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Preface

Interest in human settlement systems and policies has
been a critical part of urban-related work at IIASA since
its conception. Recently this interest has given rise to
a concentrated research effort focusing on migration dynam-
ics and settlement patterns. Four sub-tasks form the core
of this research effort:

I. the study of spatial dynamics;

IT. the definition and elaboration of a new research
area called demometrics and its application to
migration analysis and spatial population fore-
casting;

ITITI. the analysis and design of migration and settle-
ment policy;

IV. a comparative study of national migration and
settlement patterns and policies.

This paper, the fifteenth in the spatial population dy-
namics series, deals with methodological and empirical issues
concerning the calculation of those combined life tables that
allow entries into, as well as withdrawals from alternative
states, namely, increment-decrement life tables. It is espec-
ially oriented toward the construction of multiregional life
tables: those combined life tables that deal with interreg-
ional migration flows as well as mortality.

Related papers in the dynamics series, and other publi-
cations of the migration and settlement study, are listed on
the back page of this report.

Andrei Rogers
Chairman

Human Settlements
and Services Area

May 1978
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Abstract

The topic of this paper revolves around the calculation of
those combined life tables that allow entries as well as with-
drawals from alternative states, namely, increment-decrement
life tables. The vaper provides a complete theoretical pre-
sentation of such tables, focusing on the contrasts between
the movement and the transition approaches._ It also sets
forth, for both approaches, life table construction methods
based on three alternative methodological variations: the
linear and the cubic integration methods, and an interpola-
tive-iterative method. Finally, the paper develops more
precise methods for constructing a multiregional life table,
for which the generally available death and migration rates
are not consistent with either the movement or the trans-
ition approaches.
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Some Methodological and Empirical Considerations in the
Construction of Increment-decrement Life Tables

INTRODUCTION

Recently, life tables which can recognize increments (or
entrants) as well as decrements (withdrawals) have proved to be
of considerable value in various fields of demography. Two
approaches to the construction of such combined life tables have
emerged: the movement and transition approaches devised by
Schoen (1975) and Rogers (1973a, 1973b, 1975a), respectively. These
alternatives are not mutually exclusive. On the one hand, they
propose different but complementary perspectives on social mob-
ility, and on the other hand, the choice of either approach is

mainly determined by the data available.

The purpose of this paper is to develop further the metho-
dological and empirical aspects of both approaches, and to pro-

vide a clear understanding of their differences.

Before analyzing the concept of an increment-decrement
life table it will be helpful to review briefly the history of
life tables. Two of the most commonly used life tables are the

single-state life table and the multiple decrement life table.

The single-state life table describes the mortality history

of a synthetic group of people who were born at the same moment
in a region closed to migration. It is also a model which in
probabilistic terms expresses the mortality experience of such
a group, called a cohort, as it gradually decreases in size

until the death of its last member.

The multiple decrement life table is a more elaborate ver-

sion of this model, which was originally designed to recognize

the existence of different causes of death. Now it is also




used as a scheme for analyzing demographic phenomena that can
be viewed in cohort terms (marriage, divorce, etc.j. However,
the multiple decrement model does not permit one to follow
persons who have moved from one status category to another

and to analyze their subsequent experience.

Such problems may be handled with the help of combined
tables which allow for entries into (increments), as well as
withdrawals from (decrements) different states. Although
"some of the issues involved in the use of combined tables were
mentioned by Mertens (1965) and are considered in Jordan (1967)
and other actuarial texts" (Schoen and Nelson, 1974)*, it is
not until recently that a thorough and systematic discussion of
the methodological and empirical problems raised by the construc-
tion of such increment-decrement life tables, has appeared in

the literature.

The concept of a multiregional life table, an increment-
decrement life table applied to the problem of interregional
migration, was first developed by Rogers (1973a) who introduced
the multiregional counterparts of the single-state life table
functions, starting from a given set of age-specific outmigration
and death probabilities. As shown in Rogers and Ledent (1974)
and Rogers (1975a), these multiregional life table functions
can be presented in a matrix format, which makes the general
increment-decrement life table appear as a straightforward ex-
tension of the single state life table in which matrices replace
scalars. In a different application context, Schoen and Nelson
(1974) and Schoen (1975) introduced a "life status" table, an
increment-decrement life table intended as a framework for a

combined analysis of marriage, divorce and mortality.

Although very similar, both of the above efforts presented

some significant differences, mainly in the state allocation of

*Walter Mertens (1965) "Methodological Aspects of the Construction
of Nuptiality Tables" Demography, Vol.2. pp.317-348.
C.W. Jordan Jr. (1967) Life Contingencies (2nd. ed.) Chicago

Society of Actuaries. (These references are mentioned in Schoen
and Nelson (1974)).




the initial cohort, in the nature of the observed age-specific
data to be introduced, and in the specification of multistate

life table functions. First, in the multiregional population
system considered by Rogers (1973a, 1975a), the initial cohort

may be allocated to several, if not all, states (multiradix
system) while, in the life-status system defined by Schoen and
Nelson (1974), it is concentrated in one state (single radix
system). Second, Rogers (1973a, 1975a) put forward a method of
estimating age-specific probabilities from the number of transi-
tions* occurring over the unit time interval to the successive
regional groups of survivors at fixed ages of the original cohort.
Schoen and Nelson (1974) and Schoen (1975) proposed an alternative
method based on the number of movements* made by all the survivors
of the original cohort between two fixed ages. Finally, the
multistate life table functions specified by Schoen are extensions
of the single-state life table functions in which vectors replace
scalars, and not matrices as in Rogers. These differences stim-
ulated the recent debate in Demography (Schoen 1975, 1977; Rogers
and Ledent 1976, 1977).

Section I of this paper briefly reviews the single-state
life table and indicates the elements needed for its extension
to the case of an increment-decrement (multistate) life table.
It particularly stresses the contrast between the two ways of

calculating such a life table referred to as the movement approach
(Schoen) and the transition approach (Rogers).

Section II begins with a summarized presentation of the

. . * % . .
concept of an 1increment-decrement life table and its associated
functions based on the movement approach. It continues with the

empirical problem of calculating such a table, mainly focusing on

*The distinction between transitions and movements is explained
in Section I.

**The concept of increment-decrement life tables can be applied
to a large number of fields in which most of the multistate life
table functions have a useful interpretation. Besides the
problems dealt with by Rogers and Schoen, it has been used for
the analysis of working life status (Hoem and Fong, 1976) and

in the combined study of nuptiality and birth parity (Oechsli
1972, 1975).




the question of estimating age-specific transition probabilities

from observed data on age-specific movement rates.

Section III deals with the alternative perspective, the
transition approach. It is necessary only to expose the deriva-
tion of the survival probabilities and the life table mortality
and mobility rates, since the definitions of the multistate life
table functions given in the case of the movement approach apply

to the transition approach as well.

Section IV further articulates the contrasts between the

movement and the transition approaches.

Finally, since age-specific movement or transition rates
needed to construct an increment-decrement 1life table cannot
always be observed as simply as age-specific death rates in
the basic life table*, Section V examines alternative ways of
correctly originating the calculations of an increment-decrement
life table defined in Sections II and III. An empirical evalua-
tion of various methods suggested is provided in the context

of interregional human migration (multiregional life table).

The notation used throughout this paper will parallel as
much as possible that used by Keyfitz (1968) in dealing with
the single-state life table:

- statistics relating to the multistate life table popula-
tion are denoted by non-capitalized letters, while those

referring to the observed population are capitalized, and

- the functional notation f(y) will be used to denote func-
tions of y as a continuous variable, while fy will be
used whenever we mean to denote f for a discrete set of

values (y is here in the position of a right subscript).

The following rules will be respected to account for the

existence of intercommunicating states:

*This is so because mortality and mobility rates are not generally
pertinent to one of the alternative approaches: mortality data
are collected in a way consistent with the movement approach
whereas mobility data are generally recorded in terms of transi-
tions (changes of residence) between two points in time rather
than in terms of actual moves.



- state-specific values of a statistic f will be denoted

by a right superscript specific tc the region (f; or £5.\y)),

- moves oOr transitions between two states will be suggested
by superscripts located on both sides of the variable
concerned: the left superscript will relate to the state

of origin, the right one will refer to the state of des-
tination, and '

- 1if reference to the state-of-birth or state-of-presence
at any age less than the current age, is necessary,
it will be indicated by two subscripts, respectively
denoting the relevant region and age: for example,
iyli will represent the value of the function 1 charac-
teristic of those present at age x in state j who were
in state i at age vy.

A detailed list of all the life table symbols used, along

with their interpretation, appears at the end of this paper.




I. THE CONCEPT OF AN INCREMENT-DECREMENT LIFE TABLE

Increment-decrement life tables describe stationary demo-
graphic models in which there exists an absorbing state (the
state of death) and at least two intercommunicating states (in-
dividuals moving freely back and forth). Attached to them are
multistate life table functions, expressing facts of mortality
and mobility in terms of probébilities. As in the single-state
life table, the increment-decrement life tables all originate
from age-dependent schedules of mortality and mobility which

are here defined state-specifically.

Because mobility is a recurrent event and mortality is not,
there exist various ways of defining such forces, two of which
have been explored in the past literature. This has resulted
in the development of two alternative approaches to constructing
increment-decrement life tables, respectively advocated by
Rogers (1973a, 1975a) and Schoen (1975).

In order to understand these two approaches one must first
look at the methodology used in the single-state life table and
then analyze its extension into an increment-decrement life
table.

A Review of the Single-state Life Table

The main problem in the single-state life table is to est-
imate the curve of survivors 1l(y), at any age y, out of a cohort
of lO babies born at the same time and going through life together,
and submitted to an age dependent mortality schedule u(y). This
curve 1is obtained as the integral solution of the basic differen-
tial equation (see Keyfitz 1968) expressing the relationship

between u(y) and 1(y):

dl (y)
dy

-
—

—_—
~—

= u(y)1l(y)

the integral solution is:

T
'J u(t)dt

1(y) = e , | (29



which permits one to define the number of survivors lx’ at fixed
ages x = 0,T,2T,...,2,* by applying a set of age-specific prob-
abilities Py such that

lx+T = Pyl (3)

in which:
p,=e ° (4)

Alternatively, it is possible to think of 1(y) as an age
distribution of individuals alive at a given time, corresponding
to an interpretation of the single-state life table as a station-
ary population. 1In this population, the number of persons between

exact ages x and x + T is

T

L, = J 1(x + t)dt , (5)
0

a quantity which, when the life table represents a cohort, is

the number of person-years lived by the cohort between ages x
and x + T.

The expected total number of years T, remaining to the lx
survivors of 10 may be found by integrating from x to infinity.
(The maximum age to which any individual can live is infinite

since the last interval is half open):

T, = J 1(x + t)dt . (6)
0

For each of the lX individuals, the average expectation of life

at age x is:

*Traditionally, all age intervals considered are equal in length
(T years) except the last one which is half open: z years and
over.




T
e, = X . (7)

Complementary life table functions include survivorship

proportions defined as

s = ' (8)

representing the proportion of those in age group X to x + T
surviving to age group X + T to x + 2T, and annual age-specific
death rates in the synthetically constructed life table stationary
population. Since the number of deaths (or decrements to lx)

observed between ages x and x + T is

T
- — - k4
d . = [ 1(x + t)u(x + t)dt = 1. Loep 7 (9)
0
the annual death rate m, for the age group x to x + T is
I O S (10)
X L L ’
X X

Extending the Concept of the Single-state Life Table

By analogy with the single-state case, the first problem
in constructing an increment-decrement life table is estimating
the state-specific curves of survivors li(y), at any age y, out
of a cohort of 1] babies* born at the same time in one or several

0
of the states.**

*The notation 1] denotes the size of the initial cohort. Note
n
that 1) = ¥ lg where lg is the share of the initial cohort
k=1
allocated to state k.
**The foregoing exposition is quite general and applies to systems
with a unique radix.

o



The basic idea is to start from a set of state-specific
mortality schedules as well as a set of schedules of mcbility
between the intercommunicating states, and then to determine

state-specific curves of survivors.

Let {1(y)} denote a vector whose typical element ll(y) is
the number of survivors at age y in state i among the members

of the initial cohort 16 whoée allocation among cstates is con-

tained in {10}:

1

1 (y)
{l(Y)} = v

ln(y)

and let {lx} denote such a vector for predetermined ages
x=20,T,2T7,...,z, i.e. {lx} = {1(x)}. The series of the numberg
of survivors by state, at those fixed ages, would be generated

by a vector extension of (3)

(1,0} =p (1} (11)

in which Py is a matrix whose (i—j)th element represents the

~

probability Jp; that an individual present in state j at age

x will move to state i within the next T years.

The estimation of the matrix P, is not a simple matter
owing to the fact that an individual can make more than one move
over a unit time interval. This will be illustrated further
with the help of the multistate Lexis diagram first suggested by
Rogers (1973a, 1975a) which indicates alternative ways of esti-

mating the transition probabilities contained in P, -

Alternatively it is possible to think of {1l(y)!} as an alloca-
tion vector, by state, of an age distribution of individuals alive
at a given time, and thus give the increment-decrement life tables
the interpretation of a multistate stationary population. This

would then allow for an extension of the single-state LX and the



derivation of the multistate counterparts of the life table func-

tions defined in (6) through (10).

The Multistate Lexis Diagram

The Lexis diagram for a two-state system appears in Figure
1 in which the various moves made by typical individuals over a
unit time period are represented. It consists of two separate
diagrams, one directly beneath the other, and connects them via
the life lines of movers between the two-states. There are five

classes of life lines, represented by A, -B, C, D, and E respectively.

'STATE 1 t METY ' ';~11Mé
x L
. AN
S A S \ A ==
P W 7R \ . 0
N
x+1
AGE
“STATE 2 FIME
X - - .
N |K?£>\\ ’ A
' _ E -
x+1
: _ F
AGE D

Figure 1: Two-state Lexis diagram

Source: Adapted from Rogers (1975)



Life line A represents the case of an individual surviving in
state 1 who does not move out. Life lines B and E relate to
individuals in state 1 who die during the unit time interval.

In life line B, the death occurs in state 1 while E it takes
place in state 2 after the individual concerned has moved from
state 1 to state 2. Life line C represents the case of an indi-
vidual who moves from state 1 to state 2 and returns before the
end of the age interval. Finally, life line D refers to an
individual in state 1 who moves to state 2, survives the unit

time interval and does not return before the end of the interval.

There are other classes of life lines besides the above that
consist of more than two moves but these are of a lesser impor-
tance. Note that this reasoning can be extended without incon-
venience to the n-state case (the focus on a two-state Lexis

diagram was adopted for ease of exposition).

Alternative Movement and Transition Approaches Contrasted

As mentioned earlier, two main alternative approaches have
been considered to estimate age-specific probabilities such as
lpi. Their contrast stems from a different emphasis on the life

lines described by the multistate Lexis diagram.

Suppose we want to determine the matrix Py consisting of
the various probabilities of surviving through the age interval
(kT, (k + 1)T). As in the single-state life table, the problem
is to define a set of forces of mortality and mobility for any
specific age y(kT < y < (k + 1)T) and then to proceed to the
age-specific survival probabilities by integration over the whole

age interval.

A first possibility consists of defining age-specific forces
of mortality and mobility out of a given state i at age y by
reference to the group of all individuals present in state i at
that age, no matter what state they were present in at age x =k7T.
For example, such forces of mobility, for age y, out of state 1
of a two-state system concern all the individuals whose life lines

in Figure 1 cross PQ during the period (t,rt+1), i.e. between R
and S.




A second possibility consists of defining state-specific
forces of mobility out of state i by réference to the group of
individuals present in that state at age x = kT. The resulting
forces of mobility for age y out of state 1 of a two-state system,
relate to the group of individuals whose life lines:hm*Figure 1,

not only cross PQ (between R and S) but also cross LM.

These two alternative definitions express two distinct methods
of estimating the age-specific transition probabilities; the
movement approach and the transition approach. 1In the movement
approach the focus 1is on moves viewed as events Ggocurring at
one given point in time. 1In the transition approach, the emphasis
is on the transitions resulting from the comparison of the states
the individuals were in at two given points in time, regardless

of where the individuals were during the intervening period.

*The forces of mobility defined here allow an individual to
move to another region and come back during the span of time
elapsing between the crossing of two lines. This contrasts
with an alternative definition of the forces of mobility
making no allowances for return moves (Hoem, 1970).



IY. THE MOVEMENT APPROACH

This section presents a complete exposition of the method-
ological and empirical aspects of the construction of increment-
decrement life tables based on the movement approach. It includes
mathematical developments set in both continuous and discrete

terms as well as the applied construction of such tables.

A Theoretical Exposition

In contrast to the single-state case in which one of the
main problems is to follow a unique initial set of babies, the
multistate case requires following babies born in various states

simultaneously.

In the movement approach, this task is carried out by con-
tinuously observing all the movements occurring in the system,
which does not require focusing on fixed age intervals. For
that reason, this approach appears as the more natural way of
extending the single-state life table. This will be confirmed
later when deriving the multistate life table functions that will
appear as straightforward vector or matrix extensions of the

single-state life table functions.

Derivation of the Age-Specific Survival Probabilities

Suppose we have an n-state system in which each state i is
denoted by the index i (i = 1,...,n). Then, as far as state i
is concerned relative to the rest of the system, for an indivi-
dual aged y at time t, three types of demographic events are

possible over the period (t, t + dt):
- survival to age y + dy in state i (dy = dt),
- death before reaching age y + dy in state i, and
- move to one of the other states of the system.

The time interval dt is supposed to be short enough so that
multiple transitions, such as move to and death in a state

j(j # i), are ruled out.




Let idj(y) denote the number of moves from state i to state
j made between ages y and y + dy by any person in the system.*
On the assumption that no multiple moves can take place in a
small interval dy, it appears that these moves are only made by
individuals who were members of the group of people surviving in

state i at age y,ll(y)-

Since the exposure of these individuals to the risk of

moving out or dying over the period (t, t + dt) is ll(y)dy, the
a3 (y)
result is that ———Z'  ig the corresponding mobility rate from

state i to state j (3 = 1,...,n, j # i), or death rate in state
i (if j = n + 1), attached to age y. Thus, one can define the
instantaneous mobility rate (or force of mobility) luj(y) as

the limiting value of this rate when dy ~ 0

i lim  *ad(y) .
p- (y) = v =+ 0 _I___X_— , ¥i=1,...,n
Y 1% (y) dy ¥i = 1,...,n + 1
j#A i
(12)
Once luj(y) is available for all j = 1,...,n + 1, the force

of retention lul(y) is simply obtained from the following equation
expressing that the instantaneous process underlying an increment-

decrement life table is conservative (Chiang, 1968):

n+1 '
Yo twly) =0, ¥i=1,...,n
3=1

or alternatively,

i 8

. . n . N

Wty = - P+ Y Rl ¥i = 1,...,n
321
j#i

u

(13)

*At this stage, a death in state i is in no way different from
a move to another state j of the system: the state of death
denoted by § may be considered as the (n + 1) state of the
system. Then, in the following paragraph j = 1,...,n + 1.



As far as the two states i and k

i) are concerned,

= R(i)(i.e.,all states excluding

mobility indicated in Figure 2(a).

there exist the six forces of mortality and

<;\\\» Location at
i time t Present in Present in
Loca‘lon - state i state k
at time t + dt
i i k i
alive in state i l]Jl(y) yo(y)
(a) i k k. k
alive in state k lu (y) u(y)
i § k §
dead lu (y) uo(y)
|
T Location at
. time t Present in Present in
Location state i state k
at time t + dt
ki i
alive in state i - a (y) 1 (y + dy)
(b)
. . ik k
alive in state k d (y) - 1 (y +dy)
i k.S
dead lda(y) a (y)
i k
1t (y) 17 (y)

Figure 2. Forces of transition and corresponding movements in a two region
system.

Clearly the multistate demographic system determined by the
above definitions is characterized by state-specific mortality
and mobility patterns such that the instantaneous propensity of
an individual to make a move only depends on his age and the
states of origin and destination for this move. In no way, is
this propensity affected by the past mobility history of that
individual or the duration of residence in the state out of which
the move takes place.




The corresponding movements of the forces of mortality and
mobility included in Figure 2(a) are shown in Figure 2(b) permit-
ting us to write the following equation indicating the decrements
and increments to the exposed group li(y):

1y + ay) = 1ty - 28y - fa¥ + Katiy

¥i=1,...,n

Recalling that k stands for all states excluding i, we can thus

rewrite this equation as follows:

R . n . R
Yaly)y + Y Jaty
1 j=1
i j#i

1i(y + dy) = li(y) - idG(Y) =

Yo Il 13

]
j
¥i=1,...,n . (14)

which is precisely the elementary flow equation of Schoen and
Land (1976). Substituting (12) into (14) leads to a system of

n simultaneous linear differential equations:

li(y + dy) = li(y) -‘}ud(y) + , iuj(y)]li(y)dy

i

Y I~

J
j

n
+ 7 htomidyay ¥i=1,...,n ,
=1
j#i

or, more compactly,

{1(y + ay)} = {1(y)} - E(y){l(y)}dy (15)



- 17 -

in which:

n .
"Wy + (1 R 2t
J:
J#i
n N
-l ) ORI LT
(y) = . 3=,
by . J#i
_1un(y)
or, alternatively, by using (13)
- 1.1 2
b (y) u1(v)
1.2
2 2
b(y) = - v (v)
1un(y)
L

The definition of d{1l(y)}

d{1(y)} = {1(y + ay)} - {1(y)}

leads us to rewrite (15) as:

atiy} _ _

3y ply) {1 (y)!}

-nu1(y)

n§ L j
woly) + [} u- (y)]
3=1
j#L

(16,

(17)

which appears as a straightforward multistate extension of (1).




The system defined by (17) admits n linearly independent
solutions {l(y)}k (k = 1,...,n) whose juxtaposition as the columns
of a square matrix yields the Zntegral matrix of the system
(Gantmacher, 1959):

L(y) = [{1(y)}, .., {2y 1 .

Since every column of 1(y) satisfies (17), the integral matrix

1l(y) satisfies the eguation:

= = - u(y)lly) . (18)

From the theorem on the existence and uniqueness of the solution
of a system of linear differential equations, it follows that

1(y) is uniquely determined when the value of 1(y) for some

initial value y = 0 is known, say 1(0) or 1, (Gantmacher, 1959):
Lly) = ,@(y) 1, (19)

in which the matrix 0Q(y), uniquely defined as the normalized

solution of (18) in that it becomes the unit matrix for y = 0,

is called the matricant (Gantmacher, 1959).

Note that O§~2(y) cannot be simply expressed as a function
of the E(y)‘s as its counterpart in the basic life table was
in (2). However, as indicated in Schoen and Land (1976) and
Krishnamoorthy (1977), it can be determined by using the infini-
tesimal calculus of Volterra. (Gantmacher, 1959). Such a
determination takes advantage of the following property displayed
by the matricant:

f(xq) = o 0(xq) ). (20)

< (x
1 2 17

X 2

If we divide the basic interval (0 = Yor¥ = yn) into n parts

by introducing intermediate points Yqr¥oeeser¥py g and set



AY, = ¥y = Yy_q (k= 1,...,n), then we have from (20)

o2y) =, 2y 9(yn_1)...y19(y2)09(y1)

n-1 n-2

If the intervals Ayk are small, we can calculate Q(yk) by

k-1"
taking u(t):u(Tk), a constant matrix, such that Tk is an inter-

mediate point in the interval'(yk_1 yk). We have:
1

ly,) = e T HT M+ (en)
Yg-1~
in which the symbol (**) denotes the sum of terms of order two

or greater. Since

e T EMIMY -1 - y(rpay, + ()

we can then rewrite 0S}(y) as:
Qy) = [T - p(T DAy 11T = u(T )4y, _41....
[I - u(Tay,] + (¥%) . (21)

Having derived an integral matrix solution of (17), we now
face the difficulty of interpreting it. What is the meaning of
1(y) with regard to the problem on hand?

First let us say that 1(y) is a matrix containing n vectors,
each one of them representi;g an independent solution of (17).
With reference to the "initial" values y = 0, it is clear that
n independent solutions can be obtained by separately generating
the subsequent evolution of the state-specific groups of the
initial cohort 16 . Thus }0 is a diagonal matrix which denotes

the state-specific allocation of the initial cohort: its typical
i
‘th .0 . L
whose 1 column is a vector representing the state specific

diagonal element is 1 Furthermore, 1l(y) is a square matrix

allocation of the survivors of 13 at age y (in the remainder of

the paper it will be denoted by ,1l(y)).
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Since the columns of 0l(y) are n linearly independent

solutions, their sum is also a solution of (17). Then {1(y)}

is given by:
(L)} = j2y){1,}

in which {10} is the allocation vector of the initial cohort 16.
Clearly, the matrix 0Q(y) defines a set of survival probabilities:
its (i,j)th element represents the probability for a person born

in state j to survive at age y in state 1i.

From the property (20) of the matricant, it can be concluded
that the probability lpi that an individual present at age x
in state i will survive in state j, T years later, is the (jri)th

element of the matrix P, = XQ(x + T). Hence:

_ -1
?x B OQ(X + T) Q(X)

An expression of p_ can be derived from the expressions of
X

X
(x + T) and .Q(x)

0 obtained by use of the infinitesimal calculus

OQ
of Volterra:

1

P, =yl [T - ulx + 8 )8y ] + (*%) (23)

where x + Yir X ¥ Yoo o w X+ y are {(m - 1) intermediate points

m-1"'
dividing the interval (x, x + T) into m parts containing respect-

ively the intermediate points x + 61,x + 8 X+ em_1 . ¥

2,-.

*Note that the application of the infinitesimal calculus of
Volterra, leads us to write

T
_f E(y+t)dt

n
e O =TI - ) u(x+ 6, )Ay, + (**) . Since (23)
L LM x’ ¥k
k=1
n
can be rewritten as p_, = I - ) u(x + 0, )Ay, + (**) , one may
£x ~ k=1 ~ k k

T
—J u(y + t)dt

conclude that e 0 is a good approximation of p_ :
X

~

the discrepancy represents terms of at least the second order.



Also, note that it is possible to define a matrix 9, of the
probabilities of dying within the next T years analogous to the
q, of the single-state life table. Let iqi denote the probability
for a person present in state i at age x to die within the next
T years in state j. Then the number of deaths.occurring in state

j between ages x and x + T for the member of l; is equal to

. . T . . .
1;. lqi as well as to [ JUé(x + t)ixlj(x + t)dt in which
. 0 :
ixlj(x + t) denotes the members of ll‘X surviving to age x + 1 in
state j. Therefore, -
T s -1
q, = [ f Ux + t)x}(x,+ t)dt]x}x '
0

¥vx =0,T,...,2 - T
in which S(y) is a diagonal matrix of instantaneous death rates,

. . .y th , i .
X}(y) a matrix whose (i,]) element is jXl (y) énd x}x a dlag?

nal matrix whose it? element is 1;.* Finally, substituting (24)

into that last expression leads to:

T
_ 8
q, = J E(x + t)xg(x + t)dt (25)
0

or alternatively,

T & iy
q, = [ J Bx + t) 2(x + £)dt] 2 (x)
0

a precise evaluation of which could also be obtained by use of

the infinitesimal calculus of Volterra.

