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Preface

Interest in human settlement systems and policies has been
a critical part of urban-related work at IIASA since its incep-
tion. Recently this interest has given rise to a concentrated
research effort focusing on migration dynamics and settlement
patterns. Four sub-tasks form the core of this research effort:

I. the study of spatial population dynamics;

ITI. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population fore-
casting;

IIT. the analysis and design of migration and settle-

ment policy;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the sixteenth in the dynamics series, studies
the long-term properties of the nonlinear model of interregional
population growth and distribution proposed by McGinnis and
Henry. Intended as an alternative to the linear model which un-
derlies a large number of earlier IIASA publications, this model
displays peculiar properties which hinder its usefulness in the
study of the dynamics of multiregional population systems.

Related papers in the dynamics series, and other publica-
tions of the migration and settlement study, are listed on the
back page of this report.

Andreli Rogers
Chairman

Human Settlements
and Services Area.

May 1978
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Abstract

In this paper, a general components-of-change model for a
multiregional demographic system is proposed. Characterized by
independently derived retention probabilities, it subsumes two
of the previously proposed models of population growth and dis-
tribution: the linear model studied by Rogers and the nonlinear
model put forward by McGinnis and Henry. These two special cases
are shown to be symmetrical variants of the proposed general
model for a similar consideration of the independently derived
retention probabilities.

The long-term behavior of the nonlinear model, partially
looked at by McGinnis and Henry, is further examined here and
then contrasted with the long-term behavior of the linear model.
Unfortunately, the existence of a long-term equilibrium could
not be formally proved. However, the derivation of various
properties concerning the stable state of the system made possi-
ble the development of a methodology permitting the a priori
determination of all acceptable equilibrium distributions. The
ZPG (zero population growth) and non-ZPG specifications are sep-
arately examined, because the non-ZPG case is not as straight
forward an extension of the ZPG case as in the linear model.

The long-term properties of the linear and nonlinear models
are contrasted by applying these properties to the analysis of
migration between the four U.S. Census regions over the period
1965-1970.

Because of its peculiar properties, we conclude that the non-

linear model cannot be a useful substitute for the linear model in
the study of the dynamics of multiregional population systems.
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Stable Growth in the Nonlinear Components-of-Change Model

of Interregional Population Growth and Distribution

INTRODUCTION

The demographic components—-of-change model has been applied
to the problem of interregional population growth and distribu-
tion by Rogers (1968) and Liaw (1975). Both of these scholars
have used a linear formulation characterized by an allocation of
outmigrants from any region in constant proportions among possible
destination regions. Such a feature has been criticized on the
grounds that outmigrants distribute themselves among regions in
proportion to economic opportunities offered by these regions
(Lowry, 1966). This has led to the development of a nonlinear
formulation of the model, which resembles the classical gravity

model (}McGinnis/Henry, 1973).

Our purpose is to analyze further the long-term features of
the nonlinear formulation partially looked at by McGinnis/Henry
and to contrast its features with those of the well established

linear formulation. This will be carried out in four sections.

Section I, briefly describes the general formulation of the
components-of-change model and posits the requirement of
independently determined retention probabilities to generate
adequate stable growth patterns. It then derives both the linear
and nonlinear formulations of the model as "dual" variants of
this general model, and goes on with a summary of the long-term

properties of the linear formulation.

Section II, is a thorough empirical analysis of the nonlinear
model; its results support the existence of a long-term conver-

gence toward stability, similar to the linear case.

Section III, concentrates on the search for acceptable

equilibrium solutions in the ZPG (zero population growth) case*,

*In this paper the ZPG system is, by our definition, characterized
by zero regional rates of natural increase.




extending the analysis initiated by McGinnis/Henry (1973).

Section IV also deals with the same problem, but for the non-
ZPG case, whose complexity makes it difficult to present a level

of analysis as complete as in the ZPG case.

In the course of our explorations, we have also examined
alternative specifications of the components-of-change model, in
which retention probabilities are not independently determined,
thereby generating undesirable problems. The analysis of the
growth pattern of these specifications is included in Appendices
1 through 3.

I. BACKGROUND SECTION

In order to clarify the contrasts between the linear and non-
linear formulations of the components-of-change model of inter-
regional population growth and distribution, we begin with several

important generalities.

The Components—-of-Change Model: Generalities

Suppose there are n regions in a closed multiregional popula-
tion system. Let wi(t) and wi(t + 1) be the population sizes of
the ith region at times t and t + 1; Mi.(t) > 0 be the number of
people present in region j at time t + % and in region i at time
t; and Ni(t) be the population change due to natural growth in
region i during the unit time interval (t,t + 1). The flow
equations of the multiregional population system can then be

written as

wi(t+1)=wi(t)+Ni(t)+.z.Mji(t)-_z.Mij(t) , ¥i=1,...,n .
j#1 j#i
(1)
This equation states that the population size in region i at
time (t + 1) is obtained from the population present in region i
at time t by adding net population change due to natural increase
growth over the period (t,t + 1) to the flows of inmigration from
all other regions, and by subtracting the flows of outmigration

to all other regions.



In what follows, Ni(t)

the at-risk population wi(t), i.e.,

is assumed to vary

with the size of

Ni(t) = ni(t) wi(t) , ¥i =1,...,n (2)
The migration flows are assumed to depend on population
sizes at the origin and destination as well as a relational term
standing for the intervening obstacles between origin and desti-
nation regions:
Mlj(t) = al] (t) Wl(t) WJ (t) ’ Vll] =1,...4n ’ (3)
j#A L,
in which aij(t) is the relational term linking regions i and j.
Substitution of (2) and (3) into the flow equation (1) then
yields
wo (£+1) = [1+n, (€)1 wy(t) +w, (t) [ ] ay; (£) wy(e)]
j7i
(4)
- L] agye) wi(e)] wi(8) , ¥i=1,....n

This may be rewritten in a more compact format as:

Wit+ 1D} =[I+N(8)] {wt)) +w(t) [A(t) A" (©)1{w(t)} ,

~

(5)
in which
{w(t)} is a vector whose typical elements is wi(t);
w(t) 1is a diagonal matrix whose typical element is wi(t);
I is the identity matrix;
N(t) 1is a diagonal matrix of natural increase rates;
A(t) 1is a matrix of relational terms between each pair
of regions; and
A'(t) is the transpose of A(t).

Note that in A(t) all diagonal elements are equal to zero.
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Clearly, equation (5) makes it possible to iteratively cal-
culate the population distribution of the system at any future
point in time from prior knowledge of g(t) and %(t). However,
after a sufficiently long period of time, the pattern of popu-
lation growth and distribution implied by the imglementation of
the projection process embodied in (5) may create unfortunate
problems. For example, if we suppose that the matrix %(t) is
stationary, under certain circumstances, we can obtain negative
porulations! Moreover, Appendix 2, which deals with this special
case shows that regional populations need not be negative to
obtain problems: it may happen that the number of migrants out
of a region is higher than the number of people living in the
region at the beginning of the time period considered and that
the population of this region remains positive because the number
of inmigrants is greater than the number of outmigrants. The
occurrence of such problems stems from the assumptions concerning
migration flows included in (5) according to which stayers are
obtained as residuals (by subtracting total outmigration flows
from the beginning of period populations), which does not guaran-
tee their positivity. The conclusion is that a meaningful for-
mulation of the components-of-change model must ensure that the
total migration out of a region is less than the population of
this region. Therefore, we suppose that the retention probabil-
ities are given independently, as a property of the regions them-

selves, i.e.,

11 .
wiEr T Pi(® s ¥ = Teeem
1



in which
Mii(t) is the flow of stayers in region i; and

P.

li(t) is the probability of being in region i at time

t + 1 for an individual present in region i at
time t.

Since we have the following relationship between the number of

stayers and migrants:

Mo (8) = w (v) - ] Mig(8) , Vi= ..., (7)
j#i

the result is that we can rewrite (1) as

wi(t-k1)==Mii(t)-FNi(t)-kj;i Mji(t) , %¥i=1,...,n ,

or, after substituting (2), (3) and (6},

Wi(t-+1) =[Pii(t)‘Fni(t)] Wi(t)-F[j;i aji(t) Wj(t)] Wi(t) '

¥i=1,...,n . (8)

We can rewrite (8) more compactly as

(wit+ 1)} =[P (t) +N(t)] {wlt)}+w(t) A(t) {w(t)} , (9)

in which g (t) is a diagonal matrix of retention probabilities.

Indeed, a price has to be paid for the choice of an independent

derivation of Ed(t): A(t) now depends on gd(t) as shown by the
following equality linking two alternative expressions of the

outmigration flows

w, () [j;i aij(t) wj(t)] =[1-p;; ()] w (t)

Vi=1["-ln 14




which can be expressed more concisely as

w(t) A'(t) {w(t)} = [T - Pg(e)] {wit)} . (10)

~

The "Duality" of the Linear and Nonlinear liodels

To allow for the variations of the relational term aij(t),
we posit with Alonso (1973, 1977)

aij(t) = Yi(t)dij Bj(t) ’

in which

d. . is a conductance term linking regions i and j (e.g.,
1]

the distance between i and j);

Y. {t) a term characteristic of region i related to its "push-
s

ing" power (population); and

Bj(t) a term characteristic of region j related to the ex-
ante number of migrants to region j per unit of "pull”

(population) .

In matrix format, we thus have

A(t) = 8(t) D y(£)

in which

B(t) and y(t) are diagonal matrices, and

D is a matrix whose (i,j)th element is the conductance

factor 4d...
ji

Clearly, for any prior choice of P_(t), B(t) and yv(t) are to be
obtained from (10). However, the vector equation (10) contains
only n scalar equations which make it impossible to determine

the 2n non-zero scalars contained in g(t) and y(t). The result

is that the linkage of §(t) and D must take the form of either



é(t) = B(t) D , (11)

or,

%(t) D X(t) . (12)

In the former case, substituting (11) into (10) yields

w(t) D B(t) {w(t)} = (r - Py {w(t)}

Supposing the wi(t) # 0(¥i), we then have
D B(t) {wlt)} = [I - Py(8)1{i} ,

in which {i} is a column vector of ones.

Let us now suppose that gd(t) is independent of time, i.e.,
Py(t) = Pg- Then B(t) {w(t)} is a constant vector:

-1

B(t) {w(t)} = 8(0) {w(0)} = D ' (I - Py {i} ,

so that the place-to-place migration flows

Mij(t) = aij(t) w, (t) wj(t)

can be expressed as

Mij(t)zzdij [Bj(t) wj(t)] wi(t)==dij [Bj(O) Wj(O)] w, ()

= P.:-

iy Wil o, ¥, =1,...m , JFL

in which pij is a constant. Then the projection process reduces
to

twit + 1} =6 {w(t)} , (13)




in which G is a constant growth operator matrix, that is the sum
of N and a constant matrix of transition probabilities

P =24+ wl0a.

The adjustment of aij(t) by a multiplicative factor Bj(t)
relating to the destination region thus leads to the usual linear

formulation of the components-of-change model (Rogers, 1968 and
Liaw, 1975).

Alternatively, if we choose to take the multiplicative

adjustment in relation to the origin region Yi(t), we have

w(t) y(t) D {w(t)} = (I - Po) {w(t)} ,

I - Py

or, in scalar terms,

W, (t) Yi(t)[j;i a4 wj(t)] (1 =Py w(e)

so that the place-to-place migration flows can be expressed as,

d

L. W (t) ws(E)
M. (t) = (1-P,.) 1] 1 _J , ¥i,j =1,...,n ,
1] * I ay, w(t)
kAi T (14)

j#A i

This is precisely the specification of the nonlinear model pro-

posed by McGinnis and Henry (1973).

In conclusion, the classic linear and nonlinear specifica-
tions of the components-of-change model are special cases of the
version in which retention probabilities are independently deter-
mined. Moreover they appear as "dual" variants in that they
correspond to similar types of adjustment for the relational
elements: the difference between both variants lies in the
choice of this adjustment that relates to destination (linear

specification) or origin (nonlinear specification).



The Linear Model: Summary of Properties and Results

The specification of this model (13) makes clear that we can
iteratively calculate the population distribution at any future
point in time given structural matrices of N and P, and an ini-

tial distribution {w(0)}.

With the data provided by the 1970 U.S. Census of Population
it is possible to compute the probability transition matrix P
relating to the system of the four U.S. Census regions (North

East, North Central, South and West) observed during the period

1965 - 1970 (see Table 1). Natural increase data for the same
system (Table 2) allows the estimation of G relating to the same
period.
Table 1. U.S. regians 1965 - 1970: the P matrix
1965
1970 NORTH EAST | NORTH CENTRAL SOUTH WEST
NORTH EAST 0.95294 0.00809 0.01164 | 0.00848
NORTH CENTRAL 0.01065 0.94573 0.01872 | 0.01921
SOUTH 0.02518 0.02615 0.95380 | 0.02699
WEST 0.01122 0.02003 0.01585 | 0.94532
Table 2. U.S. regions 1965 - 1970: the matrix of
natural increase rates
1970 1965 NORTH EAST | NORTH CENTRAL SOUTH WEST
NORTH EAST 0.00599 0 0 0
NORTH CENTRAL 0 0.00780 0 0
SOUTH 0 0 0.00910 0
WEST 0 0 0 0.01003




Applying the matrix G to the initial population distribution
of the system (given by the first row figures of Table 3) permits
one to calculate the regional population distribution for 1970
(given by the second row of the same table). From there, using
the aforementioned iterative process, one can calculate the re-
gional shares at any future point. Table 3 indicates that these
regional shares tend to stabilize after a sufficiently long pe-

riod of time:

- the North East region constitutes 16.43 percent of the
total population in the stable state versus 24.20 percent
initially.

