

~ ( t )  i s  a  d iagona l  mat r ix  whose t y p i c a l  element i s  w .  ( t ) ;  
1 

I - i s  t h e  i d e n t i t y  mat r ix ;  

U ( t )  - i s  a  d i agona l  ma t r ix  of n a t u r a l  i n c r e a s e  r a t e s ;  

A ( t )  i s  a  ma t r ix  of r e l a t i o n a l  terms between each p a i r  

of  r eg ions ;  and 

A '  ( t )  i s  t h e  t r a n s p o s e  of  $ ( t ) .  

Note t h a t  i n  A ( t )  a l l  d iagona l  elements a r e  equa l  t o  ze ro .  - 



C l e a r l y ,  e q u a t i o n  ( 5 )  makes it p o s s i b l e  t o  i t e r a t i v e l y  c a l -  

c u l a t e  t h e  p o p u l a t i o n  d i s t r i b u t i o n  o f  t h e  sys t em a t  any f u t u r e  

p o i n t  i n  t i m e  from p r i o r  knowledge o f  N ( t )  and A ( t )  . However, - - 
a f t e r  a  s u f f i c i e n t l y  l o n g  p e r i o d  o f  t i m e ,  t h e  p a t t e r n  o f  popu- 

l a t i o n  growth and d i s t r i b u t i o n . i m p l i e d  S y  t h e  i x ~ l e m e n t a t i o n  o f  

t h e  p r o j e c t i o n  p r o c e s s  embodied i n  ( 5 )  may c r e a t e  u n f o r t u n a t e  

problems.  For  example,  i f  w e  suppose  t h a t  t h e  m a t r i x  A ( t )  i s  - 
s t a t i o n a r y ,  under  c e r t a i n  c i r c u m s t a n c e s ,  w e  c a n  o b t a i n  n e g a t i v e  

p o p u l a t i o n s !  FIoreover ,  Appendix 2 ,  which d e a l s  w i t h  t h i s  s p e c i a l  

c a s e  shows t h a t  r e g i o n a l  p o p u l a t i o n s  need n o t  b e  n e g a t i v e  t o  

o b t a i n  problems:  it may happen t h a t  t h e  number o f  m i g r a n t s  o u t  

of  a  r e g i o n  i s  h i g h e r  t h a n  t h e  number o f  p e o p l e  l i v i n g  i n  t h e  

r e g i o n  a t  t h e  b e g i n n i n g  o f  t h e  t i m e  p e r i o d  c o n s i d e r e d  and t h a t  

t h e  p o p u l a t i o n  o f  t h i s  r e g i o n  r emains  p o s i t i v e  because  t h e  number 

of i n m i g r a n t s  i s  g r e a t e r  t h a n  t h e  number o f  o u t m i g r a n t s .  The 

o c c u r r e n c e  o f  such  problems s t ems  from t h e  a s s u m p t i o n s  c o n c e r n i n g  

m i g r a t i o n  f lows  i n c l u d e d  i n  ( 5 )  a c c o r d i n g  t o  which s t a y e r s  a r e  

o b t a i n e d  a s  r e s i d u a l s  (by s u b t r a c t i n g  t o t a l  o u t m i g r a t i o n  f l o w s  

from t h e  b e g i n n i n g  o f  p e r i o d  p o p u l a t i o n s ) ,  which does  n o t  guaran-  

tee t h e i r  p o s i t i v i t y .  The c o n c l u s i o n  i s  t h a t  a  mean ingfu l  f o r -  

m u l a t i o n  o f  t h e  components-of-change model must e n s u r e  t h a t  t h e  

t o t a l  m i g r a t i o n  o u t  o f  a  r e g i o n  i s  less t h a n  t h e  p o p u l a t i o n  o f  

t h i s  r e g i o n .  T h e r e f o r e ,  w e  suppose  t h a t  t h e  r e t e n t i o n  p r o b a b i l -  

i t i e s  a r e  g i v e n  i n d e p e n d e n t l y ,  a s  a  p r o p e r t y  o f  t h e  r e g i o n s  them- 

s e l v e s ,  i . e . ,  



i n  which 

l l i i ( t )  i s  t h e  f low o f  s t a y e r s  i n  r e g i o n  i; and 

P i i  ( t )  i s  t h e  p r o b a b i l i t y  o f  b e i n g  i n  r e g i o n  i a t  t i m e  

t + 1 f o r  an i n d i v i d u a l  p r e s e n t  i n  r e g i o n  i a t  

t i m e  t. 

S i n c e  w e  have t h e  f o l l o w i n g  r e l a t i o n s h i p  between t h e  number o f  

s t a y e r s  and m i g r a n t s :  

t h e  r e s u l t  i s  t h 3 t  w e  can r e w r i t e  ( 1 )  a s  

o r ,  a f t e r  s u b s t i t u t i n g  ( 2 ) ,  ( 3 )  and (6), 

W e  can rewrite ( 8 )  more compactly a s  

i n  which P ( t )  i s  a  d i a g o n a l  m a t r i x  o f  r e t e n t i o n  p r o b a b i l i t i e s .  -d 
Indeed ,  a  p r i c e  has  t o  be  p a i d  f o r  t h e  c h o i c e  o f  an independen t  

d e r i v a t i o n  o f  P d ( t ) :  A ( t )  - now depends on P d ( t )  a s  shown by t h e  

f o l l o w i n g  e q u a l i t y  l i n k i n g  two a l t e r n a t i v e  e x p r e s s i o n s  o f  t h e  

o u t m i g r a t i o n  f lows  



which c a n  b e  e x p r e s s e d  more c o n c i s e l y  a s  

The " D u a l i t y "  o f  t h e  L i n e a r  and  N o n l i n e a r  f lode l s  

To a l l o w  f o r  t h e  v a r i a t i o n s  o f  t h e  r e l a t i o n a l  t e r m  a i j  ( t )  , 
w e  p o s i t  w i t h  Alonso (1973,  1977) 

i n  which 

d i j  i s  a  conduc tance  t e r m  l i n k i n g  r e g i o n s  i and j  ( e . g . ,  

t h e  d i s t a n c e  between i and j ) ;  

Y.: ( t )  a  t e r m  c h a r a c t e r i s t i c  o f  r e g i o n  i r e l a t e d  t o  i t s  "push-  
J- 

i n g "  power ( p o p u l a t i o n )  ; and 

6. ( t )  a  t e r m  c h a r a c t e r i s t i c  o f  r e g i o n  j  r e l a t e d  t o  t h e  ex- 
I 

a n t e  number o f  m i g r a n t s  t o  r e g i o n  j p e r  u n i t  o f  " p u l l "  

( p o p u l a t i o n )  . 
I n  m a t r i x  f o r m a t ,  w e  t h u s  have  

i n  which 

B ( t )  and y  ( t )  a r e  d i a g o n a l  m a t r i c e s ,  and - - 
D i s  a  m a t r i x  whose ( i , j )  th e l e m e n t  i s  t h e  conduc tance  - 

f a c t o r  d j i .  

C l e a r l y ,  f o r  any  p r i o r  c h o i c e  o f  P ( t ) ,  B ( t )  and y ( t )  a r e  t o  b e  
-d - - 

o b t a i n e d  from ( 1  0)  . However, t h e  v e c t o r  e q u a t i o n  ( 1  0 )  c o n t a i n s  

o n l y  n  s c a l a r  e q u a t i o n s  which make it i m p o s s i b l e  t o  d e t e r m i n e  

t h e  2n non-zero s c a l a r s  c o n t a i n e d  i n  B ( t )  and y ( t ) .  The r e s u l t  - - 
i s  t h a t  t h e  l i n k a g e  o f  A ( t )  and D must  t a k e  t h e  forrn o f  e i t h e r  - - 



I n  t h e  former c a s e ,  s u b s t i t u t i n g  (1  1 )  i n t o  ( 1 0 )  y i e l d s  

Supposing t h e  wi ( t )  # 0 ( V i )  , w e  t h e n  have 

i n  which { i )  i s  a column v e c t o r  o f  ones .  

L e t  u s  now suppose t h a t  P d ( t )  i s  independen t  o f  t i m e ,  i . e . ,  

P ( t )  = Pd. Then B ( t )  { w ( t )  1 i s  a c o n s t a n t  v e c t o r :  -d - 

s o  t h a t  t h e  p l a c e - t o - p l a c e  m i g r a t i o n  f lows  

can  b e  e x p r e s s e d  a s  

i n  which pi j  i s  a c o n s t a n t .  Then t h e  p r o j e c t i o n  p r o c e s s  r e d u c e s  

t o  



i n  which G i s  a  c o n s t a n t  growth o p e r a t o r  m a t r i x ,  t h a t  i s  t h e  sum - 
of  N and a  c o n s t a n t  m a t r i x  o f  t r a n s i t i o n  p r o b a b i l i t i e s  

-, 

The a d j u s t m e n t  o f  a  ( t )  by a  m u l t i p l i c a t i v e  f a c t o r  B .  ( t )  
i j  3 

r e l a t i n g  t o  t h e  d e s t i n a t i o n  r e g i o n  t h u s  l e a d s  t o  t h e  u s u a l  l i n e a r  

f o r m u l a t i o n  o f  t h e  components-of-change model (Rogers ,  1968 and 

Liaw, 1 9 7 5 ) .  

A l t e r n a t i v e l y ,  i f  w e  choose t o  t a k e  t h e  m u l t i p l i c a t i v e  

a d j u s t m e n t  i n  r e l a t i o n  t o  t h e  o r i g i n  r e g i o n  y i  ( t )  , w e  have 

o r ,  i n  s c a l a r  terms, 

s o  t h a t  t h e  p l a c e - t o - p l a c e  m i g r a t i o n  f lows  can be  e x p r e s s e d  a s ,  

d  wi ( t )  w .  ( t )  
( t )  = ( 1  - p .  . )  i j , V i , j  = I ,  . . .  

11 
In I 

1 d i k w k ( t )  
k # i  (14)  

j # i  . 

T h i s  i s  p r e c i s e l y  t h e  s p e c i f i c a t i o n  o f  t h e  n o n l i n e a r  model pro-  

posed by McGinnis and Henry (1973) . 
I n  c o n c l u s i o n ,  t h e  c l a s s i c  l i n e a r  and n o n l i n e a r  s p e c i f i c a -  

t i o n s  o f  t h e  components-of-change model a r e  s p e c i a l  c a s e s  o f  t h e  

v e r s i o n  i n  which r e t e n t i o n  p r o b a b i l i t i e s  a r e  i n d e p e n d e n t l y  d e t e r -  

mined. Moreover t h e y  a p p e a r  a s  " d u a l "  v a r i a n t s  i n  t h a t  t h e y  

cor respond  t o  s i m i l a r  t y p e s  o f  a d j u s t m e n t  f o r  t h e  r e l a t i o n a l  

e l ements :  t h e  d i f f e r e n c e  between b o t h  v a r i a n t s  l i e s  i n  t h e  

c h o i c e  o f  t h i s  a d j u s t m e n t  t h a t  r e l a t e s  t o  d e s t i n a t i o n  ( l i n e a r  

s p e c i f i c a t i o n )  o r  o r i g i n  ( n o n l i n e a r  s p e c i f i c a t i o n ) .  



The L i n e a r  Model: Summary o f  P r o p e r t i e s  and  R e s u l t s  

The s p e c i f i c a t i o n  o f  t h i s  model ( 1 3 )  makes c l e a r  t h a t  w e  can  

i t e r a t i v e l y  c a l c u l a t e  t h e  p o p u l a t i o n  d i s t r i b u t i o n  a t  any  f u t u r e  

p o i n t  i n  t i m e  g i v e n  s t r u c t u r a l  m a t r i c e s  o f  N and  P I  a n d  an  i n i -  - 
t i a l  d i s t r i b u t i o n  ( ~ ( 0 )  1 .  

With  t h e  d a t a  p r o v i d e d  by t h e  1970 U.S. Census  o f  P o p u l a t i o n  

it i s  p o s s i b l e  t o  compute t h e  p r o b a b i l i t y  t r a n s i t i o n  m a t r i x  P  - 
r e l a t i n g  t o  t h e  s y s t e m  o f  t h e  f o u r  U.S. Census  r e g i o n s  ( N o r t h  

E a s t ,  N o r t h  C e n t r a l ,  S o u t h  and  West) o b s e r v e d  d u r i n g  t h e  p e r i o d  

1965 - 1970 (see T a b l e  1 ) .  N a t u r a l  i n c r e a s e  d a t a  f o r  t h e  same 

s y s t e m  ( T a b l e  2 )  a l l o w s  t h e  e s t i m a t i o n  o f  G r e l a t i n g  t o  t h e  same - 
p e r i o d .  

Tab le  1. U.S. r e g i a n s  1965 - 1970: t h e  P m a t r i x  - 

Table  2 .  U.S. r e g i o n s  1965 - 1970: t h e  m a t r i x  of 
n a t u r a l  i n c r e a s e  r a t e s  

WEST 

0 

0 

0 

0.01003 

1970 

NORTH EAST 

NORTH CENTRAL 

SOUTH 

WEST 

NORTH EAST 

0.00599 

0 

0 

0 

NORTH CENT- 

0 

0.00780 

0 

0 

SOUTH 

0 

0 

0.00910 

0 



Applying the matrix G to the initial population distribution -. 
of the system (given by the first row figures of Table 3) permits 

one to calculate the regional population distribution for 1970 

(given by the second row of the same table). From there, using 

the aforementioned iterative process, one can calculate the re- 

gional shares at any future point. Table 3 indicates that these 

regional shares tend to stabilize after a sufficiently long pe- 

riod of time: 

- the North East region constitutes 16.43 percent of the 

total population in the stable state versus 24.20 percent 

initially. 

- A similar decrease in importance is experienced by the 

North Central region--23.76 percent in the long-term 

versus 28.08 percent initially. 

- In contrast, the .South and West regions increase their 

shares from 30.82 to 36.50 percent and 16.90 to 23.31 

percent, respectively. 

However, the simplicity of (13) makes the iterative generation 

of the system's stable state unnecessary. It is possible to 

derive an analytical solution to the model by applying Laplace 

transformations to (13). Supposing that the eigenvalues of G 
-. 

are distinct (which is generally the case) we have (Liaw, 1975): 

where Xi is one of the n-distinct roots of the characteristic 
equation I G  - - XI1 = 0 and B = lim (A - Xi) (G - XI)-' whose non- 

-i Mi - -., 

zero columns are all characteristic vectors of the structural 

matrix G associated with the characteristic value X . Suppose X 
-. i ' 1 

is the largest characteristic root of the system's structural 

matrix, then (15) may be rewritten as (Liaw, 1975) : 



Table 3 .  Linear model-non-ZPG formulation - U . S .  regions - 
ante simulation 

Regional Shares of Total Population 
(Percentage 

Period 

- 

North North South West 
" ~ a s t  Central 



'i t Since 1 - 1  < 1, we have {w(t)I - h l  B1 {w(O)} as t -r where X - 
B1 = [c~{x}~, c ~ ~ x I ~ , . . . , c ~ ~ x ~  1 I is a positive characteristic 

matrix in which {x) is the right characteristic vector associ- 1 
ated with XI. 