*The notation Xl(y) generalizes the above notation 0l(y) by

describing the state changes in the system with reference to
the state of the system at any age y (0 < y < x) rather than

with reference to the state-of-birth only. Note that (19) can
then be gereralized into

x1(y) = Q(y)l, (24)



The relevance of Markov processes to the interpretation of
increment-decrement life tables has not gone unnoticed (Rogers,
1973a, 1975a; Schoen, 1975; Schoen and Land, 1976; Krishnamoorthy,
1977). It is, in fact, simple to establish that the matrices
of probabilities Py determine a Markov transition probability

*
model characterizing the multistate stationary population
defined by {1l(y)}:

-~ the matrix P, is such that its elements are conditional
upon occupancy of a specific state at age x and are
independent of the history of previous moves or the
duration of residence in the state (this follows from

the property (20) of the matricant), and

-~ the elements of o satisfy, as indicated by Schoen and
Land (1976), the three standard conditions specified in
Cox and Miller (1965):

i3
a) 0 < Py

n . .
b) 0 < J Tpl <

c) transitivity property defined in (20).

Indeed, the Markov process interpretation is simply due to the
nature of the instantaneous pattern of mortality and mobility
defined by (12). All individuals present at a fixed age in a
given region have identical propensities to move out, indepen-

dent of the past mobility history of each individual.

To summarize, the mortality and mobility process underlying
an increment-decrement life table, characterized by the existence

of a unique survival probability function .Q(y), leads to an

0
age-specific distribution {1l(y)} that represents a linear com-
bination of n independent age distributions, respectively gen-

erated by each of the state-specific groups of the initial cohort.

*The word transition must be understood in its common meaning
in stochastic processes. To avoid any confusion, the transi-
tion probability matrix Py will be referred to as the matrix

-~

of survival probabilities.



There are as many lincarly independent distributions as non-empty

states in the initial cohort.

Consequently, in the multiradix case (more than one state,
possibly n states, are initially non-empty), the age-specific
distribution {1l(y)} depends on the state allocation of the initial
cohort. However, in the single radix case (all individuals born
in a unique state), the age-specific distribution {1l(y)} is

unicquely defined.
This distinction is extremely important since

- as we will see later, the multiradix case causes additional
problems with respect to the single radix case in the
discrete formulation of the model underlying the con-

struction of an increment-decrement life table, and

- the use of matrix algebra for the derivation of the multi-
state functions is more suitable for the multiradix case

*
than for the single radix case.

The Multistate Life Table Functions

Two different generalizations of the single-state life table
functions are possible and have given rise to a subject of con-

troversy between Schoen and Rogers/Ledent.

The first generalization, introduced by Schoen, consists of
multistate life table functions which are attached to the state-

specific age distributions ll(y) considered in their entirety.

*This especially applies to life table functions containing the in-
verse of O}X' Clearly, if at least one state of the system is ini-

tially empty, le is not invertible. (It contains at least a zero

column and its determinant is thus equal to zero.) However, the

formulas containing such a term le will remain valid if one re-

duces the scope of the matrices involved: le (or more generally

any matrix to be inverted) will be reduced to a r x r matrix (in
whlch r is the number of states initially empty), while the other
matrices will be reduced to s x r matrices (in which s is not
necessarily equal to r:r < s < n).
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Schoen and Nelson (1974) define:
i (T -
Lx = J 17 (x+ t)dt , ¥i = 1,...,n (26)
0

as a function which, like the L variable in the single-state
life table, has a dual meaning. It represents first the number
of people alive in state i of the increment-decrement life table
between ages x and x + T, and second, the number of person-years
lived by the initial life table cohort 16 in state i1 between

those ages. (26) can be rewritten in a vector format as:

T
{Lx} = [ {1(x + t)l}dt
0

We can define {T(x)}, the state-specific allocation vector
of the number of people alive in the life table aged x and over,

as:

{Tx} = J {1(x + t)lat .
0

With the idea of extending the definition (7) of expecta-
tions of life at exact ages, Schoen and Land (1976) define the
mean duration of stay in a given state after age x for all sur-
vivors in the system at age x as,

1

(ae)l = X . ¥i =1,...,n
X 1°
X

—

This is a statistic that we would like to further qualify by
state of presence at age x. However, this is not straightforward
since the person-years lived included in the quantities Ti in-
vqlve members of l; as well as members of all the groups

li (j =1,...,n, j # 1). We need to have recourse to variables
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i
X
can expect to spend in region j before his death. We then have

such as ixei denoting the number of years that a member of 1

the following equation linking 1, e and T functions.

n

D el 13 = 7 ¥i=1,...,n
j=1 IX7x Tx X

or more compactly,

xex{lx} = {7} (27)

~

in which the (i,7)*" element of e is jxei )
This vector equation (27) is clearly insufficient to draw
%Sy from the availability of {lx}. However, it suggests that
the generation of n linearly independent {1l(y)} distributions,
would allow for a derivation of e . Let {lx}1 denote the age-
distribution relating to the first increment-decrement life table
generated and {Tx}1 the corresponding number of person-years

lived over age x. Then,it is possible to write

T
X~X ~X ~X

in which

1 = [{1X}1,..,{1x}n] and T = [{TX}V...,{Tx}n] '

which leads to:

=7 1 (28)

In fact, the generation of n linearly independent increment-
decrement life tables is nct necessary to obtain <Sx* Let us
recall that the differential equation (17) underlying an increment-
decrement life table admits n linearly independent solutions

corresponding to n initial cohorts, each of which has a radix
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concentrated in a different state. Then, it suffices to attach an
additional subscript referring to the state of birth to define
multistate life table functions leading to the derivation of

«Sx (Rogers 1973a, 1975a).

The second generalization of the single-sta@e life table
functions thus starts with the definition of jOLi" It repre-
sents the number of people born in j and alive in state i of the
life table between ages x and x + T, which is also the number
of person-years lived in state i between those ages by the

members of the initial cohort born in state j as:

. T .
i _ i Cos
joLx = J jol (x + t)dt ¥i,j T1,000,n
0

which can be written more compactly as:

T
%x = [ }(x + t)dt . (29)
0

0

The total number of person-years lived in state i in prospect

for the group born in j may be taken as

jOT:; = [ joll(x + t)dt ¥i,j =1,...,n ,
0

or, more compactly:

T =J ]-(x + t)dt . (30)
0

The superiority of this matrix generalization of the single
life table Lx is evident in that, unlike the vector generalization
(Schoen), it permits a direct derivation of <Ex from (28) re-

~

written as:

_ -1
xSx = 0%x O%X (31)
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Note that on substituting (30) into that last equation and

-1

replacing 1l(x + t)O}x by xQ(X + t) yields

0

[e o]

e, - [ L0(x + t)at (32)
0

~

an expression that indicates the independence of «Ex vis—a-vis

~

the state allocation of the initial cohort. Rogers (1975b) also
develops the notion of a net migraproduction matrix as an alter-
native measure of mobility. Specified in a discrete setting,
the latter expresses mobility in terms of the number of expected
moves out of each state of the system beyond some given exact
ages 0,T7,2T7,...,2. Below, we re—egamine this concept using a

continuous specification. Let ixni be the number of moves that

an individual present at age x in region i1 can expect to make

out of state j before his death, then ) 1k n) is the total
k

107 x kx x
i

number of moves that the members of lO

can expect to make out

of state j beyond age x.

Alternatively, this number can be obtained by applying the
n .
total mobility rate N Jpk(x + t) to
k=1
k#]

t > 0, and summing them;

J
iOl (x + t) for the

k  3_ (", % 3k j
ile kxnx = I [ k§1 uo{x + t)]iol (x + t)dt

k=1
) 0 -
k#3 k#3]

Mol

¥i,j =1,...,n
which can be expressed more compactly as:

_ * mt
<My o%x = J p(x + t)o}(x + t)dt
0

. ‘ . . . . . ., th
in which Uy 1s a net migraproduction matrix whose (i,1)

-~

~

. i
element is jxnx and nﬁix + t) a diagonal matrix whose ith
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n

diagonal element is [ ) luk(x + t)] . Consequently
k=1
k#1
no= ([ M (x + £) 1(x + t)at] 1 " (33)
X~X iy . ~X

0

o ‘ -1
On substituting xQ(x + t) for 0l(x + t)ol(X) yields,

o]
i

j "}f (x + t)xg(x + t)dt , (34) -
0

an expression that also shows the independence ©of xnx vis-a-
vis the state allocation of the initial cohort.

Another consequence of the matrix notation is the possib-
ility of extending the definitions (29) and (30) by relating the
multistate functibns to the states of presence at any age y
rather than to the state-of-birth. For example, y%x denotes amatrix

. T .
whose typical element ij; = f jyll(x + t)dt is the number of
0

people present at age y in state j (0 <y < x) and alive in state
1 between ages x and x + T. In a similar way, yTx denotes a

@ N
matrix whose typical element iji = J jyll(x + t)dt is the total

0
number of years that a person present at age y ‘in state j can

expect to live in state i beyond age x.
It can immediately be established that the following rela--
tionships extending(31l) and (33) hold:

-1
x?x yTx yEx ' ¥y 0 Sy X

o]
!

[ [ mEt (x + €) 1(x + t)dt]y]i.x-1 ' ¥y 0 <y < X
0
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Note that this generalization of the multistate life table func-
tions, focusing on the states of presence at any age rather than
on states of birth, is very useful. As mentioned earlier, in the
case of a system with some initially empty states, the knowledge
of O}X and O%X only permits the calculations of expectations of
life or migraproduction rates at any age relating to the initially
non-empty states. Fortunately, the knowledge of x}x and x%x

and the use of the just derived formulas permit deriving those

statistics relating to all states which are initially empty but
non-empty at age X.

It is also possible to extend the two alternative measures
of mobility (expectations of life and migraproduction rates)
by defining them with reference to the state of presence at
age y (0 < y < X). This leads to a matrix of expectations of

life yeX by place of presence at age y defined as

mt -1
y?x B yTx y%x vy 0 Y X

mt
in which lx is a diagonal matrix whose typical element is

~

n
iyli' In a similar way, one may define a matrix of migra-
k=1

production rates ny by place of presence at age y as

o t
= [ J IrE}“’(x + t)y%(x + t)dt]y_];X -1 ’ ¥y 0 <y < x
0

Note that, if y is zero, the above definitions reduce to those
of expectations of life and migraproduction rates by place-of-
birth put forward by Rogers (1975a).*

*All types of expectations of life and migraproduction rates are
independent of the state allocation of the initial cohort. We

can establish the following relationships between the multistate
functions just defined:

05x = xSx OQ(X) ! o2x T x%x Q(X)

-1 -1
and S
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Age-specific Mortality/Mobility Rates and Survivorship
Proportions

The extension of the age-specific death rate m_ of the
single-state life table is straightforward in the present version
of the multistate life table. The age-specific movement rate
imi, the discrete counterpart of iuj(y), is defined as the ratio
of the number of moves idi f:om i to j between ages x and x + T

to the exposed population L;:

idj
ij _ X ¥i=1,...,n
My 1 ¥j =1,...,n + 1 (35)
L d .
X j # .

From the definition (12) of the instantaneous rate lui(y), it

follows that the number of movements ldi is equal to

T, . . .
J luj(x + t)ll(x + t)dt. Then recalling the definition of L;
0

and substituting into the above definition yields:

™ . . R
J Lk + ©)1Y(x + t)at
0

.o ¥i =1, /N
lmi = = ¥ = 1,...,n + 1
fll(x+t)dt j 7
0 (36)

It is clear that the above definition of the age-specific rates
involves the consideration of all persons (whatever their state
of birth) alive in the system between ages x and x + T. Conse-
quently, the value of lmi is affected by the state allocation of
the initial cohort as indicated by this equivalent specification
of (35):

* This specification of lmi also shows that unlike the instantan-

eous mortality and mobility rates which are independent of each
other, the discrete mortality and mobility rates are not indepen-
dent within and between regions.




11 (x + t) 4t

J
X n T i
z 1T (x + t)dt
1 kO

MOl
s —

A further consequence of this dependence of the age-specific
mortality/mobility rates on {10} is the impossibility of drawing
the age-specific movement rates from the life table functions,

as can be done in the single-state case. The discrete equivalent

to the elementary flow equation (14) can be written as:

1 j=1
i 3#i (37)

'_l
I
'_l
'..-l
[}
'..-l
[o}]
O»
1
Y Ul 13
'..J.
[oN]
% O
+
t~1
(]
[o})
’.J
<
'..-l
1
o’

i i is, B oigoi, %o j
1 =1 - [m_ + 1L, + ) m_ L
x+T X X . X' X 2
3=1 j=1
j#i j#i
¥i =1, ,h,
which can be rewritten as:
{lx+T} = {lx} - Tx{Lx} (38)

in which m. is the discrete counterpart of (16), i.e.,
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(39)

Clearly, the vector equation (38) is insufficient to draw m

from the availability of {1x}, {1x

it is rather tempting to generalize

matrix format as

O}x+T B

However, this rela
constant matrix.

ferential equation

T} and {LX}.

(38) and write it in a

+ Therefore,

0}x

~X O%X
tionship does not hold since m, is not a
This result is not surprising since the dif-

(17) admits n linearly independent solutions,

corresponding to the groups of survivors in each initial radix,

and suggests the c

rates by place of
iJ

Let oM

deno

onstancy of age-specific mortality and death
birth.

te the mobility rate from state i to state

j between ages x and x + T for those born in state k.

expression is easily obtained from (36) by substituting
i

k01 (x + t) for ll(x + t):
T i i
J uj(x + t)kol (x + t)dt
ij 0 ¥i =
m = .
k0 x T i VJ:
[ kol (x + t)dt j #

0

Its
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Observing that 0ll(x + t) = gﬂl(x + t)lg leads to the equivalent

k
expression
T ., . ki
J Lx + t)OQ (x + t)dt
i3 - 0 ' ¥i=1,...,n
k0"'x Ty i ¥j =1,...,n + 1
f OQ (x + t)dt j # i '

0

which shows the constancy of age-specific mortality and mobility

rates by place-of-birth.

Clearly lmi denoted by 3mi to be consistent with the

notations just adopted is such that:

n P .
ij i
2 m L
i3 _ k=1 10 % KOX vi=T1,...,n (41)
L kol 1 # A

To summarize, the existence of a predetermined pattern of
mortality/mobility, defined in continuous terms by assumption
(12), does not lead to the constancy of age-specific mortality
and mobility rates but to the constancy of such rates further
indexed by place of birth. Indeed, in the single-radix case,
the age-specific mortality and mobility rates do not bear any

ambiguity since there exists a single state-of-birth.

We could also define age-specific mortality and mobility
rates by reference to states of presence at anyage y (0 Ly < x)
rather than to states of birth. 1In fact, this generalizes (40)
to:

T . . ,
i j i
J u-(x + t)kyl (x + t)dt
0

oL ¥i =1,...,n
1.7 P
m- = : ¥j = 1,...¢n
ky 'x T i % # i' ‘
J kyl (x + t)dt Wk = 1,...,n
0 ¥y 0 <y <x




and (41) to:

i k=1 ky ky x
Lym, T E ¥i,j ; 1,...,n
L j i
k=1 k¥ X ¥y 0 Sy < X

Note the dependence of these rates on the state allocation of

the initial cohort.

Another life table function that one would like to extend
to the multiregional case is the survivorship probability S,
denoting the proportion of individuals aged x to x + T who
survive to be x + T to x + 2T, T years later.

For example, we define the proportion isi of individuals
present in state i between ages x and x + T who move to state
J and survive to be included in that state's x + T to x + 2T years

old population T years later, then

¥i=1,...,n

which can be written more compactly as:

(Lo} =s (L} (42)

in which Sy is a matrix whose (i,j)th element is Js; .

Again (42), a vector equation, is insufficient to draw
S from the availability of the multistate stationary population
{Lx}‘ Furthermore, 1t suggests that the survivorship proportions
depend on the state-specific allocation of the initial cohort.
Then, as is the case of the age-specific mortality and mobility
rates, it is necessary to characterize the survivo;ship by a
i

third index relating to the state of birth. Let kosi denote

the proportion of Li who move to state j within a T-year period.

kO
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Then:

J

j _ k% kolx+T ¥i,j,k = 1,...,n
X 1
kOLx

s
kO

. . 3

n

in which the numerator kai kOLx+T
the total number of years lived in state j between ages x + T

represents the fraction of

and x + 2T by the k-born individuals who were also living in

stage i between ages x and x + T. Recalling the notation y%QJ(yz),
it follows that

: T .. .

J - 1.7 i

k% xolx + 7 = f DRI S T) ol (x + t)dt ,
0

and that:

T Lo .
i3 i
{ x+tn (x + t + T)kol (x + t)dt

=0 (43)

T .
1
J ol (x + rat
0

S

1]
k0™ x

¥i,j,k =1,...,n

Note the independence of kési vis—a—vis the state allocation of

the initial radix that affects the survivorship proportion:

n . .
i 7 i
w L okSx xolx
s, = - - ¥i,j = 1,...,n . (44)
) L
k=1 k07x

Because of the definition of the discrete model of multi-
regional population growth, this dependence of the survivorship

proportions on {10} is unfortunate. Rogers/Ledent (1974) have




thus defined approximate survivorship proportions based on the
desirable property of independence vis-a-vis of {lo}. Under this
assumption, (42) holds for each age distribution {lx}'generated
by the total allocations of the initial cohort to a unique state.
Therefore the unvarying matrix Sy thus defined can be obtained

from:

s = -1 (45)

~X O%X+T O%X -

It is possible to extend the multistate functions (43) and
(44) by relating them to the states of presence at any age y

(0 < y < x) rather than to states of birth. For example,

1s) could be obtained from (43) in which ll(x + t) is sub-
ky™x ky
i *
stituted for . .1 (x + t).

kQ

Continuous and Discrete Aspects of an Increment-Decrement
Life Table

In the above presentation of standard increment-decrement
life tables, the key element lies in the definition (12) of the
forces of mortality and mobility contaired in u(y) such that an
individual's instantaneous propensities to move (or die) are
independent of his past mobility history. This gives a Markov
process interpretation to such tables and guarantees the indepen-
dence vis-a-vis the initial radix of multistate life table func-
tions characteristic of an exact age. Formulas (21), (23), (32)
and (34) show that such functions as 0S}(x), Py’ ng and xgx only

depend on the curves u(y) and are, in no circumstances, affected

by the state allocation of the initial cohort.

In contrast to these continuous age life table functions, the
functions relating to discrete age intervals depend not only on the

curve of instantaneous forces of mortality and transition but also on

*Note the independence of S, as defined by (45) vis-a~vis the

choice of the state of presence at age y (0 <y < X)

-1
Sx T y%x+T y%x !

Yy 0 <y < x .



state/age distribution of the resulting stationary population.
Since the latter is determined by the same curves of instantaneous
forces and by the state allocation of the initial cohort, as shown
by (19), it follows that m, and the matrix of true survivorship
proportions s, are affected by the state allocation of 16
Nevertheless, the pattern of mortality and mobility is such that
constant mortality/mobility rates and survivorship proportions

can be found in each of the multistate stationary populations

originating from each state-specific group of the initial cohort.

The assumption of (12), defining the instantaneous mortality
and mobility pattern, leads to constant age-specific mortality and
mobility rates for each of the multistate stationary populations
generated from the n independent solutions of (17). Note that,
although the forces of mortality and mobility depend only on the
states of origin and destination, the age-specific mortality and
mobility rates "by state of birth" depend on all states in the
models as suggested by (40). Consequently, for a given x, the
matrices k0™x for all k = 1,...,n are not independent. The im-

portance of this finding will be made clear later.

Multistate Life Table Functions in Terms of the Life Table Mortality
and Mobility Rates

The above exposition of increment-decrement life tables sug-
gests that a point of choice in proceeding from the life table
age-specific mortality and mobility rates is the integration of
{1(y)} and ,1(y) over successive intervals (x, X + T). As in the
single-statewcase, this problem can be illustrated further, even
without supposing any explicit method for deriving {Lx}. This
requires the consideration of a matrix a_ of mean durations of
transfers. It is the multistate analog of the average number of
years a_ lived in the interval (x, x + T) by those of the single-

state life table who died in that interval.

The Matrix of Mean Durations of Transfers over a Time Period

In order to understand the matrix of mean durations of tran-

fers over a time period, it is sufficient to focus on the subsequent
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J _ J
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j 3 =x+T n+1
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—x k=1
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Note that ."t. = o and
ix 1

at age x + T.

n

) -~ y=x+T k4
v L Tl - j v 1 553 )
k# y=x k#3
¥i,j =1,...,n

. y=%x+T n .

Jj.k _ k,d

34 w) f y k§1 X&) (46)

y=x k#3

z . .
;itkk= T if k is the state of presence
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Let lai denote the average time elapsed between age x and
the age y at which a move is made from state j to state k

(x <y <x + T). By definition:

= Jak 3gk

y=x+T
f % % Yj,k = 1,...,n (47)

jqk
Y .xd (¥)
Y=X

in which Jdt is the total number of moves made by all members
of the system between ages x and x + T from state j to state k.
Substituting (47) into (46) we have:

. . n+1 . . no oy k.13
k=1 k=1
k#3 k#3

¥ = 1,...,n .

Recalling the definition of the age-specific mortality and mobility
rates (35), we then obtain:

. . n+1 . . . n : k
i o_ 5 ik i k 3 kad kpd
L, =T 1) .+ ) a m, Ll - ) ay Mx “x

k#3 k#J

¥) = 1,...,n

or, more compactly, using a matrix notation:

- 0
(L =1 1, .0 +8 @) (48)
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in which:

-0

N 1n
1616 |%F 1.5 13 22121 e - m,! Ppy
a, m+ jZ1 ay my a, ‘m_ x Mx
j#i
_1.21_2 26268 | % 2323
- a_ my a, ‘m_+ j£1 ay “my
x .
3#2
-‘..'
A n . .
1 1.n nén 6 + n_j n_j
- -ai m ay, My j£1 ax ™
J#L
| |
) 0 . . ..th 0 .
Note the likeness of a with mX: the (i,3) element of aX is

obtained from the corresponding element of m_ by multiplying it by a

~

coefficient characteristic of both the 1 and j states. Thus,
Loy = mx - 3)7 1} (49)
X ~ ~X x+T
Substituting into (38) leads to an expression linking {lx+t}
with {lx}
-1
1. t=|r+rmrr-807" 1 (59)
x+T ~ ~X % <X X ’
Comparing this last expression with the definition (11) of {lx+t}
{lx+t} - Ex{lx}

provides the desired expression of the age-specific matrix of
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probabilities -
-1 *
-l + -3 (51)
Px 7 |- XL ox
. _ 0 0 ,-1 .
Since I = (I - ax)(I - ax) , (51) can be successfully rewritten
as: ) N " - "
_ 0 Q0 -1 0 ,-1
Py = (I -2 -2ay) "+ Tmll-al
1
= BI -a, +Tm)(I - 3 ) 1]
~ ~ ~ ~ ~X
J
and finally,
_ 0 0 -1
Py = [T - gl ~a, +Tml

. . . 0 .
a relationship from which we can draw a, 1in terms of Py and m

™

! O

]
H
1
|
H
!
o)
Ke]

m
X ~ ~ ~X ~X ~X

Although Py is independent of the state allocation of the

~

initial cohort, gx depends on it since m. in (51) generally varies

~

with this initial allocation.¥**

Moreover, substituting (50) into (49) yields:

-1
{LX} = T[I - gx + T m] {1x} (52)

~ ~

*In the case of the last age group (48) reduces to {Lz} = gz{Lz}

or using (38) m;1{lz} = T;1 gz{lz}’ an equality that indicates

the dependence of the a-coefficients on the state allocation of

the initial vector {10}.
**Ag for the other interval-related multistate life table functions,

depends on the state allocation of the initial cohort whereas

0
a
X
for each of the n independent multistate stationary populations,

there exists a constant matrix of mean durations of transfers

9
k0" x*




an expression that will later allow the derivation of Iy Since

~

those who die in state j between ages x and x + T were members

at age x of any cohort lz, the corresponding number of deaths can
n . . . .
be written either ) kg3 1% or In® L) so that we have in matrix
K1 X °X X X

form qx{lx} = gx{LX} in which %X is a diagonal matrix of death

rates. Substituting the expression of {Ly} into this last for-
mula then leads to:
1

8 0 -
?x{lx} =T TX[E a  + T Tx] {1x}

and finally, because of the independence of Ay from {lx}, we have

~

R -1
g = T Tx[z a. + T Tx] : (53)

The Case of a Uniform Distribution of All Moves

Before looking at the case of a uniform distribution of moves,
let us consider the case in which all moves out of a region are

similarly distributed. Then:

which permits us to express gx as the product of two matrices:

0
a = m a
X ~X~X

in which a, is a diagonal matrix whose typical element is lax.

In such circumstances, (48) becomes

{LX} = T{lx } o+ Txfx{Lx} . : (54)

+t

After substitution of (38)

1
Jrmam {1} -0

{LX} = T{lx oo,

+ x+t
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becomes a formula generalizing the single-state identity

L =T1 + ax(lx -1 ) .

X X+t X+t

The single-state function a, is extended as the more complex
function Tx?xTx_1; the latter however, reduces to a if all moves
in the system are uniformly distributed. Substituting the expres-
sion of § into (51) and (53) yields:

(1 -malll+m (TI-a)l" (55)

Px

and

0 oI - -1 A 5
q T m, [T + mx(l I ax)] . (56)

<X ~ ~ ~ -~ ~

Note that (55) corrects the formula given in Rogers/Ledent (1976)

in which the two expressions between brackets were inverted.

Furthermore, if all moves out of each region are uniformly

distributed for each closed interval, i.e.,

= % I for all x # z , (57)

~ T T -1 *
Py = [§ 2 Tx][z t 3 Tx] ! (58)
T T T T
* - — 1 —_— - 3
[1 3 @x][g + 5 Tx] [} + 5 TX][; 5 Tx]’ p, can be rewritten
_ T -1 - I
as: p, = [T + > @x] [I 5 @x] (58a) .

This alternate expression of Py is found in Rogers/Ledent (1976).