- A similar decrease in importance is experienced by the
North Central region--23.76 percent in the long-term

versus 28.08 percent initially.

- In contrast, the South and West regions increase their
shares from 30.82 to 36.50 percent and 16.90 to 23.31

percent, respectively.

However, the simplicity of (13) makes the iterative generation
of the system's stable state unnecessary. It is possible to
derive an analytical solution to the model by applying Laplace
transformations to (13). Supposing that the eigenvalues of G

are distinct (which is generally the case) we have (Liaw, 1975):

wtyy = 1Y A¥ By (w(o)} (15)
i=1 t 1

where Xi is one of the n-distinct roots of the characteristic

equation |G - AI| = 0 and Bi = liT (A - Xi) (G - >\I)_1 whose non-
< v = ). 2 =

zero columns are all characteristic vectors of the structural

matrix G associated with the characteristic value Ai: Suppose X1

is the largest characteristic root of the system's structural

matrix, then (15) may be rewritten as (Liaw, 1975):

{w(t)} = xf

n Ai t
1 {w(0)} + XT §i {w(o)} , (16)

B
~ i=2
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Table 3. Linear model-non-2PG formulation - U.S, iegions -
@X ante simulation

Regional Shares of Total Population

(Percentage)
. North North
Period A ‘Bast Central South West

1 CARARAP 24,197 28.,p82 30,820 14,901
° 1 ARy 23,739 27,713 33,223 17,328
3 1,7081h 23,308 27,369 31,597 17,726
4 1 ,"2R1H 22.903 27,056 31,944 1A,097
S 1,082 PPe521 26,769 32,267 18,442
6 1.NNAR22 224162 26,585 32,568 18,765
7 | JADA2Y 21.825 26,263 32,847 19,066
A 1. 21824 214567 26,741 33,106 19,346
9 1,02827 21,208 25,838 33,347 19,607
1 1,70829 2m.927 25,651 33,570 19,851
15 1, 72834 19,751 24,932 34,473 207,846
en 1,20839 18,884 24,468 35,P97 21,554
25 1, nARYP 18,245 24,176 35,530 22,0509
I 1.20844 17,773 2%,993 35,829 22,405
35 1.M284S 17,424 23,882 36,036 22,658
4 1, "ARUT 17.166 23,815 36,179 22,839
45 1,02847 16976 23,777 36,278 22,969
Se 1 . 1ep848 16,835 23,756 36,347 23,062
5% 1, WORAR 16,731 23,746 36,394 23,129
14 1 .,/2845 10693 23,747 36,427 23,1177
68 1,AMBUS 16,596 23,741 36,4%8 23,212
70 1,849 16,554 23,743 36,466 23,238
75 1,04849 16522 23,745 36,477 23,256
8 1,20849 16,499 23,747 36,484 23,270
65 1.07849 16,082 23,749 36,490 23,279
9 1,40849 16,469 23,751 36,493 23,287
9% 1,02849 16,459 23,753 36,496 23,292
100 1,20849 16,452 23,754 36,498 23,296
150 1,2¢849 16,433 23,760 36,502 23,306
een { ,ACR4Y 16,432 23,760 36,502 23,306
250 1, NBSE 16,432 23,760 36,502 23,306
3en 1., 00850 6,432 23,760 36,502 23,306
35¢e 1,727850 16,432 23,760 36,502 23,306
upp 1, P8P 16,432 23,768 36,502 23,306
452 {1 .02852 e, 032 23,760 36,502 23,306

S0 1, 4R8BS 16,432 23,760 36,502 23,306




A
Since |7%| < 1, we have {w(t)} - X? B, {w(0)} as t » = where
§1 = [c1{x}1, c2{X}1,...,cn{x}1] is a positive characteristic

matrix in which {x}1 is the right characteristic vector associ-

ated with X1.

If X, <1, then {w(t)} » {0} (case of a vanishing system);
whereas, if X1 > 1, then {w(t)} ~ A$

exploding system tending towards a positive long-run proportional

[y c, wi(O)]{x}1 (case of an

distribution that is independent of the initial population size
and distribution). Specifically, the long-run proportional dis-
tribution is given by the characteristic vector {x}1 of the struc-
tural matrix G associated with the largest characteristic root X1

[G

A Il {x}1 = {0}

Note that if N = 0
3

represented by (1

then the interregional population system

) is a ZPG-system such as
w(t + 1)} =P {w(t)} . (17)

The structural matrix p is the stochastic matrix of a regular
Markov chain which has a unit characteristic root that exceeds
all other characteristic roots in magnitude and furthermore, has
a stochastic characteristic matrix associated with this charac-
teristic root that has identical columns. The ZPG-system thus

approaches the positive equilibrium distribution

lw(t)} » B

B, (w(0)} =[] w,(0)] {x}; = K(0) {x}, ,

i

where K(0) is the initial total population of the system and {x}1

the normalized right characteristic of P (associated with X1).

Clearly, in such circumstances, the total population of the
system remains equal to the initial population and the process

studied is one of population distribution between regions.



II. THE NONLINEAR MODEL: EMPIRICAL ANALYSIS

Extensive projection exercises, carried out with several
sets of data, allow us to conclude that the projection of a
spatially disaggregated population using the nonlinear model
also leads to a stable situation. However, the more complex
formulation of the nonlinear model makes it difficult to estab-
lish a formal proof of this convergence. This analysis, there-
fore, is limited to the presentation of nonlinear projections
and contrasts to their linear counterparts, and is continued in
the next sections, with a search for acceptable equilibrium

solutions.

Long—-term Behavior of the Nonlinear Model: Empirical Evidence

The nonlinear specification of the components-of-change model
consists of the flow equation (5) [or alternatively (9)] and the
constraint equation (10) in which N(t) and Pd(t) are constant

matrices and A(t) is given by (12).

Since there is the following relationship between A(t)
and %(0) (later denoted as A),

A(t)

~

1l
oy
o
-
[
=<
(-f

= A a(t) ,
it follows that (5) and (10) can be rewritten, respectively, as

{wt+ 1)} =(I+N) {w(t)] +w(t) [A a(t)

~

- a(t) Al {w(e)} (18)
and

w(t) a(t) A {w(t)} = [T -P {w(t)} . (19)

Also note that (9) becomes:




{w(t+1)}=(13d+rj) {w(t)}+‘g(t) A a(t) {wit)} . (20)

Clearly, given structural matrices N, P and a, and an initial
distribution {w(0)}, we can iteratively calculate the population
distribution at any future point in time by obtaining a(t) from
(19); and then inserting the estimate thus calculated into (18) or
(20) .

As an illustration, this iterative calculation has been per-
formed for the system of the four U.S. Census regions already
considered in Section I. Apart from N and Pd (a diagonal matrix

whose diagonal is taken as the diagonal of P) whose actual values

~

were given earlier in Section I, we have observed the matrix of
relational elements which appears in Table 4 below. (All ele-

ments have been multiplied by 105).

Table 4. U.S. regions 1965 - 1970: the matrix
of relational elements

1970 1965 NORTH EAST | NORTH CENTRAL SOUTH NORTH
NORTH EAST 0] 0.01915 0.02755 | 0.02007
NORTH CENTRAL 0.02172 0] 0.03818 | 0.039195
SOUTH 0.04681 0.04861 0] 0.05017
NORTH 0.03804 0.06788 0.05371 0]

The successive regional shares obtained by the application of
the method mentioned earlier are in Table 5%, which indicates the
tendency of these shares to stabilize after a sufficiently 1long
time period. Note the tendency of the North East region to empty
and of the West region to augment its share to a proportion

slightly less than the share of the South region.

*During the first ten or fifteen forecasting periods, the regional
shares obtained from both specifications remain guite close
(compare Tables 3 and 5).



Table 5. Nonlinear model-non~ZPG formulation ~ U.S. regions - ex
ante simulation

Regional Shares of Total Population
(Percentage)

North North

Period A Past  Central South West
1 P AN 24,197 28,m82 30,822 16,901
2 1,00814 23,739 27,710 31,223 17,328
3 1,00816 23,292 27,353 31,605 17,750
a 1.,2m818 22,856 27,008 31,969 18,166
S 1,0M821 22,431 26.677 32.315 18.578
6 1,07823 22,016 26,357 32,643 18,984
7 1,2n82% 21.612 26,0748 32,956 19,384
R 1 ,ORR2Y 21,217 25,751 33,253 19,780
9 1.20829 27,831 25,464 33,536 20,169
12 107831 20,455 29,187 33,845 20,553
15 1, 00840 18.702 23,940 34,973 22,385
2n 1,00848 17,141 22,891 35,984 24,064
25 1,22659% 15,746 22,004 36,664 25,586
3 1,09861 140495 21,252 37,382 26,952
35 1.27847 13,369 2p,612 37,852 28,168
4o 1,02872 {2,393 20,867 38,338 29,243
4s 1,00878 11,433 19,603 38,776 32,188
50 1,06088p 10,598 19,228 39,175 31,018
5% 1, P8R Y 9,839 18,872 39,544 31,745
X7 1 JAOBRT 9.146 1B,587 39,8R4 32,383
65 1.0089 B.513 18,345 40,200 32,942
T 1., 22892 7.932 18,141 42,493 33,434
75 1,7788% 7.399 17,978 4m,763 33,868
an {1,002897 ~e90B 17,828 41,P13 34,251
8s 1,27899 6e456 17,710 41,243 34,591
LT 1., 20900 fe@3IB 17,6148 41,454 34,895
95 1,20922 5.652 17,536 41,647 35,168
ten 1,22903 5293 17,475 41,823 35,408
15a 1,20913 2.824 17,417 42,899 36,861
2va 1.,20917 1,546 17,745 43,267 37,442
25n 1, A0919 P.855 18,n87 43,372 37,688
Inn 1.e0920 Pe47d 18,386 43,384 37,796
350 1.80920 n,260 18,519 43,374 37,844
4pn 1,00929 P 147 18,627 43,361 37,866
450 1.,37921 P.”81 18,692 43,3520 37,874
4s5p 1,22921% n.M81 18,692 43,350 37,876
soe 1,07921 P.n4% 18,730 43,343 37,882
557 127921 2,225 18,752 43,339 37,884
boR 1.,2292) f.ld 1B,764 43,337 37,885
690 1.00921 f.288 18,771 4%,335 37,886
TR0 S92 P,A04 18,775 43,334 37,886

i

1,6082) fn.P¥2 18,777 43,334 37,887
Bo@ 1,062 p.A01  1B,779 43,333 37,887

1,2921 m.AV¥Y 18,779 43,333 37,847

1, ergP1 n.200 18,784 43,333 37,887




The nonlinear projection process thus tends toward an equi-
librium characterized by a constant regional allocation, say {y}.
Thus, near stability, two consecutive population vectors satisfy

the following relationship:
{w(t + )} = x {w(t)}
Substituting this equality into (20) yields:

A{w(t)}==(§d-+§) {w(t)} +w(t) A a(t) {w(t)} .

From (19) it is clear that a(t) w(t) is a homogenous function in
w(t) of degree zero. Therefore, the constant regional allocation

{y} is given by

Myl = (Pg + M) {y} + y A a(e) {y!} (21)

~d ~ z '
so that

y af(=) A%{y} = (I - py) {y} . (22)

Linear and Nonlinear Projections: An Empirical Comparison

We begin our comparison of the linear and nonlinear projec-

tions by contrasting their equilibrium distributions.

Equilibrium Distributions Contrasted

Apparently, the nonlinear formulation of the components-of-
change model always leads to a long-term convergence. None of
the various experiments made with this model has proved this
wrong. Although we could not establish any formal proof of this
property [in spite of the recent developments in the balanced
growth of nonlinear systems, Nikaido (1968)], we can safely claim
that the nonlinear model always admits a limiting distribution as

the linear model.



Striking differences between the limiting distributions of
the alternative models are suggested by the figures of Table 6;

these point to:

- the possible occurrence of empty regions at stability

in the nonlinear model; and

- the tendency of the nonlinear model to exaggerate the
On

the population share of the North East region,

long-term tendencies displayed by the linear model.
one hand,
which is initially 24.20 percent, increases to 16.43
percent in the long-term equilibrium of the linear model
and vanishes in the long-term equilibrium of the non-
the share of the West

linear model; on the other hand,

region (16.90 percent initially) increases to 23.31 per-
cent in the long-term equilibrium of the linear model
and 37.89 percent in the limiting distribution of the
nonlinear model.

Table 6. U.S.

contrasted, *

regions - initial and equilibrium distributions
(all regional shares in percentages)

Initial Net|Initial . Percentage Change
Regional Shares . .
. . . . in Regional Shares
Inmigration |[Distri-
Rate bution Linear Nonlinear Linear | Nonlinear
NORTH EAST - 0.01693 24.20 (16.43(17.16) 0(0) - 32.8 - 100.0
NORTH CENTRAL| - 0.01299 28.08 [23.76(23.90) |18.78(20.28) |- 15.3 - 33.1
SOUTH + 0.01221 30.82 [36.50(36.18) [43.33(42.73)|+ 18.4 + 40.2
WEST + 0.02356 16.90 |23.31(22.76) (37.89(36.99) |+ 38.4 + 124.1

*Figures in parentheses correspond to the equilibrium distribution of the
non-ZPG formulation of the linear and nonlinear models.




Overall, the less conservative character of the limiting
distribution of the nonlinear model is clear: the changes in
the region's population shares are more radical in the nonlinear
case than in the linear case. For example, the increase in the
share of the West region is 124.1 percent in the nonlinear case

and only 38.4 percent in the linear case.