If h l  < 1, then {w(t) 1 + 101 (case of a vanishing system) : 
t whereas, if h > 1, then {w(t)} - h l  [I ci W~(O)]{X}~ (case of an 1 - 

exploding system tending towards a positive long-run proportional 

distribution that is independent of the initial population size 

and distribution). Specifically, the long-run proportional dis- 

tribution is given by the characteristic vector {xI1 of the struc- 

tural matrix G associated with the largest characteristic root X1 - 

Note that if N = 0, then the interregional population system - - 
represented by (13) is a ZPG-system such as 

The structural matrix P is the stochastic matrix of a regular - 
Markov chain which has a unit characteristic root that exceeds 

all other characteristic roots in magnitude and furthermore, has 

a stochastic characteristic matrix associated with this charac- 

teristic root that has identical columns. The ZPG-system thus 

approaches the positive equilibrium distribution 

where K(0) is the initial total population of the system and {xI1 

tlie normalized right characteristic of P (associated with hl). - 
Clearly, in such circumstances, the total population of the 

system remains equal to the initial population and the process 

studied is one of population distribution between regions. 



11. THE NONLINEAR MODEL: EMPIRICAL ANALYSIS 

Extensive projection exercises, carried out with several 

sets of data, allow us to conclude that the projection of a 

spatially disaggregated population using the nonlinear model 

also leads to a stable situation. However, the more complex 

formulation of the nonlinear model makes it difficult to estab- 

lish a formal proof of this convergence. This analysis, there- 

fore, is limited to the presentation of nonlinear projections 

and contrasts to their linear counterparts, and is continued in 

the next sections, with a search for acceptable equilibrium 

solutions. 

Long-term Behavior of the Nonlinear Model: Empirical Evidence 

The nonlinear specification of the components-of-change model 

consists of the flow equation (5) [or alternatively (9) 1 and the 
constraint equation (10) in which ~ ( t )  and Pd(t) are constant - 
matrices and A(t) is given by (12). - 

Since there is the following relationship between A(t) - 
and A (0) (later denoted as A) , - - 

it follows that (5) and (10) can be rewritten, respectively, as 

and 

w(t) a(t) A {w(t) 1 = [I - Pdl {w(t) 1 . - - - - 

Also note that (9) becomes: 



Clearly, given structural matrices N, Pd and A, and an initial - - 
distribution {w(O)), we can iteratively calculate the population 

distribution at any future point in time by obtaining a(t) from - 
(19); and then inserting the estimate thus calculated into (18) or 

(20) 

As an illustration, this iterative calculation has been per- 

formed for the system of the four U.S. Census regions already 

considered in Section I. Apart from N and Pd (a diagonal matrix - 
whose diagonal is taken as the diagonal of P) whose actual values - 
were given earlier in Section I, we have observed the matrix of 

relational elements which appears in Table 4 below. (All ele- 
5 ments have been multiplied by 10 ) .  

T a b l e  4 .  U.S.  r e g i o n s  1965 - 1970:  t h e  m a t r i x  
o f  r e l a t i o n a l  e l e m e n t s  

The successive regional shares obtained by the application of 

the method mentioned earlier are in Table 5*, which indicates the 

tendency of these shares to stabilize after a sufficiently long 

time period. Note the tendency of the North East region to empty 

and of the West region to augment its share to a proportion 

slightly less than the share of the South region. 

*During the first ten or fifteen forecasting periods, the regional 
shares obtained from both specifications remain quite close 
(compare Tables 3 and 5) . 

SOUTH 

0.02755 

0 .03818 

0 

0.05371 

NORTH CENTRAL 

0.01915 

0 

0.04861 

0.06788 

NORTH EAST 

NORTH EAST 0 

NORTH 

0 .02007 

0.03919 

0.05017 

0 

NORTH CENTRAL 

SOUTH 

NORTH 

0.02172 

0 .04681  

0.03804 



Table 5 .  Nonlinear model-non-ZPG fonaulation - U . S .  regions - ex 
ante simulation 

Regional Shares of  Total Population 
(Percentage) 

Period 

- -  - - - ~  

south west East Central 



The nonlinear projection process thus tends toward an equi- 

librium characterized by a constant regional allocation, say {y). 

Thus, near stability, two consecutive population vectors satisfy 

the following relationship: 

Substituting this equality into (20) yields: 

From (1 9) it is clear that a (t) w(t) is a homogenous function in - - 
w(t) of degree zero. Therefore, the constant regional allocation - 
Cy) is given by 

so that 

Linear and Nonlinear Projections: An Empirical Comparison 

We begin our comparison of the linear and nonlinear projec- 

tions by contrasting their equilibrium distributions. 

Equilibrium Distributions Contrasted 

Apparently, the nonlinear formulation of the components-of- 

change model always leads to a long-term convergence. None of 

the various experiments made with this model has proved this 

wrong. Although we could not establish any formal proof of this 

property [in spite of the recent developments in the balanced 

growth of nonlinear systems, Nikaido (1968)1, we can safely claim 

that the nonlinear model always admits a limiting distribution as 

the linear model. 



Striking differences between the limiting distributions of 

the alternative models are suggested by the figures of Table 6; 

these point to: 

- the possible occurrence of empty regions at stability 

in the nonlinear model; and 

- the tendency of the nonlinear model to exaggerate the 

long-term tendencies displayed by the linear model. On 

one hand, the population share of the North East region, 

which is initially 24 .20  percent, increases to 1 6 . 4 3  

percent in the long-term equilibrium of the linear model 

and vanishes in the long-term equilibrium of the non- 

linear model; on the other hand, the share of the West 

region ( 1 6 . 9 0  percent initially) increases to 23 .31  per- 

cent in the long-term equilibrium of the linear model 

and 3 7 . 8 9  percent in the limiting distribution of the 

nonlinear model. 

Table  6 .  U.S. r e g i o n s  - i n i t i a l  and e q u i l i b r i u m  d i s t r i b u t i o n s  
c o n t r a s t e d , *  ( a l l  r e g i o n a l  s h a r e s  i n  p e r c e n t a g e s )  

* F i g u r e s  i n  p a r e n t h e s e s  cor respond  t o  t h e  e q u i l i b r i u m  d i s t r i b u t i o n  o f  t h e  
non-ZPG f o r m u l a t i o n  o f  t h e  l i n e a r  and n o n l i n e a r  models. 

NORTH EAST 

NORTH CENTRAL 

SOUTH 

WEST 

I n i t i a l  Net 

Inmigra t ion  

Rate 

- 0.01693 

- 0.01299 

+ 0.01221 

+ 0.02356 

I n i t i a l  

D i s t r i -  

b u t  i o n  

24.20 

28.08 

30.82 

16.90 

Regional Shares  

L i n e a r  

16.43(17.16)  

23.76(23.90)  

36.50(36.18)  

23.31(22.76)  

Percen tage  Change 
i n  Regional  Shares  

Nonl inear  

0  ( 0 )  

18.78(20.28)  

43.33(42.73) 

37.89(36.99)  

L i n e a r  

- 32.8  

- 15.3  

+ 18 .4  

+ 38.4  

Nonl inear  

- 100.0  

- 33.1 

+ 40.2 

+ 1 2 4 . 1  



Overall, the less conservative character of the limiting 

distribution of the nonlinear model is clear: the changes in 

the region's population shares are more radical in the nonlinear 

case than in the linear case. For example, the increase in the 

share of the West region is 124.1 percent in the nonlinear case 

and only 38.4 percent in the linear case. 

Table 6 also indicates that, whatever the model (linear or 

nonlinear), the relative changes in the regional allocation of 

the U.S. population (between the initial period and the long run) 

are related to the initial net inmigration rates of each region: 

regions having initially positive net inmigration rates see their 

relative shares increase, while those regions with initially neg- 

ative inmigration rates see their importance decrease. 

Relation Between Initial and Equilibrium Distributions 

Another important difference between the models which does 

not appear in the figures of Table 6 relates to the independence 

of the limiting regional distribution of population vis-a-vis the 

initial distribution. While the limiting behavior of the linear 

model is not affected by (~(0))--the equilibrium state of the 

nonlinear model may, in some ways, be affected by {w(O) 1 .  

If the projection process, characterized by the A, Pd - and 

N matrices of our four region system of the U.S., always leads - 
to some equilibrium solution (whatever the initial regional dis- 

tribution), it may happen that different equilibrium solutions 

will be obtained (an illustration of such a situation will be 

given in Section 111). Apparently, for each choice of the A, - 
Ed and N matrices, there exists one or several equilibrium solu- - 
tions, completely characterized by the elements of A, - Ed and N - 
and independent of (w (0) 1 ;  the initial distribution {w (0) 1 
affects the long-term behavior of the system only in that, when 

there exists more than one equilibrium solution it determines 

which one of the possible alternative stable equilibriums will 

be attained. 

It is possible to gain further insights into the alternative 

models by comparing the evolution of out- and inmigration rates 



o v e r  t h e  p r o j e c t i o n  p r o c e s s .  

E v o l u t i o n  o f  Out- and I n m i g r a t i o n  R a t e s  

Indeed ,  s i n c e  b o t h  models assume c o n s t a n t  r e t e n t i o n  prob-  

a b i l i t i e s ,  t h e  p a t h  t o  e q u i l i b r i u m  i s  c h a r a c t e r i z e d  by t o t a l  

o u t m i g r a t i o n  r a t e s  t h a t  remain  c o n s t a n t .  However, whereas  i n  

t h e  l i n e a r  c a s e  p l a c e - t o - p l a c e  o u t m i g r a t i o n  r a t e s  a l s o  remain  

c o n s t a n t  (by  a s s u m p t i o n ) ,  t h e y  t e n d * ,  i n  t h e  n o n l i n e a r  c a s e ,  t o  

v a r y  i n  d i r e c t  p r o p o r t i o n  t o  t h e  p o p u l a t i o n  s i z e  o f  t h e  d e s t i -  

n a t i o n  r e g i o n .  T h i s  i s  conf i rmed by t h e  f i g u r e s  o f  T a b l e  7 ,  

which show t h a t  t h e  p l a c e - t o - p l a c e  o u t m i g r a t i o n  r a t e s  d e c r e a s e  

i f  t h e  d e s t i n a t i o n  i s  t h e  Nor th  E a s t  o r  Nor th  C e n t r a l ,  s t a b i l i z e  

i f  t h e  d e s t i n a t i o n  i s  t h e  Sou th  ( e x c e p t  i n  t h e  West r e g i o n  o u t -  

m i g r a t i o n ) ,  and i n c r e a s e  i f  t h e  d e s t i n a t i o n  i s  t h e  West. 

I n m i g r a t i o n  r a t e s ,  however,  do  n o t  f o l l o w  s u c h  a  c l e a r  p a t h  

toward e q u i l i b r i u m .  I f  no n a t u r a l  i n c r e a s e  o c c u r s  (ZPG c a s e ) ,  

p l a c e - t o - p l a c e  i n m i g r a t i o n  r a t e s  v a r y  i n  s u c h  a  way a s  t o  e n s u r e  

t h e  long- te rm e q u a l i t y  o f  t o t a l  m i g r a t i o n  f l o w s  i n t o  and o u t  o f  

e a c h  r e g i o n .  Note  t h a t  t h i s  i m p l i e s  t h e  e q u a l i t y  o f  t o t a l  o u t -  

m i g r a t i o n  and i n m i g r a t i o n  r a t e s  o n l y  i n  r e g i o n s  t h a t  do  n o t  van- * *  
i s h  i n  t h e  long- run .  Thus ,  i n  t h e  l i n e a r  ZPG c a s e  ( i n  which no 

r e g i o n  c a n  v a n i s h ) ,  t o t a l  i n m i g r a t i o n  r a t e s  o f  each  r e g i o n  t e n d  

t o  i n c r e a s e  ( i n  r e g i o n s  i n  which t h e r e  i s  i n i t i a l l y  a  n e g a t i v e  

n e t  i n m i g r a t i o n )  o r  t o  d e c r e a s e  ( i n  r e g i o n s  i n i t i a l l y  d i s p l a y i n g  I 

a  p o s i t i v e  n e t  i n m i g r a t i o n ) ,  i n  o r d e r  t o  e q u a l  o u t m i g r a t i o n  

r a t e s .  S i n c e  t h e  p l a c e - t o - p l a c e  i n m i g r a t i o n  r a t e s  a r e  p ropor -  

t i o n a l  t o  t h e  r a t i o  o f  t h e  p o p u l a t i o n  s i z e s  i n  t h e  d e s t i n a t i o n  

and o r i g i n  r e g i o n s ,  t h e y  g e n e r a l l y  t e n d  t o  d e c r e a s e  i f  t h e  

o r i g i n  i s  t h e  Nor th  E a s t  o r  Nor th  C e n t r a l ,  and t o  i n c r e a s e  i f  

t h e  o r i g i n  i s  t h e  Sou th  o r  West. 

I n  t h e  n o n l i n e a r  c a s e ,  t h e  o c c u r r e n c e  o f  v a n i s h i n g  r e g i o n s  

i n  t h e  ZPG sys t em i s  made p o s s i b l e  by t h e  i m p o s s i b i l i t y  o f  t h e  

t o t a l  i n m i g r a t i o n  r a t e  o f  t h e s e  r e g i o n s  t o  be  e q u a l  t o  t h e  t o t a l  

*The c o n s t a n t  o f  a d j u s t m e n t  e n t e r i n g  a  ( t )  r e l a t e s  t o  t h e  o r i g i n  
i j  

and d o e s  n o t  a f f e c t  t h e  r e l a t i v e  impor t ance  o f  t h e  p l a c e - t o - p l a c e  
m i g r a t i o n  r a t e s  o u t  o f  a  r e g i o n .  

**Regions w i l l  b e  s a i d  t o  v a n i s h  when t h e i r  p o p u l a t i o n s  d e c l i n e  t o  z e r o .  



outmigration rate. For instance, Tables 7 and 8 show that the 

total migration rate into the North East region (0.03810) is 

less than the total migration rate out of that region (0.04706). 

As expected, a "dying out" region is characterized by a negative 

net inmigration rate. This feature of the nonlinear model is 

very useful to determine a priori the long-term equilibria and 

permits, as we will see later on, the narrowing down of the 

number of acceptable equilibrium solutions. Place-to-place 

migration rates, which vary as a direct proportion to the pop- 

ulation size of the origin region and to its associated constant 

of adjustment, tend to decrease over the projection process if 

the origin is the North East or North Central region, and to 

increase if it is the West region. 