~




and by substitution into (56)
(59)

Conversely from (58) we can draw an expression of m. in terms of

Px

an equation which indicates that m is uniquely defined in terms

of Py and is thus independent of the state allocation of the

initial vector.

Consequently, assuming a uniform distribution of moves, we
find constant age-specific mortality and mobility rates by place-
of-birth for any choice of the state allocation of the initial

cohort, i.e.,

ij _ ... _ i 3 _ ... _ i3 _ 1 3
mx kOmx nOmx mx
Then, (38) can be generalized as:
olx = olxsr = ®x olx ¢ (60)

an equation from which we can draw

-1

= (ly = ol ) O%x

TX 0~x 0<~x+T ! (61)

As in the single-state case, the assumption of uniformly dis-
tributed moves leads to the derivation of survival probabilities
that are identical to those obtained by supposing a linear integra-

tion over{lx}. This result can be demonstrated directly by comparing

¥(61) also holds if the multistate life table rates relate to
the state of presence at age y (0 < y < X) rather than to state
of birth:

k;mi = lmi = constant independent of y (0 < y < x) and k(= 1,...,n).
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{LX} and %[{lx} + {lx | Assuming (57) yields

+T
_ _ _ T T -1
{1 0} = P {1} = (I -5m)(I+35m) {lx} ]
and
T _ T _ T T -1
LY + {1 31 = 5[+ (I -5m)(I+5m)] {1} .
. . T T -1 ]
Since I can be decomposed into (E + 5 mX)(I + 5 mx) + this even-
tually leads to:
T _ T -1
1 P+ {1l o3 =TI +5m] {1} . (62)
. T . . .
Setting a =3 I in (52) gives
(L.} =TI + 2m_ 17 712.} (63)
X = 2 °X X !
and consequently we obtain after comparing (62) and (63)
fL_} = Zr{ay + (.1 . (64)
X 2 X x+T

Conversely, if one assumes that {LX} is given by a linear inte-
gration such as (64) for any choice of the state allocation of
the initial matrix, one finds by comparing (38) with (64) that:
m

ST |

—
o3




Further comparison with (51) leads to

o3

m
2x ~x

showing that all movements are uniformly distributed in each

age group.

In other words, as in the single-state case, the assumption
of a uniform distribution of movements is equivalent to the

linear derivation of the person-years in the stationary population.

This equivalence, shown here by reference to the vectorial
age distributions, also applies to the matrical age distributions
Since m is independent of the initial radix, the matrix exten-

sion of (64) holds, giving

L = + ol (65)

T
0<x 5[0}x 0~x+T

a relationship which permits us to obtain the values of Rogers'

multistate life table functions such as e from the knowledge

OTx’x~x
of m_.
~X
Carrying the linear integration on {lx} is equivalent to
performing it not only on 0LX but also on yLX (for all y, 0 <y < x).
This finding permits us to compute some of the multistate functions
relating to initially empty states by using the generalized expres-
sions of multistate life table functions relating to states of

* ¥
presence at age y rather than to states of birth.

*In addition, the property of independence displayed by m, allows

rewriting (33) in a discrete form as:

_ mt -1
x T T O%X le ’
n .
in which I%; is a diagonal matrix whose ith element is [ 2 lm};],
~ k=1
k#1i

thus making it possible to express x in terms of the life table
rates.
**This observation is important as the non equivalence of the cubic

integration of O%X and y%x will suggest later.



In the case of the terminal age interval which is half open,

a different treatment is used:

~

- P, is set to zero since everybody eventually dies, and

- since the length of the interval is infinite, cannot

L
be obtained by linear integration. 0~
For this age group, we assume the independence of the life
table mortality and mobility rates vis—a-vis the state allocation
of the initial cohort, a property equivalent to the linear inte-
gration hypothesis in the case of the closed age intervals. Thus
(60) in which .1 0 holds, leads to

0~z+T
L = 7 =m ' 1 *
02z ~ 6=z T2 0~z
Thus,
= T LS TN DLy (66)
xSz T 02z 0xz T 0dz 0xz ~Z :

Note that m, being independent of the state allocation of the

intial vector,

0
=TI
2, > !

is an equality giving:

a3 - 1 ana al =0 w3 £ 4.

In other words, the assumption made about m, is equivalent to
supposing that in the last interval, all moves (except deaths)

out of a region, take place instantaneously at exact age z.

*This formula is the matrix expression of the various scalar
formulas derived by Schcen in the appendix of his 1975 article.
Also, note that m, is not a diagonal matrix: non-zero mobility

rates are here allowed, unlike in Rogers (1973a).
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The derivation of the true survivorship probabilities by
state of birth as defined by (43) requires a further assumption
concerning the integration of the numerator. We can use a linear
integration method which would be consistent with the method of

integration used for deriving {Lx}, then:

iij i i3
isj — kle Px * kOl x+T  Px+r
k0™ x 1I + li
k0™ x k0" x+T

By contrast, because of the linear integration assumption for
deriving {Lx}, the approximate survivorship probabilities as

defined by (45) can be simply expressed in terms of the age-specific
mortality and mobility rates.

From (65) rewritten as

) 1 1.7+ p)

§x by Ex+T O x+t 0lx ~ =X

it
=
+

< Ex+t)8x+T(E + Ex)
and eventually, after substitution of (55) for the age-specific
probabilities:

_ T T
§x—(}+§§l ) (I-fm) (67)

The comparison of (67) with (58) suggests that Sy is simply ob-
tained from the formula giving Py by replacing the age-specific
matrix m. within the first brackets with the similar matrix m

~X+T
corresponding to the next age group.
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0f course, (67) is valid only for x = 0,T,...,z-2T whereas

S,_p 18 given by:

T
m, I -73m,_ql (68)

|-

S
~Z-T

obtained by combining (45), (55), (65), and (66).

Another statistic needed in Section III is the matrix which
gives the regional allocation of survivors at time t + T among

those born between times t and t + T.

If a child is born in state i at time t1 (0 < t1 < T since

we can suppose t 0 without imposing any further restriction),

the possibility he or she will live to the end of the interval
3
ile—t

(age T - t1) in state j is -1 . Summing this through the

Ly
T-year interval of time and age, with births uniformly distributed
in time within the T years, gives the proportion of survivors
in state j among children born throughout the interval in state

i:

T3
[ i0l (y)dy

10 1 i Lg
1 ! = 1°li ¥i,j =1,...,n .  (69)
i0~ 0 i0™0
Then we have,
ij _1 -1
sir = 7 olo Lo '
and since
-1 _ 7T _ T -1
olo 1o =3I +pyl = 31 + 5 my] ‘




we obtain:

The similarity mentioned above between the formulas giving the

p- and s- matrices is further illustrated by Table 1 below.

Table 1. Comparison of the survival probabilities P and the approximate
survivorship proportions S, -

Px Sx
T -1
= [E + 3‘?0] for x = -T
-1
_ T _T
=I+5nl [T-5uol -
=[I+£m ] [I—~T—m]
for x = 0,T,2T,...,2z-T ~ 2 x+T 2 X
for x = 0,I,2T,...,2z-2T
2 -1 T
T [E B i-mz—T]
for x = z-T
=Q for x = z

Applied Calculation of an Increment-decrement Life Table Based
on the Movement Approach

The above exposition of increment-decrement life tables sug-
gests that their applied calculation requires first a linkage
of the life table age-specific rates with observed data, and
second, the availability of a method of integration for deriving
{LX} and oLy

Linkage with Data on Observed Population

By analogy with the single-state life table, the linkage of
life table rates with observed data is performed by positing some
relationship between the mortality and mobility patterns of the
observed and synthetic (that of the increment-decrement life table)

populations.



As presented above, increment-decrement life tables are
based on the predetermined knowledge of mortality and mobility
patterns defined by continuous curves of such forces. 1Ideally,
one should carry out the linkage with the observed population
system by assuming identical curves of mortality and mobility forces
in both the synthetic and observed pcpulations. However, the
difficulties encountered in implementing such an assumption when
calculating an applied life table, make it necessary to link ob-
served and life table patterns of mortality and mobility at a

discrete level.¥*

Then, as in the single-state case, we are left with relating
life table age-specific mortality and mobility rates to observed
data. But, is it possible to implement a linkage analogous to the
one of the single-state life tables in which a simple equality of
the age-specific mortality rates of both the life table and observed

populations is generally posited?

Earlier, we pointed out that the assumptions underlying
movement increment-decrement life tables 1led to n elementary
multistate stationary populations, characterized by constant age-
specific rates. 1In addition the consolidated stationary population
displayed age-specific rates varying with the state allocation of
the initial cohort. Consequently, the most efficient strategy

would be to estimate age-specific mortality and mobility rates by

*The generalization of two single~state methods assuming identical
curves of mortality and mobility forces are possible:
(1) a method iterating to the "data" analogous to the method
proposed by Keyfitz (1968, Chapter 1), and
(2) a method extending that of Keyfitz and Frauenthal (1975).
Although no attempt to evaluate and compare the validity
of these two methods was undertaken, it can be said that
the former alternative is feasible, whereas the latter,
studied by Krishnamboodiri (1977) is likely to lead to
highly inaccurate results. The rationale for this a priori
judgement is that the curves of instantaneous mobility
forces encountered in multistate models are not as nicely
shaped as the curves of instantaneous forces of mortality
in the single-state life table.



state of birth for the actual population and to equate them to
their life table counterparts. Unfortunately, for most choices

of the integration method for deriving {LX}, this would yield age-
specific survival probabilities different for each one of the

n elementary stationary populations since the age-specific rates

of these populations are not independent.

Under these conditions, the only practical way to proceed is
to reduce the generality of the increment-decrement life table by
further assuming that all types of moves out of each state are
evenly distributed and that the typical distribution is independent
of the state allocation of the initial cohort. This is equivalent
to imposing identical life table age-specific rates in each elem-

*
tary stationary population.

On imposing the above restriction, the calculation of movement

increment-decrement life tables is greatly simplified since:

- the equality of the life table and observed rates of

mortality and mobility no longer raises a problem, and

- matrix generalizations of vector equations such as (38),
and (54), now hold.

From there, the applied calculation of multistate life table func-
tions still requires a method of integration for deriving {LX}.
The most common way to proceed is to assume a uniform distribution
of these moves over time (linear integration). The columns of
increment-decrement life tables directly follow from the applica-
tion of formulas that pertain to the linear case in which the

matrices of age-specific life table rates are set equal to their
observed counterparts.

Two of the most popular alternatives to the linear integra-
tion method are, in the single-state case, a cubic integration
method and an interpolative-iterative procedure. Can these methods
be extended to the standard approach of the multistate case?

*Indeed, no such restriction has to be imposed in the single
radix case.



Case of a Cubic Integration Method for Deriving {Lx}

Schoen and Nelson (1974) have proposed to perform the inte-

b,

gration of {Lx} from a third-degree curve through values {lx

-T
{lx}, {lx+T} and {lx+2T}’
_ 13T . T *
(L) = 5 U0+ (1,00 - 55 (1 o} + {1, .1 . (70)

In the first step, they compute initial values of the 1~ vectors
using the linear integration method. Plugging these estimates into
(70) , they obtain new estimates of {Lx}, which lead to new estimates
of the 1- vectors by using (38). These new estimates of {1X} lead
to improved estimates of {Lx}. The procedure is repeated until

convergence of the l-estimates.

As such,the integration method proposed by Schoen and Nelson
raised some important problems. On the one hand, Schoen and Nelson
do not indicate what is the appropriate state allocation of the
initial cohort necessary to begin the iterative procedure. The rea-
son is that their focus on marriage and divorce analvsis causes everv-
body to be born in the same state (the state of being single), so
that their system has a unique multistate stationary population
that can be characterized by vectors only, instead of matrices as

in the multiradix case.

Is their method applicable to the multiradix case? The answer
to this question follows from our previous development on the link-
age between life table and observed populations: if one is willing
to assume the validity of (70) for any choice of {lo} (i.e., to
fix the constancy of the life table rates that are assumed equal
to their discrete counterparts), then the cubic integration method
applies to the multiradix case as well, thus validating the matrix

generalization of (70).

On the other hand, Schoen and Nelson indicate how to find

{1}, {Lx}, {T} and {ae } but give no hint of how to find D,

e (and ,e_ ), .n_ (or ,n_ ). These can, however, be found as
X~X 0-x X~X 0~x

*This general formula is not valid for the first, next to the last,
and last age groups.




follows. In theory, the availability of {lx}, {LX} and therefore

that of .1 and ,L_ allows for a direct calculation of _e_(.e_ ),

0~x 0~x X<X 0<x
nx(onx), by using the formulas that express these functions in
terms of m_ s le and OLx' The age-specific survival probabilities
could be obtained from.

_ -1
Ex B O%x+T O%X

However, these calculations can be performed only if .1

0-x
is invertible, which is not the case if a whole column of le con-
sists of zeros, i.e., if at least one state is initially empty.

As indicated above, one could then reduce the } matrices to inver-
tible r by r matrices (where r is the number of states that ini-

tially are not empty) and apply to them the above formulas. Unfor-
tunately, this would yield only the requested multistate functions

of the states that are initially not empty.*

To summarize, as proposed by Schoen and Nelson, the cubic
integration method for deriving {LX} is feasible (any choice of
{lo} will lead to the correct multistate stationary populations).
However the estimates of all multistate life table functions can

be obtained only when no state is initially empty.

An Interpolative-Iterative Procedure

An interpolative-iterative procedure for calculating a
more accurate single-state life table by presenting a finite
approximation of the continuous-time process underlying such a
table, was developed by Keyfitz (1968, Chapter 11). The applica-

tion of this method to the multistate case was first suggested by

*It naturally comes to mind that one could calculate the multi-
state functions attached to all states by estimating those
functions related to exact age or age group x from the formulas

that express these functions in terms of m, s xlx and XLX (rather
than 1 and ,L_). Indeed this requires the knowledge of _1
0~x 0~x X~X

and XLX that could perhaps be computed with the means of the

method used to calculate and .L However, in contrast to

O%X 0<x"
the linear case, the values of xLX thus obtained would not be

consistent with those of OLx'
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Oechsli (1972, 1975) in a study of the parity and nuptiality
problem and later used by Ledent/Rogers (1972) in the context

of interregional migrationm.

Fundamentally, the calculation procedure in the multistate
case is based on the graduation of the mortality and mobility
curves to small intervals, (possibly using a linear <nterpolation
between "pivotal" values éxcept for the first age group),* and

the process of iterating to the data (Keyfitz 1968).

Suppose now that each age group (x, x + T) is divided into
equal h-year segments (whose number amounts to T/h) and that for

each one of these age groups are available:

- a matrix m of movement rates relating to the whole

interval, and

- initial estimates of the matrices of mortality and

m
h.y
mobility rates characteristic of each k-year period

(y, vy + h) and obtained by an approximate interpolative

method (Ledent/Rogers 1972).

Thus, it is possible to obtain the evolution (between ages x and

X + T) of the survivors of the initial cohort from

1 =

0~y+h hgy y}y ¥y such that x <y < x + T - h

in which nPx could be given by (58).

However, here we take advantage of the fact that h is small

* %
enough to forbid multiple movements, so that hpy is given by

h § mt m h ¢ mt -1
p = |1 -1D - h "
nly L 7 (a0 * only h‘l‘y)HI AT h‘l‘y)J (77)

~

*In the case of the first age-group an interpolation of the
mortality curve can be obtained by supposing that 1l(y) is
an hyperbola (Keyfitz 1968).

**The demonstration is analogous to the one underlying the deri-
vation of Py in the transition approach (see Section III).




- 56 -

in which h% is a diagonal matrix whose typical element is ;m6,
ﬁ%’ is a diagonal matrix whose typical element is X ;mk and
¥ k#i
m
pmoa matrix whose diagonal is zero and the off diagonal elements
*
are age specific migration rates.
The smallness of the age interval (y, y + h) also makes pos-

sible the use of the following linear integration:

}y + 0}y+h] ¥y such that x < y < x + T - h

This leads to an estimate of ka obtained from:

Assuming independence of the movement rates from the initial radix
(as for the linear and cubic integration), we can then obtain
estimates of their values in the synthetic population just con-
structed from

* -1

1y = ol ) O%X

me = (olx = olxsr (72)

*
In general m will not coincide with the available estimates of

m - We will obtain improved estimates of nMy from:
_ _ ind
;56 = ;md I~§; ¥y such that x £ y £ x + T - h
Y Y 1n
X
and
imj :
;ﬁ; = ;m; T_§§ ¥y such that x <y < x + T - h
my vy # i
*Note that . + W = m + B .

h.y h-y h
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and consequently revised estimates of hpy by plugging the new

estimates of .m_ into (71). This then allows us to compute

h-x
estimates of 0ly, gLy (¥y such that x <y < x + T - h) that

to new values of m; and so forth. The process is continued
convergence of the estimates of the transition rates in the

thetic population to those contained in m, -

new
leads
until

syn-

Note that the procedure just outlined generalizes Oechsli's
%

methodology to the multiradix case.

*Oechsli's methodology was defined for a single radix system:

in

this case, the above matrices reduce to vectors and (72) to:

i ldi ¥i = 1,...,n
mj—-—-—rv Vj=1,-.-,n
X LY >
< J
. . i3 x+T;h i§ .
in which dX ) hPy ly




III. THE TRANSITION APPROACH

The columns of an increment-decrement life table can be der-
ived from the prior knowledge of the survival probabilities Py
(rather than from that of the mortality and mobility rates contained
in Tx)'

A priori, such survival probabilities can be determined by
simply comparing the individual's state of presence at the start
and end of each time interval. The advantages of such a procedure
are: first, the ability to deal separately with individuals present
in the system,since the age~specific transition probabilities out
of each region can be separately obtained, and second, the ability
to limit the data requirements because observation of all the moves

made by individuals within each age interval is not necessary.

The purpose of this section is to discuss how such survival
probabilities can be obtained. This question is subsequently ex-

amined in both continuous and discrete settings.

A Continuous-time Exposition of the Transition Approach

As a consequence of the focus on transitions (changes in the
states of presence between two fixed ages), the present approach
introduces an additional time dimension so that the mortality and
mobility patterns can only be studied as a continuous time process
within each predetermined age interval (again assumed to be T

years long except for the last age interval).

Derivation of the Age-specific Survival Probabilities

As indicated above, it is possible to study separately the
subsequent evolution of each state~specific group of individuals
surviving at a given age x. Here it is sufficient to examine
such an evolu@ion over a T-year span, concerning the groups of

individuals l; present at age x in state 1i.

The survivors of the cohort l; at age y (x <y £ x + T)
can be present in either state of the system. Let iXlk(y) be

the total number of survivors in either state at age y. The
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corresponding individuals in each state are subject to the three
types of demographic events described in the standard approach.

In particular, during a short time interval dy = dt, assumed to

be small enough to rule out the possibility of multiilg moves,

d

the members of ixlk(y) generate deaths, denoted as . (y) as well

as movements to the rest of the system, denoted as

k.1
iXd (y) .

3

k=1
1#k
Unlike the standard approach in which deaths occur according
to state-specific mortality patterns, the transition approach
recognizes an identical mortality pattern for all the survivors

at anvy age vy (x <y < x + T) of each of the state-specific groups l

Observe that the exposure of the cohort lk(y) over the

ix
period (t, t + dt) to the risk of death ié ixlk(y)dy. Thus the
age-specific death rate of the numbers of the cohort

l; surviving to age y in region k is between ages y and y + dy,

k.8
ixd (y)

k
ixl (y)dy

The existepce of a unique mortality pattern for all survivors
i
of the cohort lx then leads to the following series of equalities:

1.8 2.8 )
ixd V) gd ) _ud W 133 (73)
1 - 2 - . o o - e » o = —— L)
ixl ¥ 15y Ll () el ()

Each term of (73) is also equal to the ratio of the sum of
all numerators to the sum of all denominators, i.e.,

=

-—
-
»

eS| i~

1lX

~
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The numerator of this ratio is the total number of deaths

occurring between ages y and y + dy to the survivors of l;, i.e.,

ixl'(y) - ix1'(y + dy), a quantity that we denote by
l(ad)i(y) . We can rewrite the age-specific death rate as:
i “ .
(ad)x(y) ) ixl (y) - ixl (y + dy)
il (v)dy ixt (y)dy

We then can define the instantaneous death rates or forces of
" .
mortality, attached to the survivors of cohort 1;, as the limit-

ing value of the above rate when dy -+ 0

i : :
156,y = Lim D) ain g O 7 gt (v V)
= o~ 0 :
X dy >0 . 1-(yyay W 1 (y)dy
Vi= 1,...,m . (74)

We observe that the net change, between ages y to y + dy in
the number of 1nd1v1duals, members of l , who are present in state

j is simply ix lj(y + dy) - ix lj(y), a quantlty that we denote by

(ad)J(y) We can define the "apparent" instantaneous rate of
mobility from state i to state j, attached to the cohort l as

the limiting value of this rate when dy - 0.

1 j J - J
1;J(y) lim (ad) 2 (y) _ lim ixtx (Y * dy) ixtyx (V)
4 =
* y >0 Yyray ¥ 0 ixt t(y)dy
¥i,j =1,...,n (75)
J A1

*The symbol used here to denote transition forces of mortality and
mobility is identical to the one used to denote the movement forces
of mobility and mortality, but a caret is here added to indicate
the difference in the origin of these forces. A subscript is also
added to make clear which age interval these forces relate to.
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Once lui(y) and lu}j{(y) (for all j =1,...,n,j # i) are defined,

the force of retention lu}l{(y) is simply obtained from the follow-
ing equation expressing that the instantaneous process of this

approach is conservative (Chiang 1968):

. A n ..
iti in§ 4 177 _
ne(y) + Tug(y) 4 j£1 Hyly) =0,
j#i
or alternatively:
iti _ ins T ing .
UX(Y) = - [ H (Y) + 21 UX(Y)] . 1 = 11---rn-(76)
J:
j#i

The specification of the transition model immediately follows from
the above definitions. First we have the following equation in-

dicating the decrements to the group 1° (y) between ages y and

ix
y + dy:
1@y +dy) =, 1" (y) - ad) 3y Vi = 1 n
ix ix X ressa
(77)
Second, we have the (n - 1) equations indicating the changes ex-
perienced between ages y and y + dy by the group iXlJ(y)
. . i . " o
ixlj(y + dy) = ixlj(y) + (ad)i(y) ¥i,j =1,...,n

5 # i
(78)

*Note that l(ad)i(y) is a number of additional transitions from
state i to state j between ages y and y + dy, representing a

n
compounded effect of moves out of state jI Z
k=1

j ik .
iXd (y)] and into

k

state jI[ ix

Il o~13

k=1

dJ(y)] as well as deaths occurring in state j[iida(y)]-
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By subtracting the (n - 1) equations contained in (78) from (77)

we obtain the equatiop showing the decrements and increments to
the exposed group ixl

. . . n . »
LAy v ay = 1ty - Paa)) o) -1 Yad)dy)
j#i

Vi= 1,...,1'1 (79)

Substituting (74) and (75) into the equations (78) and (79) leads
to

i B i _ils . niny i
ixl (y + dy) = ixl (y) ux(y)ixl (y)dy —L£1 ux(yﬂixl (y)dy
j#i
¥i=1,...,n
j _ i i’ i
ixl7 v+ dy) = 5 17 (y) + Tup(y)y 17 (y)dy

or more compactly, in matrix format,
i/\
{{,lly +ay)} = {1} - b, (v) {; 1(y)}dy -+ (80)
where:
B i1 ]
0 - Ty (y) 0
o = | e (S ¢ 1 Blwb. e | (e
My (Y < (¥) .- <Y . B (W)Y e THg ly
j=1 row
j#i
i®n
0 Hy (v) 0

™

ith column
(81)
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. A

The matrix lpx(y) is the sum of two matrices: the first one
contains mortality elements (in the ith row) and the second one

consists of migration elements (in the ith column) .

Since, by definition, {ixl(y + dy)} - {.

lxl(y)} = d{ixl(y)},

we may rewrite (80) as:

d{ixl(y)} .~

_ i
— = - @ 1) (82)

An integral matrix of this system
ixl () = L I e, 1 1) ]

is such that each column verifies equation (82). From the
theorem on the existence and uniqueness of the solution of such
a system, it follows that ix}(y) is determined when the value of
X}(y) for some initial value y = x is known, say ix%(x):

. A =
ix%(y) = Qx(y)ixl(x) Vi 1,.¢.,n

in which the matrix lQx(y), uniquely defined as the normalized solu-

LI

tion of (82), is not a simple expression of the lux's. Again,

~

~

le(y) could be determined by using the infinitesimal calculus

of Volterra. However, this determination is not necessary as
shown below. Since ixl(x) is a zero matrix except for the (i,i)th

element, (82) has a unique solution
i .
= = 83
{ixl(y)} EX(Y){ixl(x)} Vi 1,+..,n (83)

in which Hx(y) is a matrix whose elements are zero except for
the ith column denoted by {* H (y)} and identical to the 1th
column of the matrix (y) These non-zero elements will be

determined later, using s1mple calculus.
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Because of the following identity:

(1)} lwod

1!
i~

we have:

{1(y)}

1

]
o~

n N
_ 1
{.xl(y)} = izl gx(y){ixl(x)} .

i=1

(83) can also be rewritten in matrix form as

<L) Telyd 1o

1 cee (3 eee N
nx(y) [{ nx(y)}, { nx(y)}, { nx(y)}]

and _1 is a diagonal matrix allocating the survivors of 16 at age

X

Clearly, the probability lui that an individual present at

age X in state i will survive in state j, T years later, is the
(j,i)th element of the matrix ﬁx = Hx(x + T).

~

In contrast to the movement case, we can express the elements
of ﬁx as functions of the forces of mortality and mobility using

simple calculus. Equation (77) can be rewritten as:

. _ . _irs .
¥i=1,...,n
whose integral solution is:
Y o~
- J lui(x+t)dt
i 0 i .
il ) = e 1; ¥i=1,...,n (84)
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It follows that the probability lp; for a member of l; to survive

in any state of the system at age x + T is

T (g
- J lux(x+t)dt

i 0 . ¥i=1,...,n (85)

e
Px

while the corresponding probability of dying in any state before

reaching age x + T is:

T i~s
- J ux(x+t)dt
0

pS =1 -¢e ) ¥i=1,...,n (86)

Substituting (84) into (78) leads to the following differential

equation, permitting us to determine ix11(y)

y—X A
- J lui(x+t)dt
= - 18 e O 1o T i3 1t
dy X X =1 x iy Y

i
d; 1My + ay) i

¥i=1,...,n (87)

whose solution clearly has the general specification:

[
0

' ]
i _ f
ixt ) =e ]

i%5
1 ux(x+t)dt
i lA(y) .