Table 6 also indicates that, whatever the model (linear or
nonlinear), the relative changes in the regional allocation of
the U.S. population (between the initial period and the long run)
are related to the initial net inmigration rates of each region:
regions having initially positive net inmigration rates see their
relative shares increase, while those regions with initially neg-

ative inmigration rates see their importance decrease.

Relation Between Initial and Equilibrium Distributions

Another important difference between the models which does
not appear in the figures of Table 6 relates to the independence
of the limiting regional distribution of population vis-a-vis the
initial distribution. While the limiting behavior of the linear
model is not affected by {w(0)}--the equilibrium state of the

nonlinear model may, in some ways, be affected by {w(0)}.

If the projection process, characterized by the A, P and
@ matrices of our four region system of the U.S., always leads
to some equilibrium solution (whatever the initial regional dis-
tribution), it may happen that different equilibrium solutions
will be obtained (an illustration of such a situation will be
given in Section III). Apparently, for each choice of the A,
gd and N matrices, there exists one or several equilibrium solu-
tions, completely characterized by the elements of A, P, and N
and independent of {w(0)}; the initial distribution {w(0)}
affects the long-term behavior of the system only in that, when
there exists more than one equilibrium solution it determines
which one of the possible alternative stable equilibriums will

be attained.

It is possible to gain further insights into the alternative

models by comparing the evolution of out- and inmigration rates



over the projection process.

Evolution of Out- and Inmigration Rates

Indeed, since both models assume constant retention prob-
abilities, the path to equilibrium is characterized by total
outmigration rates that remain constant. However, whereas in
the linear case place-to-place outmigration rates also remain
constant (by assumption), they tend*, in the nonlinear case, to
vary in direct proportion to the population size of the desti-
nation region. This is confirmed by the figures of Table 7,
which show that the place-to-place outmigration rates decrease
if the destination is the North East or North Central, stabilize
if the destination is the South (except in the West region out-

migration), and increase if the destination is the West.

Inmigration rates, however, do not follow such a clear path
toward equilibrium. If no natural increase occurs (ZPG case),
place-to-place inmigration rates vary in such a way as to ensure
the long-term equality of total migration flows into and out of
each region. Note that this implies the equality of total out-
migration and inmigration rates only in regions that do not van-
ish in the long—run.** Thus, in the linear ZPG case (in which no
region can vanish), total inmigration rates of each region tend
to increase (in regions in which there is initially a negative
net inmigration) or to decrease (in regions initially displaying
a positive net inmigration), in order to equal outmigration
rates. Since the place-to-place inmigration rates are propor-
tional to the ratio of the population sizes in the destination
and origin regions, they generally tend to decrease 1if the
origin is the North East or North Central, and to increase if

the origin is the South or West.

In the nonlinear case, the occurrence of vanishing regions
in the ZPG system is made possible by the impossibility of the

total inmigration rate of these regions to be equal to the total

*The constant of adjustment entering aij(t) relates to the origin

and does not affect the relative importance of the place-to-place
migration rates out of a region.

**Regions will be said to vanish when their populations decline to zero.




outmigration rate. For instance, Tables 7 and 8 show that the
total migration rate into the North East region (0.03810) is
less than the total migration rate out of that region (0.04706).
As expected, a "dving out" region is characterized by a negative
net inmigration rate. This feature of the nonlinear model is
very useful to determine a priori the long~-term equilibria and
permits, as we will see later on, the narrowing down of the
number of acceptable equilibrium solutions. Place-to-place
migration rates, which vary as a direct proportion to the pop-
ulation size of the origin region and to its associated constant
of adjustment, tend to decrease over the projection process if
the origin is the North East or North Central region, and to

increase if it is the West region.

There is a clear tendency for the place-to-place out- and
inmigration rates of the same origin-destination regions to vary
in the same direction. The relative pace of their variations
depends only on the initial relative position of the net inmi-

gration rates of these regions.

A similar analysis can also be performed in the non-ZPG
case. The difference is that, the long term equilibrium is no
longer characterized by the equality of out- and inmigration

flows. Instead, we have the following:

Inmigration + Natural Increase-Outmigration = (A - 1) x
population in which A is the ratio, common to each region, of
the population sizes in two consecutive periods at equilibrium.
Then at equilibrium, a nonvanishing region will be characterized
by a net inmigration rate equal to >\-1—ni (where n, is the natu-
ral increase rate of this region), while the vanishing region

will have a net inmigration rate of less than A—1—ni.

The Aggregation Problem

The aggregation capabilities of the linear and nonlinear
formulations provide another point of departure in the study of
the components-of-change model. Suppose that we transform our

four region system of the U.S. into various three region systems



Table 7. U.S. regions - initial and stable outmigration
rates (ZPG case)*

To Region North East North Central South West
0.00809 0.01164 0.00848
North East 0 0.00809 0.01164 0.00848
0 0 0
0.01065 0.01872 0.01921
North Central 0.01065 0 0.01872 0.01921
0.00539 0.0129%96 0.0147¢9
0.02518 0.02615 0.02699
South 0.02518 0.02615 0 0.02699
0.02446 0.02457 0.03989
0.01122 0.02003 0.01585
West 0.01122 0.02003 0.01585 0
0.01721 0.02970 0.03324
0.04706 0.05427 0.04620 0.05468
Total 0.04706 0.05427 0.04620 0.05468
0.04706 0.05427 0.04620 0.05468

Table 8. U.S. regions - initial and stable inmigration
rates (ZPG case)*

To Region North East North Central South West
0.00918 0.01977 0.01607
North East 0 0.00764 0.01194 0.00846
0] 0] 0
0.00939 0.02383 0.03328
North Central 0.01127 0 0.01728 0.02103
0.00460 0.01166 0.01629
0.01482 0.02054 0.02890
South 0.02454 0.02833 0 0.02519
0.01969 0.02730 0.03840
0.00592 0.01156 0.01480
West 0.01125 0.01830 0.01698 0
0.01381 0.02698 0.03454
0.03013 0.04128 0.05841 0.07824
Total 0.04706 0.05427 0.04620 0.05468
0.03810 0.05427 0.04620 0.05468

*In both tables, the three figures in each box represent the outmigration
or inmigration rates in the initial population and the stable population
(linear and nonlinear cases) respectively.




obtained by the aggregation of two contiguous regions. We then
perform the projection process on these alternative systems,
using both the linear and nonlinear models. The comparison of
the resulting limiting regional shares (Table 9), shows that in
the linear case the timing of aggregation has little influence

on the stable state. It does not make much difference whether
aggregation takes place before or after the projection process.
However, in the nonlinear model, the timing of aggregation has

a large impact. For instance, the region obtained by aggregating
the South and West regiohs accounts for 81.22 percent of the equi-
librium population in the three region system thus obtained,
versus 65.30 percent if calculated by aggregating the South and

West shares of the four region system.

A Special Case of the Nonlinear Model: Specification and

Limiting Behavior

An interesting special case of this model (denoted as non-
linear model II) is obtained by supposing no impact from the

relational elements, i.e.

dij =1 , foralli,j=1,...,n , J#F1 .

In such circumstances, (14) reduces to*

w (£)w, (t)

(t) = (1=-py;) ] , wi,j=1,...,n , J#£L ,
Low(t)
k#1

so that outmigrants distribute themselves among regions in propor-

tion to the population size of destination regions.

*This model is similar to the aggregate version of the model
considered by Feeney (1973). The difference comes from the
constant term which only relates to the origin region in the
present model, but relates to both origin and destination
regions in Feeney's case. However, the above specification
is preferable since Feeney's formulation does not ensure
that the total number of outmigrants out of region i is less
than the population in region i.



Table 9. Linear and ncnlinear models (Z2PG formulation) :

comparison of aggregative capabilities using

the four region system of the U.S., (all

figures in percentages)

LINEAR MODEL NONLINEAR MODEL
Three Four Region Three Four Region
Region System system Region System System
Aggregated Aggregated

North East 16.55 16.43 0 0
North Central 23.74 23.76 34.70 18.78
South/West 59.71 59.81 65.30 81.22
North East 16.14 16.43 0 0
North Central/South 60.22 60.26 65.89 62.11
West 23.64 23.31 34.11 37.89
N.East/N.Central 37.71 40.19 10.21 18.78
South 36.57 36.50 45.53 43.33
West 25.72 23.31 44.26 37.89
North East/South 54.14 52.93 57.79 43.33
North Central 23.02 23.76 10.92 18.78
West 22.84 23.31 31.29 37.89
North East 16.43 16.43 0] 0]
North Central/West 47.07 47.07 56.96 56.67
South 36.50 36.50 43.04 43,33




Carrying out the projection process on such assumptions
also leads to a stable equilibrium; it is quite different, how-
ever, from the one obtained in the previous case. The successive
regional shares obtained by means of this special model appear in
Table 10. Briefly, we find that,

1. in opposition to the full model, accounting for differ-
ential elements, the present model leads to an equilib-

rium characterized by no empty regions; and

2. regional shares at equilibrium do not differ that much
from initial ones (the greatest discrepancy is observed
in the North Central region, 18.95 percent at equilib-

rium, compared to 28.08 percent initially).

Note that the position of the North East region in the equi-
librium distribution of this model is stronger than in the stable
state of the full model. This region actually increases its
relative share from 24.20 percent to 27.77 percent, whereas it

decreases in the case of the full model.
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Table 10. Nonlinear model II - non-2PG formulation - U.S. regions -
ex ante simulation
Regional Shares of Total Population
(Percentage)
. North North
Period A East Cehtral South West
1 R,a0000 24,197 28,082 30,820 16,901
2 t PB4 24,2R8 27,867 30,884 16,968
3 t, 27814 24,3711 27,649 39,945 17,034
4 1,0@8144 24,455 27,443 $,005 17,099
S 1,27814d 24,536 7,243 3{,059 ({7,162
6 1,72P814 24,615 27,850 31,111 7,224
14 1.00814 24,692 246,862 31,161 17,285
8 1.20R814 24,767 26,679 31,209 17,344
9 1,28814 24,84 pe. 522 31,255 17,403
12 t,puR14 24,911 26,331 31,298 17,460
195 1.,2n815 25,239 25,547 31,486 17,732
en 1,r0R19 25,9526 24,857 31,635 17,9R2
25 1.,00P15 25,779 24,257 31,752 18,211
i 1,00815 26,001 23,730 31,846 18,423
35 1.00815 26,198 23,265 31,920 18,617
40 1, 80816 et 3711 22,852 31,980 18,797
45 1,00B16 26,524 2,484 32,028 18,964
59 1,70816 26,659 22,156 32,067 19,118
55 1.27816 26,778 21,863 32,099 19,260
60 1.2281A 26,884 21,599 32,125 19,391
65 1,0081A 6,978 21,362 32,187 19,513
@ 1.p6816 27,962 21,148 32,165 19,626
75 1., 86817 21,13 P0.,9%5 32,1880 19,738
ap 1,PPAL7 21,281 2,780 32,193 19,826
85 1,00817 27.260 2@,622 32,204 19,915
9@ 1,00817 271.312 2r, 478 32,213 19,997
95 1. 00RL7 27,358 °2n,3%47 32,222 20,073
100 1,06817 27,402 20,229 32,229 20,143
156@ 1, hu81R 271,634 19,487 32,274 20,605
2on 1,P0818 el.716 19,182 32,296 28,809
ese {,Ac81A 271.746 19,053 32,307 20,898
281 1,AR818 27.754 19,812 32,319 20,925
320 1.00818 27.758 18,994 32,312 20,937
lse 1,00818 27.763 18,969 32,315 24,953
40 1,00818 27,765 18,959 32,316 20,961
459 1,00R18 21,765 18,954 32,316 20,964
5ap 1,00818 27,766 18,952 32,316 202,965
55§ 1, ABB1A 27,766 18,952 32,317 28,966
(Yd4 1,22818 27,766 18,951 32,317 20,966
6S¢ 1,081 8 27.766 18,951 32,317 20,966
109 1,72818 27,766 18,951 32,317 20,966
75¢ 1,7%2818 21,766 1R,951 32,317 20,966
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III. THE NONLINEAR MODEL (ZPG FORMULATION): SEARCH FOR
EQUILIBRIUM SOLUTIONS

Because it was not possible to complete a formal proof of
the convergence of the nonlinear model, the theoretical analysis
of it becomes an a priori search for acceptable eguilibrium solu-
tions. This is first carried out in the ZPG case which allows

for an easier and more complete study.

In the ZPG case natural increase rates are zero:
N=0
so that the resulting model is described by:
{w(t+D) P ={w(t)} +w(t) [A a(t) -al(t) A7] {w(t)} ,  (23)
or alternatively by:

fw(t+N) ) =Py {w(t)} +w(t) A a(t) {w(t)} (24)

in which o(t) is still defined by (19).

Preliminary Results

We begin the analysis by establishing a preliminary property
regarding the occurrence of zero levels of population before equi-

librium is reached:

Property 1

If no region is initially empty and P,y ? 0, Vi, there exists
no absgorbing state, i.e., no region can become empty except
in the long run. In other words, {x(t)} > 0, for all finite

values of t.

To prove this, we rewrite each scalar equation of (24) as:

wo(t+1) = [pii+j;i ay; Otj(t) wj(t)] wy (t)



Since aj(t) is nonnegative as suggested by (19), the terms between

brackets are at least egual to P - We then have

wi(t+1) > p.,owi(8) , vt ,
In other words,
wi(1) > p; w0,

and, more generally,

wi(t) > pEi wi(O) .