There is a clear tendency for the place-to-place out- and 

inmigration rates of the same origin-destination regions to vary 

in the same direction. The relative pace of their variations 

depends only on the initial relative position of the net inmi- 

gration rates of these regions. 

A similar analysis can also be performed in the non-ZPG 

case. The difference is that, the long term equilibrium is no 

longer characterized by the equality of out- and inmigration 

flows. Instead, we have the following: 

Inmigration + Natural Increase-Outmigration = (A - 1) x 
population in which A is the ratio, common to each region, of 

the population sizes in two consecutive periods at equilibrium. 

Then at equilibrium, a nonvanishing region will be characterized 

by a net inmigration rate equal to A-1-ni (where n is the natu- i 
ral increase rate of this region), while the vanishing region 

will have a net inmigration rate of less than A-1-ni. 

The Aaareaation Problem 

The aggregation capabilities of the linear and nonlinear 

formulations provide another point of departure in the study of 

the components-of-change model. Suppose that we transform our 

four region system of the U.S. into various three region systems 



Table  7. U.S. r e g i o n s  - i n i t i a l  and s t a b l e  o u t m i g r a t i o n  
r a t e s  (ZPG c a s e )  * 

Table  8 .  U.S. r e g i o n s  - i n i t i a l  and s t a b l e  i n m i g r a t i o n  
r a t e s  (ZPG c a s e )  * 

North E a s t  

* In  b o t h  t a b l e s ,  t h e  t h r e e  f i g u r e s  i n  each  box r e p r e s e n t  t h e  o u t m i g r a t i o n  
o r  i n m i g r a t i o n  r a t e s  i n  t h e  i n i t i a l  p o p u l a t i o n  and t h e  s t a b l e  p o p u l a t i o n  
( l i n e a r  and n o n l i n e a r  c a s e s )  r e s p e c t i v e l y .  

North E a s t  

North C e n t r a l  

South  

West 

T o t a l  

West 

0.00848 
0.00848 

0 

0.0192 1 
0.01921 
0.01479 

0.02699 
0.02699 
0.03989 

0 

0.05468 
0.05468 
0.05468 

North C e n t r a l  

0.00809 
0.00809 

0 

0 

0.02615 
0.02615 
0.02457 

0.02003 
0.02003 
0.02970 

0.05427 
0.05427 
0.05427 

0 

0.01065 
0.01065 
0.00539 

0.02518 
0.02518 
0.02446 

0.01122 
0.01122 
0.01721 

0.04706 
0.04706 
0.04706 

West 

0.01607 
0.00846 

0 

0.03328 
0.02103 
0.01629 

0.02890 
0.02519 
0.03840 

0 

0.07824 
0.05468 
0.05468 

South 

0.01164 
0.01164 

0 

0.01872 
0.01872 
0.01296 

0 

0.01585 
0.01585 
0.03324 

0.04620 
0.04620 
0.04620 

South 

0.01977 
0.01194 

0 

0.02383 
0.01728 
0.01166 

0 

0.01480 
0.01698 
0.03454 

0.05841 
0.04620 
0.04620 

North C e n t r a l  

0.00918 
0.00764 

0 

0 

0.02054 
0.02833 
0.02730 

0.01156 
0.01830 
0.02698 

0.04128 
0.05427 
0.05427 

North E a s t  

North E a s t  

North C e n t r a l  

South 

West 

T o t a l  

0 

0.00939 
0.01127 
0.00460 

0.01482 
0.02454 
0.01969 

0.00592 
0.01125 
0.01381 

0.03013 
0.04706 
0.03810 



obtained by the aggregation of two contiguous regions. We then 

perform the projection process on these alternative systems, 

using both the linear and nonlinear models. The comparison of 

the resulting limiting regional shares (Table 9), shows that in 

the linear case the timing of aggregation has little influence 

on the stable state. It does not make much difference whether 

aggregation takes place before or after the projection process. 

However, in the nonlinear model, the timing of aggregation has 

a large impact. For instance, the region obtained by aggregating 

the South and West regions accounts for 81.22 percent of the equi- 

librium population in the three region system thus obtained, 

versus 65.30 percent if calculated by aggregating the South and 

West shares of the four region system. 

A Special Case of the Nonlinear Model: Specification and 

Limitina Behavior 

An interesting special case of this model (denoted as non- 

linear model 11) is obtained by supposing no impact from the 

relational elements, i.e. 

dij = 1 , for a i ,  = l,...,n , j # i . 

In such circumstances, (1 4) reduces to* 

Mi j (t) = (1 -p..) , V 1 . . . n  , j # i  , 
11 

wk(t) 
k#i 

so that outmigrants distribute themselves among regions in propor- 

tion to the population size of destination regions. 

*This model is similar to the aggregate version of the model 
considered by Feeney (1973). The difference comes from the 
constant term which only relates to the origin region in the 
present model, but relates to both origin and destination 
regions in Feeney's case. However, the above specification 
is preferable since Feeney's formulation does not ensure 
that the total number of outmigrants out of region i is less 
than the population in region i. 



T a b l e  9 .  L i n e a r  and n o n l i n e a r  models  (ZPG f o r m u l a t i o n )  : 
compar ison  o f  a g g r e g a t i v e  c a p a b i l i t i e s  u s i n g  
t h e  f o u r  r e g i o n  sys t em o f  t h e  U.S. ,  ( a l l  
f i g u r e s  i n  p e r c e n t a g e s )  

- 

North  E a s t  

Nor th  C e n t r a l  

South/West  

Nor th  E a s t  

Nor th  C e n t r a l / S o u t h  

West 

N .Eas t /N .Cen t r a l  

S o u t h  

West 

Nor th  Eas t /Sou th  

Nor th  C e n t r a l  

West 

Nor th  E a s t  

Nor th  Cen t r a l /Wes t  

S o u t h  

LINEAR 

T h r e e  
Region  Sys tem 

16 .55  

23.74 

59 .71  

16 .14  

60.22 

23.64 

3 7 . 7 1  

36.57 

25.72 

54 .14  

23.02 

22.84 

16 .43  

47.07 

36.50 

MODEL 

F o u r  Region  
Sys tem 

Aggrega ted  

16 .43  

23.76 

59 .81  

16 .43  

60.26 

23 .31  

40.19 

36.50 

23 .31  

52 .93  

23.76 

23 .31  

16 .43  

47.07 

36.50 

NONLINEAR 

T h r e e  
Region Sys tem 

0  

34.70 

65 .30  

0  

65.89 

34 .11  

1 0 . 2 1  

45 .53  

44 .26  

57.79 

10 .92  

31.29 

0  

56 .96  

43.04 

MODEL 

F o u r  Region 
Sys tem 

Aggrega ted  

0  

18 .78  

81.22 

0  

6 2 . 1 1  

37.89 

18 .78  

43 .33  

37 .89  

43 .33  

18 .78  

37 .89  

0  

56.67 

43 .33  



Carrying out the projection process on such assumptions 

also leads to a stable equilibrium; it is quite different, how- 

ever, from the one obtained in the previous case. The successive 

regional shares obtained by means of this special model appear in 

Table 10.  Briefly, we find that, 

1 .  in opposition to the full model, accounting for differ- 

ential elements, the present model leads to an equilib- 

rium characterized by no empty regions; and 

2. regional shares at equilibrium do not differ that much 

from initial ones (the greatest discrepancy is observed 

in the North Central region, 1 8 . 9 5  percent at equilib- 

rium, compared to 28.08  percent initially). 

Note that the position of the North East region in the equi- 

librium distribution of this model is stronger than in the stable 

state of the full model. This region actually increases its 

relative share from 24 .20  percent to 27 .77  percent, whereas it 

decreases in the case of the full model. 



Table 10. Nonlinear model I1 - non-ZPG formulation - U.S. regions - 
ex ante simulation 

Regional Shares of Total Population 
(Percentage) 

Period North North South West 
East Cishtral 



111. THE NONLINEAR MODEL (ZPG FORMULATION): SEARCH FOR 
EQUILIBRIUM SOLUTIONS 

Because it was not possible to complete a formal proof of 

the convergence of the nonlinear model, the theoretical analysis 

of it becomes an a priori search for acceptable eauilibrium solu- 

tions. This is first carried out in the ZPG case which allows 

for an easier and more complete study. 

In the ZPG case natural increase rates are zero: 

so that the resulting model is described by: 

or alternatively by: 

in which a(t) is still defined by (19). - 

Preliminarv Results 

We begin the analysis by establishing a preliminary property 

regarding the occurrence of zero levels of population before equi- 

librium is reached: 

Property 1 

I f  n o  r e g i o n  i s  i n i t i a l l y  e m p t y  and pii > 0, Vi, t h e r e  e x i s t s  

no  a b s o r b i n g  s t a t e ,  i . e . ,  n o  r e g i o n  c a n  become e m p t y  e x c e p t  

i n  t h e  l o n g  r u n .  I n  o t h e r  w o r d s ,  {x(t) 1 > 0, f o r  a l l  f i n i t e  

v a l u e s  o f  t. 

To prove this, we rewrite each scalar equation of (24) as: 



S i n c e  a . ( t )  i s  nonnega t ive  a s  s u g g e s t e d  by ( 1 9 ) ,  t h e  t e r m s  between 
3 

b r a c k e t s  a r e  a t  l e a s t  e q u a l  t o  p  ii' W e  t h e n  have 

I n  o t h e r  words, 

and,  more g e n e r a l l y ,  

S i n c e  w e  suppose  t h a t  no r e g i o n  i s  i n i t i a l l y  empty, and t h a t  

t h e  r e t e n t i o n  p r o b a b i l i t i e s  a r e  s t r i c t l y  p o s i t i v e ,  w e  have 

w i ( t ) ( U i  = 1 ,  ..., n , )  which i s  s t r i c t l y  p o s i t i v e  f o r  a l l  f i n i t e  

v a l u e s  o f  t. No r e g i o n  can become empty e x c e p t  i n  t h e  l o n g  run .  

The E a u a t i o n s  o f  t h e  S t a t i o n a r v  S t a t e  

W e  now t u r n  t o  p r o p e r t i e s  r e l a t i n g  t o  t h e  e q u i l i b r i u m  s o l u -  

t i o n s  o f  (23)  [ o r  ( 2 4 ) ]  accompanied by t h e  c o n s t r a i n t  ( 1 9 ) .  I f  

it e x i s t s ,  a  long- term e q u i l i b r i u m  i s  o b t a i n e d  a s  a  s o l u t i o n  o f  

(21)  ( i n  which N = 0)  and ( 2 2 ) .  - - 
I n  t h e  p r e s e n t  c a s e  X = 1.  Then ( 2 1 )  can  be r e w r i t t e n  a s :  

a  r e l a t i o n s h i p  which e x p r e s s e s  t h e  e q u a l i t y  o f  o u t -  and inmigra-  

t i o n  f lows a t  s t a b i l i t y .  

Note t h a t  ( 2 5 )  may be  a l t e r n a t i v e l y  p r e s e n t e d  a s  

[ y  y  - - I - - Ed)  yl - i = I01 

L 



or, after transposition, 

The matrix between brackets in the above equation is such 

that its premultiplication by {i}' yields the constraint equa- 

tion and its postmultiplication by {i} yields the equilibrium 

equation. 

Returning to the equilibrium equation, it appears that the 

comparison of (22) with (25) yields an alternative formulation: 

that will be useful to establish a particular property of the 

model. 

Finally, as suggested by juxtaposing (25) and (26) , an 
acceptable equilibrium solution {y} must verify: 

Equilibrium Solutions with Nonvanishina Resional Populations 

We initiate our search for equilibrium solutions by looking 

for those characterized by nonzero regional shares. 

Characterization of Equilibrium Solutions with Nonvanishing 
Regional Populations 

The foliowing property was derived by McGinnis and Henry 

( 1 9 7 3 )  : 

If there exists an equilibrium solution with nonzero 

regional shares, it is unique and is obtained as the 
- 1  

characteristic vector of the matrix C =  [A (I-~~){i}l - - - d9 
( - ) A , corresponding to the unit characteristic - 
root. 

The demonstration can be summarized as follows: 



Supposing that all elements of y are strictly positive, - - 1 
allows one to premultiply each side of (25) by y . Since I - - - Pd 
is a diagonal matrix, it follows that 

or, after premultiplication by A-' , - 

in which ti) is a column vector of ones. Then, the matrix product 

a(a)y is a diagonal matrix whose i-th diagonal element is the i-th - 
element of the vector A-' [I - ti) : - - 

- 1 
a(m)y - - = [A II-Pdlti)l - 

d9 
(27) 

Substituting this into the constraint equation (22) yields 

A I - t i  ~ * t y l  - (I - yd) tyl = 0 , - - d9 - - 

a relationship that can be rewritten as 

[c- 11 ty) = to) , - - 

Observing that 

it follows that C-l and, consequently, C are matrices admitting - - 



a  u n i t  c h a r a c t e r i s t i c  r o o t .  However, s i n c e  C need n o t  be  s t o c h -  
-" 

a s t i c  ( n o n n e g a t i v e ) ,  it migh t  w e l l  b e  t h a t  t h e  v e c t o r  Cy) d o e s  

n o t  have  a l l  i t s  components s t r i c t l y  p o s i t i v e .  

For  example,  i n  t h e  c a s e  of  o u r  f o u r  r e g i o n  sys t em,  t h e  C - 
m a t r i x  i n c l u d e s  t h r e e  n e g a t i v e  e n t r i e s  a s  shown by T a b l e  1 1  

below. 

Table  11. Nonl inear  model - ZPG formula t ion  - U.S. r eg ions  
- t h e  C ma t r i x  - 

North 
Eas t  

North 
C e n t r a l  

South West 

The n o r m a l i z e d  v e c t o r  Cy) p r e s e n t s  a  n e g a t i v e  e n t r y  c o r r e -  

spond ing  t o  t h e  Nor th  E a s t  r e g i o n ,  t h e  r e g i o n  which appea red  t o  

b e  empty i n  t h e  p r o j e c t i o n  p r o c e s s  d e s c r i b e d  p r e v i o u s l y  (see 

T a b l e  5 )  . 