Yl

Substituting this general solution into (87) yields

oAt Y=X i~g

) ui(x+t)dt - f uo (x+£)de

=1 . . A .
) i i76 0 i

#i d 252) =~ . ly) e 1,
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Thus, we have

. V=X .a j=1
agy) = - f lui(x+6) e j#i de
0
and finally
Y=X n ...
f ) lu](x+t)dt
. . j:‘] y-X .A6
i o " -1
Lliw = e i [ = g oo
0

° i8 T ins
- f [Tu” (x+t) -} ud (x+t) 1dt
j=1
0 T,
j#L i
e de| 1
X

¥i=1,...,n (88)

The result is that the probability lp; for a member of l; to
survive in state i of the system at age x + T is the expression
between brackets in (88) in which y - x would be replaced by T.

Next, the probabilities %6; for (j#i) could be obtained by
substituting (88) into equation (78) and solving the ensuing dif-

ferential equation. Their expression, involving the use of
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several integral signs, is not reported here since it does not

add any special insights into the transition process.*

Age-specific Mortality and Mobility Rates

The age-specific transition rate lmi, the discrete counter-

s A

part of lui(y), is defined as the ratio of the number of deaths
occurring to the members of l; between ages x and x + T to the

exposed population,

A 1iaq)®
i~8 _ X —
m = — , ¥i=1,...,n . (89)
X L
ix"x

From the definition (74) of the instantaneous rate lui(y), it

follows that the number of transitions l(ad)}]{ is equal to

T ..

f lué(x+t). 1°(x + t)dt. Then, recalling the definition of ._L°
X ix ixx

0

*Note that the age-specific survival probabilities obtained
here differ from those obtained by Hoem (1970) and Ledent
(1972) who have assumeda morerestrictive hypvothesis (no more
than one movement allowed over each time interval).

u iA n i/\'
'f UX(X+9)+.Z ui(x+6)] de
i23 _ IT L "] o =1

P Ll(x + v) e j#i du
o (90)
T liss LIRS

-f g (x+u) + ] Tulix+u)| du (91)

. j=1

Tpe=e ° i#i

u 1”6 n i~
-f Mo (x+0)+ T tulixee) | de
i%é T irs o J=1

P, = e lx + 1) e j#i du

(92)
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and substituting into the above definition yields

T irs
I u (x+t)ixl (x+t)dt
0

"

T

j 1T (x+t)dt
1X

0

(93)

In a similar way, we can define the age-specific transition rate

lmi, the discrete counterpart of lui(y), as the following ratio:

i B
j (ad)g j =1
X . Li j#1i
1X X

- (94)

that, using continuous functions, can be rewritten as:

T ... .
i”3 i
[ u (X+t)ix1 (x+t)dt
0

T .
i .
f ix1 (x+t)dt
0

It is clear that, unlike the age-specific mortality and mobility
rates of the movement approach, the rates just defined do not
depend on the state allocation of the initial cohort: this is
merely a consequence of the independent evolution of the survivors

of the various groups 1; over the next T years.

A corollary of this property is that it is possible to derive
the age-specific migration rates from the knowledge of the 1 and
L functions.

The discrete equivalents to the elementary flow equations

(78) and (79) can be rewritten as:

joo_ i j Vi, A T (96)
ix1x+T (ad)x j i

.y
S
RN



- 69 -

and
_ i § Toi i .
iX1X+T = ixlx (ad)X - z (ad)X , Vi 1,000,0 .
(97)

Substituting the definition equations (89) and (94) leads to:

J+T = *mJ - * ¥i,j =1,...,n (98)
iX"x X ix"x 3£ 14
~ n
R ST R L T U SO0 S Aol 2 S IR
ix x+T iX X X 1X X i 21 X 1X X
1= (99)
or, more compactly,
i’ .
= - = J ooy ’ 100
{ixlx+T} {ixlx} My {ixLx} vi ! ny )
in which lmx is the discrete counterpart of (81)
0 ™x 0
. irs 176 1% [ i 3] in6 irs |/ .tn
1 = My o My x T L X x "0 Ty 1 row
~X j=1
—_ i#
0 Ll 0
X
’— ~ n (101)
i
column

< A

The expression of lmi and 1mi (j#1) in terms of the multistate

functions is easily obtained from (98) and (99):




i L]
ips Jixx  ix x+b vi=1,...,n,
x L 2
i x
13
T i + . .
l]’n] £ 1X xlT Vl{] = 1,...,1’1
X . L j#L
ixXx

In the case of the last age group, z years and over,
l(ad); = 0(¥j) follows from the fact that everybody u}timately

i
i%7 e i”é iz z

dies and , consequently, m; = 0 (¥j#1i) and m, = =
iz"z

(Rogers, 1973a) .*

Applied Calculation of an Increment-decrement Life Table Based on
the Transition Approach

The main idea in. constructing such a table is to derive an
expression of the age-specific survival probabilities in terms
of the mortality and mobility rates and then to provide applied
estimates of these probabilities by assuming identical rates in
both the life table and observed populations (especially because
there is here, in contrast toc the movement approach, no problem in

implementing such an assumption).

However, in opposition to the movement approach, the present
approach does not permit deriving a generalized expression of the
age-specific survival probabilities. Specific formulas must
therefore be established for each particular choice of the inte-

* 4
gration method for calculating {iXLX}

*The matrix of expectations of life 25 is thus given by the same

~

formula as in the standard approach, but the non-diagonal elements

are here zercs since "m? = 0 (¥ # 1).

**There 1s no simple way 3f defining variables similar to the
lai variables of the movement approach when the system contains

more than two regions.



The Linear Case

Suppose that {ixLx} is determined by the following linear

approximation:
(. L.} =20{, 1.y + 4.1} , %i=1,...,n
1X X 25 ix ' x ix x+T
Thus:
ix x+t? T [T + % iéx]—1[£ - % iéx]{ixl bovio= 1, s
173

i
—
~

and the age-specific probabilities Py (for j .,n) are con-

tained in the ith column of lpX defined by:

Il wi=1,...,n . (102)

~ T
m 1 [T - 2 °x

Note the likeness of (102) with the corresponding formula (58a)

obtained in the movement approach.

. i . . . . .
Since m. contains many zero entries, it 1s possible to
* A

compute the inverse of [I + g lmX]—1 and therefore lpX . However
the calculations are rather tedious. Fortunately, the simplicity

of the scalar formulas (98) and (99) permit a direct derivation

of the elements of the ith column of lpX in which we are interested.

Introducing the linear hypothesis in (98) and (99) yields

i i _ T i%8 i i T 178 j
ix"x+T lx Z mx[lx * ixlx+t] 2 mx[j£1 ixlx+t]
j#L
- T I3 1 i _
5 1 j£1 m 1 [l +. 1 .1 ¥i =1, N
iFi
and
j = _,I_‘ iAj l 1 1 —
ixlx+T 2 My [lx ix x+t] Vl,% ; 1' '



Substituting (98) for 13 leads to a relationship linking

ixX x+T
i i
ixlx+T to lX
(1 + 238 4 i 155[:§ iﬁj]+ T T in] i
2 X 4 x i=1 Y 2 j£1 mx) ix xtT
J#1L J#1
_ - Tirs 1 i°s [E 1“j] T E it§. i
2 Y m.i- 5 ) 1
X 4 x j:? % 2 j=1 X X
J#1 j#i

Phen, we have the probability of remaining in state i at age

X + T as:
T ing n i3 2 .. n A
1 - = J; _ T7 178 1
5 | m o+ j£1 m. ] T mx[j_z.1 m;]
iti j#i J#L _
px_ Vl: 1’ v [n
T i°$ T T iny
(v + 5 m ) (1 + 5 .z x)
Jj=1
J#1
or 0
ins it5 ,oroite|l ¥oinj
T me ¥ .z met 2 mx[.z my
. j=1 j=1
o 41 Y
lpl -1- ) 71 ¥i=1,...,n
% n
T i .
q;! (103)
jAL

It follows that the probability of being in state j at age x + T

is:

my ¥i,j =1,...,n

(104)

-
+
N3
U3
[
=]
Lo

.-
He —
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and the probability of dying, in either state, between ages x and

X + T, is

which reduces to:

N N n A
T 1mi + §_¢ ) z i79
X j=1 X
D J#i
- _21 Py, = . _ :
i= T i7 T i3
(1 + 3 mx)(‘l + 5 2 mx)
3=1
j#i
Vi =1,...,n
- it 8
my Vi = 1,...,0 (105)
+ T i;é
2 X

¥ .
Note that if we assume with Rogers (1975a) that people cannot
make more than one move over a T-year period, the terms contair-

ing products of two rates drop out in (1103) through (1
yield the formulas obtained by Rogers (1975a).
<A n s A
1 - % [lmé + 3 N
x 521 x
pl = 71 Vi =1,...,n
X T i~§ n i~3
1+ % [m, + ) "ml]
=1 *
j#i
i3
~s T "m
i P
pJ = X ¥i,j =1,...,n
X T (i%6 L A d
1+35 [m + Yo oTm2l
X L X
i=1
j#i
ins T g
Py = — = . ¥i=1,...,n
1+ % [lmd + X i i]
j=1
iAd
which clearly constitute the discrete counterparts of (

through (92).

05) and
(106)
(107)
(108)

90)
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The above scalar transition probabilities lpi can be collected
into a matrix Py similar to Py
A T —_
P = [T -Fulll+ v (109)
in which:
A A n A A A
178 + s T 1m6) ) 1m3 _ 2m1 _ 5 nm1
X 2 X 521 X X
j#L
~ n ~
172 278 T 276§ 273
- 2 m, m (1+§m)._z_ me
= =1
X . j#L
- 2 1mn
— -
(110)
and v, a diagonal matrix whose diagonal is identical to that of
u_. Let m_ be a matrix of transition rates similar to the matrix

. AL

m_ of movement rates, previously defined,

~X
5

A

ﬁx a diagonal matrix whose typical element is the transition

mortality rate lmi and,
mt
n i/\'
bility rate out of state i, X mi
3=1
j#L

m

~

ﬁx a diagonal matrix whose typical element is the total mo-

The matrix m has zero diagonal elements and the (i,j)th off-

diagonal element equal to Jmi



We can rewrite (109) as:

m § mt m § mt
A T A A T ~ ~ T ~ ~ T NN _1 *
= - - = —_ <+ 4+ =
By = [I-7 my-mytymr)lil+gym +mn ool 01D
or, alternatively,
§ mt
Py = I -Tm (I+7m) (I+5m)

A simple expression of {LX} follows after substituting (111) into

- T - .
L} = 501 + p 1{1 }:
m m § mt
(Ll =TI+ 7o I+ 5 mtm +ymem)l (1) .012)

Finally, we can derive an expression of s_ in terms of the

age-specific cohort rates:

m m 8 mt
~ _ T ~ T A ~ T A ~ _1
°x [1 + 2 Tx+m][z 7@ t By T3 Oy Tx+T)]
m § mt m
T A A T ~ ~ T N _1
(T - gm - m +gm mIIIT+rmd (13)

Compare (112) with (63) and (113) with (67).

*Compare (111) with (58). Note that the second quantity between
brackets is a diagonal matrix that can be rewritten as

8 mt
T ° T =
(I +zm)d+zm).
**In the case considered by Rogers (1973a, 1975a), 6x reduces to:

) mt

~ ~ -1
(TX - rpx)]

~

_ - T
_} TTX[I+2

Fx




Substituting observed life table rates into (109) provides
estimates of the age-specific survival probabilities from which
all other multistate functions can then be derived. In the case
of the last age group, (100) becomes:

[N

i
{izlz} B Tz{isz}

. . i~ . .th
in which m, 1s a zero matrix except for the i row whose elements

A A

are all equal to lmj (since lmg =0 Vvj # i).

This last vector equality actually reduces to a unique scalar

equation
~ ~ n .
1t = L° = 'n « )y . L)
z z iz7z z LoizTz
J=1
which is insufficient to determine ing for all §j = 1,...,n. Thus,

the general assumptions embodied in this transition approach do
not permit us to determine, from the availability of the transi-
tion mortality rates, the various numbers of person-years lived

o *
in each state.

Consequently, only the movement approach allows for an exact
calculation of the multistate life table functions of the last

group.

Alternative Methods for Deriving {L}

In opposition to the movement approach, the transition ap-
proach cannot use the cubic integration method which requires
the simultaneous consideration of differen*t age groups. However,
an interpolative-iterative is possible. Such a method adapting

the general procedure developed by Oechsli (1972, 1975) to the

*Because he supposes that no more than one move is made within
each age interval (including the last one), Rogers (1973a, 1975a)
has

Jj_ . . i_ 178 i
iXLz 0 (¥j # i) and lz m, ;L



transition approach was set forth in Ledent (1972) and Ledent/Rogers
(1972) . Actually, it does not differ much from the method pro-

posed in the movement approach (see Section II).

The main difference is that the multistate stationary pop-
ulation is further broken down into groups characterized by the
state of presence at the beginning of the period and that the
separate consideration of these groups makes it possible to "do

away" with the radix problem.

The method used in the movement approach remains valid here,
. . . * e .
with vectors replacing matrices , but the age-specific life table

rates for the consolidated intervals are now obtained from:

178% _ lx - ixlx+T
X i
ixXx x
and
13
i%9%  ix x+T . .
m, = T Vi # i
1X x

instead of (72).

*The use of the interpolative-iterative methodology in the tran-
sition approach is equivalent to its use in the movement approach
for a system with a single radix.




IV. MOVEMENT APPROACH VERSUS TRANSITION APPROACH: A FINAL
THEORETICAL ASSESSMENT

The purpose of this section is to compare the respective
merits of the two alternative approaches to the construction of
increment-decrement life tables, and thus to shed some light on
the controversy that has been going on between Schoen (1975, 1977)
and Rogers/Ledent (1976, 1977).

Nature of the Two Approaches Contrasted

In both approaches the discrete age distribution {lx} is ob-
tained by the application of a series of transition matrices to
an initial cohort {10}. However, these matrices are estimated
differently owing to the distinct focus of both approaches. To
be more specific, when estimating the probability of an individual
moving out of a state i over a fixed period of time, (1) the
movement approach takes into account all of the moves made by
the individual over that one period of time (whether state i is
involved or not) while, (2) the transition approach compares the
individual's state of presence at the beginning and end of that

period, i.e., at two given points in time.

Consider a group of individuals present at age x in state 1i.
The transition approach focuses on the net balance of moves from
state i to state j made by the members of this group between ages
x and x + T. On the other hand, the movement approach follows
all the moves made by these individuals over the same T-year period,
thus explicitly considering all gross flows of moves between each
pair of states k,j (= 1,...,n). The information needed in the
transition approach is somewhat less than in the movement approach,*

and may be considered as a "reduced form" of the movement approach.

Further insights can be made by comparing the continuous pat-

terns of mortality and mobility that underline each approach.

*From an applied point of view, the information sought in the
transition approach is also easier to collect, which explains why
migration data are generally available in terms of transitions
rather than moves.
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A

Indeed, the instantaneous mortality and mobility rates lui(y) of
the transition approach are not identical to their analogs of the
movement approach, as can be seen from the respective definitions

of these forces.

For example, rewriting the definition of the instantaneous

mortality rate in the transition approach:

i §
N - (ad) _(y)
1 .
Mo y) = dy > 0 —X ¥i=1,...,n (74)
ixl (y)dy
and observing that:
. n .
i _ 46 .46
(ad)  (y) = 1 ;34 (¥) = ;7d (y)
j=1i
we have:
R « 46
lui(y) = dll—ino L(Y)__ ¥i =1, Mo}
Y 1° (y)dy

ix

This is clearly different from the definition (12) of the instan-
taneous death rate in the movement approach that can be rewritten

as:

i.6

: - d” (y)
L0y = dyllf‘o —x vi=1,...,n (114)
17 (y)dy

«X

* Note that we may obtain lﬁi(y) from lu(s(y) by simply exchanging

the index i with the dot, representing the whole set of states
in the system.




The instantaneous mobility rate of the transition approach is
defined by:

i J

A . d

Ml o= gt ) ¥i,j = 1,...,n (75)

X y - 0 j # i

ixl (y)dy
in which

. . n n+1
i J _ k43 Jqk

(ad) (y) = ) ..d”(y) ) pdn(y)

X g=q 1x Koq 1X
k#3 k7]
- 4] _ Jg-e,oy 346
ixd7Y) = dt(y) - L od(y) (115)
Thus, we have:

) ady) - Jdary) - L3488
1U](y) - lim ix ix ix™ (y) (116)

X dy - 0 i

1 d
1x (y)dy ¥i,3 =1,...,n
j# i

while the instantaneous mobility rate in the movement approach is:

i
. X

1
.xl (y)dy

i j( _ lim dj(y)

Y) = ay 50

A S|
[IJN

Aside from the non-equality of the movement and transition in-
stantaneous rates, we note that the relationship between mortality

and mobility patterns is of a different nature in each approach.

In the movement approcach the instantaneous rates luj(y) for

j=1,...,n (j # 1) are clearly independent. This is merely a



consequence of the assumption that no more than two events can
take place in a small interval of time, so that the continuous
patterns of mortality and mobility, characteristic of each region

are unrelated.

In the transition approach the instantaneous death and mig-
ration rates at age y are dependent on the choice of the exact
age x immediately below y in the series of fixed ages from which
discrete life tables are constructed. Moreover, the instantaneous
death rates are not attached to the state of presence in which
the deaths actually occur at age y but to the state of presence
at the earlier age x. Also, note that the mobility patterns is

a composite of pure mcobility [because of i)’(dj(y) - iid'(y) in

(116)] and mortality [because of iidd(y)]. Therefore, in the tran-

sition approach, unlike the movement approach, the mobility pat-

tern is clearly affected by mortality.

Consolidated Flow Equations and Multistate Functions Contrasted

The contrast between moves on the one hand and transitions
on the other hand is further substantiated by comparing the con-

solidated flow equations.

The integration of (14) yields the consolidated flow equa-

tion of the movement approach (Schoen and Nelson, 1974; Schoen,
1975)

Ja Vi =1,...,n , (117)

'_l
|
'_l
}_J
]
}_J
Q,
%
|
M3
»

(W Py B
-

in which 1di is the total number of moves from state i to state j
between ages x and x + T: (n is the number of decrements to li due
to mobility) .

i

, ™ . . .
di - J 1UJ(X +t) ll(x +t)dt l,...un

0
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or, in discrete form,

PR ol (118)

)
»
(RN
|
[

The integration of (78) and (79) yields:

. R . . n R R
P P E R C C V) Yag))  wi=1,...,n
j=1
j#i (119)
.X1;+T = J(ad); ¥i,j = 1,...,n (120)
] j # i .

Adding (119) and the (n - 1) equations composing (120) leads us
to the consolidated flow equation of the transition approach

(Rogers 1973a, 1975a):

. n . . n
oo =1, - @), - T @)+ ] Jaa)
® j=1 j=1
J#L j#L (121)

Vilj=1l---ln r

in which l(ad) is the number of net moves (transitions) from

J
X
state i1 to state j between ages x and x + T

. . T ...
l(ad)j = J lu](x + t) ll(x + t)dt vi,j = 1, ,n
X X 1 .
0 j #1i
and l(ad)i the number of deaths occuring between ages x and x + T

to those present in state 1 at age x

A T . A
Iiaa)d = [ 168(x +t) ., 1°(x + t)dt  ¥i = 1,...,n
X X 11X
0



In discrete form, the net decrements to l; are respectively:
i j _ 173 i ..
(ad)X m. iXLX Vl,q =1, . s
j#£ 1 ’
and
i § 1”76 . .
(ad)X = My ixLX ¥i=1,...,n

An important aspect of the comparison between the two alter-
native approaches is that (121) of the transition approach can be
broken down into n separate equations [contained in (119) and (120)]

while (117) of the movement approach cannot.

The substitution of the net decrements into the flow eqguations

of the transition approach lead to n2 scalar equations, summarized
as

_ _ i L
{ixlx} = {ixlx+T} = Tx{ixLx} ¥i 1,.¢.,n (122)
while substitution of gross decrements into the flow eguation of

the movement approach yields only n scalar equations, summarized
as:

{1X} - {1X+T} = TX{LX} . (123)

Consequently, from the knowledge of multistate functions,
(122), unlike (123), allows for the derivation of life table rates,
which permits the elimination of the radix problem without imposing
any further assumptions. In the movement approach however, a
further assumption (independence of the life table rates from the
state allocation of the initial cohort) must be introduced. Ac-
tua;ly it is equivalenF to suppose that (117) holds for each group

) 1t rather than for ll = ll alone,
jy X X Y OX
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Table 2: A Tabular Comparison of the Movement and Transition Approaches

MOVEMENT APPROACH

. . . n o ..
, ] - Jo_ 158 _ i.3 j .1
>w equation iylx+T, iylx iydx j£1 iydx * j£1 iydx
j#1 J#L
143 i3 .
.o a -
Age specific mortality Ipd = 1y x _ ..... - hy x :% _ 1’ <o
; o X 1 : J = 1,...,n+1
and mobility rates L 1 .
n . N
16, [Z 1m3] 2.1 _n 1
x : X
J=1
3#1
- 12 28 [n 2 j]
Matr}x_of age- m = - 'n m. +L} m
specific rates ~X X j=1 X
j#2
n .
_ 1mn nmé + [z nmi]
X X J=1
— j#n .
.o l - =
Model in compact y~X y%x+T Ty y§x
form
LINEAR INTEGRATION
= _7T T -1
Survival probabilities Py (1 2 Tx][z + 5 ml
— T -1
Person-years lived y%x = TII + 2 Tx] y~x
. . T -1 T
Survivorship S = [} + 5 Tx+T] [E -5 Tx]

proportions
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Table 2. (continued)
n
i i 4 § - ¥ i j .
ixlX+T = ixlx (ad)X 521 (ad)X ¥i=1,...,n
jAi
Flow equation
J _ 1 J Lo
ixlper = Hlad) ¥ijj = 1,...n
j#i
i
i”8§ (ad)x i” *(ad)]
m, = ¥i =1,...,n ; mi = — ¥i,j = 1,...,n Aje specific mortality
ixPx ixlx j#i and mobility rates
0 . 0
x
i~ i”s i%8 o oga ] ~
m = . m + z lm}]( } i7¢ -
J=1 ‘Matrix of age-
J£L specific rates
i~n
0 - Tm 0
1) - o, b= in (L) .
1X X ixX " x+T ~X ixTx Model in compact
form
LINEAR INTEGRATION
m § mt m § mt
b, =11 -Tm -n +la Lo sm +Za .
Py = [T -zm -m +5m m)I[I+5(m +m +>m m)] Survival probabilities
- m m . 8§ mt
= T T, - T N1
X T[I + 5 Tx+T][I + f(Tx tmo+ 5 m, Tx)] Person-years lived
o o o~ m 8 mt
= [I+:sm = - - - -1
- T Mgyl 1T F om =+ 7 Opsr Oppq)]
o - n § mt m gurvivigship
I o ) roportions
IT - 5(m, - m + + I T -1 -
~ 2 x ~X IPX 2 IDX mx)] [l + 5 rﬂx]




i i igs _

jle+T T iyx vy ox

=
X A
-
.
<
X

1 3
i

M N~

+
N R
MM e~

'_l.

K
k (1204)

¥i,j =1,...,n .

Thus we have n2 scalar equations that can be summarized in

vector format as

{ }={,.1 b= {. L.} ¥i=1,...,n (125)
1y % 1y x+T ~X 1y X ¥y 0 <y < x
or, in matrix format
1 -1 =m L ¥y 0 <y <x ,

y~X y~x+T ~X Y~X —

which permits the estimation of all elements of m from the know-

ledge of the multistate life table functions.

The contrast of the two approaches is continued in Table 2,
which shows the flow and orientation equations as well as the
expressions of some multistate life table functions (in the linear

*
case) .

Relationship between Movement and Transition Rates (Linear Case)

Expression of Movement Rates in Terms of Transition Rates

Formulas expressing movement rates in terms of transition

rates can be obtained by equating the age-specific probabilities

*It is interesting to note that the formulas corresponding to the

transition approach collapse into those of the movement approach
m mt

~

by simply setting ﬁx and m equal to a zero matrix.



~ *
Py and P, derived in both approaches.

From (58) we can draw m

By equating Py to Py and substituting (103) for p,r we have

m
T -1 T T ~ -1
~X Yx [E 2 Yx] [% + 2 Yx][E 2 Tx] ’
in which:
E;a F 0+ TS T 10 221 n
x 7 ™)1 - -
j=1
j#i
. - ~ n ~
.= - 102 228 4 (12208 o2
~ X 2 x' . <
i=1
j#i

*The rationale for equating these probabilities lies in the
equivalence of the linear integration methods used in both the
transition and movement approaches. This equivalence can im-
mediately be established from the observation that

T

= T
(L.} =3 L)+ (1

x+T}] is identical to {ijx} =5 [{jxlx}

jx{lx+T}] if one supposes independence of {lx} with respect

to the state allocation of the initial cohort.




(i.e., wX is the same as u defined in (110) except for the fact

that the off-diagonal elements are half of those of uX) and
m

m, is the same as in Section III.

Since (I + % Vx)—1(1 + % VX) = I, the above equation reduces
to: '
m
=w (I + < & )_1
~X ~X =~ 2 ~x
§ mt
Observing that w_ = m_ + I m_m_, we also have:
~X ~X 2 X x

8

A T A
= + —

IEx (Tx 2 IB

E 3
) ' ‘ (126)
from which we can draw an explicit relationship linking standard

and cohort death rates by premultiplying by a row vector of ones
{i}7 Noting that:

D 1.8 n §,7
{i} m, = { Myreees mx}
o mt .1 ° T T 147 ° T 2 '
. . ~ T ~ A _ ~ T /\J n~» r - n,\J Lo~
{i} (@X + 5o mx) = { mX(1 + 5 j£1 mx),..., mx(1 + 3 j£1 mx)} )
j#1 J#i

*Note that, in the case examined by Rogers (1975), W reduces to

-~

m_ S0 that the relationship between movement and transition rates

is simply:



we finally obtain after transposing:

m)
§, _ T ~ -1 T ° ~ 8
{mx} = (I + 5 Tx) (I + 5 m ){mx} / (127)

m

A

m
in which m is the transpose of m,

In the case of a two-state linear system, it is obvious
from (126) that

T 27§ T 271
12 1 Mg m) g )
X My 2 A ~
T 172 271
1 - = m
)] X X
and
176 T 172 T 172 278 T 271
1m6 _ mx(1 *3 mx) Tz My mx(1 t 7 mx)
T2 122 271
1 - = m
4 X X

Subtracting m, from both sides of (126) leads to an estimate of

the difference between movement and transition rates:

R § mt m
et Mg = myrFmem) @ In)T om
R § mt m m
- [Tx * % éx %x - %X(E + g éx)][} * g %x]_1 !