Since we suppose that no region is initially empty, and that
the retention probabilities are strictly positive, we have
wi(t)(vi =1,...,n,) which is strictly positive for all finite

values of t. No region can become empty except in the long run.

The Eguations of the Stationary State

We now turn to properties relating to the equilibrium solu-
tions of (23) [or (24)] accompanied by the constraint (19). If
it exists, a long-term equilibrium is obtained as a solution of
(21) (in which N = 9) and (22).

In the present case A = 1. Then (21) can be rewritten as:

(I-p,) {yl} = y A a(=) {y} , (25)

d

a relationship which expresses the equality of out- and inmigra-

tion flows at stability.

Note that (25) may be alternatively presented as

) yl {i} = {0} ,

[y aal=) y - (I -Py y
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or, after transposition,
{i}7[y A7a(=) y - (I-PJyl = {0}~

The matrix between brackets in the above equation is such
that its premultiplication by {i}” yields the constraint equa-
tion and its postmultiplication by {i} yields the equilibrium

equation.

Returning to the equilibrium equation, it appears that the

comparison of (22) with (25) yields an alternative formulation:

yla(=) A" - A g(w)]{y} = {0} , (26)

that will be useful to establish a particular property of the

model.

Finally, as suggested by juxtaposing (25) and (26), an

acceptable equilibrium solution {y} must verify:

y a(®) A7{y} =y A a(=){y} = (I-Py{y}

~ ~

Equilibrium Solutions with Nonvanishing Regional Populations

We initiate our search for equilibrium solutions by looking

for those characterized by nonzero regional shares.

Characterization of Equilibrium Solutions with Nonvanishing
Regional Populations

The following property was derived by McGinnis and Henry
(1973) :

If there exists an equilibrium solution with nonzero
regional shares, it is unique and is obtained as the
characteristic vector of the matrix §==[§_1({-Ed){i}]dg
(I-P )—1A’, corresponding to the unit characteristic

~  =d ~
root.

The demonstration can be summarized as follows:
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Supposing that all elements of y are strictly positive,

~

allows one to premultiply each side of (25) by ¥_1. Since I-P,

is a diagonal matrix, it follows that
(I-P){i} = A a(=){y} ,

or, after premultiplication by A_1,

(=) {y} =2~ (1-p){i} ,

in which {i} is a column vector of ones. Then, the matrix product

a(e)y is a diagonal matrix whose i-th diagonal element is the i-th

element of the vector A_1[I-P 1{i}:

a(=)y = (A7 I-Pal{itly, (27)

~ ~ ~

Substituting this into the constraint equation (22) yields

-1 . - =
A" (I-Py) {illy A7{y} - I-By iyl =0

a relationship that can be rewritten as
[g-—}]{y} = {0} ,
in which

_1 1A’

c = [A

~

(I-Bg)litlgq(1-2y)
Observing that

1

(i3¢’ = AT I -pgl AT I - R (i}l = (3},

it follows that C_1 and, consequently, C are matrices admitting




a unit characteristic root. However, since C need not be stoch-
astic (nonnegative), it might well be that the vector {y} does

not have all its components strictly positive.

For example, in the case of our four region system, the C
matrix includes three negative entries as shown by Table 11

below.

Table 11, Nonlinear model - ZPG formulation - U.S. regions
- the C matrix

“oast  Comera1  Soueh West
0 -0.19523 -0.42067 -0.34187 |
0.15717 0 0.39891 0.55708
7 0.45001 0.62380 0 0.87746
| 0.21435 0.63346 0.81094 o |

The normalized vector {y} presents a negative entry corre-
sponding to the North East region, the region which appeared to
be empty in the projection process described previously (see
Table 5).

Table 12. Nonlinear model - ZPG formulation - U.S. regions
- the {y} vector
-0.48594
0.42976
0.51993

0.53625

A Necessary and Sufficient Condition

It is actually not necessary to explicitly calculate the
characteristic vector of C corresponding to the unit character-
istic root in order to determine whether all components of this
vector are strictly positive. The occurrence of empty regions

in the equilibrium situation can be found a priori by the



application of the following theorem:

A necessary and sufficient condition for the characteristic
vector corresponding to the unit characteristic root to

have strictly positive entries jis that A—1[I -Pd]{i} >0.

Suppose §_1[E-E ]{i} > 0, then the matrix [§_1(I-Ed){i}]d
is strictly positive as well as C. We find, therefore, that the
characteristic vector of c is no;-negative in such circumstances.
Note that the interpretation of the above condition simply lies in
the possibility of finding a positive value of mi(w) for all i
satisfying equation (27).

In the case of our four region system for the U.S., the cal-
culation of the vector {z} = A_1[I-P 1{i} leads to a vector whose

first component (corresponding to the North East region) 1is nega-
tive (see Table 13).

Table 13. Nonlinear model - ZPG formulation - U.S. regions
- the {z} vector

-0.42290
0.44537

{z} = x 10
0.75477

o]

0.88384

We can conclude, without calculating the characteristic vector
{y}, from the simple calculation of {z}, that this system does
not admit any acceptable equilibrium solutions with nonzero
entries.

Conversely, if {y} is a vector with strictly positive en-
tries, we see from (22) that f(w) is strictly positive. It then
follows from (26) that §_1[I-P 1{i} is a strictly positive
vector, which completes the~pr;of of the necessary and sufficient

condition.




Contrasting Systems with O0dd and Even Numbers of Regions

The existence of a characteristic vector of C corresponding

to the unit characteristic root, and having strictly positive

entries does not ensure that it is an acceptable equilibrium

solution of the ZPG nonlinear model, because it does not neces-

sarily lead to a positive value of « («).

It is simple to construct an example in which the values of

{z} and {y} are strictly positive but do not lead to a value of

= (») verifying (27).

Table 14 presents a four-region system

in which the values of {z} and {y}, strictly positive, fail to

yield a value of « («), owing to the nonzero value of the deter-
minant of [x(®)A - Ax(~)]. This property can be immediately

generalized as follows:

If the system is not initially stationary, there generally
exists no equilibrium solution characterized by an even
number of regions (higher than two) of nonempty regions.

Major exceptions occur when A is a symmetric matrix.

Table 14. Nonlinear model - 2ZPG formulation - constructed
example 1
0. 0 0 o ] T 0 1.2 0.2 0.2]
48 0 0 1.2 0 0.2 0.2
Pd= A
- 0 0.21 0 - 1 1.3 © 2
L 0 0 0.05 | L1 1 1 0 |
i 0 1.14737 0.95614 0.95614
0.65182 0 0.70614 .54318
c=
- 0.07217 0.07217 0 .36087
| 0.00425 0.00425 0.04247 0 ]
0.38246 .52754
0.28246 .39643
{z} = {y} =
0.28509 .06916
0.02018 .00686



We can rewrite (26) as:
[@ - @']{i} = {0} ,
in which

E=yas= (2y

~ ~

Clearly, for given values of A and y, this last equation yields

a value of « («), only if the determinant of E - E”~ is equal to zero.

In a restrictive manner, this condition requires that E = E7,

~

“(2)A° = A « (=) , (28)

~

an equality that can be satisfied if:
1. the system is initially stationary [because f(m) = «(0)
such that =(0)A" = A =(0)]; or

2. if the number of regions in the system is equal to two:
(28) reduces to twice the scalar equation m1(m) a;,
= mz(w) asq for which there exists a solution if none of

the off-diagonal elements are zero; or
3. if the A matrix is symmetric.

Aside from these particular cases, the condition |E - E*| = 0 is

satisfied if n is an odd number but does not generally hold if n is

an even number (unless the more restrictive condition E - E” = 0
holds). This immediately follows from the fact that a skew sym-
metric matrix E - E° [because E-E" = - (E” -E)”] has a zero deter-

minant if the number of its columns (or rows) is an odd number, and

is generally different from zero if the number of columns is even.

Property 2

Now, summarizing the above results, we have the following

property:

A demographic system, initially nonstationary, character




ized by a matrix P. of retention probabilities and a
matrix Aof relational terms, admits a strictly positive
equilibrium vector {y} <f and only if:

5'1 (I -PH{i} >0 , and
the number of regions 1is not an even number higher than
two. (This second condition 18, however, not required
if A is a symmetric matrix.) Moreover, {y} is obtained
as the ch?racteristic vector of C = [5—1(2 - Ed){i}]dg

(I -P )" 'A” corresponding to the characteristic root 1.

~

Having determined the conditions of existence (or non-existence)
of a strictly positive equilibrium solution, we now turn to the
search for equilibrium solutions including one or several empty

regions, say k regions.

Equilibrium Solutions with Vanishing Regional Populations

Searching for Equilibrium Solutions with Vanishing Regional
Populations

To determine whether the system leads to an equilibrium
solution with a predetermined set of k vanishing regions, we set

y, =0 for these regions in (25) and look for solutions of the

resulting equation:

(1 - B }yt=F a=A '3} , (29)

in which Ed’ 5, g(w) and g are respectively obtained from Pys A,

g(w) and y by removing the k columns and k rows corresponding to
the k vanlshing regions. Since (29) is similar to (22) (it only
differs from the latter by the number of regions n - k instead n),
we can apply Property 2 to the system characterized by 5 and ? .
We may conclude that if (n - k) is an even number higher than two,
no equilibrium vector exists such that it contains k zero elements
corresponding to as many empty regions (unless A is a symmetric
matrix). We may also conclude that if (n - k) is equal to two or
is an odd number, there exists at most one equilibrium solution,
whose set of nonzero elements is described by the characteristic

vector corresponding to the unit characteristic root of



= =1 s . s —
C = (BT - By {idlgg(X - By " R"

in which A& and ﬁd are (n - k) submatrices of A and P, such that

(a1 - B1di} > 0 .

The Maximum Number of Acceptable Solutions

Property 3:

The ZPG formulation of the nonlinear model admits a
maximum of 2% - (n + 1) equilibrium solutions charac-
terized by at least two nonempty regilons; this number
reduces to 2n-1 + ELE—%—EL if the initial matrix A
contains no off-diagonal element such as aij = aji'

Since there exists a unique equilibrium solution for each
predetermined choice of the vanishing regions, it suffices to
calculate the number of alternative sets of vanishing regions
that the system can admit in order to obtain the maximum number

of equilibrium solutions.
n . a .
There exist (k) different ways of constructing an A matriX

by dropping k columns and k rows of A, soO that the McGinnis/

Henry model admits, at the most,

n

(0) = 1 solution with no zero entry

n

(1) = n solutions with one zero entry

n n(n - 1) . . .

(2) = —s solutions with two zero entries

n n! .. . ,

(k) = K)TK! solutions with k zero entries

n
(n-1) = n solutions with (n - 1) zero entries.
n n n n
Then, there exists a maximum of (0) + (1) ... + (n-1) = 27 -1

equilibrium solutions. However, equilibrium solutions with

(n - 1) zero entries (the whole population concentrated in one




region) cannot occur since this leads to an undefined value of
é(w). Thus the maximum number of equilibrium solutions, all
characterized by at least two nonempty regions, reduces

2" -1 - (no) = 2% = (n 4+ 1).

Consequently, a system of two regions yields at the most
22 - 3 equilibrium solutions, i.e., a unique equilibrium solu-
tion, while a system of three and four regions admits no more

than four and eleven equilibriums, respectively.

Also, if the matrix A has no off diagonal element such that

aij aji’ the ZPG system does not lead to any equilibrium solu-
tion characterized by an even number of regions greater than two.

In such a case, the maximum number of equilibrium solutions is

equal to
Oy + S+ +®B) ...+ 1n22), if n is an odd number
(?)-+(3)-+(§)-+(ﬂ) +...-+(n23)-+(n§2), if n is an even

number.

n
Because of the properties of the number of combinations (k) it
can be established that this maximum number of equilibrium solu-

tions 1s equal to 7L Eiﬁ—%—zl in all cases (n odd or even).

It thus follows that the number of maximum solutions is
respectively, 1, 4, 10, 21, 41, for n =2, 3, 4, 5 and 6. The
restriction imposed on A causes the number of solutions to drop
from 11 to 10 (if n = 4) and from 57 to 41 (if n = 6).

Determining all Solutions of (27) in the Four Region System
System of the U.S.

In the case of our four region system we have a maximum of
10 equilibrium solutions characterized by one or two empty regions.
We have thus calculated all 10 solutions of (27) admitting empty

entries (see Table 15). It appears:

- that only two of the four characteristic vectors contain-

ing a unique zero are nonnegative, and



that all of the six characteristic vectors containing

two zeros are nonnegative.

Table 15. Nonlinear model - ZPG formulation - U.S. regions -
the {z} and {y} vectors
Solu~ Solu-
Fion {z} {y} tion {z} {y}
_‘NO_:_ No.
0.30187 | 0.19026 0.98697 0.49540
0.65972 8| | 0.32860 0 8 0
(D11 1. 24960 | ¥1O 0.48114 (®) | 11.70830 | ¥1© 0.50460
o o ) o
—0.17° 70 | -0.12450 1.43750 0.53748
0.90402 8| | 0.57811 o 8 o
7
(2) o x10 o (7) o x10 o
1.48210 | 0-54639 2.34490 0.46252
:b.013957 ~0.01285 | o ] f' 0
o 8 o 0.40071 8 0.45983
1 | 1.02800 | **° | | 0.54786 ®) 1 lo.59929 |*© }0.54917
|_.0.93381 LO°46499 o) L. o)
- - o | o ] o
0.23996 8| | 0.20285 0.80555 8 0.50189
(4) 1 1 o.71486 | ¥*© 0.42725 (9) 0 x10 0
0.68831 0.36990 1.38470 0.49811
2.49830 0.53560 o o
2.45700 8| ! o.46440 o 8 0
(5) 0 x10 0 (10) [ |, 01820 | ¥1° 0.54205
o 0 0.92079 0.45795
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Narrowing Down the Number of Acceptable Solutions

A nonnegative vector {y} with k zero entries is an accept-
able equilibrium solution only if the vector
{z} = (A1 - )17 "{i}, and the matrices A and P, respectively

obtained by removing the (n - k) rows corresponding to the non-

zero entries are such that

A{z} < [I - P,1{i}

So far, we have searched for equilibrium solutions admitting
zero entries, but we have not examined the likelihood of occurrence

of such solutions.