Table  12.  Nonl inear  model - ZPG formula t ion  - U.S. r eg ions  
- t h e  Cy) v e c t o r  

A Necessa ry  and  S u f f i c i e n t  C o n d i t i o n  

I t  i s  a c t u a l l y  n o t  n e c e s s a r y  t o  e x p l i c i t l y  c a l c u l a t e  t h e  

c h a r a c t e r i s t i c  v e c t o r  o f  C c o r r e s p o n d i n g  t o  t h e  u n i t  c h a r a c t e r -  - 
i s t i c  r o o t  i n  o r d e r  t o  d e t e r m i n e  whe the r  a l l  components o f  t h i s  

v e c t o r  a r e  s t r i c t l y  p o s i t i v e .  The o c c u r r e n c e  o f  empty r e g i o n s  

i n  t h e  e q u i l i b r i u m  s i t u a t i o n  can  b e  found a  p r i o r i  by t h e  



application of the following theorem: 

A necessary and sufficient condition for the characteristic 

vector corresponding to the unit characteristic root to 

have strictly positive entries is that A-' [I - Pd] {i} > 0 .  ... ... 
Suppose A-' - [I ... -Pd]{i} > 0, then the matrix [A-I - (I ... -Pd){i}] 

dg 
is strictly positive as well as C. We find, therefore, that the ... 
characteristic vector of C is non-negative in such circumstances. - 
Note that the interpretation of the above condition simply lies in 

the possibility of finding a positive value of ai(m) for all i 

satisfying equation (27) . 
In the case of our four region system for the U.S., the cal- 

culation of the vector {z} = A-' [I - P ] i leads to a vector whose - - -d 
first component (corresponding to the North East region) is nega- 

tive (see Table 13) . 

Table 13. Nonlinear model - ZPG formulation - U.S. regions 
- the { z )  vector 

We can conclude, without calculating the characteristic vector 

Iy), from the simple calculation of {z), that this system does 

not admit any acceptable equilibrium solutions with nonzero 

entries. 

Conversely, if {y) is a vector with strictly positive en- 

tries, we see from (22) that a(m) is strictly positive. It then - 
follows from (26) that A-' [I - P ] i is a strictly positive - - -d 
vector, which completes the proof of the necessary and sufficient 

condition. 



Contrastinu Svstems with Odd and Even Numbers of Reaions 

The existence of a characteristic vector of C corresponding - 
to the unit characteristic root, and having strictly positive 

entries does not ensure that it is an acceptable equilibrium 

solution of the ZPG nonlinear model, because it does not neces- 

sarily lead to a positive value of a ( m ) .  - 
It is simple to construct an example in which the values of 

{z) and {y) are strictly positive but do not lead to a value of 

a (a) verifying ( 2 7 ) .  Table 14 presents a four-region system - 
in which the values of {z) and Iy), strictly positive, fail to 

yield a value of a (a), owing to the nonzero value of the deter- - 
minant of -[a(a)A - Aa(a,l 1 .  This property can be immediately - - - - 
generalized as follows: 

If the system is not initially stationary, there generally 

exists no equilibrium solution characterized by an even 

number of regions (higher than two) of nonempty regions. 

Major exceptions occur when A is a symmetric matrix. - 

Table 14. Nonlinear model - ZPG formulation - constructed 
example 1 



We can rewrite (26) as: 

in which 

Clearly, for given values of A and y, this last equation yields - - 
a value of (a), only if the determinant of E - E' is equal to zero. - - - 

In a restrictive manner, this condition requires that E = E', - - 
i.e. 

an equality that can be satisfied if: 

1. the system is initially stationary [because a (m) = a (0) - - 
such that ~(O)A' = A  - - ~-(0)1; or - - 

2. if the number of regions in the system is equal to two: 

(28) reduces to twice the scalar equation rnl (m) a12 
- Ot - 2(m) a21 for which there exists a solution if none of 

the off-diagonal elements are zero; or 

3. if the A matrix is symmetric. - 
Aside from these particular cases, the condition I E  - E'( = 0 is - - 
satisfied if n is an odd number but does not generally hold if n is 

an even number (unless the more restrictive condition E - E' = 0 - - 
holds). This immediately follows from the fact that a skew sym- 

metric matrix E - E' [because E - E' = - (E' - E )  'I has a zero deter- - - .., - - - 
minant if the number of its columns (or rows) is an odd number, and 

is generally different from zero if the nixnber of columns is even. 

Property 2 

Now, summarizing the above results, we have the following 

property: 

A demographic system, initially nonstationary, character 



i z e d  by a  m a t r i x  P o f  r e t e n t i o n  p r o b a b i l i t i e s  and a  
-d 

m a t r i x  A o f  r e l a t i o n a l  t e r m s ,  a d m i t s  a  s t r i c t l y  p o s i t i v e  - 
e q u i l i b r i u m  v e c t o r  {y) i f  and o n l y  i f :  

- 1 A I - i > 0 , and - - 
t h e  number o f  r e g i o n s  i s  n o t  an e v e n  number h i g h e r  t h a n  

two.  ( T h i s  second c o n d i t i o n  i s ,  howevera, n o t  r e q u i r e d  

i f  A i s  a s ymmet r i c  m a t r i x . )  Moreover ,  {y) i s  o b t a i n e d  - 
u s  t h e  c h a r a c t e r i s t i c  v e c t o r  o f  C = [A-I (I - Fd) {illdg - - - - 1 
(I - Ed) A' c o r r e s p o n d i n g  t o  t h e  c h a r a c t e r i s t i c  r o o t  1 .  - - 

Having determined the conditions of existence (or non-existence) 

of a strictly positive equilibrium solution, we now turn to the 

search for equilibrium solutions including one or several empty 

regions, say k regions. 

Equilibrium Solutions with Vanishing Regional Populations 

Searching for Equilibrium Solutions with Vanishing Regional 
Populations 

To determine whether the system leads to an equilibrium 

solution with a predetermined set of k vanishing regions, we set 

Y i = 0 for these regions in (25) and look for solutions of the 

resulting equation: 

in which rd, A, u(w) and y are respectively obtained from Pd, A, - - - - 
a ( a )  and y by removing the k columns and k rows corresponding to - - 
the k vanishing regions. Since (29) is similar to (22) (it only 

differs from the latter by the number of regions n - k instead n), 

we can apply Property 2 to the system characterized by Z - and Fd. 
We may conclude that if (n - k) is an even number higher than two, 
no equilibrium vector exists such that it contains k zero elements 

corresponding to as many empty regions (unless A is a symmetric 
matrix). We may also conclude that if (n - k) is equal to two or 
is an odd number, there exists at most one equilibrium solution, 

whose set of nonzero elements is described by the characteristic 

vector corresponding to the unit characteristic root of 



in which A and are (n - k) submatrices of A and Pd such that - -d - 

The Maximum Number of Acceptable Solutions 

Property 3: 

The ZPG f o r m u l a t i o n  o f  t h e  n o n l i n e a r  mode2 a d m i t s  a  

maximum o f  2" - (n + 1) e q u i l i b r i u m  s o l u t i o n s  c h a r a c -  

t e r i z e d  by  a t  l e a s t  two nonempty  r e g i o n s ;  t h i s  number 
n- 1 r e d u c e s  t o  2 + "(" - 3 ,  i f  t h e  i n i t i a l  m a t r i x  A 2 - 

c o n t a i n s  no o f f - d i a g o n a l  e l e m e n t  s u c h  a s  aij = a j i ' 

Since there exists a unique equilibrium solution for each 

predetermined choice of the vanishing regions, it suffices to 

calculate the number of alternative sets of vanishing regions 

that the system can admit in order to obtain the maximum number 

of equilibrium solutions. 
n 

There exist (k) different ways of constructing an A matrix 
by dropping k columns and k rows of A, - so that the McGinnis/ 

Henry model admits, at the most, 

n 
(0) = 1 solution with no zero entry 
n 
(1) = n solutions with one zero entry 
n n(n - 1) 
(2) = 2 solutions with two zero entries 

n n! 
(k) = n - k) !k! solutions with k zero entries 

n 
(n-1) = n solutions with (n - 1) zero entries. 

n n n n Then, there exists a maximum of (0) + (1) . . . + (n-1) = 2 - 1 

equilibrium solutions. However, equilibrium solutions with 

(n - 1) zero entries (the whole population concentrated in one 



region) cannot occur since this leads to an undefined value of - 
a ( = ) .  Thus the maximum number of equilibrium solutions, all - 
characterized by at least two nonempty regions, reduces 

n 
2" - 1 - (n-1) = 2" - (n + I). 

Consequently, a system of two regions yields at the most 

22 - 3 equilibrium solutions, i. e., a unique equilibrium solu- 
tion, while a system of three and four regions admits no more 

than four and eleven equilibriums, respectively. 

Also, if the matrix A has no off diagonal element such that - 
a = a  i j ji' the ZPG system does not lead to any equilibrium solu- 

tion characterized by an even number of regions greater than two. 

In such a case, the maximum number of equilibrium solutions is 

equal to 

n (8) + (5) + (0) + (8) + . . . + (n-2). if n is an odd number 

n n ( f)  + ( 4 )  + (9)  + (0) + . . . + (n-3) + (n-2), if n is an even 
number. 

n 
Because of the properties of the number of combinations (k) it 

can be established that this maximum number of equilibrium solu- 
n-1 + tion: 1s equal to 2 "(" - 3, in all cases (n odd or even). 2 

It thus follows that the number of maximum solutions is 

respectively, 1, 4, 10, 21, 41, for n = 2, 3, 4, 5 and 6. The 

restriction imposed on A causes the number of solutions to drop - 
from 1 1  to 10 (if n = 4) and from 57 to 41 (if n = 6). 

Determining all Solutions of (27) in the Four ~egion System 
System of the U.S. 

In the case of our four region system we have a maximum of 

10 equilibrium solutions characterized by one or two empty regions. 

We have thus calculated all 10 solutions of (27) admitting empty 

entries (see Table 15) . It appears: 

- that only two of the four characteristic vectors contain- 

ing a unique zero are nonnegative, and 



- t h a t  a l l  o f  t h e  s i x  c h a r a c t e r i s t i c  v e c t o r s  c o n t a i n i n g  

two z e r o s  a r e  nonnega t ive .  

Table  15. Nonl inear  model - ZPG f o rmu la t i on  - U . S .  r eg ions  - 
t h e  { z )  and {y) v e c t o r s  

(Y) 

7 rr] 0.50460 

0.53748 

(2) 

- 1.977 x108 
1.70830 

ion 
No. - - 
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1"r51x1~8 2.34490 [ ; ] i 0.46252 

1 

I 

( 2 )  

0. 

, 

'-g~401xl~8 1.48210 

I:':', x108 
1.24960 

-0.1 7 r  7 0  1 

( 4 )  

k.5:81j 0.54639 I 7 

! 

"::.':! 0.48114 

-0.12450 

8 

- 1.2:gg6 
0.71486 
0.68831 

- 

I'.2"8! 
0.42725 
0.36990 

x108 

r:":q - 

I 

( g )  

[ 0.92079 1.01820 : lXlo8 [ 0.54205 0.45795 : ] 

[.8"5j x108 1.5"81 
1.38470 0.49811 



Narrowing Down t h e  Number of Acceptable So lu t ions  

A nonnegative vec to r  {y)  wi th  k  zero  e n t r i e s  i s  an accep t -  

a b l e  equ i l i b r ium s o l u t i o n  on ly  i f  t h e  vec to r  

{ I  = [8-'(1 - P ) I - l { i l ,  and t h e  ma t r i ce s  and F, r e s p e c t i v e l y  - . --d -- -- 

obta ined  by removing t h e  (n  - k)  rows corresponding t o  t h e  non- 

zero e n t r i e s  a r e  such t h a t  

So f a r ,  we have searched f o r  equ i l i b r ium s o l u t i o n s  admi t t i ng  

zero  e n t r i e s ,  b u t  we have n o t  examined t h e  l i k e l i h o o d  of occur rence  

of such s o l u t i o n s .  

C l e a r l y ,  a  necessary  cond i t i on  f o r  any r eg ion  1 t o  become 

empty i n  t h e  long run i s  t h a t  i t s  inmigra t ion  be  equa l  t o  o r  l e s s  

than  i t s  ou tmigra t ion  a s  t becomes l a r g e ,  i . e . ,  

f o r  any f i n i t e  va lue  of t > T. Because w ( t)  i s  s t r i c t l y  p o s i t i v e  
1 

f o r  any f i n i t e  va lue  of t ,  t h e  above cond i t i on  becomes: 

o r  i n  compact form, 

f o r  any f i n i t e  va lue  of t > T I  i n  which t h e  double b a r  r e l a t e s  t o  

s e c t i o n s  of t h e  A and Pd ma t r i ce s  ob ta ined  by removing t h e  n  - k  
-- -- 

rows corresponding t o  t h e  non zero  e n t r i e s  and t h e  k  columns 

corresponding t o  t h e  zero e n t r i e s  of  {y ) .  



- --1 
As t +- -, u(t){;(t)} - + = A - [I - - ] i .  Then a neces- 

sary condition for any characteristic vector { y )  (including zero 

entries) to be an adequate equilibrium solution is that 

Returning to our four region example, it appears that 

among the eight nonnegative characteristic vectors iy) derived 

above, only one (solution number 4 in Table 16) verifies con- 

dition (31). The multiregional system of the United States 

consisting of the four Census Regions thus yields a unique accept- 

able equilibrium solution in which the North East region is empty 

and the other regions contain 14.32 percent of the total popula- 

tion (north Central), 43.26 percent (South) and 42.43 percent 

(West) . * 

Table  16.  Nonl inear  model - U.S. r eg ions  - comparison of s t a t i o n a r y  inmigra- 
t i o n  and ou tmig ra t i on  r a t e s  r e l a t i n g  t o  t h e  van i sh ing  r e g i o n s  

*Note that this limiting distribution was the one which we 
obtained in Section I by iteratively projecting the initial 
population. 

[I - pdI t i }  

(0.05427) 
C .04620 

0.04706 
(0.05468) 

{ ~ : ~ ~ ~ ~ 3 }  

(0.04706) 
0.05427 

Solu- 
t i o n  
Number 

(1) 

(4 )  

( 5 )  

( 6 )  

I 

X { Z )  - 

(0.12339) 

{0.03810) 

0.23638 
{O. 26183) 

(0.08667) 
0.12930 

[ 1 - % 1 { i )  - 

{0.05468) 

(0.04706) 

0.04620 
(0.05468) 

Solu- 
t i o n  

'!Umber 

( 7 )  

( 8  

( 9 )  

A{ - ;I 

{(3::3:::) 
0.05736 

(0.14086) 

("-04322) 
0.10864 

0.05468 
(0.04652) (0.05427) (10) 

i 0.07496 



The Uniqueness Versus the Non Uniqueness of the Stationary - 
State: An Illustration 

Note that uniqueness of the stationary state is not a general 

property of the BPG formulation of the nonlinear model. For in- 

stance, we have constructed an example (for which the A and P - -d 
matrices are shown in Table 17) that offers two acceptable equi- 

librium solutions. 

Table 17. Nonlinear model - constructed example 
the A and P matrices - -d 

From Property 3 we know that since A has no symmetrical off- - 
diagonal elements, there exist at the most ten equilibrium sol- 

utions for this system. The calculation of the ten equilibrium 

vectors corresponding to the unit characteristic root, having * 
no more than (n - 2) zero entries reveals that only eight of 

them are nonnegative vectors. They include: 

- all six characteristic vectors with two non-zero compon- 

ents, and 

- two out of the four characteristic vectors with one zero 

component. 