*In the case examined by Rogers (1975a), the relationship between
standard and transition death rates is simply:

“Tiny

5. T
{mx} = [{ + 5 <

m
m)
~X]




which reduces to:

m m
- = -— + =
~X ~X Z[TX Tx Tx Tx][z 2 T] ' (128)

a relationship indicating that the difference between corresponding
movement and transition rates is likely to be small since each scalar
element of m - m contains terms that consist of products of at

least two rates. For example, in the case of a two~-region system,
we can establish that:

1 2 172 276 271 T, 172 276
m, - X T mx + [1 + 7( m + “m_ ) 1]
12 T2 2 aq 5n
m _ ?_ 172 2 1
X 1 4 mx mx
~ T 278 271 "
1.6 178 176 27 T 271
mX mX _ I 1/\2 ( mX - mx) (1 + E mX)
178 7 My 2 e n
m T 172 271
X 1 - = m
4 X X

2R

T ,
5 mx[ m, - mx] {130)

Three important contrasts between the two approaches should be
noted:

1. The relative difference between movement and transition

rates is approximately a linear function of the length
of age intervals.

2. The relative discrepancy between movement and transition
rates of mobility is largely influenced by the level of

mortality in higher age groups.



3. The relative discrepancy between movement and transition
rates of mortality is generally trifling, as suggested
by (130) whose right-hand side contains the product of
two rates. As expected, (130) also shows that the lar-
ger the relative discrepancy between the movement rates
of mortality in each region, the larger the relative
discrepancy between movement and transition rates of

mortality.

In the case of the last age group, there is no possibility
to express movement rates in terms of transition death rates

(mobility rates are zero by definition).

Expression of Transition Rates in Terms of Movement Rates

Alternatively, formulas expressing transition rates in terms
of movement rates can be derived from the following relationship
(obtain&d by comparing (122) and (125) in which y is set equal

to x):

r A

= J s
mx{ijx} = Tx{ijx} ¥y =1,...,n
Substituting (63) yields:
T+ 2m) 1) =T+ ST 1) (131)
~X = 2 .x jx ~X =~ 2 X jx"x :

Since all components of {jxlx} are zeros except for the jth one,

{131) means that the jth columns of [mx(z + g mx)_1] and

[]TX(; + % TX)_1] are equal.

Let {?h} denote the vector (I + mx)—1{j} in which {j} is

N3

a column vector of zeros, except for the jth component being equal
to one. Then recallinag the definition of JmX and observing that

- A ~

jmx{j} is a vector whose jth component is
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. n . . N
J ) Jhk] + Jh, Jm};] and any 1 Eh component

mo [
X k=1 I x
k

QN R o]

:
j

(1 # j) is th Jmi, we have:

. n . . . . . A n . . n PN
, k
CUCIPE T P S N e e N D N N
¥ k=i ¥ J k=1 k Xg=1 1 J k=1
k#3 k#3 k#J
¥j =1,...,n
and:
1.6 T 1 k.3 k13 _ _ 3. 3’1 .
['m> + } m.1°h; - )} "m -“h_=- -h., °m ¥j,1 =1,...,n
= S = K b
k#1 k#1
Therefore:
n . n .
k
k=1 k=1
Jmi _ k# , k# ¥j,1 =1,...,n
Ih, 1 #
j
and:
n .
s _ =1 * 1 .
me = - ¥j =1,...,n
Ih.
j

g = L
z
e a1
3y m,

{i}

in which {j}~ and T;_1 are the transposes of {j} and m;1 respectively.
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Assessment of the Discrepancy Between the Alternative Approaches
(Linear Case)

Suppose that we put the same set of rates into both formulas
(58) and (111), expressing the age-specific probabilities in the
movement and transition approaches respectively. What would be
the difference between the two types of probabilities thus ob-

tained?

Let Apx denote the quantity obtained by subtracting the tran-

sition formula from the movement formula:

- _ T T 1 T m T § mt
by [T - zmJII+3ml [I+5m, -m +35m W
T m T S mt,, -1
I+ +m +5m m)l
. T T -1 T -1
Us th - = = - i
ing e property that [E 5 Tx][I + 3 Tx] [E + 5 Tx]
T
[T - > Tx]' we can rearrange Apx as:
- T -1 T T m . -, T 3§ mt
APy (I +35m] [(I - 7 M) (I + 5lm +m, + 7 My M)
T _ T _m T § mt
(I +3m)(I 5 (1 me + 3 My W)l
T m T 6 mt,,—1
+ = -
[E Z(Tx - 7 Uy Tx)]
and finally obtain:
Ap =22[I+Em]—1[1(181 - B+ 2 LB+ TA BT
Ex 2 = 2 -Xx Tx Mx My Nx][~ + f(Tx My 72X X

Now, suppose that we put the two alternative sets of rates

in the same formula, say (58) normally valid in the movement case.

Using movement rates leads to the true transition probabili-
ties:

p. = (I - =m ) (I + % m ) (58)
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while using transition rates yields the approximate transition

probabilities 5x such that:

(ST
1=

- _ _2"
Py = (E 2 Tx)(z +

Since we can permute the two matrices in (58), we can write the

difference between the exact and approximate probability matrices
as:

= _ T -1 T T "\ _ _ T
Py = Py (I + 2 Tx) [(I - 2 Tx)(z tom ) (E t 3 Tx)(z 2 Tx)]
T A -1
(}+7I~"x)
or:
- T 1.2 T AL -1
Py " Bx T T[I t 3 Tx] [Tx Tx][z t 3 Tx]
> 8 mt m S m
_T TA 1 TA 1/\ ~ -A ~ EA _1
=5 [I+3 Tx] [I+3 Tx] [m, m, = Ty Tx][z 3 Tx]
~ o
(1 + 5 m,]

Alternatively we can calculate the difference between the two
probability matrices that can be obtained if (111) is used instead
of (58).

The true probability matrix is given by

S m
=I—T:§i[1+3£\]"
~ ~X 2 ~Xx

[0 I

X

while the approximate probability matrix is derived from:

T § ,-1 Tmt , -1
'fo] [I + f%x]

[0 "]
I

I - Tm [I +
~ ~X ~
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The result is that:

§ mt
~ z_ TS -1 Tmt,-1 _ 2 T~ -1 T -1
Py = Py = Tlm (I + PIRLVUNS. +'7q@x) -m Iy m) I+ 5m) ]
Finally:
- i3 ij
ity _i73 _ me me
Px T P T T i%6 T B ik, T i 6 r % 4k
(1 + 3 mx)(1+2-k£1 m) (1+35 mx)(1+5k£1 m,)
k#i k#i
- ot
¥i,j =1,...,n
) mt
i AGI%: ) " i ; h .
Since Tx’ n Tx’ Tx are diagonal matrices, we have:
= i3 T i%8 r ¥ i’k
lpi m (1 +35 m)0 + 5 k£1 m,)
173 n , ¥ # 1 (132)
P i”3 T i ¢ T ik
X mx(1 + 5 mx)(1 + 3 k£1 mx)
and
C a8, M oix is, % ix ]
m_ + m m_ + m
< x *oly M k=1 X
1i-1;i='1‘ k#i _ _ k#1 - -
T i 6 T i T i"é T i
(1 +35 m) (1 + 5 m) (1+=m)@+5 ) Tm)
2 X 2,1, 2 2= X
k#i k=i
(133)

The equations (132) and (133) indicate that the larger the difference
between movement and transition rates, the larger the discrepancy

between the true and approximate transition probabilities.
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Also (132) indicates that, all else being equal,

its _ i 8 i%3
to
m > m leads P

. iAJ
> px

i%k > im];(k # j or i) also leads to "p_ > 'p

s R .

o . i i
m) > lmJ however, leads to pJ <

X X X

1

T >

Dividing both sides of (133) by lp; and further rearranging the

ensuing relationship, yields

2 n n ~ n N n . 2
i”§ ié T ik i’k i’k _ ik _ T i
- ) (1 - & me J tmS) - (] Tootm) (1
i%i i%d ( x 4 k£1 X k=1 % k=1 ¥ k=1 % 4
P~ - k#i k#i k#i k#i
iti it ik Tig L
p ("m” + k£1 m )1+ 5 m )1+ 5 k£1 m.)
k#1i : k#i
Clearly,
. n .
1m6 + Z lmi
X k=1
1 - k#1i
« A n .
lma + z 1mk
. = : X k=1 x
1 1 1 1 .
P - ~ k#l ’
i”1i T,1 g
T+ 50m, + ) Tm.)
k=1
k#i

which, in the case of a two-region system (in which regions are

denoted by i and j), reduces to:




V. CALCULATION OF A MULTIREGIONAL LIFE TABLE: THE INCREMENT -
DECREMENT LIFE TABLE APPLIED TO THE PROBLEM OF 'INTERREGIONAL
MIGRATION

There are two alternative methods of calculating an increment-
decrement (multiregional) life table (Rogers 1975a):

~ the Option 1 method simply consists of setting life table
age-specific rates of mortality and mobility equal to their

observed counterparts, and

~ the Option 2 method <calculates a multiregional life table
in which survivorship (or migration) proportions are equal

to their observed counterparts.

Calculation of a Multiregional Life Table (Option 1)

A prerequisite to the use of either the movement of the
transition approach, as defined in Sections II and III respectively,
is clearly the measurement of the observed mortality and mobility
rates. Unfortunately, the mortality and mobility data commonly
available do not permit a measurement of age-specific rates con-
sistent with either approach: wvital statistics data allow: for the
estimation of mortality rates according to the movement approach
whereas population census data permit us to estimate mobility rates

compatibie with the transition approach.

The Measurement of Age-Specific Mortality and Migration Rates

Defining the age-specific mortality and migration rates in
observed multiregional systems does not raise any problem because
their definitions are direct analogs of the corresponding life

table rates' definitions.

In the movement approach, the observed analogs of the def-

inition (35) of life table rates are simply:

A. 1in the case of mortality,

¥vi=1,...,n , (134)
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in which lDi is the observed number of deaths occurring in region
i over a T-year period, to people aged x to x + T (at time of death)
and K; the average population exposed to the risk of death in

region i over the T-year period, and

B. 1in the case of migration,
L
Ml = X Vi,j = 1,...,n (135)
X 1 . .
Ko j# 1 '

in which lDi represents the total number of moves from region i
to region j made over a T-year period by individuals aged x to

X + T (at the time of move).

In the transition approach, the observed age-specific death

rates are defined, for each regional cohort, by the analog of
(89).

1:1 = — (136)

in which l(AD)i is the observed number of deaths occurring (in
either region) and over a T-year period to people aged x to

x + T (at time of death) but present in region i at age x

and ixK; the average population exposed to the risk of death over
a T year period. |
In the same manner, age-specific migration rates related to

each regional cohort are given by the analog of (94)

i j
(AD) o
1

. K
1X' X

i

J -
M (137)



in which l(AD)J is the number of transitions made over a T year
X » (3
period between regions i and j by people aged x 1in region 1 at
. . i
the beginning of the observation period, and ixKx the average

population exposed to the risk of migrating.

Since vital statistics are generally collected by place of
occurrence, estimates of age-specific mortality rates, by region,
consistent with the movement approach can be easily measured by
application of (134): iDi is directly provided by vital statistics
data and Ki can be approximated by the mid-period population of
each age group. In contrast to this, since no link is generally
made, between reporting deaths, the region of death occurrence,
and the region of presence at any earlier age, no age-specific
mortality rates consistent with the transition approach can be
simply measured.

Very few countries have compulsory registration, that makes
it possible to evaluate the total number of moves between pairs
of regions over a given period. In most instances, migration
rates consistent with the movement approach cannot be measured.
Fortunately, a population census generally proves data on place-
to-place migration in terms of reported changes of residence from
a fixed prior date (i.e., viewed as transitions rather than moves)
and thus constitutes a data source consistent with the transition

approach.

Unfortunately, typical migration figures released by most
censuses do not correspond exactly to the numerator of (137).
Generally, census data reports the number of people iKi (aged
X to x + T at the end of the observed period) present in region
i at the beginning of the period and in region j at the end of
the period. Therefore, we must approximate to determine i(AD)i,

the numerator of (137):

*

i.] i3
K + Kx
- (138)

x+T
2

i s
(AD)X

*If x = 0, then lKJT denotes the number of babies “BJ born in

region 1 over the T-year period who were present in region j at
the end of the period.
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We also need to estimate the denominator of (137) which is

i . . )
not K; but ixKx . This quantity can be calculated by a

linear approximation

i
i _ i i,x—TKx(t +T)
ix 'x 2 ' (139)

i
+
XKX(t)

in which i yK;(u) represents the number of people aged y toy + T

[4
in region i at time t and present in the same region u - t years

later. i xK}l{(t) is nothing more than the population aged x to
r

Xx + T in region i at the beginning of the period, whereas,

. K*(t + T) is immediately obtained as K: . Also, note the
1,Xx-T x b4

existence of further complications for the last age group that

are not revorted here.

To summarize, measures of age-specific mortality and migra-
tion rates consistent with either approach generally cannot be
obtained. Most common data only permit us to derive mortality
and migration rates compatible with the movement and transition
approaches respectively. Fortunately, this does not hamper the
applied calculation of a multiregional life table since an alter-

native mixed approach based on the availability of movement death

rates and transition migration rates is possible.

Illustration of Linear and Interpolative-Iterative Variations

The construction of a multiregional life table from the type
of data generally available can be performed using either the
linear integration method for deriving {LX} or an interpolative-

iteration method.
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If the linear integration method is retained the relationship
(125) linking the death rates of the movement and transition ap-

proaches can be reformulated as

mt m
8 T~ -1 T *- 8
m b= (I +5m) (I+35m0){m) (140)

which provides a simple expression of the death rates (of the
transition approach) in terms of the life table (movement) death

rates and (transition) migration rates.

The age-specific survival probabilities of a multiregional
life table can be expressed in terms of life table (movement) death
rates and (transition) migration rates by substituting (140) into

the formula (111) of the transition approach.

The result is, assuming equality of life table and observed
rates, that the age-specific survival probabilities can be ob-

tained from:

§ mt § mt
A T/\ ~ T/\,—\ T T/\ __‘l
= - = - M + =M + = M + =
Ex [E 2(¥x ~X 2 X @X)][(I 2 ~X)(E 2 gx)]
§
where the diagonal of Mx is identical to the vector
§ mt n
- _ T~ -1 T §
{MX} = (T +5M) (I+5 MX){MX}
8
in which {Mx} is a vector of observed (movement) death rates and
& Til it -6 |
Mx’ @x, @x and @x are the observed counterparts of m M. mX, and
mt
m- Thus, .initiated by the estimation of the age-specific survival

probabilities, the calculation of the other multistate life table

functions is —complzte? as indir~ated in Censtions TI and ITT,
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Such a calculation is illustrated using mortality and mig-
ration data for the four region system of the U.S. female pop-
ulation (period of observation 1965—1970).* Age-specific (move-
ment) mortality rates for the regions of this system have been
measured by the application of (134) to available data (see the
second column of Movement Rates in Table 6, which provides est-
imates of such mortality rates relating to the third region of the
system: South) while age-specific (transition) migration rates
have been measured by application of (137) through (139) (the
three columns of Transition Rates in Table 6 providing estimates

of such migration rates out of the third region).

The complete set of probabilities of dying and outmigrating
concerning the South region is given by Survival Probabilities
in Table 3. For instance, a twenty-five year old woman living
in the South has a probability of dying with the next five years
equal to 0.00470. Moreover, her probability of still living in
the South region five years later is equal to 0.92226,while the
probabilities of migrating to the North East, North Central and
West regions are respectively equal to 0.01975, 0.02946 and
0.02383. The two alternative mobility statistics to which the
above transition probabilities lead,expectations of life and net
migraproduction rates, are set out in Table 4. It appears that
a woman born in the South has a life expectancy of 74.30 years,
of which 52.16 can be expected to be spent in the South, 5.73 in
the North East, 8.71 in the North Central and 7.71 in the West.
Alternatively, such a woman is expected to make an average of
0.72 moves out of a U.S. Census region, including 0.52 out of
the South region.

Exact survivorship proportions by place-of-birth for those
residing in the South at age x are displayed in Table 5. The

probability for a woman aged 25 to 30 in the South to survive

*This system is composed of four regions which are precisely the
four regions of the United States considered by the U.S. Census
Bureau: North East, North Central, South and West.
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five years later in the same region is equal to 0.93033 if she

was born in the South. But, for a woman born in other regions
this probability increases to 0.93121 if she was born in the

West. Then, the survivorship proportions for women aged 25 to

30 in the South, independently of their place of residence, stands
somewhere in between 0.93033 and 0.93121. However, the corres-
ponding approximate survivorship proportions calculated from

s. = ,L -

X 0~x+5 O%x
4) , which provides an order of magnitude of the approximation made

is only equal to 0.93017 (as indicated in Table

by using the aforementioned formula.

Taking advantage of the formulas linking movement and trans-
ition rates (see Section 1IV), we have calculated the (transition)
death rates and the (movement) migration rates compatible with
the input rates. From the figures in Table 6 we find the follow-

ing two discrepancies:

- transition (mortality) rates are, as expected, only slightly
different from their movement counterparts: slightly
smaller in the young age groups (0.00531 versus 0.00533
for the first age group in the South region), they become
much smaller in the middle age groups and then slightly
higher in the 0ld age groups (0.14948 versus 0.14944 for
the last age group).

- The discrepancy between movement and transition rates of
migration is larger than in the case of mortality. Although,
movement rates are always higher than transition rates, the
discrepancy 1is relatively small when mortality has little
influence (up to 50 years old) - the migration rate from
South to West in age group 20 to 25 is equal to 0.520
(movement rate) versus 0.515 (transition rate)* - and tends
to augment sharply with age: the movement rate for the
last age group is almost fifty percent higher than the
corresponding transition rate. Indeed, these results were
more or less expected since movement rates of migration,
unlike their transition counterparts, are only slightly

influenced by mortality.

*The discrepancy increases with the intensity of migration.
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Table 3. Multiregional life table based on movement death rates and transition
rates of migration, linear case, United States, four region system
(1965-1970) , females, age specific survival probabilities and approxi-
mate survivorship proportions (South Region).

SURVIVAL PROBABILITIES

% 396 3pl 3p2 3p3 3p4

X X X X X
A P.UebPe a7 Q,63443 2.88657 v,03208
5 W,20211 NeM1248 v,62117 N.94616 a,01808
14 P.ANVLT3 A, 145 n.a1718 R.9%619 P.,01445
15 A.0M319 N NYKET W, ePh1S ”n,93587 n,a18712
bl 4 n,nn383 PRS- ] U,6341% N.9152) B,02468
25 N, ARNLT R RDa197H K,02946 Re92226 w,%2383
3N N, 692 M,n13178 v, 82117 P,9%896 A, 01917
35 P2, n1117 P.210237 v, 61559 B, 94B17 w,R1471
42 p,A16402 ne 1717 W,u1n99 A,954R2 PeR1UAY
uh A, N2345 P,Anr513 n,An791 n,9559%5 R, 0ATS6
50 n,n3ge! N, NNARRK B, 0629 ,95171 n,PN564
55 B MUhal N,nA337 h,ens559 N,54n18 g.,00442
1235 w,hUdy V., 3eh v, 00524 d,923°3 2,P383
65 n,"9974 e 348 n,UNs09 ?,8R810 P,AN359
7@ N 148B2D D,ARTTH B oMNS0 n,83928 VWeN0344
75 NP3k} NI RY Y] v, ens4q n,7537%5 n, 00323
A P.35184 B3N @,09452 A 637483 D, 0027
85 § AP pnnn Qe g Q.0 N rpAQ 2.02020R

APPROXIMATE SURVIVORSHIP PROPORTIONS
37 31 32 33 34
X s s s S s

X X X X
-5 Ao IBREI Me11 85 B uyree A,94329 n,B15R4
Y n_ JRN63 WM RAT d ,MP856 Re914d14 NA249Y
5 ALIVBAHK Mgttt 149 b,81925 7495097 B,B81637
1 i 2,997%4 M, ?131n A V2150 B,94634 Na01655
15 21,99649 4. MLR9Y v, Npa9R Ne,92621 B, 02159
20 » L 49574 Bt bed3197 Ae IR\ D,02418
Pl B, 99420 IRV RN I v, V2556 P935017 N,n2158
3 N, 99097 AN 12 D U BUR NgIUIIT V,01704
15 nL9862% A, ARRAY A Lw1339 C,95134 hoW127%
4 Mg R MeMlAB1AH nLaua9u8 P, 9553%4 D913
a9 v,97218 Mg ARy S, a7 ”n,95%87 W, PinbHY
50 2 ,ARAT R Va0 3TY DL, n892 Ny 4609 A, AM503
8% ?L,94471 Ve irin329 NI LR Y P,9%197 W, Nn4g12
6 ".91A5¢ Ny 1333 ¥ IRS R P.976356 W, d3KE
Hh 1 BT T37 A, inT d,dma2d N B651° v, o347
1A% p.H1212 A, 363 I, 0053 A, 79993 n,d2326
75 A, 71454 Ve AR A ORYRP M, Tr35%% Ve AR2RH
RM 1., 071870 AN 47 W, ou1415 1.24282 N, 20938
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Table 4. Multiregional life table based on movement death rates and transition
rates of migration, linear case, United States, four region system
(1965-1970), females, age specific expectations of life and migrapro-
duction rates by place-of-~birth (South Region)

EXPECTATIONS OF LIFE

3° 31 32 33 3 4

X e e e e e

X X X X X
@ 74,3710 5,73413 B,710722 %2,15824 7.70751
5 71,°4n20n 95,8302 8,85322 48,71898 T,83719
10 s~e,38396 5.69R21 B 64856 44,37607 T.66112
15 61,49184  '5,51497 B,3594n 4¢,20349 7,41399
28 Se, 67720 Y,28791 7.99872 36,27846 Telicin
25 51,87977 4,993%81 1,5365%8 32,61716 b,73222
Iy 47,1723 2 4,63072 6,9793%34 29,21747 6.,27480
35 4p,393348 4,2ee60d 6,356365 26,04045 5.76665
ap 371 ,813k2 3.79430 5.723713 23,6072 5.,23487
45 33 37049 3,35753 5,87655 20,24329 4,69272
9P 29,727399 2.9P161 4,43413% 17.56780 d,15024
5% 24,9%45¢6 249299 3,80530 15,A2198 3.61429
b0 P11, 0npes 208130 3,202p8 12,.62112 5,09573%
65 17,264b4 1,69078 e.,bP2912 10,34898 2.59577
Te 13, 8R216 1,33923 2,11185% Ha29395 2,13713
19 10 B8R3N 1.02894 1,652%0 6,47726 1.72431
BY R, 496484 A, 18192 1.28346 5.,0359% 1,39611
RS A TBT8Y 1.,99916 1,v1174 4,078 1.17101

NET MIGRAPRODUCTION RATES

37 31 32 33 34

X n n n n n

X X X X X
@ n,723%18 2. A4E96 W URT3S 2,51633 0,U7054
6  m.a2pTh% i, 04821  u_¢ASR3  2,42599  V,06872
1 A.57ulp N ABRIA v,J3R349 B,37815 N UR61D
15 1.5%] M0 ST i ORQAY v.34122 B,PR348
o N U613 Y PLE A M,2895¢2 U.05960
25 i1, 38124 Vw3793 W, uhb6? A,2PU2 D, 75288
3y PLEMP9e A g 13237 v NSKBT n,16947 g, 04421
19 2, 2U40 ] M APT788 v VURES P,13143 hW,23608
4 7, 1996 NemPd1d v, Au1RY M,17410 2.22957
45 A 16RIV 2,02129 W0,03659  @,0B537 1, 42484
LYY 0M,10493% n.01899 v,0323% neleee 6.02138
55 L, 1P5R9 P, 21683 ¢, Y2839 PG Ab210 A1 856
60 v, 1 ThY A,21418 nw, 2387 A AT IAY A, 01592
qh w ABHAT W19y W, 186¢ N UHAY N,0131¢2
170 AL ATAPH AT B L U1 8TR ?,r%579%6 h,N10n4a6
75 w 8342 B tifsh g g BRIk P.ne9n7 W, 20810
P A NZRA] A,AAIRY W,ovnATIR R 2108 V., N2%9%
a5 C.PAUdY NehApdd RN N M1352 N, 20395
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Multiregional life table based on movement death rates and transition
rates of migration, linear case, United States, four region system
(1965-1970) , females, exact survivorship proportions by place-of-birth
and place-of-residence at age x (South Region).

Table 5.