Clearly, a necessary condition for any region 1 to become
empty in the long run is that its inmigration be equal to or less

than its outmigration as t becomes large, i.e.,

wo () ) a.jo.(t)] < (1 --p . )w, (£) ,
1 sy F31%3 hl 11’1

for any finite value of t > T. Because wl(t) is strictly positive

for any finite value of t, the above condition becomes:

jgl ajlaj(t)wj(t) < (1 =-pyp) o

or in compact form,

A a(e){w(t)} < [T - P I{i} , (30)

for any finite value of t > T, in which the double bar relates to
sections of the A and P, matrices obtained by removing the n - k
rows corresponding to the non zero entries and the k columns

corresponding to the zero entries of {y}.



As t » o, a(t){w(t)} » {z} = 5_1[1 - ﬁd]{i}. Then a neces-
sary condition for any characteristic vector {yl! (including zero

entries) to be an adequate equilibrium solution is that

A{z} < [T - B I{i} . (31)

Returning to our four region example, it appears that
among the eight nonnegative characteristic vectors {y} derived
above, only one (solution number 4 in Table 16) verifies con-
dition (31). The multiregional system of the United States
consisting of the four Census Regions thus yields a unique accept-
able equilibrium solution in which the North East region is empty
and the other regions contain 14.32 percent of the total popula-
tion (north Central), 43.26 percent (South) and 42.43 percent
(West) . *

Table 16. Nonlinear model - U.S. regions - comparison of stationary inmigra-
tion and outmigration rates relating to the vanishing regions

Solu- - - Solu- _
tion A{z} [T - Pd]{i} tion é{z} [1 - gd]{i}
Number - o Number
(1) {0.12339} {0.05468} (7) o.12313} {0.05427}
0.18494 C.04620
(4) {0.03810} {0.04706} (8) 0.05736} {0.04706}
0.14086 0.05468
(5) 0.23638} 0.04620} (9) 0.04322 0.04706
0.26183 0.05468 0.10864 0.04620
(6) {0.08667} {0.05427} (10) | (0.04652 0.04706
0.12930 0.05468 0.07496 0.05427
]

*Note that this limiting distribution was the one which we
obtained in Section I by iteratively projecting the initial
population.




The Uniqueness Versus the Non Uniqueness of the Stationary
State: An Illustration

Note that uniqueness of the stationary state is not a general
property of the ZPG formulation of the nonlinear model. For in-
stance, we have constructed an example (for which the A and P
matrices are shown in Table 17) that offers two acceptable equi-

librium solutions.

Table 17. Nonlinear model - constructed example 2 -
the 2 and Pd matrices

[ 0.00000 1.20000 0.20000 0.20000 ]
1.20000 0.00000 0.20000 0.20000
A= 1.00000 1.30000 0.00000  2.00000
| 1.00000 1.00000 1.00000  0.00000 |
T 0.60000 0 0 0 1
0 0.48000 0 0
Pa = 0 0 0.21000 0
] 0 0 0 0.05000 |

From Property 3 we know that since A has no symmetrical off-
diagonal elements, there exist at the most ten equilibrium sol-
utions for this system. The calculation of the ten equilibrium
vectors corresponding to the unit characteristic root, having
no more than (n - 2) zero entries* reveals that only eight of

them are nonnegative vectors. They include:

- all six characteristic vectors with two non-zero compon-

ents, and

- two out of the four characteristic vectors with one zero

component.

However, only two of these vectors are acceptable in that
they verify (31). One is a vector with one zero entry and the

other with two zero entries; both of them are shown in Table 18.

*Since the number of regions in the system is even, at least one
region has to be empty at equilibrium.



Table 18. Nonlinear model - constructed example 2 - the two
acceptable equilibrium solutions

0 0.54107
0 0.41073
{y}l = {y}2 =
0.54598 0.04819
0.45402 0

Note that, when carrying out the ZPG projection process
characterized by the A and P_ matrices defined in Table 17, the
two alternative equilibrium states shown in Table 18 are actually
obtained. 1In fact, the first equilibrium characterized by two
empty regions is obtained much more often than the alternative
one. Only when the relative share of the fourth region is ini-
tially small is the alternative equilibrium obtained. For example,
when setting the initial population of regions 1, 2 and 3 to
100,000, the first stable equilibrium is reached every time the
initial population of region 4 is higher than 107. On the other
hand, the alternative equilibrium is obtained when the initial
population of that chosen region is less than 106. Unfortunately,
it was not possible to carry out this result further in order to
determine a priori which stable equilibrium would be obtained for

any predetermined choice of initial population.

Returning to our general analysis of equilibrium solutions
with zero entries, we could also show without difficulty that, if
for a given choice of k regions {z} is nonnegative, then (31) is
also a sufficient condition for the corresponding characteristic
vector {y} to be an acceptable equilibrium solution of the ZPG

nonlinear model.

Property 4:

Summarizing the above results, we can now state the follow-
ing:

A necessary and sufficient condition for an n region

system, tnitially monstationary, to admit one or sev-

eral equilibrium distributions containing no more than

(n - 2) empty regions is that -




(1) there exist one or several partial matrices
Ed and ﬁd’ obtained by removing k (0 <k <n-2)
columns and k rows of A and Pd’ respectively,

such that {z} = 5_1[5 - ?d]{i} > 0,

(2) the vectors {z} satisfy the condition
A{z} < (I - P.){i}, expressing that, at equi-
librium, regional inmigration rates must be

less than their outmigration counterparts, and

(3) n - %k, the number of nonvanishing regions, is
not an even number higher than two. (This
third condition is, however, not required 1f

A is a symmetric matrix.)

Thus, in our search for acceptable equilibrium solutions in
the ZPG case, we have set forth a methodology permitting the a
priori calculation of all acceptable equilibrium solutions (see
Appendix 4 for a formal exposition of this methodology).

We now continue the study of the ZPG formulation by examin-

ing particular cases.

Particular Cases

We will now examine in detail the case of systems consisting
of three regions* and then analyze the long-term behavior of the
nonlinear model II in which the influence of the relational

factors between pairs of regions is ruled out.

Case of a Three Region System

. -1 .
Firstly, we demonstrate that the vector {z}==§ [I"Ed]{l}

has at least two nonnegative components.

Suppose that {z} contains two negative components, say, the

second and third components. Then, the first element of the

*In the case of two regions, the nonlinear model reduces to the
linear one.
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vector

0 Ay asy Z
a{z} = |a, 0 aso zy
a13 2733 0 Z3

is negative, which is impossible since A{z} is equal to [I-P_]{i},

that is, a nonnegative vector.

Secondly, we show that if {z} has no negative component, there

exists a unique acceptable equilibrium presenting no zero entry.

Suppose that {z} has no negative component, then from Property
2 there exists an acceptable equilibrium with no zero entries. Are
there, however, equilibriums with zero entries? If we assume that
there exists an equilibrium solution in which the third component

is zero, the new value of {z}, say {z”}, is given by

A{z"} = (I - B {i} , i.e.,

0 as1 z] 1 = Pqy
P 22 1 - Py
Since ayq 2, + ajq 23 = 1 - P11 and a9 24 + a 32 23 = 1 - P,, in
which Z4r 2, and z, are positive by assumption, it can be clearly
seen that z{ >z, and zi > 2, Furthermore, we have
313 21 * 333 23 > 393 29 + 353 25 = (1 = py3)

an inequality which states that, as the system tends toward
equilibrium, the inmigration rate is higher than the outmigration
rate in region 3. However, this is impossible since the third

region has been hypothesized to become empty so that the opposite




inequality between inmigration and outmigration rates should
hold. Thus a three region system characterized by the existence
of an equilibrium with no zero entries cannot have any other

equilibrium.

Thirdly, we demonstrate that if {z} has one negative compo-
nent, there exists a unique acceptable equilibrium with a zero

entry for the region having the negative entry in {z}.

Suppose now that {z} has a negative component, say the third
one. Then, we know that the three region system admits no equi-
librium solution with strictly positive entries but has at least

an acceptable solution in which one region is empty.
To obtain this result we show that the characteristic vector

==1 = - 3 : . = 5 _
of [é [E - Ed]{l}]dg % (% gd)’ in which % and Pd are sub
matrices of A and Pd obtained by removing the third row and
column, 1is an acceptable solution and that there exists no other

equilibrium.

The new values z{’ and zé' of the non-zero elements of {z}

are less than z, and z., so that a

1 2 13 V4 is less than
(1 ) .

t ax32,

z;;
1

P33
Then the two region subsystem consisting of the regions for
which the components of {z} are nonnegative is an equilibrium

-

z’
: . 1 Do
solution since the vector T satisfies the necessary and
2

0

sufficient condition of Property 4.

For example, the three region system of the U.S. obtained by
aggregating the South and West regions of the four region system
previously used has a {z} vector whose first component (North East)
is zero, thus concentrating the equilibrium population in the other
two regions (North Central and South/West). Note that, in such
instances, the allocation of the equilibrium population among the
two regions denoted by i and j can be simply obtained by observing
that Mij(w) = M,. (o), i.e., (1 - pii)yi = (1 - pjj)yj: the share

ji
of each region is inversely proportional to the total outmigration
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rate (1 - pii)' Numerically, it appears that the equilibrium
solution implies that a constant 35.14 percent of the whole U.S.
population will ultimately live in the North Central region ver-
sus 64.86 percent in the region constituted by the U.S. Census

South and West Regions.*

Moreover, because of the occurrence of a zero entry at

equilibrium (the third entry), the following inequality holds:

Suppose now that there exists a second acceptable equilibrium
solution characterized by a zero component, say, in region 1.

Then the following ineguality, similar to (32), must hold

a a

21 31
— (1 = pyy) +— (1 = p,,) <1 -0p . (33)
a,3 33 az, 22 11
921
Multiplying (32) by FOue and adding the resulting inequality to
23
(33) we get

a a a
13 221 31
+ (1 - p <0
a12 83 333 22) ’

which is clearly contrary to the hypothesis that Pyy < 1.

Finally, a three region system admits a unique equilibrium

distribution characterized either by strictly positive entries
1

(1f é— [I - P 1{i} is nonnegative) or by two strictly positive
entries accompanied by a zero entry (corresponding to the entry
of §_1[£ - P_1{i} which is negative). 1In the latter case, more-

over, the population shares of the two nonvanishing regions are

*For the sake of comparison, we remind the reader that the four
region system had an equilibrium solution in which the sum of
the shares of the South and West regions was 85.68 percent.




inversely proportional to their total outmigration rates.

Case of a System in which Distance has no Influence
(Nonlinear Model I1)

In such an instance, the matrix A is symmetric so that in
contrast to the genefal case, (25) doés not raise any problem if
n is an even number. The general Properties 2 and 4 are thus
valid here without the restriction attached to the number of
regions in the system. Therefore, the maximum number of equi-
librium solutions is 2% - (n + 1), i.e., 11 in the case of our

four region system of the U.S.

Table 19 displays the values of the 11 characteristic vec-
tors of the new C matrix obtained for this system. Note that we
have not reported here the values of {z} since the normalized
vector {z} is identical to {y}. (This stems from the fact
that if A is symmetric, the value of oy is (1 - pii) for all non-
empty regions.) All the 11 characteristic vectors are nonnega-

tive; however, none of the solutions with zero entries are such

Table 19. Nonlinear model II - ZPG case - U.S. regions -
the {y} vectors

Solu-! Solu- " Solu- " Solu- | 1
tion | {y} [tion | {y} tion | {y} ftion | {y} |
No. ! No. ' No. ' No. f
H \ b ! ;
{0.30186 0.36383) ! 0.495401 ; L0 )
1]0.19483 o | o i - }0.50189] i
b {0.31459 @ o.37543 5 M No.soa60( 1 19 0 :
{0.18872 0.26073 i o ! 0.49811) |
0.36206 0 T 0.53748 ; 0
(2) 1Jo.26425{ | (5) |]o.30082(| (8) o (11) : 0
110.37369 0.40448 0 | } 0.54205
o 0.29511 0. 46252 L 0.45795
| i i
1(0.39675 0.53560 o !
|
0.30427 0.46440 0.45983 !
i | :
(3 o) (e) o 9 1o.54017 | !
% 0.29898 0 0 :




that the difference between inmigration and outmigration rates is
negative when t - o, Therefore, the system offers a unique equi-
librium characterized by non-empty regions.* We note that the
North East region is comparatively much larger at equilibrium
(30.19 percent) than initially (27.77 percent), while the share
of the North Central region is much smaller (19.48 percent versus
28.08 percent). By contrast, the population shares of the South
and West regions are similar in both initial and stationary pop-

ulations.

IV. THE NONLINEAR MODEL (NON-ZPG FORMULATION) : SEARCH FOR
EQUILIBRIUM SOLUTIONS

In this case, regions are exposed to natural increase N #0,
and the projection process is entirely defined by (18) [or, alter-

natively, by (20)] and accompanied by the constraint equation (19).

Preliminary Property

In order to avoid any potential problem concerning the sign
wi(t), we put down the following restriction about the P, and N

matrices: **

Then we can establish the following property.