However, only two of these vectors are acceptable in that 

they verify (31). One is a vector with one zero entry and the 

other with two zero entries; both of them are shown in Table 18. 

*Since the number of regions in the system is even, at least one 
region has to be empty at equilibrium. 



Table 18. Nonlinear model - cons t ruc ted  example 2 - t h e  two 
acceptab le  equi l ibr ium s o l u t i o n s  

Note that, when carrying out the ZPG projection process 

characterized by the A and P matrices defined in Table 17, the - -d 
two alternative equilibrium states shown in Table 18 are actually 

obtained. In fact, the first equilibrium characterized by two 

empty regions is obtained much more often than the alternative 

one. Only when the relative share of the fourth region is ini- 

tially small is the alternative equilibrium obtained. For example, 

when setting the initial population of regions 1, 2 and 3 to 

100,000, the first stable equilibrium is reached every time the 

initial population of region 4 is higher than 107. On the other 

hand, the alternative equilibrium is obtained when the initial 

population of that chosen region is less than 106. Unfortunately, 

it was not possible to carry out this result further in order to 

determine a priori which stable equilibrium would be obtained for 

any predetermined choice of initial population. 

Returning to our general analysis of equilibrium solutions 

with zero entries, we could also show without difficulty that, if 

for a given choice of k regions I;) is nonnegative, then (31) is 

also a sufficient condition for the corresponding characteristic 

vector {y) to be an acceptable equilibrium solution of the ZPG 

nonlinear model. 

Summarizing the above results, we can now state the follow- 

ing : 

A n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  f o r  an  n  r e g i o n  

s y s t e m ,  i n i t i a l l y  n o n s t a t i o n a r y ,  t o  a d m i t  one o r  s e v -  

e r a l  e q u i l i b r i u m  d i s t r i b u t i o n s  c o n t a i n i n g  no more t h a n  

(n - 2 )  empty  r e g i o n s  i s  t h a t  - 



( I )  t h e r e  e x i s t  one o r  s e v e r a l  p a r t i a l  m a t r i c e s  

X and ed, o b t a i n e d  by  removing  k  (0 < k  < n - 2) -d - - 
columns  and k  rows o f  A and P r e s p e c t i v e l y ,  - -d' 
s u c h  t h a t  {zl = ' - [I .., - ed]{il > 0, 

( 2 )  t h e  v e c t o r s  {z) s a t i s f y  t h e  c o n d i t i o n  
- - - 
A{;} < (I - cd) {il, e x p r e s s i n g  t h a t ,  a t  e q u i -  - - - 
l i b r i u m ,  r e g i o n a l  i n m i g r a t i o n  r a t e s  must  be  

l e s s  t h a n  t h e i r  o u t m i g r a t i o n  c o u n t e r p a r t s ,  and 

( 3 )  n - k ,  t h e  number o f  n o n v a n i s h i n g  r e g i o n s ,  i s  

n o t  an e v e n  number h i g h e r  t h a n  two .  ( T h i s  

t h i r d  c o n d i t i o n  i s ,  however ,  n o t  r e q u i r e d  i f  

A i s  a  s ymmet r i c  m a t r i x : )  

Thus, in our search for acceptable equilibrium solutions in 

the ZPG case, we have set forth a methodology permitting the a 

priori calculation of all acceptable equilibrium solutions (see 

Appendix 4 for a formal exposition of this methodology). 

We now continue the study of the ZPG formulation by examin- 

ing particular cases. 

Particular Cases 

We will now examine in detail the case of systems consisting 

of three regions* and then analyze the long-term behavior of the 

nonlinear model I1 in which the influence of the relational 

factors between pairs of regions is ruled out. 

Case of a Three Reqion System 

Firstly, we demonstrate that the vector {z} = A-' [I - cd] {il - - 
has at least two nonnegative components. 

Suppose that {z) contains two negative' components, say, the 

second and third components. Then, the first element of the 

*In the case of two regions, the nonlinear model reduces to the 
linear one. 



vector 

is negative, which is impossible since A{Z) is equal to [I - ~ ~ l { i } ,  
* - 

that is, a nonnegative vector. 

Secondly, we show that if {z) has no negative component, there 

exists a unique acceptable equilibrium presenting no zero entry. 

Suppose that {z) has no negative component, then from Property 

2 there exists an acceptable equilibrium with no zero entries. Are 

there, however, equilibriums with zero entries? If we assume that 

there exists an equilibrium solution in which the third component 

is zero, the new value of {z), say {z')r is given by 

Since a z + a31 z3 = 1 - pll and a 21 2 12 '1 + a 32 '3 = - P22 in 
which z z2 and z3 are positive by assumption, it can be clearly 1 
seen that z; > z and z; > z 1 2 ' Furthermore, we have 

an inequality which states that, as the system tends toward 

equilibrium, the inmigration rate is higher than the outmigration 

rate in region 3. However, this is impossible since the third 

region has been hypothesized to become empty so that the opposite 



inequality between inmigration and outmigration rates should 

hold. Thus a three region system characterized by the existence 

of an equilibrium with no zero entries cannot have any other 

equilibrium. 

Thirdly, we demonstrate that if {z) has one negative compo- 

nent, there exists a unique acceptable equilibrium with a zero 

entry for the region having the negative entry in {z). 

Suppose now that {z) has a negative component, say the third 

one. Then, we know that the three region system admits no equi- 

librium solution with strictly positive entries but has at least 

an acceptable solution in which one region is empty. 

To obtain this result we show that the characteristic vector 

-1 -,-I 
of [A-' - rd] {i)] dg A (I - Fd) , in which A and pd are sub- - - - - 
matrices of A and P obtained by removing the third row and - -d 
column, is an acceptable solution and that there exists no other 

equilibrium. 

The new values z" and z;' of the non-zero elements of 1 
are less than zl and z so that a13z;' 

2 
z" is less than 

+ a23 2 

Then the two region subsystem consisting of the regions for 

which the components of {z) are nonnegative is an equilibrium 

sufficient condition of Property 4. 

For example, the three region system of the U.S. obtained by 

aggregating the South and West regions of the four region system 

previously used has a {z) vector whose first component (North East) 

is zero, thus concentrating the equilibrium population in the other 

two regions (North Central and South/West). Note that, in such 

instances, the allocation of the equilibrium population among the 

two regions denoted by i and j can be simply obtained by observing 

that Mij(m) = Mji(m), i.e., (1 - pii)yi = (1 - pjj)yj: the share 

of each region is inversely proportional to the total outmigration 



rate (1 - pii). Numerically, it appears that the equilibrium 

solution implies that a constant 35.14 percent of the whole U.S. 

population will ultimately live in the North Central region ver- 

sus 64.86 percent in the region constituted by the U.S. Census 

South and West Regions.* 

Moreover, because of the occurrence of a zero entry at 

equilibrium (the third entry), the following inequality holds: 

Suppose now that there exists a second acceptable equilibrium 

solution characterized by a zero component, say, in region 1.  

Then the following inequality, similar to (32), must hold 

a2 1 
Multiplying (32) by and adding the resulting inequality to 

23 
(33) we get 

which is clearly contrary to the hypothesis that p22 < 1. 

Finally, a three region system admits a unique equilibrium 

distribution characterized either by strictly positive entries 

(if A-I - [I - - Pdl ti} is nonnegative) or by two strictly positive 
entries accompanied by a zero entry (corresponding to the entry 

of A-' [I - Pdl {i} which is negative). In the latter case, more- - - 
over, the population shares of the two nonvanishing regions are 

*For the sake of comparison, we remind the reader that the four 
region system had an equilibrium solution in which the sum of 
the shares of the South and West regions was 85.68 percent. 



inversely proportional to their total outmigration rates. 

Case of a System in which Distance has no Influence 
(Nonlinear Model 11) 

In such an instance, the matrix A is symmetric so that in - 
contrast to the general case, (25) does not raise any problem if 

n is an even number. The general Properties 2 and 4 are thus 

valid here without the restriction attached to the number of 

regions in the system. Therefore, the maximum number of equi- 

librium solutions is 2" - n + 1 . e l  1 1  in the case of our 

four region system of the U.S. 

Table 19 displays the values of the 1 1  characteristic vec- 

tors of the new C matrix obtained for this system. Note that we - 
have not reported here the values of {z) since the normalized 

vector { z )  is identical to { y ) .  (This stems from the fact 

that if A is symmetric, the value of ai is (1 - Pii ) for all non- 

empty regions.) All the 1 1  characteristic vectors are nonnega- 

tive; however, none of the solutions with zero entries are such 

Table 19. Nonlinear model I1 - ZPG case  - U.S. reg ions  - 
t h e  {y) vec to r s  

Solu- I 
t i o n  I Iy} 

, I 

I I i 
I I I 

I I 
1 0.30186' I '0.36383 j 0.49540' 1 
i \0 .19483,  1 1 

(') '0.3'5431 1 (7) .  '0.5!601 1 (lo) 
( I )  ; 

t3:;lt;:j 
, i I I I 

0.26073 ' 

Solu- 
t i o n  

NO. 

. Solu-  : Solu- ' 
{y} t i o n  / { I  t i o n  

! No. 1 j No. ] 



t h a t  t h e  d i f f e r e n c e  between i nmig ra t i on  and ou tmig ra t i on  r a t e s  i s  

n e g a t i v e  when t + a. There fo re ,  t h e  system o f f e r s  a  unique equ i -  

l i b r i u m  c h a r a c t e r i z e d  by non-empty r eg ions .*  W e  n o t e  t h a t  t h e  

North E a s t  r e g i o n  i s  comparat ively  much l a r g e r  a t  e q u i l i b r i u m  

(30.19 p e r c e n t )  t han  i n i t i a l l y  (27.77 p e r c e n t ) ,  wh i l e  t h e  s h a r e  

o f  t h e  North C e n t r a l  r eg ion  is  much s m a l l e r  (19.48 p e r c e n t  v e r s u s  

28.08 p e r c e n t ) .  By c o n t r a s t ,  t h e  popu la t i on  s h a r e s  o f  t h e  South 

and W e s t  r eg ions  a r e  s i m i l a r  i n  bo th  i n i t i a l  and s t a t i o n a r y  pop- 

u l a t i o n s .  

I V .  THE NONLINEAR MODEL (NON-ZPG FORMULATION): SEARCH FOR 
EQUILIBRIUM SOLUTIONS 

I n  t h i s  c a s e ,  r e g i o n s  a r e  exposed t o  n a t u r a l  i n c r e a s e  N f O ,  - - 
and t h e  p r o j e c t i o n  p roces s  i s  e n t i r e l y  d e f i n e d  by (18)  [ o r ,  a l t e r -  

n a t i v e l y ,  by (20)  ] and acconfpanied by t h e  c o n s t r a i n t  equa t i on  ( 1  9 )  . 

Pre l imina ry  P rope r ty  

I n  o r d e r  t o  avo id  any p o t e n t i a l  problem concern ing  t h e  s i g n  

w i ( t ) ,  w e  p u t  down t h e  fo l lowing  r e s t r i c t i o n  about  t h e  Pd and N - 
m a t r i c e s :  ** 

Then w e  can e s t a b l i s h  t h e  fo l lowing  p r o p e r t y .  

P rope r ty  5 

I f  no r e g i o n  i s  i n i t i a l l y  e m p t y ,  t h e n  no r e g i o n  can  

become empty  e x c e p t  i n  t h e  l ong  r u n .  I n  o t h e r  words ,  

{ w ( t )  1 2 0  f o r  a l l  f i n i t e  v a l u e s  o f  t. 

*This  e q u i l i b r i u m  s o l u t i o n  was t h e  one ob t a ined  a s  t h e  l i m i t i n g  
a l l o c a t i o n  of t h e  p o p u l a t i o n  of t h i s  system when p r o j e c t i n g  
i t e r a t i v e l y  t h e  1970 popula t ion .  

**Note t h a t  imposing such a  c o n s t r a i n t  i s  n o t  ve ry  r e s t r i c t i v e  
f o r  u s u a l  a p p l i c a t i o n s  o f  m u l t i r e g i o n a l  systems:  pii + n  i s  
h igh ly  p o s i t i v e  Vi. i 



To prove this, we write equation (20) in scalar terms as: 

Then, we have 

t 
so that wi (t) - > (pii + ni) wi (0) (if pii + n. 1 - > 0 .  Therefore, if 

wi(0) # 0 Vi, w. (t) is strictly positive for all i whenever t 
1 

remains finite. 

Equilibrium Solutions With Nonvanishing Regional Populations 

Turning to the search for equilibrium solutions, we first 

establish a property extending the one derived by McGinnis and 

Henry (1  973) in the ZPG case. 

Toward the Derivation of an Acceptable Equilibrium Solution 

If it exists, an equilibrium solution to the non-ZPG form- 

ulation of the nonlinear model, characterized by all strictly 

positive entries, is unique and is obtained as the characteristic 

vector of the matrix 

corresponding to the largest characteristic root X (provided that 

X is equal to or larger than I ) . *  

,-1 -1 - 1 
*Alternatively {y} can be derived as 5 [P {i}ldg{u} in which 
{u} is the characteristic vector of the matrix 

- 1 ,-1 
F - = [A (Ed + !){ill + (E - Pd)A d9 

corresponding to the 

largest characteristic root of X(Q and F have the same charac- 
teristic roots). This alternative was used in setting up a 
computer program to calculate the estimates of {y} (see 
Appendix 4 )  . 



To prove this we rearrange the steady state equation (21) 

and obtain the following generalization of (25) 

This relationship may also be rewritten as: 

which expresses that each regional increase of population (at 

stability) is obtained by subtracting the outmigration flow from 

the sum of the inmigration and natural increase flows.* 

-1 -1 Premultiplying both sides of (34) by A y (which is pos- - - 
sible here as a consequence of the assumption that {yl admits 

no zero entries) yields: 

Then we can rewrite the matrix product a(m)y as - - 

in which the two terms between brackets represent diagonal matri- 

ces whose general diagonal elements are equal to the general terms 

of the vectors appearing inside the brackets. Substituting (35) 

into the constraint equation (22) then yields: 

*Note that (34) may be alternatively presented as: 

[ y A  - - -  a(m)y - - (I - - Pd)yl{iI = [(A - 1)I - Nl{yl I - - - 
which contrasts with the constraint equation: 

{i!'[y - - -  A a(m)y - (I - - zd)yI = t o } '  . - 



a relationship that can be rewritten, after premultiplication 

by - [A-'{i)ldg - as 

in which 

Then, an equilibrium solution {y), if it exists, is a charac- 

teristic vector of the matrix D corresponding to one of its real - 
characteristic roots. Thus, if it exists, the stable state of the 

nonlinear model is identical to the stable state of the linear 

model in which 

Since the stable state of this system is unique and corresponds 

to the largest real characteristic root of D, the result is that, - 
if it exists, (y) is unique and is obtained as the characteristic 

vector of D corresponding to its largest real characteristic root - 
A, provided that A is greater than one (if A < 1 , wi (t + s) = 

S A wi(t) + 0 as s + m, i.e., the system vanishes). 