FOR THOSE BORN IN THE NORTH EAST

3 3.1 3.2 3 3 3 4
x lOSX lOSx lOSx lOSx lOsx
-5 2.00000 N, AP aQ n,00p00 2,2000a n,uRpAe
0 n,99789 P,01248 v, 02117 0,94616 W,01828
9 7,99812 2,01124 v, 01874 P.95227 B.01587
17 7,99744 A, 21364 v, 2227 P, 94467 n,021687
15 ?.99644 A,01955 @, v3n73 ®,92403 W.02214
e P,99568 A, N8y v,03152 2.,91916 N.hPuen
2% m,9941 P,?P1699 v, ves0e P.93121 2,22133
3 n.99085 N,01199 n,a182%5 @,94378 P V1683
315 N.98613 N ,PART 2 w,u1322 N.97160 h,01259
4@ n,9R0071 P PH13 n,uen94e 7.95539 Hl.009006
45 Ma972729 N, ARUBR b,vATNe n.9°381 Ve, 10659,
50 P, 3667 A 20872 7N, 0A594 P,94%91 4,ap803%
55 m,94449 n,nn332 ©v,o054) R.9%164 B,2na12
LY A,91783 w,uan337 v U516 2,975%59 W37
645 P,B7664 W,n363 v, ,¥n828 R, 86421 N394
Q2 n.8114d]) A, P33 @B, 0546 f,79888 L. PR334
1A] A,711397 B.ANZ4Y h, 00502 h,7M2%4 G, IA3AU
FOR THOSE BORN IN THE NORTH CENTRAL
3 3.1 3 2 3.3 3.4
* 2OSx 2OSX 2OSx 2OSx 20 x
=Y AL ARAAY ", ARAND L, 00ppR H,a0020 PR
2 n,997Rq We?1248 W d2117 m,94616 N,A1808
5 »,99812 A AY1P7 W, 01879 0n,95214 V., 81591
1@ *,99746 N1 357 W owaett!  @,94490 PeN1082
19 L, 99645 Ve?1945% ¢L,23061 2,92435% BN
0 m,995A9 n,P2MA1 @ ,N3158% n,91912 Geol2U2
25 21,9941 GeN1EBS v 02502 n,93121 N P21 33
3@ A ,990385 Ve1199 v, 01825 N,94379 N, A168%
L) A, 9RM14 v, A8T2 w, 01322 ¥,95160 M, 01259
4y W,o9RMAM) P WiH13 B, bP943 P,45539 Ve, NA9NK
45 2,37210 We,MNUBEG @ URTLO P.9%3R Ve BAG6N
50 R TNTY ) A 03872 n,oanms94. 0,94593 h.0R503
5% O T b A, P332 ©,9n541 2,93169 h,2R41p
A M, 91798 N, AZ3Y v, 0nh16 P,9N874 n.0N371
3] B RT6RP DA 563 0,529 P HELLM A, 00352
TN A, B11589 A, 873 ALY M, T99™A N, N33y
75 A,T7T1412 a8y W, IPreme R, TA2H VW, B7320
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(Continued)

-5
4

19
15
4%
2%
3n
35
(7
4%

SQ
55
1%
65
70
75

1¢
15
ey
Pl
b1
15
4m
4%
Se
9%
Y%
65
T
75
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FOR THOSE BORN IN THE SOUTH

Q,98689
r,98511
?,99827
Vi, 99156k
P U995
|f‘.99l-1 7‘)
A,994P3
v a991 71
M.986?7
v 98014
2.97222
?,96079
th,a94479
1,1.‘)‘851
nHTTUR
2.,81234
n,11482

n,21135
M 21790
A,01149
He'1 320
2, 01901
De2u99
Nyt ABE
heW1212
A, 7n880
Han617
M, AR46]
n,20373%
NeM33e
D,BA337
N, A6
n.R373
A,2034p

@,01722
n,ve820
vw,01923%
e, B2158
v, 43002
W U31R9
7, L2546
v,01845
©v,01334
0,00948
e,02712
@,808595
N LYY
v,0n516
¢, 4n528
n,NA546
v, en5n3

2,94329
p,91458
P.95124
ho,94624
P.92585
G,91860
f,93%233
Pe9d434%y
Ve99143
?.95%%7
#A,95387
D,94hIK
2.,93192
R.,9062%
N,86501
?.,79976
n, 72348

FOR THOSE EBORN IN THE WEST

3 g

40 x
DAARD
n,99789
m,99812
",9974ds
D996 4o
7,9957p
h.99411
h,29P8%
7,98614d
0,98mM02
m,9721¢
n,96h8
A, 94463
n,31818
v.HTTR4
P H1179
P,714°P6

3.1
s

40 x

Vv, AAKAY
R.01248
A,2112%
M,13596h
MeM1a37
vy reunBd
Ne1659
N 11199
A,aNAT P
A,10Ah1d
N,ndden
Ng@ART ]
Agilh 842
V347
A VNSE
oA ST S
N, 0347

3 2
4OSx'
A.0npap
Q. 82117
D,vB1876
hW,¥2a15
v, A3p5HA
a,u3164
n,02503
v,n1824
n,2132?2
v, 7943
b,BPT12
¥, 8594
w,4m54]
A VNSYA
n,UnKP8
b, In546
¢, 005n2

3S3

40 x
N AMPANRA
N.94616
P.9522¢
W,94494
Ae924b3
Na91943%
m,93119
Ne9u3AR
N,951 60
N.95539
Ne3S548p
We9U5896

We9I31T717.

¥.90R93
N.BEYAR?
M,79928
He20282

A,01524
B,02444
2.,01631
2,01654
W,a2161
d,02427
v,12158
0,21699
v,u12Tw
?,00911
b,00662
0.00504
2.00413
W, AR3TY
AeuA352
Q,00334
no,o23500

3 4

40 x
N, ANBAN
h,A18n8
W,41588
2,41681
B.02196
N,024e2
O, BP134
B.A1bR2
D,A12959
A WA K
N, ANBAA
A,20593
n, 0413
N, Bm371¢
N NA38Y
N334
b, M3



-~ 108 -

Multiregional life table, linear case, United States, four region
system (1965-1970), females, consistent age-specific movement and
transition rates (South Region)

Table 6.

MOVEMENT RATES

N 38 3.1 32 33 3 4

X X X X X
2 2,20534% @,Pe491 P,00755 a,00000 0,00669
5 n,AnA42 n,272259  a.,00444 23,7007 0,00379
10 P, A3S n,12e16 n.RA356 n,ApARY 2,20299
15 2,02064 n,02338  p,505%2 2,20000 0,00390
28 n,aua77 | »,endT2  p,p0735 Q,0QP0R @,8R520
25 ",00n95 MgA0417 ?.A0628 P.,70002 0,M0525
3 A,P0142 n,n0288 @,PB44S n,n0R00 0,00404
35 p.on226 | m,A0216 0n.p0326 0,20007 ©,A0308
a0 n,20331 M, P2P149 p,A0229  p,rupeR  B,pP2al
45 P,R0dTS p, A7 Pe0P01HS a,02000 2,A0157
50 7N,A%656 n.,20n86 n,p2132 7,00020 0,P0118
55 - 7, 22951 n,AART2  a.mP119  @,A8007  3,008093
60 A,a133° [|0,00071 n,n0114 0,0PRP8 7,00882
65 A,m212 n,Men79 N QU115 a,802p0 2,00279
70 o,23196 |0,00091 n,00131 @,00000 0,00080
7S @,75314 | 2,000898 @.p0142 @,00000 O,00(M83
F-1/] n,AR538 N, ANA94 NeP0136 R,00000 2,00079
8% P,.1494d4 n,Ae122 Me M1 4R A, 20800 R,20085%

TRANSITION RATES

378 371 372 373 3”4

X m m m m m

X X X X X
2 | 2,00531 n,00481 P.00730 0,20020 @,00638
S a,02042 0,02256 Pe@0U3S 2,00020 2,08372
10 | a,e0035| 0,70214 0,n035 ?,00002 9,00295
15 | a,20064 n,7M332 @a,06540 0,00000 0,00387
') %,02077 P, AB462 PeRV713 ”,00020 @,M251S
es 2,92094 ?,A0411 P.ADEL3 9.n0200 P,00496
30 ) p,0139| 7.70284 n.00a3?  @,00000 0,08395
3s | p,om225 | 2.720213  oa.00320 0.P0Me0  Q,003@2
dr I n,20331 9,70147_  p,p0225 @,r0000 0,00217
45 | o, 00475 | 0,2810% @,20162 0,00002 0,00155
S0 | o,0656 | ?,00084 a,00129 @,02000  2,00116
55 § 2, 20951 n,A007T0  @a,00115 @,0000R @,00R91
62 § n,01332 | 0,020 M.00109 @,0002@ ©@,00080
6 2,02099 | 2,28074 n,p01@8 2,00000 @,P0R76
14 2,83197 ¢, 20082 NePO120 ?,0P0pQ ?,00075
15 n,05316 | ©2,7084 n.00123 A,00000 @,20074
Yy 0,28540 | #,00075  @a.p0110 P,00000 @,00066
85 || #,14948 | o,d0072 o@,n0105 09,0000 ©,00063
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Alternatively, a multiregional life table can be calculated
by using an iterative-interpolative method similar to those de-
veloped earlier in both the movement and transition cases. 1In
order to do this, the relevant elements of the movement and
transition approaches must be combined so that the resulting
iterative process relies on successive estimates of life table
rates converging to the predetermined ones: movement death rates
and transition migration rates. Application to our four-region
system of the U.S. female population was performed by assuming
small age intervals equal to 0.2 years (i.e. ‘I/25th of the normal

age interval).

The sets of expectations of life and migraproduction rates
for a woman born in the South region are displayed in Table 8.
A comparison of the values of these multistate life table func-
tions with those obtained in the linear case (Tables 3 and 4)
indicates no dramatic change in the life table statistics so that
the gains expected from the use of the interpolative-~iterative
methodology appear largely outweighed by the extra resources
necessary to perform the iterative calculation of the age-specific
survival probabilities. Although the calculations of these prob-
abilities do not require, for any of the eighteen age groups con-
sidered, more than four iterations to obtain convergence,* the
time required by a computer to perform these calculations is much

greater than in the linear case.

Finally, the main advantage of the interpolative-iterative
method is to permit the calculation of a mean duration of transfer,
the estimates of which for the South Region are displayed in
Table 7. It appears that, for all groups except the first,**
the values of mean durations of transfers do not differ much from
5/2 (the value they take in the linear case). Note that mean
duration of moves are consistently less than this value except

for the age group 20-25.

*The iteration process was stopped when the highest absolute value
of the discrepancies between the life table and observed rates
was narrowed down to less than 10-6.

**As mentioned in Section II, the linear approximation was not used
for the first age group which accounts for the higher infant
mortality in the first year of life.
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Table 7. Multiregional life table based on movement death rates and transition

rates of migration, iterative-interpolative case, United States, four
region system (1965-1970), females, mean duration of transfers and
survival probabilities (South Region).

MEAN DURATIONS OF TRANSFERS

X 3.8 31 32 33 3 4

a a a a a

X X X X X
o ?,87452 P.39242 2,38043 n, 00000 2.,37207
5 2,3°169 2,279712  2,32438 P,M0200 2,31332
1o 2,47299 2,27642 2,201792 @,e0002  2,32227
15 2,85275 2,48824 2.50038 ”,00000 2,46759
20 2.51786 2,56261 ?,54639 P,@0000 2,54618
25 P.51145  2,47885  2,45582  a.@pppd  2,48025
3 2.,5¢8A1 2,39065  2,39942 2,00800  2,42991
35 £,53572 2,4348b 2.42074 Q,2000 2,43046
4 2,5d691 2,402456 2,40545 e,20000 2,41510
4% o, 52292 P,39m14  2,39691  p,02000  2,49616
S@ ?.51402 2.42114 2.40756 n,A0000 2.41142
g 2,51449 2.3907) 2,4¢137 p,A0000 2,.40374
by F.S5¢341 2. 39876 Pl.dl172 ",00200 2,40749
65 2.,49717 2,39145 D,3bBU2 n,20000 2.40258
T P,U7199 2,368792 p,37221 P,80007 2,36643
15 PR YN A 2.,27400 2.298901 »,P0000 £,29873
LY ».36369 1,99191 2,00797 P,08000 2,M4T33
45 o477 v, Que2n n. 00020 P,ARRPV  P,0RRRD

SURV1VAL PROBABILITIES

< 3P6 3P1 3P2 3p3 3p4
X X X X X

A AT Y A 2pP48 P,n34P1 2.,88791 B,02971
5  w,rvelt m,u1245  p,m211Y  @,94626  n,01804
12 w2173 ", 1043 NeN1715 2,95627 n.,2l442
15 o nir3ta A, MN16A6 A.012618 ?,93588 B,01872
em . prsALG @,U2219 a.05416  0,91515  B,0247R
2n v, Med 1 A,21974 Ne#E94Y w,92229 a,02382
LY A, ANRY2 nw,41376 AN ”n,939p1 P,P191%
L] vyt 2,71¢4317 n."1558 2,94819 2,01470
4. “ i bdA a,vner1? A.21099 P,95484 0,010060
4y, m2345  a,0us1e 71,0079 B,95395  ©,00756
P n,A5pP2R A, PA4dN8 ALY A n,95171 B,00564
8% p.pakds  0n,00337  p,pu559 @,94017  @,80442
60 KLY YR A,d326 n,00523 w,92325 n,n03873
b5 n,MI9T4 n,Pn348 NaPASDAB #,88811 P,A0359
7@ », 147THA 2,00377 M, AVH49 2,83942 2,20344
5 #,2339¢ LI RY Y M. 0V539 n,75381 D.00322
8y . 34855 2 g A B4 A AVYUT A, 04127 N,00267
By 1, Aanan ST Y1 2.Q0N07 n,A0Q0 0, 82000
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Multiregional life table based on movement death rates and transition
rates of migration, iterative-Interpolative case, United States, four
region system (1965-1970), females, expectations of life and net migra-
production rates by placé-of-birth (Seuth Region)

Table 8.

EXPECTATIONS OF LIFE

N 3 3.1 3.2 3.3 3 4

X X X X X
2 T4,32567 5,72116 8,68842 52,22654 7,68955
5 71,2381} 5.,81594 8,83245 4B,77168 7,81803
10 66,38189 5.68537 8,62997 44,42331 7,64323
15 61,48966 5,5357 B,34297 4n,24518 7.39794
24 S6,67507 5,27789 7.98435 36,31502 7.09781
25 S51.87767 4,98499 7,92399 32,64922 6,71947
I 47,10025  4,62295  6,96826 29,24563  6,26341
35 42,3913 4,21583 6.3%395 26,06501 9,75652
4P 37,81161 3.78843 5.71531 23,8195 5.22591
45  33,36812 3.35254 S5.46931 2d,26142 4,68484
59 29,n7209 2.91744 4,42823 t7,58305 4,14337
5% 24,93274 2,48963 3.80024 15,03451 3,60836
60 20,99853 2,07868 3.,19800 12,63116 3,09069
6S  17,26292 1,68886 2,62594 108,35658 2,59153
7@ (3,88018 1,33794 2.12945 8,29920 2,13358
IS 1m,R7867 1,028 1,65049 6,47909 1,72148
80 A 47967 n 11923 1,28023 5.02857 1,39165
85 6,78740 NebNirid 1,81122 4,0089% 1,16709

NET MIGRAPRODUCTION RATES

3 - 31 32 33 3 4

X n n n n n

X X X X X
A m. 12426 P,04893 0,28730 Pe51759 0,07044
5 0,02969 ®,04819 Q,0858D W 82707 A,06864
10 #.57560 n, 04697 a,08347 n,3791p d,06605
15 2,53190 2,24552 W,U8083 2,34210 v,06345
2a N, 46821 Be0B4254 4,07575 . @,P9233 0.05959
29 n, 38211 M, 03757 b,06669 n,22496 ¢,0529n
I n,30377 n,03242 d4,05696 0,17214 d,B442%
35 P, 2U48% ?,02792 W, 14873 A,13204 P,73614
a9 P43 v,02420 w,u4192 D,10466 0,02964
45 N, 1AASQ 2,02137 8,03674 2,08590 ©w,02492
50 m,1457°2 2,219027 0,03246 @,@7273 @,02146
55  A,1°666  2,01691 ©8,02852 @,06259 A,01865
60 n,17838 B,A14d26 ¢.82401 8,85413 P,01598
6% h,N89273 2,41100 . @a,01876 P,P4627 w,01321
1% n.07074 n,NN789 v,81392 P.03839 ,01155
75 P.NS4ANT N, PNSHH 0,010P8 ¥,”2995 D, nM818
an A.N3852 A,AM394 o, enT26 n,02134 2.,90598
R ?,0P449 P, AP244 0,20457 ”,2135% P.BA3Y
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Multiregional life table based on the movement approach, linear case,
United States, four region system (1965-1970), females, age-specific
survival probabilities and expectation of life by ptace-of-birth

(South Region).

Table 9.

SURVIVAL PROBABILITIES

38 31 32 33 3 4

X px Px Px Px Px
7] n,02622 A,02229 0,03338 ?2,88939 ¢,02873
5 P,02211 2.,01234 2,82089 P.,94688 P,01774
10 n,00173 2.01036 2,81698 ?,95667 2,21426
15 %,00319 2.,21579 R,02561 0.,936483 2,01858
en ?,P9384 2,02170 9,23318 2,91689 0,02448
25 n,An470 ?,01948 2,02879 P.92363 P,02340
39 7,20692 ,21362 e.02081 2,93989 2,01876
35 n.21117 2,21025 @,91534 ®,94881 2,01444
42 a,p16d4n  2,00708  2,01p81% 2,95526  ©@,0{044
45 2,02345 2,00524 2,007717 2,95629 2,00745
50 a.,0%228 ?2,0P399 2,90615 0,95224 2,00554
55 ?.060484 2,00326 ?,00541 0.,9402%6 h,00432
LY LYY ¥.nm311 0,0nSn0 2,92372 v,P0371
6% 2,79974 2.,07326 0,00478 d,88879 0,0n344
14" n,14800 P, 0343 2,2n503 M. BUP33 w,00321
15 0,23462 2,00317 0,80472 N,T5461 n,P0288
80 2.35186 D, 0247 2,0n368 N,63973 0,0022%
85 1,00000 P.ORVLAR 0, 0Ppan 2.00P0C n,2P000

EXPECTATIONS OF LIFE

3 - 31 32 33 3 4

b4 ®x ®x ®x x x
@ 74,29087 5.67333 8.,56229 S2,48186 7,57339
5 71.,2°379 5,76887 8,7A714 49,04425 7,72353
10 66,36758 5.h3500 8.,50802 44,.68658 7.53397
15 61,47551 S,45813 8,22509 40,49767 7.,29462
20 S6,bb6pAas 5.23384 71.87136  34,55523 7,00046
25 S1,86352 4,94335 7.,41797 32,87400 6,62820
I 47,08619 4,58447 6,87103 29,45201 6,17868
35 4p,37746 4,18p63 6,26596 26,25195 5.67892
4 37_.79802 3,75641 5,63635 23,24961 5,15563
45 33,35469 3$,32358 4,99902 20,41033 4,62176
5¢ 29,05876 2.89141 4,36620 17,7139% 4,08723
5% 24,91922 P,Uu6637 3,74601 15,14799 3,55884
b® 2a,98454 2,0579¢6 3,15895 12,728°75 3.04737
6% 17,24808 1,67031 2,58532 10,43845 2,55401
70 13,8K414 1,32097 2,07400 8,3680%3 2,12114
75 1p,86168 1,01215 1,6191°7 66,5374 1,69299
an 8,46804 N, 76460 1.252138 5,08359 1,36747
8% 6,74323 N,5R163 ?,979%3 4,0402% 1,14180
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Let us recall that these mean durations of transfers are
derived from the matrix gx defined in Section II. However, al-

though the matrix was found to be equal to I - T(I - Ex)-1Ex Tx ,

this last expression cannot be used to estlmate 3 because a
computer does not provide a precise estimation of the difference

between the matrices I and T(E - Bx)-1Bx m, - Therefore, the

matrix gx was obtained from (49) rewritten in matrix form as:

0 _ -1
éx - (% T:-Ex+t)L

Numerical Assessment of the Discrepancy Between Movement,
Transition, and Mixed Approaches

In order to assess numerically the discrepancy between the
alternative approaches to multiregional life table construction,
we have applied the formulas (linear case) of both the movement
and transition approaches using the age-specific rates previously
used as input data. Table 9 shows the survival probabilities and
expectations of life (by place-of-birth) of U.S. females in the
South region. This was obtained by constructing the multiregional
life table of the four region system of the female population
from the movement approich with transition migration rates sub-

stituted for movement migration rates.

As expected, the probabilities of dying obtained with such
a method are almost identical to those acquired earlier using
the correct mixed method. 1In contrast to this, the outmigration
probabilities appear to be much smaller than when correctly es-
timated, the discrepancy becoming larger in the older age groups
(compare the bottom parts of Tables 3 and 9). Thus, the use of
the movement approach when only transition rates are available,
has little consequence on the total expectations of 1life but may
modify the estimates of their regional shares. For example, a
woman born in the South has a life expectancy of 74.29 years
(versus 74.31) which is allocated among the regions as follows:
North East 5.67 years (versus 5.73), North Central 8.56 years
(versus 8.70), South 52.48 (versus 52.15) and West 7.57 years

(versus 7.70).




- 118 -

On the other hand, constructing the multiregional life table
of the same populafion system from the transition approach with
movement mortality rates substituted for the transition mortality
rates leads to survival probabilities and expectation of life
(top parts of Tables 10 and 11) which only differ slightly from

*
their correct values (see Tables 1 and 2).

To summarize, the type of mortalitv and migration data commonly
available calls for a third approach, the mixed approach, to the

construction of a multiregional life table. Based on movement
mortality rates and transition migration rates, it is in fact,

a slightly modified variant of the transition approach in which
movement mortality rates are used as inputs rather than transition
mortality rates. It turns out that, since the discrepancy between
movement and transition mortality rates is small, the numerical
values of the multistate life table function obtained with the
mixed appraoch do not significantly differ from those obtained
with the transition approach. 1In contrast to this, the use of

the movement approach rather than the use of the mixed approach

would yield more inaccurate results.

Calculation of a Multiregional Life Table (Option 2)

So far, the calculation of multiregional life tables has
been performed by simply setting life table age-specific rates
equal to their observed counterparts. Rogers (1975) has devel-

oped an alternative, generalizing the census survival method

*Note that the transition approach, as developed in Section III,
does not rule out, as in Rogers' transition approach, the occur-
rence of a migration followed by a death within the same unit
interval. Tables 10 and 11 - the bottom parts of which show
what the age-specific survival probabilities and expectations
of life would be using Rogers' transition approach - indicate
the necessity of using the revised approach developed here rather
than Rogers' approach. For instance, ruling out the possibility
for an individual to die before the end of the time period in
which he has moved from one region to another, contributes to
increasing the expectations of life by a large amount: in the
case of the South region, life expectancy at birth then increases
from 74.29 to 74.52 years.
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Table 10. Multiregional life table based on the transition approach, linear
case, United States, four region system (1965-1970), females, age-

specific survival probabilities from revised and Rogers' definitions

(South Region).

FROM REVISED DEFINITION OF SURVIVAL PROBABILITIES

% 3pi 39; 3pi BPi 3pi

\ 2 72631 w,neerae heP3443 2, 88648 a,03208
g ;:aﬂale u:mxaaa P.02117 M,946106 b.,21808
te  m.en1T4  @,M1045  @.03718  B,95618  8,P1445
15 n,Au3ep h,a1647 ¢eP2615 @,93586 e.,e1872
20 a.0738h 0,02214  @.p3413  0,91519  0,02468
LS M’MW473 m.@197d AeRLOUs 8,92223 h,82383
30 n,ABKIA 11,1378 wenr2g17 0,93892 A,01917
35 popiter  A.nia37  n.a1S%9 @,94812  @,81477
ap e.otead  @,@8717  a.01099  @,95479  Q,2l061
4% a.pe349  ©,m2%13  g,00791 @,95591  8,@8756
aa  n 23229 0.004u8  @.00629 0,95169  B,00S64
55 m:muhub 0 MAT3T 708559 P,94016 2,p0442
o . mbadS  A,00325  p,@eSe4  @,92322  2,0038%3
65 @:qu7q P 00348 0509 n,88809 ?,08359
74 1.14796  0,40378  n,@us550 0,83933  02,08344
75 s 2645%  0,203%68  p,a0541 @,75314  @8,00323
A0 3:3@‘51 n,n03n7 NS 2,63790 Q.00270
A5 1, Arn D N?2AGA PAY0OD 2,00002Q D.OOROD

FROM ROGERS'

DEFINITION OF SURVIVAL PROBABILITIES

3;6 361 3;2 363 364
=X X X X X

g P e th Matde?l MeP3U4S h,88758 L.03009
5 ®opn2at ",R1248 vl 7 P,94621 vi,R1808
1 LN RS Get1765 penl718 Ne95622 V,01445
14 AR S % aNikuT Pe@EB1S B,93596 G,81872
o P, 28T n,ueeld PeM3Uty m,91534 h,02408
s G, URA NGN1975 heNEYUK N,92240 P.2383
<0 v rweil? AN A YR, fend118 m,935911 da01917
4% ¢ L,A10G0 P 1087 GeMISS9 m,94834 W,M1671
4 ZLnleew figvn?17 Re1099 71,9552 Me1@61}
0n5 NP n 513 MeMAT91 2,9%615 h,AQ757
N A bS04 Garuard P 3N M,95194 B 05064
he P,Aa615 #0337 70859 2,94247 vel442
Ho L N 103286 eG4y 2,92302 B, 00383
he n, 9914 2,%8309 e MNSNI ©",88870 W, 0359
7 p et N, 4878 IR Y P,84026 WeaB344
1% A R I 7 ePdHd] 7. 75457 "eP323
% r, 34694 NGBSy R PRepvilihe r,63978 n,eere
By 1,007 00 Vg AL (O 1% N PLPNA P, ABQRQ
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Multiregional life table based on the transition approach, linear

Table 11.

case, United States, four region system (1965-1970), females, expec-
tations of life at birth from revised and Rogers' definitions of
survival probabilities, (South Region).

FROM REVISED DEFINITION OF SURVIVAL PROBABILITIES

X 3e= 3e1 3e2 3e3 3eﬂ

X X X X X

B 74.2946¢2 S.73260 B,78589 S2,14762 T.70851

5 71,23465 S.,82921 8,85273 48,7131} 7,83959
10 66,37887 S.69724 8,64812 44,37053 7.66297
1S 61,48711 5.,51403 8,35900 4o,19821 T.41587
20 S6,6729¢ 5,28700 7,99837 36,27350 T,11403
25 51.876%2 4,99295% 7.53633 32,61277 6,713425
In 47,.2997%6 4,62992 €.97920 29,2137 6,27693
315 42,3917 4u,e2188 6,36359 26,03736 5,76888
4p 37.8128p  3,79358 5,72313 23,0583% 5.,23717
45 33,36982 3,3%684 5,47654 20,24145 4,69524
5¢ 29.,07412 2.92083 4,A43428 17,56647 4,15254
55 24,93489 2.49214 3,625¢43 15,02109 3,61653
60 21.P2072 P.NBR3S 3.2n178 t2,62067 3.,09792
69 17,8653 1,68974 2,62867 109,34900 2.59798
7¢ 13,88313 1,33814 e, 11127 8,29451 2,1392¢
789 (pn,88406 1,02781 1.65176 6,47819 1,72629
8 B,49739 A,779717 1,28256 S.23787 1,39799
85 h,TRRTY N,59800 1,01065 4,00716 1,17294
FROM ROGERS' DEFINITION OF SURVIVAL PROBABILITIES

x 3e7 3e1 3e2 3e3 364

X X X X X

P T4,51743 S,75425 8,74p8 . 4

S 71.37642  5.84453 5,87209 25: 3539 ;:g 4
10 66,51716 5.71234 6,67314 44,4519 7,68148
15 61,62332 5,%29a¢2 8,38385 up,27623 T.,43423
2@ 56,8a5A8 5,30159 B,022600 36,34786 7,13183
25 51,99948 5.20688 71.55956 32,68191 6,75114
Im 47.,219148 4,64%18 T.60139 29,277172 b,29288
3% 42.49966 4,2345¢4 6,38480 26,09645 5,78390
49 37,91285 3,80555 5.74394 23,1122% 5,25118
45  $3,46284 J.36821 5,49582 20,29067 4,70814
52 ¢29.,16121 2.,93%18¢ 4,45286 17,.61167 4,16486
55  as,d1662 2,50279 $.82311  15,06259 3,62813
6 21.,07654 2,79160 S.21902 12,6582 3,10870
6% 17,3339° 1,69936 2,bu485 1(m,38207 2., 60764
T™@ 13,94361 1.34684 2, 12603 8,32297 2., 14776
1S 1m,9%7°22 1,v3550 1,66505 6,50291 1,73376
80 A.,54422 Q.,78652 1,29460 5,05854 1,40452
85 6. 838311 N.6ae8 1,02232 4,02742 1,17910
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of the basic life table, in which the calculation is based on
setting life table age-specific survivorship proportions equal

*
to their observed counterparts.