Property 5

If no region is initially empty, then no region can
become empty except in the long run. In other words,

{w(t)} > 0 for all finite values of t.

*This equilibrium solution was the one obtained as the limiting
allocation of the population of this system when projecting
iteratively the 1970 population.

**Note that imposing such a constraint is not very restrictive
for usual applications of multiregional systems: p.. +n. is
highly positive ¥i. 11 1




To prove this, we write eguation (20) in scalar terms as:

wi(t + 1) = [pii + n, + j;i ajiaj(t)wj(t)]wi(t)

Then, we have

wi(t + 1)

| v

l_
wi(O) # 0 ¥i, wi(t) is strictly positive for all i whenever t

t . .
w. (0 if .. + n. > 0). Therefore, if
so that wi(t) > (pii + ni) l( ) Py )
remains finite.

Equilibrium Solutions With Nonvanishing Regional Populations

Turning to the search for equilibrium solutions, we first
establish a property extending the one derived by McGinnis and
Henry (1973) in the ZPG case.

Toward the Derivation of an Acceptable Equilibrium Solution

If it exists, an equilibrium solution to the non-ZPG form-
ulation of the nonlinear model, characterized by all strictly
positive entries, is unique and is obtained as the characteristic
vector of the matrix

1

D = {\."1 [{\'1{1}]5;[[5' (P

2y + W 11" + 1 - Byl

corresponding to the largest characteristic root A (provided that

A is equal to or larger than 1).%

. .- -1;.4,--1 . .
*Alternatively {y} can be derived as A 1[5 {1}]d {u} in which
{u} is the characteristic vector of the matrix
1

F = [A (By + g){i}]dg + (I - Ed)é‘—1 corresponding to the
largest characteristic root of A (D and F have the same charac-
teristic roots). This alternative was used in setting up a

computer program to calculate the estimates of {yl} (see
Appendix 4).
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To prove this we rearrange the steady state equation (21)
and obtain the following generalization of (25)
[AL -

Py + N1y} =y A a(=){y} . (34)

This relationship may also be rewritten as:

[y A a(=) + N - (I-P2)l{y} =0 - Diy} ,

~

which expresses that each regional increase of population (at
stability) is obtained by subtracting the outmigration flow from
the sum of the inmigration and natural increase flows.¥*

Premultiplying both sides of (34) by 11\_1y-'1 (which is pos-
sible here as a consequence of the assumption that {y} admits

no zero entries) yields:

a(x){y} = @’1[A; - (P

Py + g)]{i}

Then we can rewrite the matrix product a(x)y as

~

~

a(e)y = MAT Lid o - (AT Ry + Wi, (35)

in which the two terms between brackets represent diagonal matri-
ces whose general diagonal elements are equal to the general terms
of the vectors appearing inside the brackets. Substituting (35)

into the constraint equation (22) then yields:

[A [§_1{i}]dg‘ (a” (gd+g){i}]dg}z§’{y} -(I-pylyr=0 ,
(36)

*Note that (3

k) may be alternatively presented as:
[y A a(=)y = (I - Pyl{i} = [(h - 1)I - NI{y} ,

which contrasts with the constraint equation:
Hi7ly A al=)y - (I - Pylyl = {0}7




a relationship that can be rewritten, after premultiplication
=1 =1
by A [A {l}]dg as

(D - AD{y} = {o} , (37)

in which

1(P

JRURUTES RP R D
D=2l 1T 2y

+M L AT+ (T-PY] .

Then, an equilibrium solution {y}, if it exists, is a charac-
teristic vector of the matrix D corresponding to one of its real
characteristic roots. Thus, if it exists, the stable state of the

nonlinear model is identical to the stable state of the linear
model in which

{wit + 1)} = D {wit) } . (38)
Since the stable state of this system is unigque and corresponds
to the largest real characteristic root of D, the result is that,
if it exists, {y} is unique and is obtained~as the characteristic
vector of D corresponding to its largest real characteristic root
A, provided that X is greater than one (if X <1, wi(t + s) =
A S wi(t) > 0 as s » », i.e., the system vanishes).

Note that D is not necessarily nonnegative and that the
characteristic vector of D corresponding to its largest real
characteristic root may admit negative entries. Unfortunately,
unlike in the ZPG case, it is impossible here to derive a neces-
sary and sufficient condition permitting one to determine a
priori whether there exists an acceptable equilibrium solution

with nonnegative entries.

To determine the existence (or nonexistence) of an equilib-
rium solution with strictly positive entries, we must carry out
the projection process embodied in the linear system (38) and

thus find out whether it leads to an acceptable estimate of {y}.*

*The algorithm used to calculate applied estimates of {y!} is
presented in Appendix 4.



The application of this method to our four region system
leads to a vector {y} in which the first component (North East)
is negative (see Table 20). Then, the ZPG formulation of that

system admits at least a vanishing region.

Table 20. Nonlinear model - non ZPG formulation - U.S. regions -
equilibrium solution with no vanishing regions

1.13192 0.08774 0.01652 0.04968 - 1.03592
* -
o 0.07686  0.87715  0.05494  0.00616 | 3 _ | 0.80150 [, . (oo
~ - 0.01317 0.02697 0.90471  0.02092 0.51516
~ 0.04250 0.01387 0.03105 0.92832 0.71926

As a digression, observe that the matrix D of the non-ZPG case is
related to the matrix C of the ZPG case by the following relation-
ship:

=1 =171 . -
(AT (i35 [T =Pg) (1-C) + [T (I +N) {3} A"]

It follows that

_ /_1 _1r- _1
D-AI=a""T[aT{i} g I -p

~d(I"§)

-1 . -
+[A [(1 -K)E-+§]{l}]dg§ 1,
so that [D-AIl{y}=1{0} can be rewritten as

(39)
In the ZPG case, N = 0, and » = 1 and (39) reduces to

(I - C){y} = {o} , (4L0)

which is precisely the steady state equation of the ZPG case.

*As indicated in a previous footnote, the stable state of the non-
ZPG case is obtained through the calculation of a matrix F which
has the same characteristic roots as D.




As the comparison of (39) and (40) suggests, the non ZPG case
is not a simple extension of the ZPG case. In the non ZPG case
there appears to be no simple theorem determining a priori the
existence, or non-existence, of equilibrium distributions charac-
terized by nonvanishing regions. Actually, this statement
generally holds only if the system initially contains two or an
odd number of regions. As in the ZPG case, a system having an
even number of regions greater than two, has at least one van-

ishing region in the long run.

Contrasting Systems with 0Odd and Even Numbers of Regions

If a non-ZPG system is initially not stable, there generally
exists no equilibrium solution characterized by an even number of
regions (higher than two) of non-empty regions.* Major exceptions
occur when A is symmetric. The equilibrium equation (34) can be

written here as

[y A a(x)y-y a(2)A"yl{i} =[O -1)I-Nl{y} ,

]

or

[E - E'1{i} = [(x - DI - Nl{y} , (41)

~ ~

in which E is equal to y A a(x)y.

~

Suppose that we premultiply (41) by a row vector of ones {i}~,

then we have
{i}7[E - E7]1{i} = {i}7[(x - 1) I - Ni{y}

Since the population system considered is closed, the sum of
the regional outmigration flows and the sum of the regional inmi=-

gration flows are equal. Therefore,

*The demonstration of this property, slightly more difficult to
establish than in the ZPG case, is in fact very general and
includes the demonstration proposed in the ZPG case as a spe-
cial case.



{i}7[E - E1{i} = 0 .* (42)

If we assume that g(m) and y are known, (42) must be a system of

n linearly dependent equations with the determinant of E - E’
required to be zero. However, as shown earlier, § - g’ has a zero
determinant if A is symmetric. If A is not symmetric, E - g’ has
a zero determinant when the number of regions in the system is

equal to two or is an odd number.

Property 6

Summarizing the above properties, i1t appears that a demo-
graphic system, initially nonstable, characterized by a

matrix P, of retention probabilities and a matrix A of

reZationSZ elements does not admit a strictly positive
equilibrium vector {y} <1f the number of regions in the
system 1s an even number greater than two. If the number
of regions i1s two or an odd number, it may have equilib-
rium vector that is unique and is obtained as the char-
acteristic vector of 9==§’-1[é_j{i}]éé[§-1(Ed-+§){i}]dg§’
+ (I - Pj)] corresponding to its largest real character-
ist;c root (provided that this characteristic root is

larger than one).

Equilibrium Solutions with Vanishing Regional Populations

Searching for Equilibrium Solutions with Vanishing Regional
Populations

In order to find whether there exist equilibrium solutions
characterized by a given set of k vanishing regions, it suffices
to set y; = 0 for these k regions in (34), which yields a new

vector equation:

y a(=) Aly} = I\I - (By + M)1{y} , (43)

*There exists the following relationship between A and {y}

A= 1+ {i}°N{y} .




in which ?d, qr 2

a(~) and y by removing the k columns and k rows corresponding to

A, a(=») and y are respectively obtained from P

the vanishing regions. Since (#3) is similar to (34), we can

apply Property 6 to the system characterized by 5, E and ﬁ. We

d
conclude that:
(1) 1if (n - k) is an even number higher than two, there
does not exist any equilibrium vector containing k
zero elements corresponding to as many empty regions,

except if A is a symmetric matrix, and

(2) if (n - k) is equal to two or odd numbers, there
exists at most one equilibrium solution correspon-
ding to the predetermined choice of vanishing

regions.

Moreover, the application of Property 2 to (39) suggests
that the possible equilibrium solutions of the ZPG system are

characteristic vectors of

~ ~d

= _ ozl z=1o.07=-15-1 3 = s = _
D=A '[A {1}]dg[§ (Py + M {itlq A + (I - PT

corresponding to their largest characteristic root (if higher

than one).

The Maximum Number of Acceptable Solutions

Because there is not more than one equilibrium solution for
each choice of vanishing region sets, we find that Property 3,
concerning the maximum number of acceptable solutions, holds in

the non-2ZPG case.

Determining all Solutions of (39) in the Four Region System
of the U.S.

The non-ZPG formulation of the nonlinear model applied to the
four region system of the United States, thus offers ten possible
equilibrium solutions characterized by one or two empty regions.
The calculation of the characteristic roots and characteristic

vectors corresponding to the ten D matrices which are possible



to construct for this system reveals that:
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- two of the four characteristic vectors containing a

unique zero component are nonnegative, and

- all of the six characteristic vectors containing two

zeros are nonnegative (see Table 21).

Table 21. Nonlinear model - non-ZPG case - U.S. regions -
alternative stable equilibriums
Solution Solution
A A
Number {y} Number {y}

0.05375 .51279

0.35054 0O
(1) 1.0081l6 0.49570 (6) 1.00758 48721

(0] 0

I

-52.27200 | .47233

(2) 1.15054 31.g1302 (7) 1.00790 8
21.45898 .52767

-121.33634 0
o - .54299
(3) 1.44917 55.33747 (8) 1.00850 45701

] 66.99887 0

(6] (6]
0.18773 .50305

(4) 1.00921 0.43323 (9) 1.00892 o
0.37903 .49695

0.46863 o]

0.53137 ; o]
(5) 1.00684 o , (10) 1.00953 45975
o) .54025
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Narrowing Down the Number of Acceptable Solutions

The equilibrium solutions determined above are again limit-
ing distributions of the non-ZPG formulation of the nonlinear
model if conditions concerning the regions assumed to vanish
hold. We shall demonstrate that a nonnegative vector {y} with
k zero entries is an acceptable equilibrium solution only if the
vector {z} = [A} - (Ed + ﬁ)]—1{i} and the matrices A, P. and N,

d
respectively, obtained from A, P, and N by removing the (n - k)

~ ~

rows corresponding to the non-zero entries are such that

|

{z} - [T - P 1{i} < [(A - NI - N]{i}

Clearly, a necessary condition for any one region to become
empty in the long run is that the sum of its net migration and
natural increase be equal to or less than (A - 1)wl(t) as t becomes

large, i.e.,

for any finite value of t > T. Because wl(t) is strictly positive

for any finite value of t, the above condition becomes

j;l ajlaj(t)wj(t) - (1 -pyy) <A -1 =ny)

or in compact form,

Aa(t){w(t)} = (I - P){i} < [(A - I - NI{i} ,

g

’ gd and

are sections of A, P, and N obtained by removing the n - k rows

~ ~

2|

in which the double bar indicates that the matrices

corresponding to the zero entries of {y}.