Note that D is not necessarily nonnegative and that the - 
characteristic vector of D corresponding to its largest real - 
characteristic root may admit negative entries. Unfortunately, 

unliks in the ZPG case, it is impossible here to derive a neces- 

sary and sufficient condition permitting one to determine a 

priori whether there exists an acceptable equilibrium solution 

with nonnegative entries. 

To determine the existence (or nonexistence) of an equilib- 

rium solution with strictly positive entries, we must carry out 

the projection process embodied in the linear system (38) and 

thus find out whether it leads to an acceptable estimate of {y).* 

*The algorithm used to calculate applied estimates of {y) is 
presented in Appendix 4. 



The a p p l i c a t i o n  of  t h i s  method t o  o u r  f o u r  r e g i o n  sys tem 

l e a d s  t o  a  v e c t o r  { y )  i n  which t h e  f i r s t  component (Nor th  E a s t )  

i s  n e g a t i v e  (see T a b l e  2 0 ) .  Then, t h e  ZPG f o r m u l a t i o n  o f  t h a t  

sys tem a d m i t s  a t  l e a s t  a  v a n i s h i n g  r e g i o n .  

Table 20. Nonlinear model - non ZPG formulation - U.S. regions - 
equilibrium solution with no vanishing regions 

A s  a  d i g r e s s i o n ,  o b s e r v e  t h a t  t h e  m a t r i x  D of  t h e  non-ZPG c a s e  i s  - 
r e l a t e d  t o  t h e  m a t r i x  C o f  t h e  ZPG c a s e  by t h e  f o l l o w i n g  r e l a t i o n -  - 
s h i p  : 

I t  f o l l o w s  t h a t  

s o  t h a t  [ D  - X I ]  { y )  = { O )  can be  r e w r i t t e n  a s  
I 

- - 

I n  t h e  ZPG c a s e ,  N = 0,  and h = 1 and ( 3 9 )  r e d u c e s  t o  - - 

( I  - C )  t y )  = t o 1  , - - 

which i s  p r e c i s e l y  t h e  s t e a d y  s t a t e  e q u a t i o n  o f  t h e  ZPG c a s e .  

*AS i n d i c a t e d  i n  a  p r e v i o u s  f o o t n o t e ,  t h e  s t a b l e  s t a t e  of  t h e  non- 
ZPG c a s e  i s  o b t a i n e d  th rough  t h e  c a l c u l a t i o n  o f  a  m a t r i x  F which 
h a s  t h e  same c h a r a c t e r i s t i c  r o o t s  a s  D .  - 



A s  t h e  comparison o f  (39)  and ( 4 0 )  s u g g e s t s ,  t h e  non ZPG c a s e  

i s  n o t  a  s i m p l e  e x t e n s i o n  of  t h e  ZPG c a s e .  I n  th-e non ZPG c a s e  

t h e r e  a p p e a r s  t o  be  no s imple  theorem d e t e r m i n i n g  a  p r i o r i  t h e  

e x i s t e n c e ,  o r  n o n - e x i s t e n c e ,  of  e q u i l i b r i u m  d i s t r i b u t i o n s  charac -  

t e r i z e d  by nonvan i sh ing  r e g i o n s .  A c t u a l l y ,  t h i s  s t a t e m e n t  

g e n e r a l l y  h o l d s  o n l y  i f  t h e  system i n i t i a l l y  c o n t a i n s  two o r  an 

odd number of  r e g i o n s .  A s  i n  t h e  ZPG c a s e ,  a  sys tem hav ing  a n  

even number of  r e g i o n s  g r e a t e r  t h a n  two, h a s  a t  l e a s t  one van- 

i s h i n g  r e g i o n  i n  t h e  long  r u n .  

C o n t r a s t i n g  Systems w i t h  Odd and Even Numbers o f  Regions 

I f  a  non-ZPG sys tem i s  i n i t i a l l y  n o t  s t a b l e ,  t h e r e  g e n e r a l l y  

e x i s t s  no e q u i l i b r i u m  s o l u t i o n  c h a r a c t e r i z e d  by a n  even number o f  

r e g i o n s  ( h i g h e r  t h a n  two) o f  non-empty r e g i o n s . *  Major e x c e p t i o n s  

o c c u r  when A i s  symmetric.  The e q u i l i b r i u m  e q u a t i o n  ( 3 4 )  can  be  

w r i t t e n  h e r e  a s  

[E - ~ ' ] { i )  = [ ( A  - 1 ) 1  - N ] { Y )  , 
?.. ?.. - - 

i n  which E i s  e q u a l  t o  y  A a ( w )  y .  - w - - - 
Suppose t h a t  w e  p r e m u l t i p l y  (41)  by a  row v e c t o r  o f  ones  {i) ' ,  

t h e n  w e  have 

S i n c e  t h e  p o p u l a t i o n  sys tem c o n s i d e r e d  i s  c l o s e d ,  t h e  sum of  

t h e  r e g i o n a l  o u t m i g r a t i o n  f lows and t h e  sum o f  t h e  r e g i o n a l  inmi- 

g r a t i o n  f lows a r e  e q u a l .  T h e r e f o r e ,  

*The d e m o n s t r a t i o n  o f  t h i s  p r o p e r t y ,  s l i g h t l y  more d i f f i c u l t  t o  
e s t a b l i s h  t h a n  i n  t h e  ZPG c a s e ,  i s  i n  f a c t  ve ry  q e n e r a l  and 
i n c l u d e s  t h e  d e m o n s t r a t i o n  proposed i n  t h e  ZPG c a s e  a s  a  spe-  
c i a l  c a s e .  



If we assume that a(m) and y are known, (42) must be a system of - .., 

n linearly dependent equations with the determinant of E .., - E' .., 
required to be zero. However, as shown earlier, E - E' has a zero ., .., 

determinant if A is symmetric. If A is not symmetric, E - E' has 
.., - .., - 

a zero determinant when the number of regions in the system is 

equal to two or is an odd number. 

Summariz ing  t h e  above  p r o p e r t i e s ,  i t  a p p e a r s  t h a t  a  demo- 

g r a p h i c  s y s t e m ,  i n i t i a l l y  n o n s t a b l e ,  c h a r a c t e r i z e d  by  a  

m a t r i x  P o f  r e t e n t i o n  p r o b a b i l i t i e s  and a  m a t r i x  A _of ..,d .., 

r e l a t i o n a l  e l e m e n t s  d o e s  n o t  a d m i t  a  s t r i c t l y  p o s i t i v e  

e q u i l i b r i u m  v e c t o r  {y) i f  t h e  number o f  r e g i o n s  i n  t h e  

s y s t e m  i s  a n  e v e n  number g r e a t e r  t h a n  two .  I f  t h e  number 

o f  r e g i o n s  i s  two o r  a n  odd number ,  i t  may have  e q u i l i b -  

r i u m  v e c t o r  t h a t  i s  u n i q u e  and i s  o b t a i n e d  a s  t h e  c h a r -  
-1 -1 a c t e r i s t i c  v e c t o r  o f  D - =A*-' .., [A-l ti)ldq[~ ( P ~  + N )  {i}~dq$' 

.., .., - 
+ (I - P ) I  c o r r e s p o n d i n g  t o  i t s  l a r g e s t  r e a l  c h a r a c t e r -  - ..,d 
i s t i c  r o o t  ( p r o v i d e d  t h a t  t h i s  c h a r a c t e r i s t i c  r o o t  i s  

l a r g e r  t h a n  o n e ) .  

Equilibrium Solutions with Vanishing Regional Populations 

Searching for Equilibrium Solutions with Vanishinq Regional 
Populations 

In order to find whether there exist equilibrium solutions 

characterized by a given set of k vanishing regions, it suffices 

to set yi = 0 for these k regions in ( 3 4 ) ,  which yields a new 

vector equation: 

*There exists the following relationship between X and {y) 



in which P A, a (a) and are respectively obtained from P A, -dl - w -d' 5 

a(a) and by removing the k columns and k rows corresponding to - 
the vanishing regions. Since (43) is similar to ( 3 4 ) ,  we can 

- 
apply Property 6 to the system characterized by A, Pd and N. We - 
conclude that: 

(1 ) if (n - k) is an even number higher than two, there 
does not exist any equilibrium vector containing k 

zero elements corresponding to as many empty regions, 

except if A is a symmetric matrix, and 

(2) if (n - k) is equal to two or odd numbers, there 
exists at most one equilibrium solution correspon- 

ding to the predetermined choice of vanishing 

regions. 

Moreover, the application of Property 2 to (39) suggests 

that the possible equilibrium solutions of the ZPG system are 

characteristic vectors of 

corresponding to their largest characteristic root (if higher 

than one) . 

The Maximum Number of Acceptable Solutions 

Because there is not more than one equilibrium solution for 

each choice of vanishing region sets, we find that Property 3, 

concerning the maximum number of acceptable solutions, holds in 

the non-ZPG case. 

Determining all Solutions of (39) in the Four Reqion System 
of the U.S. 

The non-ZPG formulation of the nonlinear model applied to the 

four region system of the United States, thus offers ten possible 

equilibrium solutions characterized by one or two empty regions. 

The calculation of the characteristic roots and characteristic 

vectors corresponding to the ten D matrices which are possible - 



to construct for this system reveals that: 

- two of the four characteristic vectors containing a 

unique zero component are nonnegative, and 

- all of the six characteristic vectors containing two 

zeros are nonnegative (see Table 21). 

Table 21. Nonlinear model - non-ZPG case - U.S. regions - 
alternative stable equilibriums 

{ Y )  
Solution 
Number 

(1) 

X 

I 

t-52.27200 

(2) 1.15054 (7) 1.007 90 
31.81302 

0 
21.45898 0.52767 

1 -l21.3:63'" 
(3 1.44917 ' <  (8) 1.00850 

0.54299 
55.33747 0.45701 
66.99887, I 

'0.05375 

1.00816 
0.35054 
0.49570 

{ Y )  

(6 

Solution 
Number 

X 

i I 0.51279 0 

( 
I 

'0.48721 

I 
0 

I 



Narrowing Down the Number of Acceptable Solutions 

The equilibrium solutions determined above are again limit- 

ing distributions of the non-ZPG formulation of the nonlinear 

model if conditions concerning the regions assumed to vanish 

hold. We shall demonstrate that a nonnegative vector {y) with 

k zero entries is an acceptable equilibrium solution only if the 
- 

vector (21  = [A1 .., - (Fd + ~)l-l{il - and the matrices z, Fd and G ,  
respectively, obtained from A, Ed and N by removing the (n - k) .., .., 

rows corresponding to the non-zero entries are such that 

- - - - z{z} - [I - Pd]{i} < [(A - 111 - ~]{i} . - - - - - 

Clearly, a necessary condition for any one region to become 

empty in the long run is that the sum of its net migration and 

natural increase be equal to or less than (A - 1 )wl(t) as t becomes 

large, i. e. , 

for any finite value of t > T. Because wl(t) is strictly positive 

for any finite value of t, the above condition becomes 

1 a a. (t)w. (t) - (I - pll) I (A - 1 - nl) 
j#l 11 I I 

or in compact form, 

- - 
in which the double bar indicates that the matrices x, 

5 Pd and - 
are sections of A, Pd and N obtained by removing the n - k rows - 
corresponding to the zero entries of {y). 

--1 AS t +m,G(t) - tw(t) I + {GI = A[Z-' ti11 - [A (td +N) ti}ldg, 
w - SO 

dg - 
that a necessary condition for any characteristic vector {y) 

with zero entries to be an acceptable equilibrium solution 



is that: 

- - - - - - - 

A{Z} - I - - ~ ~ ) { i }  - < [ ( A  - 1)1 - - ~]{i} - . 

In the case of our four region example, among the eight non- 

negative characteristic vectors {y} derived above, only one 

(solution number (4) in Table 21) verifies condition (44). The 

multiregional systen~ of the United States consisting of the four 

U.S. Census Regions gives a unique acceptable solution in which 

the North.East region is empty and the other regions contain 

respectively 18.77 percent (North Central), 43.32 percent (South) * 
and 37.90 percent (West) of the U.S. population. 

As in the Z P G  case, it can be shown that t.he condition (44) 

is also sufficient and then the following property can be stated, 

Table 22 .  Nonlinear model - non-ZPG case - U.S. regions - comparison of 
s t a b l e  inmigrat ion and outmigration r a t e s  r e l a t i n g  t o  the  van- 
i sh ing  regions 

*Again, note that if we project the future multiregional pop- 
ulation of the U.S. using the non Z P G  formulation of the non- 
linear model based on 1965-70 data, we observe such a limiting 
distribution. 



summarizing the results of this section: 

Property 7 

Neces sary  and s u f f i c i e n t  c o n d i t i o n s  f o r  a n  i n i t i a l l y  

n o n s t a t i o n a r y  n r e g i o n  s y s t e m ,  t o  o f f e r  one o r  s e v e r a l  

e q u i l i b r i u m  d i s t r i b u t i o n s  c o n t a i n i n g  no more t h a n  

(n - 2 )  empty  r e g i o n s  a r e :  

( 1 )  t h a t  t h e r e  e x i s t  one o r  s e v e r a l  p a r t i a l  m a t r i -  
- 

c e s  ii -d l  Pd and N o b t a i n e d  by r emov ing  - 
k (0 - < k  - < n - 2 )  co lumns  and k rows o f  A, Fd - - -- 1 and N, s u c h  t h a t  { z }  = A  [ A 1  - (Ed 1 Ii} > O - - - - 
( i n  wh ich  A ,  t h e  l a r g e s t  r e a l  c h a r a c t e r i s t i c  

r o o t  o f  t h e  m a t r i x  

i s  n e c e s s a r i  Zy h i g h e r  t h a n  o n e ) ,  

(2) t h a t  t h e  v e c t o r s  I;} s a t i s f y  t h e  c o n d i t i o n  
- - - - f { z }  - [I - ~ ~ ] { i }  < [ ( A  - 1 1 1  - ~l{i} t - - - - - 

e x p r e s s i n g  t h a t ,  a t  e q u i l i b r i u m ,  r e g i o n a l  

n e t  m i g r a t i o n  r a t e s  mus t  b e  l e s s  t h a n  t h e  

d i f f e r e n c e  b e t u e e n  t h e  common s t a b l e  g rowth  

r a t e  ( A  - 1 )  and t h e  r e g i o n a l  n a t u r a l  i n c r e a s e  

r a t e ,  and 

( 3 )  t h a t  (n - k ) ,  t h e  number o f  n o n v a n i s h i n g  r e -  

g i o n s ,  i s  n o t  an e v e n  number h i g h e r  t h a n  t w o .  