Generalities

In Section II, we have defined approximate survivorship

proportions as

-1

Sx 0%X+T O%x (45)
which can be rewritten in the linear integration variant as:
- -1 _
s, = [T +p .nl p, [T+ Pl ¥x = 0,T,...,2 - 2T

(141)

This relationship indicates that p can be derived if S and p

<x+T ~
are known and suggests that, if 1 is available, the series of
matrices Py (for x = T,...,z - T) can be obtained from the know-
ledge of the survivorship matrices for x = 0,...,2 - 2T.
Since the following relationship holds between S_ and Py
= l[I + pal (142)
~-T 2°0 =0 !
we can then derive Py from (142) in which S_ is set equal to
the observed S_T
Pp =281 -

Then an estimate of Pp can be obtained from the knowledge of s

*The Option 2 method yields a unique set of age-specific transi-
tion probabilities. Mortality and migration rates consistent
with both approaches (movement and transition rates) could then
be estimated from the relationships expressing life table rates
in terms of survival probabilities.
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(set equal to SO) using (141 ) rewritten as:

and so forth.

More generally, p, can be obtained from the observed Sx—T

and the just calculated'px_T by using

-1 =1
] §x—T -

¢ H

For the last age group, (141) is to be replaced by

-1 -1
Z Ez—T[E + Ex+T]

14)]
It
=1

S7-T m

so that an estimate of mZ can be obtained from:

The availability of the series of age-specific survival
probabilities (and the age-specific rates of the last age group)
then allows for the complete calculation of a multiregional
life table.”

This method of estimating the age-specific probabilities is
initiated with the first age group (from an observed value of

the survivorship proportions relating to the babies born in the

*
Note that, since there exists a simple relationship between
mortality and mobility rates of the movement approach and
. . . T -1 T
t = 4+ = -
survivorship proportions Sy (1 > TX+T) (E 5 Tx)’ the
procedure described above can be used to directly obtain
movement rates, thus bypassing the intermediate calculation
of the survival probabilities.
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period considered) while Rogers' (1975) calculations proceed from
the last age group (from a value of Mz that could not be observed

and which had to be assumed).

The life table construction method just described can be
used when the information available consists of either lifetime
migration data for two consecutive censuses, or current migration

and mortality data.

Calculation from Lifetime Migration Data

Suppose that the information available consists of lifetime
migration data for two consecutive censuses, taken in years t
and t + T.

Typically, the figures available for both census years des-
cribe the regional allocation of survivors by T-year age groups
according to their place of birth. This permits the construction
of age-specific EZ whose (i,j)th element denotes the number of
persons born in region j and aged x to x + T in region 1 at the

time of the census (y = t and ¢ + T).

Rogers and Von Rabenau (1971) have shown that the availabil-
ity of such data allows for a simple measurement of the observed

matrix of survivorship proportions:
S =K K ¥x = 0,...,2 - T .

In a similar way, the matrix of survivorship proportions
relating to those born during the observation period can be mea-
sured from:

_ ,t+T
Sp™% B o
in which B 1s a diagonal matrix whose typical element is the num-

ber of births that occurred in region i between years t and t + T.

Thus, lifetime migration data from two consecutive sources
permits the measurement of the series of matrices of observed
survivorship proportions allowing for the utilization of the

Option 2 method.
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Calculation from Current Mortality Rates and Migration
Proportions

In this alternative case, the information regarding both
mortality and mobility patterns is supposed to be identical to
that used in Option 1. The mortality data are again converted
into age-specific mortality rates consistent with the movement

approach but the migration data are now used to measure survivor-

ship proportions rather than migration rates. The problem is then
one of estimating the mobility proportions that would prevail in
absence of mortality over the observation period and then using the

Option 2 method to obtain estimates of the migration rates.*

Typically, if z years and over represents the last age group
considered, % + 2 matrices (for x = 0,T,...,2 + T) describing the
transition flows (changes of residence) over the T-year period
preceding the census are needed. Let Apx denote the matrii*of
age-specific transitions relating to age groups x to x + T
in which the flows of stayers (people present in the same region
at the beginning and end of the observation period) are included

in the diagonal.

Disregarding mortality, the fraction of those present in
region j between ages x and x + T among the group of people

present in region i, T years later is:

i,
Bl AD
1gd = x+T ¥i,j = 1,...,n
X n . .
5 iapd ¥x =0,...,2 - 2T ,
i x+T

*Because age-specific mortality and migration are not independent,
the migration rates estimated here are slightly different from
those that would be obtained if mortality was accounted for.

lADS{ denotes the number of people aged x - T to x in region i

at the beginning of the period and present in region j, T years
later.
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while the corresponding fraction of those born between t and

t + T in region i and present in region j at time t + T is:

i lADg
S_T=—n_-"—. Vl,:l 1,...,n .
y  ‘ap)
Lo 0
j=1
In the case x = z - T, the numerator of the fraction of persons

surviving contains two terms in order to be consistent with the

treatment of the last age group in Section II

i3 i3
. +
m ~ ADZ ADX+T

n i :I
) TAD
=1 F

Having measured the observed mobility proportions, we then derive

the movement rates of migration compatible with these observed

mobility proportions.

Since:

.
+
g

we obtain an estimate of the migration rates for the first age

group from

_ 2 -1
my = FlSop I
m -mi '
in which S_p = (JS_T) is substituted from S_mp- Then the migration

rates for the second age group can be obtained from (67), rewritten
as:
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m
in which S0 and the estimate of M0 just derived are substituted
for S and my and so forth.

To the matrices of these migration rates are then added the
corresponding diagonal matrices of mortality rates which yields
the matrices of rates MX needed to perform the calculation of a

multiregional life table according to the Option 1 method.

Numerical Application

A numerical application of this method was performed from
current mortality rates and mobility proportions for the four
region system of the U.S. female population, previously considered
(the period of observation was again 1965-1970). Unfortunately,
the results turned out to be different from our expectations, since
we obtained negative outmigration rates and, consequently, neg-
ative survival probabilities for some age groups. Nevertheless,
we calculated the number of person-years lived in each age group
and found acceptable results except in the case of the last two
age groups where we obtained negative migration rates. We then
calculated the expectations of life and approximate survivorship

proportions shown in Table 12.

The question is then why the Option 2 method, unlike the
normal construction method starting from observed rates, produces
such unfortunate results. The answer is two-fold. First, the
time process of the two methods is exactly reversed. On the one
hand, the Option 1 method, based on mortality and migration
figures observed in a given point in time,* calculates multistate
functions from the assumption that these mortality and migration
rates, and thus the resulting survival probabilities, remain con-
stant over time. Indeed, the survivorship proportions to which
this method lead are different from those which would be ob-

served over the data collection period. On the other hand, Option

*Although the migration data can be collected on a five-year period,
the resulting migration rates are no more than averages charac-
terizing the middle year of the data collection period.
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Table 12. Multiregional life table, Option 2, linear case, United States,
four region system (1965-1970), females, expectations of life and
survivorship proportions (South Regdion).

EXPECTATIONS OF LIFE

. 3e- 3e1 3e2 3e3 3e4

X X X X X
w13 ,9188A 5,785%¢22 B,66145 91,89149 7,60769
S In,R3614 5,B83468 B8.78951 4AR,49638 7,71861
1% w8 . 97917 S,71159 R.59206 4u,132227 77,5473
19 61,0856 5.9%34p20 8a,32731 39 92007 7,31198
2v  he , plriag 5,32525 7.,98844 35,92502 7,73239
LS B IR T 5,M3157 7.52498 32,26117 b.65428
3 46 ,6925%4 4,h9340 £,9519% 28,89957 h,18742
35 41 ,9804% 4,23549 be32474 25,Tuh33 5,67387
LR TR EERA 3,79845 S+6/857 22,78344 S.13854
48 5P ,94507 3,35474 S,2217% 19,9736° 4,59556
57 2B, AR89} 2,9117% 4e3f161 17,30617 4,751
K5 24 ARG 2,47661 To7355¢ 14,76117 3,51287
AN A L 2,25594 T.120292 12,36491 e,95858%
nS 16 _TtPhe 1,65899 2,538P8 10,08077 2.48u48)
oo 13,4e¢540 1,79699 PaPu3S8 B,01507 2,AV97%
1S A1 ,2¢h8n m,91598 152183 hea19315 1,5778%
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h S S, Unten Madob6b Me7¥978 3,4304K W.85396
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2 starts from the observation of survivorship proportions and
attempts to determine the constant (mortality and) migration rates
or survival probabilities that would lead to such proportions.
Unfortunately, the survivorship proportions are observed for a
time period, say five years as in the above numerical illustration,
during which the age-specific migration rates are not necessarily
constant and may fluctuate greatly. Second, the nature of the
Option 2 method does not permit us to estimate mortality/mobility
rates and survival probabilities separately for each group. Since
equation (141) relates statistics of two consecutive age groups,
estimation errors made on a given age group are passed on the the

next.

In brief, since migration is a more volatile phenomenon than
mortality, (i.e., age-specific outmigration rates, unlike age-
specific mortality rates, may present large fluctuations over a
short period of time), the Option 2 method does not appear to
be as useful a method for constructing a multiregional life table

as for constructing a single-region life table.

Evaluation of the Alternative Variants in Multiregional Life
Table Construction

As just seen, the choice of the Option 2 method as a way of
constructing a multiregional life table must be avoided whenever
possible: a multiregional life table is best constructed when
using the Option 1 method based on the equalization of life table

rates with their observed counterparts.

Moreover, because of the type of mortality and mobility data
available, the mixed approach (a combination of the movement and
transition approaches) must preferably be chosen among the vari-
ations of the Option 1 method. However, the use of the trans-
ition approach yields acceptable results in view of the slight
discrepancy existing between corresponding movement and transition

death rates. That statement would not be true if the movement
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approach was used instead. 1In other words, in contrast to the
analysis of life status (Schoen and Nelson, 1974; Schoen, 1975)*
the study of interregional migration generally requires the choice
of the mixed approach which is closely related to the transition

approach.

It is clear that the most feasible integration methods to
derive {Lx} are the linear and cubic integration methods. However,
in contrast to the linear method that can be easily used whatever
the approach chosen (movement, transition, mixed), the cubic method
can only be used in the case of the movement approach. Since
movement migration data are sometimes available, we have used this
integration method to calculate a multiregional life table of the
four region system for the U.S. female population in which the
values of the observed transition rates were substituted for those
of the movement rates. The age-specific survival probabilities
thus obtained (Table 13) were then directly comparable with the
ones similarly obtained when using a linear integration method
( Takle 9).

The result is that: a) the cubic integration method does
not yield radically different estimates, b) the discrepancy be-
tween the linear and cubic estimates mostly affects the retention
probabilities and the probabilities of dying, and c) this dis-
crepancy tends to be higher for older ages (see age group 75 to
80).** The mean durations of transfers implied by the choice of
the cubic integration method appear in the bottom part of Table 13.

The discrepancies between the linear and cubic integration
methods on the one hand, and the linear and the interpolative-
iterative methods on the 6ther hand point in opposite directions.
Whereas the interpolative-iterative method yields higher retention
probabilities and smaller probabilities of dying than the linear

integration method (as suggested by the comparison of the survival

*The type of data available for the problem studied by Schoen makes
the use of the movement approach preferable.

**The estimates of the survival probabilities for age groups 5 to
10 and 80 to 85 were identical in both Tables 9 and 13 since the
linear integration method was substituted for the cubic integra-
tion method.
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probabilities in Tables 3 and 7), the cubic integration method
yields smaller retention probabilities and higher probabilities
of dying. Also, the interpolative-iterative method yields

(see Table 7) ai coefficients slightly higher than 2.5 (except
for the first age group), while the cubic integration method

leads to ai coefficients much higher than 2.5 (see Table 13).

If the interpolative-iterative method is assumed to be more
accurate than any other method, it then appears that the linear
integration method yields estimates of the multistate life table
functions which are better than those of the cubic integration
method. Then, even if its use is made possible by the type of
data available, the cubic integration method will not be prefered
to the linear integration method. Moreover, since the interpolative-
iterative method yields estimates of the multistate life table
functions only slightly different from those obtained in the linear
case, the linear integration method would generally be prefered
because of the larger computer time required for the interpolative-

iterative method.

Finally, the mixed approach of the Option 1 method based on
a linear integration over {ly} for deriving {Lx} appears as the

best variant in calculating a multiregional life table.*

Migration Rates and the Calculation of a Multiregional Life Table

Clearly, the accuracy of the columns of a multiregional life
table calculated by the Option 1 method depends on the precision

of observed mortality and mobility rates' measurement.

Impact of Alternative Measures of Transition Migration Rates

Whereas the measurement of movement rates as proposed by
(134) and (135) does not raise any particular problem (straight-
forward extension of the single region case), the measurement of
transition rates suggested in (136) and (137) raises some difficul-

ties because the numerators and denominators of these definitions

*The present conclusion is indeed limited to the case of a demo-
graphic system for which available data are movement mokility
data and transition migration data. However, it can be extended
to the case of any demographic system, as we will see later.



- 127 -

Table 13. Multiregional life table based on the movement approach, cubic case,
United States, four region system (196511970), females, survival
probabilities and mean durations of transfers (South Region).

SURVIVAL PROBABILITIES

. 3p6 3p1 3p2 3p3 3pu

X X X X X
e A,Mehee P2254 7.@23349 ?,88910 ,2884
5 P, 00211 n,21238 n,n2RA89 ?,94688 @.,21774
1 n,2r1 73 B.P1R36 MeP1699 Q,95667 2,a1426
15 W, Ar319 N, P1882 A, 02566 #a.93672 ,21861
2 VY B Mam217¢ MeA3316 0,91681 B, 02448
es P.2AUTO NeP1943 Ne02869 2,92382 ?2,82336
LY Mg TR 92 n,M1358 ReCATY 2,94004 n,01471
315 mom1yy? R,21223 MeA1530 f,94889 @,21441
“o A niedd n,ea107 P.R108Q n,95531 a.,01042
4s nyAPRUT 2,094 MeRUTTH n,95630 8,20744
5n L A823) A,20399 MsPUBLS 0.95203 7,2085¢4
55 2 ,A4k52 N,00 826 A,00501 82,9405 v,08432
6a v, and50 2. An3t 2.p05p2 0,92368 @,00372
b5 LIS RY IR P.AR326 P.AAYHT8 n,88852 2,080344
12 G, 14858 “,0rn3y2 Y X 2,83979 @,n0321
79 », 23585 WeP313 0,466 P, 75379 @A,0Q2286
&P 2,491 8n w ey ld YT TY: ] "h.63973 2,08225
89 1, a0 v, a Me@UNAN ”,B0820 R, 20009

MEAN DURATIONS OF TRANSFERS

3.6 3.1 32 3_3 3.4

X a a a a a

X X X X X
2 oL Rlh2Y 259865 a9} N, P00 2,60465
5 P uIBR 2,90000 2.54000 P,A0000 2.50000
10 P heddp P,551581 2.51537 e2,000¢0 2.,46887
15 P, 683p 0 P.t1387 2.99328 A, 0220 2,58048
ce 2,91625 A,43582 PaldlIv1H B,82000 2.50532
25 A, 00858 2.36395 239279 P, 20000 2,40650
S 2 hneed 2 31185 5,31137 0,00000 2,35240
55 2. nuBBT 2y3%1R3 232342 @,70020 2433639
ap AT P, 812171 7.316689 p,a0apn 2.322148
49 Dk 9AaK P, 33KRE 2,33875% 2,20000 2,327808
Y4 2,h8d4n e, 37Pue P.38114 P, A0@00 2,34749
5 2,.hoH9 R 2, %9541 D.U4NBKA W, nanped 2,37¢71%
6 P RIIPR 2.U3404 P.l41154 n.ARPQR 2,39758
h5 P.bhSuTh A Ue979 P.llinn p.ae0en e,3978n
1 AL eesSY 2, %01R9 24371999 A, ranan 2.35859%
15 FLoRe 47 P PhiiY 2,219 n,A0Aa 2,27750
Bip AUR D 2 hbnein 350080 D NENQY 2,560
He o k17T EINEICTRIRIY 2 AAGBA n,ANARNN n.00080
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must be approximated. As a matter of fact, Rogers (1975a) proposes
approximations of these quantities different from those put down
earlier in this paper. He simply measures the rate of migration
from region i to region j for age group x, x + T as the ratio of
the number of changes of residence (from i to j made during the
observation period by those aged x to x + T at the end of the

interval) to the average population in region i, i.e.,

i,J

i~j _ Kx
ny T, . i 1

f[Kx(t) + Kx(t + T) 1]

(£ + T (143)

. . i%7 .
Clearly, this contrastswith our measurement of mi defined as

1.i3 i3
7K, _p (8 + T) + K (t + T)]

s
X = . (144)

Tl j_i
2[Kx(t) + j£1 KX(t + T)]

a relationship obtained by combining (137) through (139).

The alternative measures of migration rates out of the South
Region in our four region system of the U.S. calculated from (143)
and (144) appear in Table 14 which shows that transition migration

rates as measured by (143) are generally higher than when measured
by (144).

Since the denominators of i&i in both (143) and (144) take
similar values, the discrepancy between our measurement method
and that of Rogers originates for the larger part from the dif-
ferent values taken by the numerators of (143) and (144). Indeed,
the numerator of (143) concerns migrants who were aged x to x + T
at the end of the observation period, while the numerator of (144)
represents an approximation of the number of migrations from region
i to region j relating to the people aged x to x + T in the middle
year of the observation period. Clearly, our measurement method
(144) is more legitimate than that of Rogers (143) which does not

properly estimate the age disaggregation of migration flows over
the observation period.
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Table 14. United States, “four region system (1965-1970), females, transition
migration rates from Ledent's and Rogers' definitions contrasted.

FROM LEDENT'S DEFINITION OF MIGRATION RATES

36 371 372 373 374

X T Y T Y T
P 2,7Pn83% v,20481 .73 A 00000 0,00638
5 n,r2a4e P,A7256 MePYU3SY p,20200 n,80372
10 a,a2m35 P 2214 @,Au3S51 @,¢eepe2  8,00295
15 A, G0hY P, A033e MeAVSUP R, APRQA n,nA387
20 2,077 n,22462 ReDCT13 p,20P0D0Q P,00515
25 0, 2095 P41 neRUB13 7,70000 A, 20496
32 p,ADVI AR P,n02R4Y P,00437 A, N00PA P,P8395
35 7,226 n,00213 P.nE6320 a.,2n000R n,20302
e 2,2n331 P,AN14T @,@R225 0,00000 Q@,a0217
4s ?,00475 2,0010¢% #,00162 a,000Q0 @,@0155
Se A, 20656 n,20284 n,00129 n,re209 f.00116
35 n,27951 W,20070 PeP2115 W,20000 2,02091
b3 0, 71332  ¢,20768 n,00109 G,00000 0,00P80
65 ”,72120 A, 2AAT74 NeNAIAB e,2000@ 2.,02Q76
e 2,73196 ?, 0P8 nep0120 n,oRARA 0.,20075
75 ?2,05314 ", 02784 p,p0123 P,A0200 @,00074
AR n, 18538 u,22¢75 MeRB110 N, PABNA 0,00066
8% A N8940 n,A2n72 Pe@B1MS n,NnEQAQR P,22063

FROM ROGERS' DEFINITION OF MIGRATION RATES

376 3™ 372 373 374

x mx mx mx mX mx
e ?,11933 n,rn324d DeA0SEM p,A00R0Q P,80455
4 ®, 20042 n,nn218 " PA357 n,00000 2,n2328
12 ?,00M35 A, 27229 AeNB3U4 ”,00000 V,00263
15 @, non64 ¢, 00624 a,n¥686 M,RA0000 0,00474
on n,BA0T77 n,20407 M, Q0593 2,00000 .080454
25 n,M1A9% n,202174 P.NA0ER7 2,00000 0,00378
sn n,AA140 B,00231 n,00347 p,o2000 A, 00324
35 a_m0”26  2,00177 a,00267 0,00083  2,0055
an n,025314 n,09122 A,N0188 A.,000n0 R.20184
45 A, AANTS n,N2086 MeA0129 n,20000 n,08119
5 n,?A656 7,00073  a,p0112 @,00008 2,00096
55  2,20951 ®.P%061 0,001906 ©0,00000 V,00075
60 9w, 21332 P, NAA6S MeABQA9S ”,20000 A,m0073
65 n,02100 N, N2N68 NeNOQA8A ”,R0000 0,00064
1a »,73196 2,0Qn72 n,00106 n.200020Q Q,00063
1A n,25314 n,2A062 n,00092 n, 307002 A,00055
bo »,MRS3A N, ANR4ES PeRYNGL6 2,0209 V.NNB39
a5 ? 14944 A, 22020 n,2300RN 0,20002 N, 00000
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The impact of the measurement of migration rates on age-
specific transition probabilities can easily be obtained by an-

alytically comparing the matrices Py and p; ~corresponding to the

alternative measurement of migration rates.

-

Let mX and m be the matrices of movement rates consistent

with the two alternatives. Since
- - = + — -
Py Ex [I Ex] [I + Ex ] ’

in which

_ T -1
[T +p,Jd =20+ 35m]
- _ T - —'1
[E t Py ] = Z[E + 7 My ]

m” ) ]

N -

1
N3
X

Replacing m and m; by their expressions in terms of transition

rates such as

8 mt m § mt m

me = (modme s T on) @ gm)T

¢
in which @ 1s given by

mt m
1m;} = [I + g %£_1[§ + g %X ]{Ti}
we thoen have
§ mt m
N R NIt
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and:

§ mt
- T T -1 T =1
Ex Ex - 2[(1: + 5 IPX) (E + 5 ~x) (1: + 2 Tx)
m § mt
T ~. T ~ . -1 ™ ~. -1
- = - + =
(I+ 5 m )+ 3m) T+ zme )]
) mt

~ ~

Since mX and mx are diagonal matrices, we can write:

S N 1 _ 1
= — ~ (S) Ty
X x A+ I a+ I8 o+ TR a2 D
j=1 j=1
J#1i Jj#i
¥i=1,...,n . (145)
and:
177 i%j .
lpj _ ipj, - m. _ m
X X T i”§ T X177 T i76. T i73.
A+ b+ I o+ a+ 2 el
J=1 j=1
J#1 j#L

Vi, i = 1,...,n . {146)

Because of the impact of the measurement of migration rates j # i
on the values of the transition death rates:

i1 ii. . ) . 179 . i%j

- P, - p; 1s approximately proportional to Z lmi - Z mi

] ]

(the higher the total outmigration rate of a given region

the smaller the retention probability),

i oAl . o~

i - pi 1s more or less proportional to 1mX - 'm

(the higher the rate of outmigration to a given region

the higher the probability of moving to this region), and
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- the magnitude of a variation Am in the measurement of
migration rates on the values of the probabilities of out-
migrating is roughly TAm for an age group with small mor-

tality and migration rates.

We also have:

16 i é8° 1 1 , .
q. - q = 2 —— — : ' Vi =1,...,n

X X 1 + T lm6 1 + T lm
2 X 2

P
X (147)

which suggests that the probabilities of dying are only slightly

affected by the measurement of migration rates.

The impact of the measurement of migration rates on other life
table functions must be determined not analytically but numerically.
We have calculated the multiregional life table functions - based
on the mixed approach and a linear integration for deriving {LX} -
which uses Rogers' definition of migration rates (see Tables 15 and
16). Their comparison with the life table functions obtained with
our definition of migration rates reveals that, as it could be ex-
pected, probabilities of dying, total survivorship proportions, and
total expectations of life appearing in the second columns of Tables
15 and 16 are clearly similar to those obtained with our definition
of niigration rates (see Tables 3 and 4). The only exception to

this concerns the last age group for which Rogers posits zero migra-

tion rates.

survival probabilities and approximate survivorship propor-
tions are clearly sensitive to the measurement of migration rates:
for example, the probabilities for a woman aged 35 in the South
regionu to be in one of the four regions of the system five years
later, North East, North Central, South,and West, taken in that
order, are respectively 0.00866, 0.01303, 0.95470 and 0.01244
{(versus 0.01037, 0.01559, 0.94817 and 0.01471 with our definition).
These important differences then result in large discrepancies
telating to the expectations of life (by place-of-birth) and es-

pecially to the migraproduction rates. The average number of
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moves out of the four U.S. census regions made by a woman born
in the South region decreases from 0.72 (with our definition) to

0.59 (with Rogers' definition).

In brief, the columns of a multiregional life table are very
sensitive to the proper measurement of migration rates as illus?
trated by the above comparison of two multiregional life tables
constructed with alternative definitions of the migration rates.
Moreover, it was shown that the discrepancy resulting from these
two alternative definitions was much higher than the discrepancies
implied by the theoretical points of choice, 1.e., the choice between
the transition and movement approaches or the choice between the

linear method of integration and the interpolative-iterative method.

Influence of the Length of the Observation Period

Again, since the measurement of observed movement rates is
a straightforward extension of the measurement of observed rates
in the sinagle-region case, the length of the time interval over
which actual movement rates are observed does not raise any par-
ticular difficulty. However, as put forward at the beginning of
this section, the correct meaéurement of transition migration
rates for use in an increment-decrement life table implicitly
requires that the length of the typical age group be equal to the
duration of the period over which migration is recorded. Thus,
the numerical applications concerning our U.S. four-region system
were carried out from migration data relating to five-year age

groups observed on a five-year period (1965-70).