= =1 _vrx-1¢. _3-1.3 =\ (2
As t > ,g(t){w(t)}-+{z}-—k[§ {1}]dg [A (Ed-+§){1}]dg, SO
that a necessary condition for any characteristic vector {y}

with zero entries to be an acceptable equilibrium solution



is that:

A{z}) - (I - Py{i} < [(x - DI - NI{i} . (44)

In the case of our four region example, among the eight non-
negative characteristic vectors {y} derived above, only one
(solution number (4) in Table 21) verifies condition (44). The
multiregional system of the United States consisting of the four
U.S. Census Regions gives a unique acceptable solution in which
the North East region is empty and the other regions contain
respectively 18.77 percent (North Central), 43.32 percent (South)
and 37.90 percent (West) of the U.S. population.*

As in the ZPG case, it can be shown that the condition (44)

is also sufficient and then the following property can be stated,

Table 22. Nonlinear model - non—-ZPG case - U.S. regions - comparison of
stable inmigration and outmigration rates relating to the van-
ishing regions

v ¥
: ion | - | T _—_ .
emrer | RE) - @ - Bptid | o= 00 - ) oammerd M3 - (1 - Bptil (= DG - ()
(1) 0.06870 ~0.00187 (7) 0.06886 0.00009
0.13874 ~0.00120
(4) ~0.00896 0.00322 (8) 0.01030 0.00252
E 0.08618 ~0.00153
:
(5) = 0.19018 -0.00226 (9) -0.00384 0.00294
. 0.20715 -0.00319 0.06244 ~0.00018
(6) |  0.03240 ~0.00022 (10) | =0.00053 0.00354
| 0.07462 | -0.00245 0.02069 0.00173 !
: K

*Again, note that if we project the future multiregional pop-
ulation of the U.S. using the non ZPG formulation of the non-
linear model based on 1965-70 data, we observe such a limiting
distribution.




summarizing the results of this section:

Property 7

Necessary and sufficient conditions for an initially

nonstationary n region system, to offer one or several

equilibrium distributions containing no more than

(n - 2)

(1)

(2)

(3)

empty regions are:

that there exist one or several partial matri-
ces Bgs By
k (0 <k <n - 2) columns and k rows of A, P
and N, such that {E}==K_1[AI -(P,+N)1{i} >0

(in which X\, the largest real characteristic

and N obtained by removing

root of the matrix

=& AT N lIAT By + M (i} g A7+ (I-B1

18 necessarily higher than one),

that the vectors {2z} satisfy the condition
A{z} - [I - P 1{i} < [(x - I - NI{i} ,
expressing that, at equilibrium, regtional
net migration rates must be less than the
difference between the common stable growth

rate (A - 1) and the regional natural increase

rate, and

that (n - k), the number of nonvanishing re-
gions, is not an even number higher than two.
(This third condition is, however, not

required if A is a symmetric matriz.)

Like the ZPG formulation, the non-ZPG formulation does not

necessarily yield a unique equilibrium solution as appears to be

the case in the above example. Again, there might be several

equilibrium distributions whose regional shares depend on the

matrices A,

Pa

and N but not on the initial population {w(0)};

as suggested by numerical experiments, the initial population

influences the stable equilibrium in that it determines which

one of the acceptable equilibrium distributions will be reached.

Also, note the possibility, as in the linear system, of a vanish-



ing system if there exists no acceptable solution with a value of

A larger than one.

Thus, in our search for acceptable equilibrium solutions, we
have set forth a methodology permitting us to determine a priori
all acceptable equilibrium solutions of the non ZPG-case (see
Appendix 4 for a formal and concise exposition of this method-

ology) .

Particular Cases

Case of a Three Region System

In contrast to the ZPG case, the non-ZPG case does not lend
itself to establishing the existence of at most one equilibrium
solution. However, as in the ZPG case, it is possible to deter-

mine the equilibrium shares in the case of one region vanishing.

Let us suppose that the third region is empty at equilibrium.

Then, we can simply express D in terms of A, P and N. Since
I 0 2,4 ( 0 gl—
12
= ==1
A = and A =
1
a 0 — 0
I 12 ] | 8.21 J

we thus have:

i 1 ] i &) +n
0 FoN (a12 0 22772 offo aq, 1-—p11 0
12

el
It
+

1 P11y

21 a.. | [%21

-p
21 22
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which after simplification reduces to:

P1p v ™ 1= Py

Ol
I\

R EE Pyp * My

A is then the larger root of the following second-degree poly-

nomial

2 _ *
A —A(p11+n1+p22+n2) + (p11+n1)(p22+n2) - (1 —p11)(1 —p22) =0 ,

i.e.,

2
>\=%[(p11 +n1 +P22+n2) +/[(p11 +n1) - (P22+n2)] +u(1 _p11)(1 _922)]

(45)

Since an equilibrium solution is given by
(A = (pyy + n)lyy = 11 = pyoly,
and
[1 - pyqlyy = [X = (pyy, + my)ly,

it follows by subtracting the second equation from the first that:

[x = (1 + n))lyy = [1 +n, = Ay, (46)
*Since the discriminant A = (p11 + n; + py, t n2)2

2
[p11 +n, - Py, n2)] + 4(1 - Pqyq) (1 - p22) and the sum of

the roots Piq ¥ n, + Pys + n, are positive, there exist two sol-
utions, the higher of which is positive.
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so that the normalized shares of regions 1 and 2 are, respectively,

S 1 + n2 - A
+ I
1 N (14 ] nz)
2
and
A - (1 + n1)
Yy = ’
2 n1+n2
A= (1 + > )

*
in which A is given by (45).

To summarize, if one region of a three region system (non-ZPG
case) vanishes, the two other regions generally take on limiting
shares directly proportional to the values of their net migration

rates.

Case of a System in which Distance Has No Influence
(Nonlinear Model II)

Again, A is symmetric so that the general Properties 3, 6 and
7 are valid ;ithout the restriction attached to the number of
regions in the system. Then, the four region system of the U.S.
admits a maximum of 11 equilibrium distributions. Using the
methodology set above, we have thus derived the eleven possible
matrices E, calculated their largest characteristic root using
the aforementioned methodology, and determined the corresponding

{y} vectors.

n.+n
*Note that if X = 1 + 12 2 , (46) may be rewritten as (n2 - n1)y1

= (n2 - n1)y2 so that the equilibrium population is equally

distributed between regions 1 and 2 [except if n, = n, = n in

2 1
which case the stable state is given as in the ZPG formulation

by (1 = pydy, = (1 = pysly,l.




Table 23. Nonlinear model II - non ZPG case - U.S. regions -
the stable equilibrium

0.85980 0.04706 0.04706 0.04706 0.27766
_ |0.05427  0.86157 0.05427 0.05427| _ _lo.1g951{ . _
T 7 l0.04620 0.04620 0.84961 o.84961| ¥ ~jo.32137( * = 1-00818
0.05468 0.05468 0.05468 0.85529 0.20966

After verifying whether these equilibrium solutions meet
the existence condition concerning vanishing regions, we found
that only one equilibrium solution was an acceptable limiting
distribution. Table 23 indicates that this limiting distribution
is characterized by non-empty regions and that the regional pop-
ulation shares remain closer to the initial shares, as in the ZPG

case, than in the full model.

CONCLUSION

This paper, devoted to the examination of the limiting
distributions of alternative specifications of the interregional
components-of-change model, made clear that retention probabil-

. ities must be independently determined to avoid the type of
problems mentioned in Section I and illustrated by Appendix 1.

It also demonstrated that the classic linear formulation (Rogers,
1968, Liaw, 1975) and the nonlinear formulation of McGinnis/Henry
(1973), are close variants of the components-of-change model
characterized by independently determined retention probabilities:
they were labelled as "dual", because their point of departure
stems from symmetric implementations of the constraint imposed by

the independent choice of the retention probabilities.

The main contribution of this paper was to examine some of
the long-term mathematical properties of the McGinnis/Henry model
and to develop a methodology for determining a priori all the
acceptable equilibrium solutions of the model. Unfortunately, we
were not able to complete a proof of either the existence of an
acceptable solution of the state equation or of the long-term
convergence of the model. However, in consideration of the
results of our numerous experiments with the model, it appears

legitimate to accept the long-term convergence property of the



model as granted and to leave its formal proof to mathematicians.

Contrasting the long-term properties of the linear and non-
linear models has revealed the less conservative character of the
nonlinear model and the less favorable characteristics of its
stable state, such as the occurrence of empty regions and the
possible existence of more than one equilibrium distribution.
Numerical experiments have also shown that, in the case of systems
consisting of a large number of regions, the nonlinear model may
display a few alternative equilibrium distributions, always char-
acterized by a small number of nonvanishing regions (provided

that the stable growth rate is positive).

These unfortunate long-term properties of the nonlinear

model thus prevent its use as a substitute for the linear model,

in order to gain insights into the dynamics of multiregional

population systems.

Note that the nonlinear model examined in this paper as well
as the linear model make use of data relating to a unique time
period. Also following a suggestion of Vining Jr. (1975), we have
examined generalizations of these models (especially the linear
model) based on the observation of data during two consecutive
time periods. Unfortunately, these generalized models can even-
tually lead to problems when projected indefinitely (see Appen-
dix 3). Thus, at the present time, no model other than the ‘
classic linear model of population growth and distribution based
on data for a single time period seems better suited for examin-

ing the dynamics of multiregional population systems.
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Appendix 1

Long-term Behavior of the Unconstrained Model

Starting from the general formulation of the components-of-
change model (5), the most natural way to study its long-term

behavior is to suppose that
N(t) = N and A(t) = A . (A.1)

Equation (5) in which these assumptions are introduced makes it
possible to calculate the regional population distribution at

any future point in time.

An application of the resulting model to the four-region
system of the U.S. based on 1965-70 data shows the existence of
an equilibrium (in both the ZPG and non-ZPG cases) in which all

regions except the West region are empty.

However, the application of the same model to other examples
does not always lead to such an acceptable long-term behavior.
It might well happen that the population of a region becomes
negative or that the total migration out of a region is greater
than the population of this region. This undesirable feature is
indeed the consequence of the fact that retention probabilities
are treated here as residuals and may thus take on inadequate

values.

Problems associated with this feature are, in fact, well
known and have been described in the biology literature in which
appears a population model of interacting biological species,
called the Volterra model, identical to the components-of-change
model, defined by (5) and (A.1). (For an extensive review of
the Volterra model of interacting populations, see Goel et al.,

*
1971.)

*Goel, N., et al. (1971), On the Volterra and other Non-linear
Models of Interacting Populations, Reviews of Modern Physics,
43, No. 2, Part I, 231-276.
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We have, nevertheless, attempted to study the long-term
behavior of the model embodied in (5) such that the assumption
(A.1) holds. A demonstration similar to the one appearing in
Section IV of this paper, leads to the conclusion that equilib-
rium distributions cannot contain an even number of non-empty
regions (in the present case even if n = 2) and necessarily has

an odd number of non-empty regions that may well be one.

In the case of a three-region system, it is clear that there
are four alternative equilibrium solutions: three of them
correspond to a concentration of the population, while the fourth
one {y} presents all non-zero entries. This population equilib-
rium {y} is obtained as the solution of (4) in which
{wit=-11 = x{w(t)}, i.e.,

y[a - 2°1{y} = [(A = DI - NI{y} ,

or by premultiplying by y—1, which is possible since y has no

-~

zero entry by assumption
A - 271y} = [(x - 1)I - N}{i)
It can easily be established that in the non-ZPG case

(a + (a

21~ @12)n3 - (azq -ay3)n, 32 ~a33)My

A= 1+ .
(ay1-ayy) - (agq —ag3) + (235 - a,3)

in which n1, n, and n3 are the natural increase rates of each one

of the regions of the system.
In the ZPG case (N =0 and X = 1), ‘it is moreover possible

to obtain the normalized equilibrium vector {y} as:

a3p T 433

1
{y} = - (a -a
(ay1-ag,) - (agy —ay3) + (a5, —ay3) 31

- a

13)

a

21 12



Clearly, a necessary and sufficient condition for y to be
stochastic (i.e. 0 < y; < 1 ¥i) 1is that (a21-a12),-(a31-—a13)
and (a32—

are simply related to the initial net migration flows observed

a23) have the same sign. Noticing that these quantities

between each pair of regions, we can make the following conclu-
sion. If one (and therefore each) region originally experiences
a positive net inmigration with another region and a negative one

with the third region, there exists an equilibrium solution

characterized by 0 < (yi)n < 1. (However, this equilibrium
solution is not stable since {%EX} = [A - A7]{i} admits at least

a strictly positive component.) If at least one region has net
migration balances with the other two regions of the same sign,
the stationary equilibrium solutions contain at least one entry

(y;)  such that (yi)n < 0.

In fact, numerical applications indicate that in both cases,
if the iterative process is continued sufficiently long enough,
diverging tendencies and negative populations are likely to

appear.




Appendix 2

Outmigration and Inmigration Models

In the main body of this paper, we supposed that place-to-
place migration flows were proportional to the product

a (t)wj(t) and that the adjustment constant was either depen-

LW,
iji
dent on the origin or on the destination, which permitted us to
derive the usual linear and nonlinear formulations as "dual"
variants of the components-of-change model with independent

retention probabilities.

Note that alternative models of population distribution can
be formulated by considering other special cases of our components-
of-change model: they are simply obtained by replacing either one
of the two population variables of aijwi(t)wj(t) by one. We thus
derive two models that we label outmigration and inmigration

models.

Outmigration Model

The substitution of one for w.,(t) corresponds to the case in
which Mij(t) is proportional to a. .w.(t). Clearly, whenever the
ij i . _
adjustment constant is related to the region of origin or desti-

nation, the place-to-place migration flows are to be expressed as

M..(t) =p

i ijwi(t) ¥i,j=1,...,n , J#1i ,

in which pij’ independent of time, is such that z pij is equal
to a predetermined value 1 - Py 71
Indeed, the outmigration model thus obtained is the classic

linear model examined in Section I.
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Inmigration Model

The substitution of one for wi(t) results in Mij(t) varying

with the size of the destination population wj(t)

= b..w,(t . (A.2)
Mij(t) [aijwi(O)]wj(t) bljwj( )

Substituting (A.2) into the basic flow equation of the ZPG model,
yields

w,(t +1) =11+ )Y b..lw.(t) - ) b..w.(t)
* j#i At 7t ji ]
¥i =1,2,...,n . (A.3)

We can rewrite (A.3) in a more compact form as

*
w(t + O} = olw(t)} ,
in which Q is given by
1+ ) b.. lb TP - b,
i#1 J
Q = - b, 1+ ) b.,
) i#2 )
- b 1+ ) b
in j?‘n jn

¥Q, unlike P

of transition probabilities, although the column elements add
up to one. The diagonal elements are higher than one and the
off-diagonal elements are negative.