( T h i s  t h i r d  c o n d i t i o n  i s ,  however ,  n o t  

r e q u i r e d  i f  A i s  a  s y m m e t r i c  m a t r i x . )  

Like the ZPG formulation, the non-ZPG formulation does not 

necessarily yield a unique equilibrium solution as appears to be 

the case in the above example. Again, there might be several 

equilibrium distributions whose regional shares depend on the 

matrices A, ed and N but not on the initial population { w ( O ) } ;  - - 
as suggested by numerical experiments, the initial population 

influences the stable equilibrium in that it determines which 

one of the acceptable equilibrium distributions will be reached. 

Also, note the possibility, as in the linear system, of a vanish- 



ing system if there exists no acceptable solution with a value of 

X larger than one. 

Thus, in our search for acceptable equilibrium solutions, we 

have set forth a methodology permitting us to determine a priori 

all acceptable equilibrium solutions of the non ZPG-case (see 

Appendix 4 for a formal and concise exposition of this method- 

ology) - 

Particular Cases 

Case of a Three Region System 

In contrast to the ZPG case, the non-ZPG case does not lend 

itself to establishing the existence of at most one equilibrium 

solution. However, as in the ZPG case, it is possible to deter- 

mine the equilibrium shares in the case of one region vanishing. 

Let us suppose that the third region is empty at equilibrium. 

Then, we can simply express fi in terms of A, P and N. Since - - - - 

we thus have: 

and --1 - A - 



which after simplification reduces to: 

A is then the larger root of the following second-degree poly- 

nomial 

(45) 

Since an equilibrium solution is given by 

and 

it follows by subtracting the second equation from the first that: 

*Since the discriminant A = (p + nl + pp2 + np) 2 1 1  

- 4[(p11 + nl) ( P ~ ~  + n2) - (1 - pll) ( 1  - 1 3 ~ ~ 1 1  

= [pl I + n1 - (P22 + n2)12 + 4(1 - pll)(l - p22) and the sumof 
the roots pll + nl + P22 + n are positive, there exist two sol- 2 
utions, the higher of which is positive. 



so that the normalized shares of regions 1 and 2 are, respectively, 

and 

* 
in which A is given by (45). 

To summarize, if one region of a three region system (non-ZPG 

case) vanishes, the two other regions generally take on limiting 

shares directly proportional to the values of their net migration 

rates. 

Case of a System in which Distance Has No Influence 
(Nonlinear Model 11) 

Again, A is symmetric so that the general Properties 3, 6 and - 
7 are valid without the restriction attached to the number of 

regions in the system. Then, the four region system of the U.S. 

admits a maximum of 1 1  equilibrium distributions. Using the 

methodology set above, we have thus derived the eleven possible 

matrices F, calculated their largest characteristic root using - 
the aforementioned methodology, and determined the corresponding 

Iy) vectors. 

n +n 
* N o t e t h a t i f A = l +  2 ,  (46) may be rewritten as (n 

2 - "1)~1 
= (n2 - n1)y2 so that the equilibrium population is equally 

distributed between regions 1 and 2 [except if n = n = n in 
2 1 

which case the stable state is given as in the ZPG formulation 
- by (1 - P ~ ~ ) Y ~  - (1 - P ~ ~ ) Y ~ I .  



Table 23. Nonlinear model I1 - non ZPG case - U . S .  regions - 
the  s tab le  equilibrium 

After verifying whether these equilibrium solutions meet 

the existence condition concerning vanishing regions, we found 

that only one equilibrium solution was an acceptable limiting 

distribution. Table 23 indicates that this limiting distribution 

is characterized by non-empty'regions and that the regional pop- 

ulation shares remain closer to the initial shares, as in the ZPG 

case, than in the full model. 

CONCLUSION 

This paper, devoted to the examination of the limitlng 

distributions of alternative specifications of the interregional 

components-of-change model, made clear that retention probabil- 

ities must be independently determined to avoid the type of 

problems mentioned in Section I and illustrated by Appendix 1. 

It also demonstrated that the classic linear formulation (Rogers, 

1968, Liaw, 1975) and the nonlinear formulation of McGinnis/Henry 

(19731, are close variants of the components-of-change model 

characterized by independently determined retention probabilities: 

they were labelled as "dual", because their point of departure 

stems from symmetric implementations of the constraint imposed by 

the independent choice of the retention probabilities. 

The main contribution of this paper was to examine some of 

the long-term mathematical properties of the ~cGinnis/Henry model 

and to develop a methodology for determining a priori all the 

acceptable equilibrium solutions of the model. Unfortunately, we 

were not able to complete a proof of either the existence of an 

acceptable solution of the state equation or of the long-term 

convergence of the model. However, in consideration of the 

results of our numerous experiments with the model, it appears 

legitimate to accept the long-term convergence property of the 



model as granted and to leave its formal proof to mathematicians. 

Contrasting the long-term properties of the linear and non- 

linear models has revealed the less conservative character of the 

nonlinear model and the less favorable characteristics of its 

stable state, such as the occurrence of empty regions and the 

possible existence of more than one equilibrium distribution. 

Numerical experiments have also shown that, in the case of systems 

consisting of a large number of regions, the nonlinear model may 

display a few alternative equilibrium distributions, always char- 

acterized by a small number of nonvanishing regions (provided 

that the stable growth rate is positive). 

7 
model thus prevent its use as a substitute for the linear model, 

in order to gain insights into the dynamics of multiregional 

population systems. 

Note that the nonlinear model examined in this paper as well 

as the linear model make use of data relating to a unique time 

period. Also following a suggestion of Vining Jr. ( 1 9 7 5 ) ,  we have 

examined generalizations of these models (especially the linear 

model) based on the observation of data during two consecutive 

time periods. Unfortunately, these generalized models can even- 

tually lead to problems when projected indefinitely (see Appen- 

dix 3). Thus, at the present time, no model other than the 

classic linear model of population growth and distribution based 

on data for a single time period seems better suited for examin- 

ing the dynamics of multiregional population systems. 



REFERENCES 

Alonso, W. (1973), N a t i o n a l  I n t a r r e g i o n a l  Demographic A c c o u n t s ;  
A Prototype, Monograph No. 17,. Institute of Urban and 
Regional Development, University of California, Berkeley. 

Alonso, W. (1977), P o l i c y - O r i e n t e d  I n t e r r e g i o n a l  Demographic 
A c c o u n t i n g  and a  G e n e r a l i z a t i o n  o f  P o p u l a t i o n  Flow Models ,  
in Internal Migration, A Comparative Perspective, 
Alan A. Brown, E. Neuberger (eds.), Academic Press, New York. 

Feeney, G. (1973), Two Models for Multiregional Population 
Dynamics, Env i ronmen t  and P l a n n i n g ,  - 5, 31-43. 

Liaw, Kao-Lee. (1975), A Discrete-time ~ynamic ~nalysis of 
Interregional Population Systems, ~ e o g r a p h i c a l  A n a l y s i s ,  
7, 227-244. - 

Lowry, I.S. (1966), M i g r a t i o n  and M e t r o p o l i t a n  Growth:  Fwo 
A n a l y t i c a l  Mode l s ,  Chandler, San. Francisco. 

McGinnis, R., and N.W. Henry, (1973), Some P r o p e r t i e s  o f  a  
S t o c h a s t i c  A t t r a c t i o n  Model ,  in Population Dynamics, T.N.E. 
Greville (ed) Proceedings of a Symposium Conducted by the 
Mathematics Research Center, the university of Wisconsin, 
Madison, June 19-21, 1972. 

Nikaido, H. (1968), Convex S t r u c t u r e s  and ~ c o n o m i c  T h e o r y ,  
Academic Press, New York. 

Rogers, A. (1968) , M a t r i x  A n a l y s i s  o f  I n t e r r e g i o n a l  P o p u l a t i o n  
Growth and D i s t r i b u t i o n ,  Berkeley, University of California 
Press. 



Appendix 1 

Long-term Behavior of the Unconstrained Model 

Starting from the general formulation of the components-of- 

change model (5) , the most natural way to study its long-term 
behavior is to suppose that 

N(t) = N and A(t) = A . - - -. - (A. 1) 

Equation (5) in which these assumptions are introduced makes it 

possible to calculate the regional population distribution at 

any future point in time. 

An application of the resulting model to the four-region 

system of the U.S. based on 1965-70 data shows the existc~nce of 

an equilibrium (in both the ZPG and non-ZPG cases) in which all 

regions except the West region are empty. 

However, the application of the same model to other examples 

does not always lead to such an acceptable long-term behavior. 

It might well happen that the population of a region becomes 

negative or that the total migration out of a region is greater 

than the population of this region. This undesirable feature is 

indeed the consequence of the fact that retention probabilities 

are treated here as residuals and may thus take on inadequate 

values. 

Problems associated with this feature are, in fact, well 

known and have been described in the biology literature in which 

appears a population model of interacting biological species, 

called the Volterra model, identical to the components-of-change 

model, defined by (5) and (A. 1). (For an extensive review of 

the Volterra model of interacting populations, see Goel et al., 

1971.)* 

*Goel, N., et al. (1971), On the Volterra and other Non-linear 
Models of Interacting Populations, R e v i e w s  of Modern Physics, 
43, No. 2, Part I, 231-276. - 



We have, nevertheless, attempted to study t h ~  long-term 

behavior of the model embodied in (5) such that the assumption 

(A.1) holds. A demonstration similar to the one appearing in 

Section IV of this paper, leads to the conclusion that equilib- 

rium distributions cannot contain an even number or non-empty 

reqlons (in the present case even if n = 2) and necessarily has 

an odd number of non-empty regions that may well be one. 

In the case of a three-region system, it is clear that there 

are four alternative equilibrium solutions: three of them 

correspond to a concentration of the population, while the fourth 

one {yI presents all non-zero entries. This population equilib- 

rium IyI is obtained as the solution of (4) in which 

Iw(t - 1) I = XIw(t) I, i.e., 

or by premultiplying by y-l, which is possible since y has no ... 
zero entry by assumption 

It can easily be established that in the non-ZPG case 

in which nl, n2 and n are the natural increase rates of each one 3 
of the regions of the system. 

In the ZPG case (N = 0 and X = 1);it is moreover possible - 
to obtain the normalized equilibrium vector {y} as: 



C l e a r l y ,  a  n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  f o r  y  t o  be 
- s t o c h a s t i c  ( i . e .  0 < yi < 1  V i )  i s  t h a t  ( a 2 1  - a 1 2 ) ,  ( a 3 ,  - a  13) 

and ( a j 2  - a 2 3 )  have t h e  same s i g n .  N o t i c i n g  t h a t  t h e s e  q u a n t i t i e s  

a r e  s imply  r e l a t e d  t o  t h e  i n i t i a l  n e t  m i g r a t i o n  f l o w s  obse rved  

between each p a i r  of  r e g i o n s ,  w e  can  make t h e  f o l l o w i n g  conc lu -  

s i o n .  I f  one (and t h e r e f o r e  e a c h )  r e g i o n  o r i g i n a l l y  e x p e r i e n c e s  

a  p o s i t i v e  n e t  i n m i g r a t i o n  w i t h  a n o t h e r  r e g i o n  and a  n e g a t i v e  one 

w i t h  t h e  t h i r d  r e g i o n ,  t h e r e  e x i s t s  an  e q u i l i b r i u m  s o l u t i o n  

characterized by 0 - < ( y . )  < 1.  (However, t h i s  equilibrium l n -  

a 2Y s o l u t i o n  i s  n o t  s t a b l e  s i n c e  { = [A  - ~ ' ] { i )  a d m i t s  a t  l e a s t  - - 
a  s t r i c t l y  p o s i t i v e  component.) I f  a t  l e a s t  one r e g i o n  h a s  n e t  

m i g r a t i o n  b a l a n c e s  w i t h  t h e  o t h e r  two r e g i o n s  o f  t h e  same s i g n ,  

t h e  s t a t i o n a r y  e q u i l i b r i u m  s o l u t i o n s  c o n t a i n  a t  l e a s t  one e n t r y  

(y i In  such t h a t  ( y i ) n  5 0 .  

I n  f a c t ,  n u m e r i c a l  a p p l i c a t i o n s  i n d i c a t e  t h a t  i n  b o t h  c a s e s ,  

i f  t h e  i t e r a t i v e  p r o c e s s  i s  c o n t i n u e d  s u f f i c i e n t l y  long  enough, 

d i v e r g i n g  t e n d e n c i e s  and n e g a t i v e  p o p u l a t i o n s  a r e  l i k e l y  t o  

a p p e a r .  



Appendix 2 

Outmigration and Inmigration Models 

In the main body of this paper, we supposed that place-to- 

place migration flows were proportional to the product 

a w .  (t)w.(t) and that the adjustment constant was either depen- ij 1 I 
dent on the origin or on the destination, which permitted us to 

derive the usual linear and nonlinear formulations as "dual" 

variants of the components-of-change model with independent 

retention probabilities. 

Note that alternative models of population distribution can 

be formulated by considering other special cases of our components- 

of-change model: they are simply obtained by replacing either one 

of the two population variables of a wi (t) w .  (t) by one. We thus 
i j I 

derive two models that we label outmigration and inmigration 

models. 

Outmigration Model 

The substitution of one for w.(t) corresponds to the case in 
I 

which M (t) is proportional to a w. (t). Clearly, whenever the 
i j ij 1 

adjustment constant is related to the region of origin or desti- 

nation, the place-to-place migration flows are to be expressed as 

Mij (t) = p. .w. (t) i j  =l,...,n , j # i  I 

11 1 

in which p 
ij' independent of time, is such that 1 pij is equal 

to a predetermined value 1 - jfi 
Pii. 

Indeed, the outmigration model thus obtained is the classic 

linear model examined in Section I. 



Inmigration Model 

The substitution of one for wi(t) results in Mij(t) varying 

with the size of the destination population w.(t) I 

~ ~ ~ ( t )  = [aijwi(0)]w. (t) = b W. (t) . 
I ij I 

Substituting (A.2) into the basic flow equation of the ZPG model, 

yields 

We can rewrite (A.3) in a more compact form as 

in which Q is given by - 

*Q, unlike P = (pij) in the outmigration case, is not a matrix - - 
of transition probabilities, although the column elements add 
up to one. The diagonal elements are higher than one and the 
off-diagonal elements are negative. 