It is clear that if the migration data had been available
for a one-year peried only, the resulting migration rates would
have led to an overestimation of the probabilities of moving
from one region to another. Intuitively, this problem stems from
the well known fact that annual migration rates are higher than
1/nth time n-year migration rates, owing to the peculiarities
caused by multiple moves and especially return migration. (See
Table 17 comparing typical one-year and five-year migration rates

for British regions.)
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Multiregional life table based on movement death rates and transition

Table 15.
rates of migration (Rogers' definition), linear case, United States,
four region system (1965-1970), females, age-specific survival prob-
abilities and approximate survivorship proportions (South Region) .
SURVIVAL PROBABILITIES
38 31 32 33 3.4
X Py Py Py Py Py
@ P.02625 P.A1545 0,02691 2,909648 Q,02170
5 a.00211 B.,01063 B,01742 P,95383 p,01601
19 .2n173 n,010ee B,01686 2,95832 B,21286
1% p.,ue%18 Q,02038 @,03295 ®,9207S p,02275
°n 2. 3B4 ?.0196¢2 ©0,02854 P,92616" a,02184
25 P.00471 2,n1329 e,0207¢6 P,94287 0,01837
3n R 2693 2.,01125 0,01691 2,94911 v,01582
35 n,01117 b,uQ866 @,41303 P,954702 n,a1244
4 n,1641 D, 0N586 é,00921 P,959%n 2,00902
45 n,02346 @.W?QEI v,un632 B, 96017 0., 00584
S@ n,035228 DeAn3ug v, 0546 B.,95414 v,BR470
S5 A, nld6ud W, u?297 0,40%19 R.,94177 p.,20366
60 P Blddn D515 v, 02464 p,92427 2,003%9
65 n.¥9974 P, N320 b,bn462 @,88943 N.,00300
1% P.14B0QY BePn33Y 0, AN487 0,848091 P,00291
75 2,23461  QA.00274  ©0,00403 0,75622 @,P0240
8 735185 fp,an184 n,on27e 2,64200 V,A8161
85 | .0000 Do 1A AD ¢, 00000 2,P0800 2.000800
APPROXIMATE SURVIVORSHIP PROPORTIONS
x 3S 351 352 353 354
X X X X
5 A, 98688 2.,908773 ¥,01346 ",9548
Do D.uRses w0135 o v2264 2193055  0.01920
10 ».99754 ﬁ'”‘”“a 4.01716  0,95599  ©,41452
15 . 99649 l.e151a hon2aed 2.30009  0,01771
20 .99573 g'FQMlQ gauc0ns  G.32326 0,02224
34 &.9q419 «Vlbbe v,02488 Pe93411 2, 02013
56 0 99997 ;-W'?ag 4,01890  ©,94586  0,01714
S5 nlureas  nlomras  Lloi302 2.33178  0.01418
bn nlomnen TRt w.@l116 - .95700  8,01077
e ;.q’21é ;._w§wa @,wm719 195981 d.00746
“a ;.dc 7- ,.ﬂm58§ ﬂ,?@ﬁﬂ& P2,99722 @,2u527
- M NS v, dng 1.93328 v,0
i et T.Aﬂial N TY N,86657 P,00292
e T " 029 gBa3e  0,80222  2,00261
80 ;-W}“ﬁh P25 v wns3L w7078 v,80197
LUDZAS A eB 0 DRSS 1,04654 N,00167




- 135 -

Table 16. Multiregional life table based on movement death rates and transition
rates of migration (Rogers' definition), linear case, United States,
four region system (1965-1970), females, age- specific expectatlons of
life and net migraproduction rates by place-of-birth (South Reglon)

EXPECTATIONS OF LIFE

3 - 3.1 3 2 3 3 3.4

X e e e e e

X X X X X
@ 74,24352 5.24406 7,85896 S4,4327@ 6,90780
9 71,17735 S.148%4 6,00172 SQ@,99703 7.03828
18 66,3215 5.,0473% 1,84109 46,52755 6,97556
15 61,.4P994  4,90611 T.6p244  42,21471 6,T0667
2P Se,61558 4,70923 7,27459 38,189°24 6,44252
25 51.,81844 A,4370U% 6,83706 34,4503p 6,09405
I 47,24178 4,10804 6,32308 30,93p23 S.6804¢2
35 42,4546 3,74%49 5,76493 27 ,59895 S,82474
48 $7,715743% $.,36647 5,18628 24,45873 4,74595
45 $3,.31634 2.,97958 4,60p84 21,48034 4,25558
50 29,02276 2,99%09 4,02018 18,64484 3,76413
5%  P4,BARY1Y 2.P1437 3,45124 15,94p49 3,27802
6Q  °r, 94991 1,85a7¢2 2.99587 13,38641 2,80691
69 17,21156 1,50853% 2, 38722 10,96773 2,35108
™M 13,8245 1,19247 1,94579 8,78491 1,93134
15 10,81265 DeY¥1196 1,49114 6,85822 1.55133
an 8,39987 1.,68349 1,14387 S.327R2 1,24500
89 b, h3d490 149196 2,67681 4,22221 1.02588

NET MIGRAPRODUCTION RATES

x 3n' 31 3n2 3n3 3nu

X Ny X X X
@ *.59437 W, 03608 v, 06511 R,44331 2,04986
> n.,52615  v,n3567  w,0e422 0,37735  0,04892
10 748030 W, 4484 U, 06256 2.335862 Q,04724
15 P, 43914 A, 28873 G, 0p049 0,29945 V,04546
e re35882 V,23130 B.85451 B,23246 v,04149
5 @,2Bd4d1  N,a2646  ©,04719 @,17521 @,0355%
32 ¢n,20834 0,42309 v, 04pT2  ©,13527 0,02947
35 ¢,.18090 v,01972 ¥,03456 2,10290 @,02371
49 ?,14387 2,21681 v, 925 0,07883 n,01899
45 $.,11723 V.01453 g,02504 8,06229 B,01537
Su ?.29352 @.,01274 @,2216S 2.05124 R.n1288
5% . nBene B, 01086 D, 01820 B,4214 Ra01076
b P 0kAU9Y w,a0R29 v,013593 g,03423 0,008849
65 ¢.04d775 ¢ 45% “u,0p94e P,e2660 ?,00628
2% *r, 8081 My 61429 v, UneRYs P.0n1919 vo,un428
5 CLu1947 Qa1 91 V,un3%2 .,01145 2,00258
1% Painrg N,AR T nw,ep1dae A AR4T7 wa.vat1@ay
49 AL ADETAN Naunnp v, dprpu ?,24000 a,PANAD
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The impact of using migration rates relating to a period
whose length is not equal to that of the typical age group can
be assessed by comparing the age-specific transition probabilities
obtained in the case of observation periods having the correct

and incorrect lengths.

Table 17. Comparison between one-year and five-year rates.*

Region One-year rates ' Five-year rates
North 0.1101 0.3385
Yorkshire/Humberside 0.1061 0.3382
North West 0.1056 0.3233
East Midlands ' 0.1080 0.3254
West Midlands 0.1074 0.3302
East Anglia 0.1280 0.3519
South East 0.1269 0.3584
South West 0.1266 0.3602
Wales 0.0938 0.2913

ijijLand 0.1187 0.3504

This can be performed by applying the formulas (145) through (147)

-

in which the annual transition migration rates for the observation
m

period having the correct length are contained in mx and the

rates corresponding to the alternative observation period are
m

~

contained in m;

*The one-year and five-year migration rates shown in this table
are aggregate migration rates for the British Regions observed
in 1970-71 and 1966-71 respectively. They are drawn from Ph.
Rees, The Mcusurement of Migration From Census Data and O ther
Sour - s, Environment and Planning A, 9, 1977, 247-272.
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m m

~

m
Since m

m

< is generally much less than %; (Tx .65 %; in the
case of the British reéions shown in Table 17), it follows that
the use of annual migration data instead of five-year migration
data 1ina model in which population is broken down into five-year
age groups leads to inaccurate estimates of the multiregional
life table functions. This is illustrated by the comparison of
Tables 18 and 19 displaying four multiregional life table functions
(survival probabilities, approximate survivorship proportions,
expectations of life and migraproduction rates) obtained by mul-
tiplying all transition rates of our U.S. four-region example

by 1/0.65 - with those of Tables 3 and 4.

For example, the life expectancy of a woman born in the South
slightly increased form 74.31 to 74.39 years while the times of
this life expectancy spent in other regions increase dramatically:
5.73 to 7.50 (North East), 8.71 to 11.2 (North Central) and 7.70
to 10.09 (West). The higher mobility is also reflected by the
total migraproduction rate for a woman born in the South which

jumps from .72 to 1.13.

Clearly, the difficulties relating to the measurement of
migration rates (more specifically number of moves or transitions,
length of the period of observation) have an impact on the calcula-
tion of multiregional life tables that is much larger than those
created by methodological aspects. In the future, improved methods
for calculating multiregional life tables should not focus so
much on extending theoretical grounds (developed in this paper)
but rather on proposing better methods of measuring migration

rates from data commonly available.

Comparison of the Actual and Modeled Migration Processes

One of the strengths of the single-state life table is that
its underlying mortality process replicates the actual mortality

%
process. The reason for this is that the propensity to die at

*The discrepancy between actual and modeled mortality vprocesses
results from the more or less regular age composition of the ob-
served population (owing to variations in the fertility pattern
and, at a lesser degree, in the mortality pattern over time).



- 138 -

Multiregional life table based on movement death rates and transition

Table 18.
rates of migration, linear case, hypothetical four region system, age-
specific survival .probabilities and approximate survivorship propor-
tions (South Region).
SURVIVAL PROBABILITIES
3.4 3.1 3.2 3.3 3 4
X Py P, Py P, Py
@ A,ne6t? B,Nn3d41¢ v,051715S ©w,84277 P,0452¢
5 W, 2211 N,21893 v,43212 P,91941 0, 02743
12 n,ant73 n,n159 0,02614 9,93426 0,42198
15 Z.,40318 A, 02432 b,03958 Ne9045H V,n2833
ey H,MAZHRD B,03%3% D,45139 V.B7430 R,03716
25 P HAUBA n,nA979 v, 4445 ”,8851p W.83%96
30 p,006%  n, 2089 v,U3211 9,91104 D,02906
35 m,A1114 ne@i1ST78 w,u2372 m,92697 w,N2238
an (e 1638 n.B11195 M,01678 0,93969 P,01620
Qb e sdy Vet T84 . 0,id1210 ?,94505% 0,01157
50 n.N3226 A6 2Y B,aN964 B.,943201 W NOBBY
55 ", 04603 MaNPS17 0,00857 d.,93376 U.086T8
b My iihday ¥, 1R AN Yv,0nan3 ?,916h6 R, AN587
64 N.,M9973% NS 34y W, uNTRA P E81K 0,0055@
74 ?,14807% 1,AnN79 v, 00843 MN,B3249 “,an527
79 A, 34nA NI N v,o0829 Be74645 Ve, 49%
By n, 55191 W Bina Ty J,00693 Neb3231 B,0R414
&% 1,140 W, anany 0o, 1pa00 D, 2NPAQ U AAURA
APPROXIMATE SURVIVORSHIP PROPORTIONS
X 3S 351 332 353 BSu
X X X X X
-5 ”.98692 N1 T06 LYY 2,92139 0,02260
2 1,985k d,NeT8p v,a4342 D.87680 0.03803
5  2,99804 deNf T4k $,02930 P,92637 0,02495
1@ 0,9975%  7#,01988 ¢ ,03247  @,92012  @,@2508
15 #,99650 n,0°8%/ v Y4494 p,89050 ©,0325u
2a M998 T 6 bl 8y L VAR @.87921 2,83639
25 0 ,9942% Baehbh W, V3884 P.89704 2,03270
3Q ¥a.99120 Arlbue v, 42815 Ma91843 P,02597
1S (,98b62b Va.i11 340 v,B2nde N,93293 P,01946
40 R LI Gonid g 0, 01450 p,94222 V,01398
49 R,912024 ATy n,01088 ¥,94414 n,21014
S8 L9607 2,086y w,0R907 2,93830 0,00772
89 *,94477 M, MuSAS B, up82S .92517 ,00631
69 G 91B5N heMids 1 ¢, 90789 2,89989 P,00565
65 r ,BTTES v, NS48 h, ap799 P,B85856 B,02532
&4 (1, 81208 0@, 06556 W, U815 n,79338 @, 20499
79 o, 11450 P NS08 v, KAT4n 2,69765 @,0004p
80 1, 08874 Vaildde W, ¥2187 1,03786 ¥,8145%
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Multiregional life table based on movement death rates and transition
rates of migration, linear case, hypothetical four region system, age-

Table 19.

specific expectations of life and net migraproduction rates (South
Region) .
EXPECTATIONS OF LIFE
3 - 3.1 32 33 3 4
X e e e e e
X X X X X
B 74,5909 T.,50320 y1,18121 45,61314 19,09358
5 71.3°264 T.~17@2 1,34881 42,1284 1P,248%6
10 66,46544 7T.u1864 11,04158 38,02067 9,98454
19 631,57200 T.14940 19,6182 34,17978 9.,62450
°en 86 ,75594 H,82261 14,10113 30,64068 9,19152
25 91,95999 b,41103 9,45900 27,4282hk 8,687701
30 47,1749 Y.,91486 8,7a741 24,52196 8,23036
35 4e,45904 H,56044 7,89459 21 ,84830 7.34976
49 37.8B70025 4479791 7,d6258 19,35917 6,65069
4%  3%,41787 4,2?2386 65,2319 17,01551 5,94721¢
S@ 29,.,11219 5,6551% bH,414n1 14,7939 5.,24912
5% P4, 96702 s, 10133 4,62p78 12,68216 4,56376
6e ePy.M2714 2,57181 5,667401 10,685%24 3,943019
65 17,2917 e.,A7T715 3,160587 8,7842% 3.26876
T4 13,9u597 168787 2.93065 7,04960 2.68785
75 12,.9152m 1.25579 1.97870 5.91e587 2.16800
ap R,94647 Pe533p 1,.53949 4,29640 1,7572%
as5 t.07108 MW, 734U 306 1,220892 I.43655 1,47922
NET MIGRAPRODUCTION RATES
3 - 3.1 3.2 3.3 3.4
X n n n n n
X X X X X
A 1.13394 n,2997¢ n,17555 A,71334% We14533
5 h,9RAAY W, 297497 d,17200 B,5758R7 Weldinn
10 A, 81 A MG51 8 v, lb661 W,hA622 P.13511
15 m,H3545 W A9 Rk ,l6066 N, 45389 w,1292%
en n, 736449 N, ABR2H v, 14940 P,381587 R.le70
25 A, 61314 Ng il w,12991 P.2924h8 U, 10615
k1% N 81 2d M aAh 465 b, 17961 Me21997 n.08781
35 A, ShERS BT L PR L v,A9286 n,17239 W, 07106
4y M, 81894 Wehdb b b,ar1924 Aol 350FA PA8T90
4% M, 2h95) Mgt 1Ud ¥, 46898 nel11001 v, AUAR48
54 Me238297 Maindedy b U668 n.n9416 Red1b4
55 N PR252 TR RN v, us3a7 A, #8118 v.03610
YR R N R NyM2n98H ¢, 0uy44 M7 A.AZNRY
65 aatanry Ny PPN 1 DRUS2 1, 06018 D,P2947
T2 W.114385 Mg ALY b, 02548 N 498A A,2203%0
5 “,nR3IGN M tnay WL, W1879 M, N38A9 B,01571Y
au B, "5989 a4 A, 01330 ML nATT? Pa11191
RS A, 3IRKA Mo 1uh W MRS V.1 788 Ve RRATTY
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any age y in an observed population is roughly the same for all
individuals of each age cohorts as hypothesized in the life table

(this propensity to die only depends on the value of y).

Does the multiregional life table provide a similar duplica-
tion of the actual mobility process between regions of the system?
First, note that the single-region assumption of homogeneous age
cohorts cannot be extended to the multiregional case because the
propensities to migrate vary among individuals in a very sensitive
manner. Some individuals ("chronic" movers) have a tendency to
move repeatedly. 1In actual populations, members of a group of
individuals present at the same age in a given region have dif-
ferential propensities to move, largely dependent on their past
migratory history; the larger the number of moves made in the past,

the higher their propensity to move.

The question is one of determining how unrealistic the as-
sumptions contained in the multiregionai life table are. What-
ever the focus chosen (movement or transition approach), the
multiregional life tabie (or more generally the increment-decrement
life table) is in fact concerned with transitions between predeter-

mined ages rather than with moves: 1in essence, it looks at net

*
balances of migrations rather than at gross migration flows.

The multiregional life table thus describes a (Markovian)

transition scheme in which the consolidation of moves into transi-

tions occurs within the model (movement approach) rather than out-

side of the model (transition approach).

The multiregional life table must be judged on its ability
to replicate consolidated moves (transitions) rather than gross
flows (moves). Let us surmmarize the two main alternatives (move-

ment and transition approaches).

*The multiregional life table functions generally relate to age-
cohorts independently of the region of presence at any earlier
age and only require the knowledge of consolidated moves (an
exception to this is the case of migraproduction rates).
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First, the movement approach permits us to calculate all
moves accurately but not transitions because of the non-validity
of the Markovian assumption in the real world (multiplying by x
movement rates would result in an approximate multiplication by
x of transition rates).* Therefore, its use is to be avoided

when calculating a multiregional life table.

Second, the transition approcach makes it possible to calcu-
late accurately observed transitions if the transition migrations
are appropriately chosen (i.e., if the length of the typical age

group is equal to the length of the observation period).

The homogeneous and Markovian assumptions underlying the
multiregional life table seriously limit the ability of the multi-
regional life table to replicate the observed migration process.

On the one hand, the movement approach may lead to the duplication
of gross moves but not to that of consolidated moves. On the other
hand, the transition approach allows for a "reduced-form" dupli-
cation of transitions or consolidated moves, which fortunately is

sufficient to calculate most multiregional life table columns.

A further consequence is that the movement migration rates
which were derived earlier in this section, in agreement with the
transition migration rates, were not true movement rates, but were
those which led to the same multiregional 1life table as the trans-

ition migration rates.

*The use of the Markovian assumption keeps multiple moves (and
especially return moves) at a low level. For example, in the
case of a two-region system, the ratio of return moves to the
gross outmigration flow can be obtained as

- .
. ]m L]

. X 1x X
X imj 1

X 1X X
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CONCLUSION

The most important feature of combined life tables that
allow entries as well as withdrawals, is the existence of more
than one stationary population in the multi-radix case. If indi-
viduals are born in at least two states of the population system
at hand, the solution of the differential equation (17) underly-
ing such life tables shows that all are linear combinations of
the r independent stationary populations generated by the sur-
vivors of each state-specific group of the initial cohorts. Con-
sequently, in the case of more than one radix, life table func-
tions characteristic of age grourns depend on the relative weight
accorded to the r independent stationary populations, i.e. depend

on the state allocation of the initial cohort.

The conseguence is that the construction of a coherent incre-
ment~decrement life table requires the additional assumption of
the independence of life table rates vis—-a-vis the allocation of
the initial cohort. It is not correct to state that the defini-
tion (35) of movement rates
3]

] X
My i (148)

is equivalent to (61)

OPX (149)

~X 0~x  OSx+T
(149) implies (148), but (148) does not imply (149). 1In fact,
there is equivalence only if (148) holds not only for the whole
stationary population but also for the independent stationary

populations generated by each radix of the initial cohort:
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-1
O%X

m

Yk = 1,...,n <=>m_ = (,1_ - 1 )

i3
0,k x 1 ~X 0~x 0~x+T

Another striking feature of the increment-decrement life tables
and their associated multistate life table functions is the ap-
propriateness of matrix notation that permits the derivation of
multistate life table functions as simple extensions of the scalar
life table functions of the single-state case. As shown earlier,
the matrix format used by Rogers/Ledent (1974, 1976) and Rogers
(1975) makes it possible to derive additional multistate life table
functions with regard to the vector notation suggested by Schoen
(1975). Note that this statement applies to the multiradix case

as well as to the single-radix case.

Basically, there are two main approaches to constructing

increment-decrement life table functions:.

- The first approach emphasizes the movements of individuals

between intercommunicating states (movement approach).

~ The alternative approach focuses on the net movements of
individuals determined by a simple comparison of the
states of presence alt the beginning and end of the period

L i *
considered (transition and mixed approaches ).

A priori, the former approach appears more desirable since
the latter is characterized by a certain loss of information in
that transitions represent the net balances of the corresponding
movements. However, since the methodology underlying the construc-
tion of increment-decrement life tables focuses on age-specific
survival probabilities that are nothing but transition probabilities,
the movement approach reduces to the consideration of transitions.
The dJdifference between the movement and the transition approaches is
that the reduction in scope from movements to transitions occurs

within the model rather than outside of it.

*The mixed approach which emphasized deaths as moves and migratory
moveinents as transitions is a slight variation of the transition
approuach.
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Which approach is most suitable in practice? Earlier, in
Section V, we suggested that the utility of an increment-decre-
ment life table depended on its ability to replicate the actual
processes of the demographic events at hand. We then showed that
the transition (mixed) approach, in the context of interregional
migration, was more appropriate than the movement approach. 1In
fact, the less the hypothesis of independence of moves holds vis-
a-vis the past history of individuals, the less desirable is the
utilization of the movement approach. In any case, whenever the
necessary data are available, the transition (mixed) approach is
the more desirable, since it permits to avoid the problems as-

sociated with multiple moves.

Among the two alternative options of increment-decrement
life table construction, Option 1 - based on equating life table
ani observed mortality and mobility rates is a more reliable
method than Option 2. Nevertheless, Option 2 can be used when
there is a lack of data. However, the results will not neces-
sarily be accurate. The numerical estimates of the multistate
life table functions depend on the choice of the integration
method for deriving {LX}. Two alternative variations have mainly
been explored in the course of this paper: a linear integration

method and an interative-interpolative method.

Note that, in the linear case, explicit expressions of the
life table functions can be obtained as shown in Sections II and
III. 1In fact, we have established the existence of a general

formula for estimating the age-smecific survival probabilities:
u ][I +

in which u and v, are to be taken as follows, according to the

approach chosen:

roach: u = v _ = m
a) movement approa ix ~X ~X
m § mt
it ach u = I/T\l - 1'/{\1 + T Irt\l 1;1
h) transition appro : by X ~X 2 ~X ~X
m § mt
~ ~ T ~ ~
= + m + = m
<X ~X ~X 2 X ~X



m § mt

. ~ ”~ T ”~ ”~

c) mixed approach: u =m_-m_+ =m_ m
b4 ~X ~X 2 .x _X

(emphasizing deaths

. m § mt

as moves and mig- ~ ~ o~ A

v . =m + m_+ =m_m
ratory movements X ~X ~X 2 X X

as transitions)

$
in which éx is a diagonal matrix whose elements are to be obtained
§ mt m
from (m.} = (I + 2m) (1 + Zm
X < 2 <x ~ 2 ~
Finally, for future research, we may conclude that the concept
of multiregional life table as defined above does not constitute
as strong a starting point of multiregional mathematical demography
as does the single-state life table. This is because the under-
lying (Markovian) assumption does not hold in observed populations

as well as does the corresponding assumption in the single-state
case.

Therefore, one direction of future research is to introduce
more reality into the migration process underlying the life table.
However, this can only be obtained at the expense of additional
complexity and data requirements. Consequently, such a direction
of research appears to be not very useful because multiregional
life table functions do not necessarily require a focus on moves.
As just shown, they can be adequately estimated from the transi-
tion approach first develoved by Rogers (1973a, 1975a) and expanded
in the present paper. A more rewarding direction of research is
the further development of the transition approach, especially
the estimation of transition migration rates, as suggested in

Section V.
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Appendix 1: The Aggregation of a Multiradix Increment-Decrement
Life Table into a National Single-State Life Table
As a first step, we characterize the difference exhibited by
the aggregate and disaggregate life table by examining the rela-

tionship between the survivorship probabilities of the two tables.

A national single-state life table is generally derived by

ignoring internal migration between subregions. From estimates

of age-specific death rates Tmi for the nation, survival probab-

ilities at exact age x are obtained in the case of a uniform

distribution of deaths over time, from:

o)

It
ST [N ST
X on[% o

in which mi has been generally derived from:

S

Q,

X
X L
X

where di is the number of deaths occurring to those aged x to

Xx + T and LX the mid~period population aged x to x + T. Note

Lo 16 1) i . e
that 1if m dx and LX are the region-specific counterparts of

m® a% and L , we have the following:
X, X X

o

n . o n . .
S } ldO Z 1m<S Ll
. X & X

X
L L L
X

8 _
m_ =
X
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Clearly:
§ _ a4~
m_ = {i}’m_{a_}
X ~X X
where
{i}”~ is a row vector of ones
%x is a diagonal matrix of observed death rates,

the general diagonal element of which is lmi

{ax} is a column vector whose general element is

'_l
2N
XX -

Note that, since the multiregional population considered is a

closed system, the aggregation of %x yields a zero scalar:

NN o _
(it m {a_} 0
§
then, we may express m  as

mi = {i}’TX{aX}

in which m_ is the full matrix of observed death and migration
rates. To establish a relationship between Py and its multire-

gional counterpart p, we start from (58) rewritten as:

~

T
1+ 5m] p,=1[I-5mn]

Premultiplying by {i}~ and post multiplying by {ax} vields:

) T v ogirerr U T
(i +3ml e fa b= (81701 - 3

TX]{GX}




Dividing both sides by 1 + g Tmi finally leads to:
p, = {3)7p la )

in which

T 1.6 -
1 + 5 mx
(1701 + L m 1 .
317 = T 26~x - T 3§ .
1 + 5 m, 1+ 5 M, .
T n 6
1 + —2- mx

the relationship linking Py and Py is thus similar to that link-

~

ing m_ and m_, {3} " being substituted for {i}~

‘Note that {j}"# {i}"unless 1mi = """ = nmi = mi, that is,
age-specific death rates are identical across regions. The
result is that a national life table can be interpreted as the
aggregate life table of a multiregional system, in which death

rates are identical in all regions.

Furthermore, the aggregation problem does not really stem

from the consideration of internal migration, but from the ex-

istence of differing age-specific mortality rates across regions.

The question is then how to carry out the aggregation of the
n lincarly independent stationary populations into a national
life table accounting for differing mortality patterns across
regions. A priori two alternatives are possible. The first
possibility is to derive the age-specific survival probabilities
of the national life table from those of the multiregional life
table. This can be done, for example, by setting the survival
probabilities Py of the national life table equal to the eigenvalue
of P, However, this would result in a particular multiregional

¥It can be shown that this is equivalent to picking a value of m(S
egual to the eigenvalue of m.
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system in which the age-specific net quit (absence) rates would

*
be identical in all regions and equal to the national death rate.

Alternatively, we can pick a particular regional allocation
of the initial cohort. We can then build a national life table
recognizing differential mortality rates by assigning to the ith

radix a share of the initial cohort such as

pP. = Bi
1 ZBl
i
in which B! is the total number of births in region i. If regional

birth data are not available, a good substitute can be, asauming
that each region of a muitiregional life table is characterized
by a number of births equal to the number of departures (i.e., the

number of deaths minus the number of net-(in)migrants),

in which D' is the total number of deaths in region i,, Over

in which 0% is the total number of migrants out of the
region ;, obser-

in which I' is the total number of migrants into vation
region 1i. period.

i'his alternative clearly presents the advantage of imposing
no additional assumptions on the regional patterns of mortality

and nobility and should therefore be preferred.

* The demonstration of this feature follows from the previously
ment ioned nquivalence.
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