(pij) in the outmigration case, is not a matrix




- 70 -

Clearly, a limiting distribution {y} of this model verifies

[Q - Il{y} =0
This equation yields a non-trivial solution, the entries of
which are all strictly positive. However, the corresponding
equilibrium is not stable. This_can be seen from the fact

that at least one component of %€ {w(t)} is positive.

d{w(t)}

2
d{w(t)} _ )
3t ——— = {0 - I}i}

= (@ - I){w(t)} so that —x¢ 0
Since {i}(g - I) = {0}, the sum of all the components of [Q-I]{i}
is equal zero. Thus,[Q - I1{i} < 0 only if [Q - I]{i} = 0, which
is possible only if Q is symmetric: the steady state equation of
the above model offers a strictly positive solution which does

not constitute a stationary equilibrium.

In fact, the above model does not impose any restriction on
the retention probabilities and therefore its iterative projection
generally runs into the types of problems already encountered in

Appendix 1.

A feasible inmigration model must then ensure that the number
of outmigrants out of a region is less than the population of that
region. We must then introduce into (A.2) an adjustment term depen-

ding on either the region of origin or the region of destination.

Suppose that Mij(t) = ai(t)aijwj(t), then the imposition of
independent retention probabilities implies that

so that the resulting pattern of population distribution is that

of the nonlinear model of McGinnis/Henry (1973).
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Alternatively, we can suppose Mij(t) = Bj(t)wj(t) and the

a, .

1]
imposition of independent retention probabilities then implies
that

~

ATB(E) (W) = (I - P {w) . (8. 4)

The flow equation of the ZPG model in matrix form becomes
{w .t =Aw_ } + w B(t)A{i} - (I - P)iwt ,
whose steady state solution {y} is such that

B(=)A{i} = (I - Py {y}

~ o~

On supposing y # 0, the result is that B(») is strictly positive
as seen from

ey = (@ - pp Al (A.5)
and that
iw(t + 1)} =R {w(t)} , (A.6)
in which:
_ . oy Tars
R =Py +A"[(I-P g{l}]dg . (A.7)

Since R is a matrix of transition probabilities the elements of
its columns sum to one. This inmigration model - in which the
adjustment accounting for independent retention probabilities is
made by reference to the destination region results in a classical
linear model in which the transition probability matrix R is

slightly different from the original transition matrix P.
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Appendix 3

Long-term Behavior of the Population Distribution Model
Described by Nonstationary Transition Probabilities and
a Constant Causative Matrix

As an alternative approach to the linear model of population
distribution, Vining Jr. (1975), suggests the use of a nonsta-
tionary Markov process with a constant causative matrix, recently
developed in the context of consumer behavior (Lipstein 1965).*
This appendix attempts to explore the feasibility of such an

approach to deal with population growth and distribution.

Formulation of the Model in the ZPG Case

In Section I, the linear model of interregional population

distribution was specified as
fwit + 1)} = P(e){w(t)} (A.8)
in which the transition probability matrix was stationary, i.e.,

P(t) = g(O) for all t > 0 . (A.9)

~

We suppose now that the transition probability matrix P(t)

in (A.8) satisfies

P(t + 1) = P(t) C for all t > 1 , (A.10)

~

*Lipstein, B. (1965), A Mathematical Model of Consumer Behavior,
Journal of Marketing Research, No. 2, 259-65.

Vining Jr., D.A. (1975), The Spatial Distribution of Human
Populations and its Characteristic Evolution over Time;
some recent evidence from Japan, Papers of the Regional
Science Association, 35, 157-180.
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. . *
in which C i1s a constant matrix.

The corresponding Markov chain is said to have a constant
* K
causative matrix (Harary et al., 1970)

If C =1I, P(t) = P(0) for all t and the transition probabil-
ities are stationary (the underlying distribution process is then
the one of the linear case). However, if C # I, the transition

probabilities are nonstationary.

Clearly, letting P(0) = Q, we have (Harary et al., 1970)
P(t) = Q0 C for all t > 0 . (A.11)

Such a formula allows for an easy calculation of the successive
regional allocations of any multiregional population system, as

illustrated by the following example.

Example
On December 31st, 1970, Poland had 32,659,000 inhabitants

among whom 2,518,700 resided in Warsaw. During the year 1971,
30184 persons left the capital and migrated to the rest of the
country while 19,756 moved from the rest of the country to Warsaw.
The result is that on December 31st, 1970, a resident of Warsaw
had a probability of living, exactly one year later, in the rest
of the country, equal to 30,184/2,518,700 = .01198 and in Warsaw
equal to 1. - 0.01198 = 0.98802. Similar calculations for a res-
ident of the rest of the country led to:

*The consideration of population growth due to natural increase
is not necessary for the development of the arguments to follow.
Instead of a right constant causative matrix, it is possible

to introduce a left constant causative matrix. In general, the
left and right causative matrices are different, so that the
two corresponding sequences of {w(t)} are generally different.
However, it can be shown that if one sequence tends towards a
limit, the other tends towards the same limit. Since this
paper focuses on limiting behavior, it is thus sufficient to
use right causative matrices for the remainder of this section.

**Harary, F., et al. (1970), A Matrix Approach to Non-Stationary
Chains, Operations Research, 1168-1181.
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0.98802 0.00066
0.01198 0.99934

The 1972 data allows us to calculate the transition matrix of the
next period

0.98660 0.00064

0.01340 0.99936

-—

|
|
|
|

and to obtain the causative matrix C

0.99856 -0.00001

1Xe!
]

[av]

=)
ol
Il

£ 0.00144 1.00001

Note that C presents some entries either negative or greater

than 1, i.e., C is not stochastic.

Then, application of the Formula (A.11) to the successive
values of {w(t)]} makes it possible to derive the successive
regional population allocations that the above nonstationary

Markov chain implies.

Table A1 indicates that the part of the Polish population
living in Warsaw tends to diminish and ultimately become equal
to zero (such a result is obtained for year 2039), if the
process described by (A.8) and (A.10) is maintained over time.
In contrast, the stationary model, whose forecasts appear in
the same table, displays a similar but more moderate decreasing
tendency for the population of Warsaw which ultimately reaches
a constant share of the Polish population (5.19 percent versus

7.71 initially).



Table Al: Stationary and nonstationary distribution models compared:
percentage of total population residing in Warsaw in
successive periods

Period |[Stationary Nonstationary Period |Stationary Nonstationaryl
1 7.71 7.71 25 7.05 4.42
2 7.68 7.68 30 6.93 3.55
3 7.65 7.63 35 6.83 2.74
4 7.62 7.58 40 6.72 2.03
5 7.59 7.43 45 6.63 1.44
6 7.56 7.34 50 6.54 0.96

% 7 7.53 7.24 55 6.46 0.59
8 7.50 7.14 60 6.38 0.31
9 7.47 7.02 65 6.31 : 0.10
10 7.44 6.90 68 6.27 ! <0
15 7.30 6.16 i 70 6.24 ‘
20 7.17 5.31 o 5.19

i

Long-term Behavior in the ZPG Case

As illustrated in the above example, the nonstationary model
does not converge towards a stochastic vector in all circumstances.
Its convergence has been studied by Lipstein (1968),* Harary et al.
(1970) and more recently by Pullman/Styan (1973).**

If one denotes by T(t) the transition probability from the

initial period t, the result is that:

t t N
T(t) = I P(x) = T (@cCc) . (A.12)
=0 -

*Lipstein, B. (1968), Best Marketing a Perturbation in the Market
Place, Management Science, Series B, 14, U437-48.

**Pullman, N., and P.H. Styan. (1973), The Convergence of Markov
Chains with Non-stationary Transition Probabilities and
Constant Causative Matrix, Stochastic Processes and their
Applications, 279-85.




Then the limiting properties of the nonstationary process are
linked to the convergence, as t » «, of Ct which itself depends
on the characteristics of the matrix C. ~Harary et al. (1970)
showed that g has a characteristic ro;t of unity and that, if
all other roots were less than one in absolute value, gt con-
verges to {1}{i}” in which {1} is the right hand characteristic
vector of C corresponding to the unit characteristic value and
{i}7 a row~vector of ones (the left-hand characteristic vector
of C for the same unit characteristic value. Lipstein (1968),
suggested that, in such a case, T(t) would also converge to
{1}{i}°. This is true only for ; stochastic C, however, if

C is not stochastic, it might happen that T(t) and gt have the
same limit. Lipstein (1968) proved this for two state chains
and later Pullman and Styan (1973) proved it for chains with
more states. Note that, in such circumstances T(t) converges to

{1}{i}” so rapidly that } [| T(t) - {1}{i}~|| converges.
t

The aforementioned authors seem to concentrate on the long-
term behavior of C% and T(t), and ignore the one of {w(t)}. We
note that, if it exists, the limiting distribution {y} of {w(t)}

is given by:

[C - I]1{y} = {0} , (A.13)
an equality which results from the comparison of

twit + 1)} = pP(t){w(t)} = P(t - 1) C {w(t)} ,
and

{w(t)} =Pt - {w(t - 1)}

When stability is reached

w(t + D} = {w(t)} = {w(t - 1)} = {y}



Clearly, the limiting distribution {y} is the right charac-
teristic vector {1} of C corresponding to the unit characteristic
root. As in the stationary case, it is independent of the initial
conditions and only depends on the elements of C. However, in
contrast to the stationary case in which the li;iting distribu-
tion vector is stochastic, the vector {1} might be nonstochastic

(if C is not stochastic).
To summarize,

1. if g is stochastic, gt is stochastic, T(t) converges,
and {w(t)} tends toward a stochastic limiting vector
{1} defined as the right-hand characteristic vector
of C corresponding to its unit characteristic root.
Moreover this vector is independent of the initial

distribution of population; and
2. 1if C is not stochastic, Ct might be either

i) stochastic in which case T(t) converges and {w(t})}
tends toward the right-hand characteristic vector

of C (which is not necessarily stochastic), or

ii) nonstochastic in which case T(t) might not converge.




Appendix 4

Search for Acceptable Equilibrium Solutions of the Nonlinear Model

1. The ZPG Case

As a first step, we determine all the solutions of the steady-

state equation that appears on page 29.

For each possible set of vanishing regions (there are

- (n+ 1) sets if A is not symmetric, 2n—1 + ELE—%—EL if A is

21’1

symmetric as indicated by Property 3), we calculate the matrix:

-1

_ —_— _ -1
C=1Ia "[I-Pyl{ill4 (I - P

I FUNE I

in which A and ﬁd 4 Obtained by removing

the k rows and k columns corresponding to the vanishing regions.

are submatrices of A and P

Since C admits one as a real characteristic root, the correspond-
ing characteristic vector {y} can be simply obtained by solving

for each set of vanishing regions, the vector equation:
[C - 11{y} = {0} ,

whose solution is then normalized (scaled such that ) §i = 1).

Once all solutions of the steady state equation have been
determined we derive for each set of vanishing regions leading

to a positive vector {y}, the vectors of inmigration rates {in}:

{in} =

il

A 1[I N Ed]{i} ’
in which A is a submatrix of A obtained by removing the (n - k)
rows corresponding to the nonvanishing regions. Those are then

compared with the corresponding vectors of outmigration rates



fout} = [I - P,]1{i}

Finally, the acceptable equilibrium solutions are those solutions

of the steady-state equation such that {in} < {out!.

2. The Non-ZPG Case

Again, as a first step, we determine all the solutions of
the state equation that appears on page 51.

For each possible set of vanishing regions (again there are

2" - (n + 1) sets if A is not symmetric, on-1 Eiﬁ_%_il if A is
2 . 2
symmetric), we calculate the matrix:
Fe[A (B, +M (i}, (A~ {iN 3 + (1 -B A" (i}
E= 12 (Bg* D dg ‘A agt 17242 dg

Then, we compute the successive powers of F, determining at each

A(n) of the sum of the elements of the first

column in the (n + 1)th and the nth iterations:

iteration the ratio

n
=(n+1)
L i

)\(n) _ 3

-(n)
1 F31

i~ —

3

)\(n)

As n becomes large, converges to the largest characteristic

root of F. We then obtain the value of A when the iteration
(n)

process leads to unchanged values of A In practice the

iteration was stopped when

*The algorithm used here relies on the calculation of matrices

F different from the matrices D put forward in the main body of
this paper. The rationale for this is in the fact that F, which
is simply related to D, by the same characteristic roots, and
characteristic vectors, permits an easier and more rapid calcu-

lation than if the algorithm is based on the use of the matrices
D.

~
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ri £ (n+1) rf £(n)
Lo t52 Lo t52
- B < J—1 - 3_1 < FE ’
ST
j=1 % j=1 It

with E = 0.000001.

The right characteristic vector of F associated with A is
proportional to any column of F" for n large. At the end of the
iteration process, we pick the first column of F! as right

"(n)}

characteristic vector, say {f and obtain the vector {y}

1’
containing the non zero elements of the equilibrium distribution

{y} from

= _ =a=1 %=1, =(n)
iy} =A [A {1}]dg{f }1 .

For convenience, {y} is then scaled so that ) §i = 1. Once
‘the solutions of the state equation have been calculated, we
derive, for each set of vanishing regions leading to a positive

vector {y}, the vectors of net migration rates from:
— = =1, Al = e S .
{net} =A[X[A {1}]dg (a '[P -+§]{1}]dg{l} (I-p {1},

as well as the vectors [(A - 1)I - N1{i}. Finally, the acceptable
equilibrium solutions are those solutions of the state equation
such that {net} < [(A - 1)I - NI{i}.