Clearly, a limiting distribution {y) of this model verifies 

This equation yields a non-trivial solution, the entries of 

which are all strictly positive. However, the corresponding 

equilibrium is not stable. This can be seen from the fact 
d2 

that at least one component of - {w(t)) is positive. dt 

2 
d{w(t)' dt = (Q - - I) - {~(t) SO that dt {w")' = {Q - - I){=} - , 

Since {i)(Q - I) = ( 0 1 ,  the sum of all the components of [Q-I]{~) - - - - 
is equal zero. Thus,[Q - 1]{i) ( 0  only if [Q - 11ii) = 0, which - - - - 
is possible only if Q is symmetric: the steady state equation of - 
the above model offers a strictly positive solution which does 

not constitute a stationary equilibrium. 

In fact, the above model does not impose any restriction on 

the retention probabilities and therefore its iterative projection 

generally runs into the types of problems already encountered in 

Appendix 1. 

A feasible inmigration model must then ensure that the number 

of outmigrants out of a region is less than the population of that 

region. We must then introduce into (A.2) an adjustment term depen- 

ding on either the region of origin or the region of destination. 

Suppose that M (t) = ai(t)a..w.(t), then the imposition of 
ij 1 3  3 

independent retention probabilities implies that 

1  - 
a. (t) = 

Pii 
1 Wi(t) , 1 aijwj (t) 

j#i 

so that the resulting pattern of population distribution is that 

of the nonlinear model of McGinnis/Henry ( 1 9 7 3 ) .  



Alternatively, we can suppose M (t) = a B . (t)w. (t) and the 
ij ij I I 

imposition of independent retention probabilities then implies 

that 

A'BW {w) = (I - {wI . - - - (A. 4 )  

The flow equation of the ZPG model in matrix form becomes 

{wt+,! = {wt} + w . - B(t)Atif - - (I - - pd)iwt , 

whose steady state solution {y) is such that 

On supposing y # 0, the result is that B(m) is strictly positive - - - 
as seen from 

anri that 

in which: 

Since R is a matrix of transition probabilities the elements of - 
its columns sum to one. This inmigration model - in which the 
adjustment accounting for independent retention probabilities is 

made by reference to the destination region results in a classical 

linear model in which the transition probability matrix R is - 
slightly different from the original transition matrix P. - 



Appendix 3 

Long-term Behavior of the Population Distribution Model 
Described by Nonstationary Transition Probabilities and 

a Constant Causative Matrix 

As an alternative approach to the linear model of population 

distribution, Vining Jr. (1975), suggests the use of a nonsta- 

tionary Markov process with a constant causative matrix, recently * 
developed in the context of consumer behavior (Lipstein 1965). 

This appendix attempts to explore the feasibility of such an 

approach to deal with population growth and distribution. 

Formulation of the Model in the ZPG Case 

In Section I, the linear model of interregional population 

distribution was specified as 

in which the transition probability matrix was stationary, i.e., 

P(t) = P(0) for all t > 0 . - - - (A. 9) 

We suppose now that the transition probability matrix P(t) - 
in (A.8) satisfies 

P(t + 1) = P(t) C for all t > 1 , - - - (A. 10) 

*Lipstein, B. (1965), A Mathematical Model of Consumer Behavior, 
J o u r n a l  o f  Marke t i ng  R e s e a r c h ,  No. 2, 259-65. 

Vining Jr., D.A. (1975), The Spatial Distribution of Human 
Populations and its Characteristic Evolution over Time; 
some recent evidence from Japan, Papers  o f  t h e  R e g i o n a l  
S c i e n c e  A s s o c i a t i o n ,  - 35, 157-180. 



* 
in which C is a constant matrix. - 

The corresponding Markov chain is said to have a constant * *  
causative matrix (Harary et al., 1970) 

If C = I, P(t) = P(0) for all t and the transition probabil- - - - - 
ities are stationary (the underlying distribution process is then 

the one of the linear case). However, if C # I, the transition - - 
probabilities are nonstationary. 

Clearly, letting P(0) = Q, we have (Harary et al., 1970) - - 

P(t) = Q C  for all t > 0 . - - - - (A.ll) 

Such a formula allows for an easy calculation of the successive 

regional allocations of any multiregional population system, as 

illustrated by the following example. 

Example 

On December 31st, 1970, Poland had 32,659,000 inhabitants 

among whom 2,518,700 resided in Warsaw. During the year 1971, 

30184 persons left the capital and migrated to the rest of the 

country while 19,756 moved from the rest of the country to Warsaw. 

The result is that on December 31st, 1970, a resident of Warsaw 

had a probability of living, exactly one year later, in the rest 

of the country, equal to 30,184/2,518,700 = .01198 and in Warsaw 

equal to 1. - 0.01198 = 0.98802. Similar calculations for a res- 

ident of the rest of the country led to: 

*The consideration of population growth due to natural increase 
is not necessary for the development of the arguments to follow. 
Instead of a right constant causative matrix, it is possible 
to introduce a left constant causative matrix. In general, the 
left and right causative matrices are different, so that the 
two corresponding sequences of {w(t)) are generally different. 
However, it can be shown that if one sequence tends towards a 
limit, the other tends towards the same limit. Since this 
paper focuses on limiting behavior, it is thus sufficient to 
use right causative matrices for the remainder of this section. 

**Harary, F., et al. (1970), A Matrix Approach to Non-Stationary 
Chains, O p e r a t i o n s  R e s e a r c h ,  1168-1181. 



The 1972 data allows us to calculate the transition matrix of the 

next period 

and to obtain the causative matrix C - 

Note that C presents some entries either negative or greater - 
than 1, i.e., C is not stochastic. - 

Then, application of the Formula (A. 11) to the successive 

values of {w(t)) makes it possible to derive the successive 

regional population allocations that the above nonstationary 

Markov chain implies. 

Table A1 indicates that the part of the Polish population 

living in Warsaw tends to diminish and ultimately become equal 

to zero (such a result is obtained for year 2039) , if the 
process described by (A.8) and (A.lO) is maintained over time. 

In contrast, the stationary model, whose forecasts appear in 

the same table, displays a similar but more moderate decreasing 

tendency for the population of Warsaw which ultimately reaches 

a constant share of the Polish population (5.19 percent versus 

7.71 initially) . 



Table Al: Stationary and nonstationary distribution models compared: 
percentage of total population residing in Warsaw in 
successive periods 

Monstationary [ Period 1 Stationary ) ~ o n s t a t i o n a r ~ l  

Lonq-term B e h a v i o r  i n  t h e  ZPG Case  

A s  i l l u s t r a t e d  i n  t h e  above  example ,  t h e  n o n s t a t i o n a r y  model 
I 

d o e s  n o t  c o n v e r g e  t o w a r d s  a s t o c h a s t i c  v e c t o r  i n  a l l  c i r c u m s t a n c e s .  * 
Its c o n v e r g e n c e  h a s  been  s t u d i e d  by ~ i p s t e i n  ( 1 9 6 8 ) ,  H a r a r y  e t  a l .  I * *  
( 1  970)  and  more r e c e n t l y  by Pul lman/Styan  ( 1973)  . I , 

I f  o n e  d e n o t e s  by T ( t )  t h e  t r a n s i t i o n  p r o b a b i l i t y  f rom t h e  - 
i n i t i a l  p e r i o d  t ,  t h e  r e s u l t  i s  t h a t :  

( A .  1 2 )  

* L i p s t e i n ,  B. ( 1 9 6 8 ) ,  B e s t  M a r k e t i n g  a P e r t u r b a t i o n  i n  t h e  Marke t  
P l a c e ,  Management S c i e n c e ,  S e r i e s  B ,  - 1 4 ,  437-48. 

**Pul lman,  N . ,  a n d  P.H. S t y a n .  ( 1 9 7 3 ) ,  The Convergence  o f  Markov 
Cha ins  w i t h  N o n - s t a t i o n a r y    ran sit ion P r o b a b i l i t i e s  and 
C o n s t a n t  C a u s a t i v e  M a t r i x ,  S t o c h a s t i c  P r o c e s s e s  and t h e i r  
A p p Z i c a t i o v l s ,  279-85. 



Then t h e  l i m i t i n g  p r o p e r t i e s  o f  t h e  n o n s t a t i o n a r y  p r o c e s s  a r e  

l i n k e d  t o  t h e  convergence ,  a s  t + a, o f  ct which i t s e l f  depends  - 
on t h e  c h a r a c t e r i s t i c s  o f  t h e  m a t r i x  C .  Hara ry  e t  a l .  (1970)  - 
showed t h a t  C h a s  a  c h a r a c t e r i s t i c  r o o t  o f  u n i t y  and  t h a t ,  i f  - 

t a l l  o t h e r  r o o t s  w e r e  less t h a n  one  i n  a b s o l u t e  v a l u e ,  C con- - 
v e r g e s  t o  { l ) { i ) '  i n  which 1 1 )  i s  t h e  r i g h t  hand c h a r a c t e r i s t i c  

v e c t o r  o f  C c o r r e s p o n d i n g  t o  t h e  u n i t  c h a r a c t e r i s t i c  v a l u e  and - 
t i ) '  a  row v e c t o r  o f  o n e s  ( t h e  l e f t - h a n d  c h a r a c t e r i s t i c  v e c t o r  

o f  C f o r  t h e  same u n i t  c h a r a c t e r i s t i c  v a l u e .  ~ i p s t e i n  (1968) , - 
s u g g e s t e d  t h a t ,  i n  s u c h  a  c a s e ,  T ( t )  would a l s o  converge  t o  - 
{ l ) { i i ' .  T h i s  i s  t r u e  o n l y  f o r  a  s t o c h a s t i c  C, however ,  i f  

.., 

C i s  n o t  s t o c h a s t i c ,  it migh t  happen t h a t  T  ( t )  and ct have  t h e  - .., .., 

same l i m i t .  L i p s t e i n  (1968) proved t h i s  f o r  two s t a t e  c h a i n s  

and l a t e r  Pul lman and S t y a n  (1973) proved it f o r  c h a i n s  w i t h  

more s t a t e s .  Note t h a t ,  i n  such  c i r c u m s t a n c e s  T ( t )  c o n v e r g e s  t o  
.., 

{ l ) { i ) '  s o  r a p i d l y  t h a t  1 ( 1  T ( t )  - { l ) { i ) ' ( (  c o n v e r g e s .  
.., 

t 

The a f o r e m e n t i o n e d  a u t h o r s  seem t o  c o n c e n t r a t e  on  t h e  long-  

t e r m  b e h a v i o r  o f  ct  and T ( t )  , and i g n o r e  t h e  one  o f  {w ( t )  } .  W e  
.., - 

n o t e  t h a t ,  i f  i t  e x i s t s ,  t h e  l i m i t i n g  d i s t r i b u t i o n  { y )  of  { w ( t ) )  

i s  g i v e n  by: 

an  e q u a l i t y  which r e s u l t s  f rom t h e  compar ison  o f  

and 

t w ( t ) )  = P ( t  .., - 1 ) I w ( t  - 1 ) )  . 

When s t a b i l i t y  i s  r e a c h e d  

t w ( t  + 1 ) )  = { w ( t ) )  = { w ( t  - 1 ) )  = { y )  

( A .  13 )  



Clearly, the limiting distribution Iy) is the right charac- 

teristic vector 11) of C corresponding to the unit characteristic - 
root. As in the stationary case, it is independent of the initial 

conditions and only depends on the elements of C. However, in - 
contrast to the stationary case in which the limiting distribu- 

tion vector is stochastic, the vector 11) might be nonstochastic 

(if C is not stochastic). - 
TO summarize, 

t 1. if C is stochastic, C is stochastic, T(t) converges, - - - 
and {w(t)) tends toward a stochastic limiting vector 

(1) defined as the right-hand characteristic vector 

of C corresponding to its unit characteristic root. - 
Moreover this vector is independent of the initial 

distribution of population; and 

t 2. if C is not stochastic, C might be either - - 
i) stochastic in which case T(t) converges and {w(t)) - 

tends toward the right-hand characteristic vector 

of C (which is not necessarily stochastic), or - 
ii) nonstochastic in which case T(t) might not converge. - 



Appendix 4 

Search for Acceptable Equilibrium Solutions of the Nonlinear Model 

1. The ZPG Case 

As a first step, we determine all the solutions of the steady- 

state equation that appears on page 29. 

For each possible set of vanishing regions (there are 

2" - (n + 1) sets if A is not symmetric, 2"-' + "(" - 3, if A is - 2 - 
symmetric as indicated by Property 3), we calculate the matrix: 

in which and Pd are submatrices of A and P obtained by removing - - - -d 
the k rows and k columns corresponding to the vanishing regions. 

Since C admits one as a real characteristic root, the correspond- - 
ing characteristic vector {?)can be simply obtained by solving 

for each set of vanishing regions, the vector equation: 

whose solution is then normalized (scaled such that 1 Ti = 1). 

Once all solutions of the steady state equation have been 

determined we derive for each set of vanishing regions leading 

to a positive vector {?I, the vectors of inmigration rates {in): 

in which A is a submatrix of A obtained by removing the (n - k) - - 
rows corresponding to the nonvanishing regions. Those are then 

compared with the corresponding vectors of outmigration rates 



Finally, the acceptable equilibrium solutions are those solutions 

of the steady-state equation such that {GI < {out). 

2. The Non-ZPG Case 

Again, as a first step, we determine all the solutions of 

the state equation that appears on page 51. 

For each possible set of vanishing regions (again there are 

2" - (n + 1) sets if A is not symmetric, 2n-1 n(n - 3 )  if A is - + 
9 2 - 

symmetric), we calculate the matrix: 

Then, we compute the successive powers of F, determining at each 

iteration the ratio X of the sum of the elements of the first 

column in the (n + 1) th and the nth iterations: 

As n becomes large, A(") converges to the largest characteristic 

root of F. We then obtain the value of X when the iteration 

process leads to unchanged values of X ("I. In practice the 

iteration was stopped when 

*The algorithm used here relies on the calculation of matrices 
E different from the matrices D put forward in the main body of 
this paper. The rationale for-this is in the fact that E ,  which 
is simply related to 0, by the same characteristic roots, and 
characteristic vectors, permits an easier and more rapid calcu- 
lation than if the algorithm is based on the use of the matrices - 
n 



with E = 0.000001. 

The right characteristic vector of associated with A  is - 
proportional to any column of Fn for n large. At the end of the - 
iteration process, we pick the first column of Fn as right - 

and obtain the vector characteristic vector, say If 1 1 ,  
containing the non zero elements of the equilibrium distribution 

{yl from 

For convenience, {:I is then scaled so that 1 yi = 1. Once 

.the solutions of the state equation have been calculated, we 

derive, for each set of vanishing regions leading to a positive 

vector {GI, the vectors of net migration rates from: 

- 
as well as the vectors [ A  - 1 ) I - 1 { i . Finally, the acceptable - - 
equilibrium solutions are those solutions of the state equation 

such that {=I < [ ( A  - 111 - E]{il. - - 


