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Three Algorithms for a Simple Nonlinear

Programming Problem

Ilya V. Gouevsky

In IIASA working paper WP-74-61[1] Yu. A. Rozanov suggested

an elegant method for solving the following optimization problem:

n
(1) u(x) = max izl ui(xi)
subject to
n
(2) l£1 Xi = Y,(xi : O) ’ ’

where ui(xi) are concave utility functions.

For solving of this problem, when X > ¢, © is a small
number approaching zero, other computational procedures could
be suggested. They follow closely the idea of parametrical
solution proposed in [l].

Let us divide all indexes of the variables X into two

subsets: M, and M2, MlUM2 =M-=1{1,...,k,...,n}; M. N M2 = .

1
Suppose, the first derivatives

1
(3) wi(xi) = A for all i ¢ Ml

(A is still an unknown parameter) and the inverse function of

(3) exist, i.e.

(4) X, = ¢i(x) ' for all i ¢ Ml .



Then a following theorem holds true.

1
Theorem. If for a given X = Xl’ the value ui

(r) 2 X

l’
*
ie M,, then vector x = {xi,ieM} obtained by the expression
‘pi(x) = \)i ' 1 € Ml
*
(5) X; =
¢3(T) =T , ien,

is optimal vector (maximizing (1) subject to (2)).

Proof. For proving the theorem it is sufficient to be

shown that

* -
(6) A=u,(x,) -4, (x,) = ) u (v,)+ )
11 1t ieM . ieM2

i igM “i(x3) 20
for any vector x satisfying (2).
Since the function } u.(x;) is concave, it
differentiable and it caiege expanded in Taylor's

the neighborhood of its optimum, i.e.

(7) bou(x:) = ) u.{vy,) + ) (x,-v,)
jem t % ieMl ot ieMl o1
) (X:=v) 2w (v,) +
2 ieM i Vi i i
1
+ ) (x,-1) u, (1) + % )
ieM, . ieM

ui(T)

is twice

series in




In accordance to (2)

(8) y= ] x; =] v+ ] 1
ceM 1€Ml =M.,

and any variable, for example Xy s k e Ml’ can be expressed as

a function of other (n-1) wvariables:

(9) X, = ) v+ ) T - ) X, - ) X -
. i L i .
1€Ml 1&M2 15Ml 1€M2
i#k

Replacing (7) into (6) by taking into consideration (9),

one can obtain

A=) ug) T e () - ) v = T e (1)

. i . . i.
1€M] 16M2 1£M1 2

. ™
- y (Xi-\)i) ui(\)i) - ( }: \)i - \)k A ) T

lEMl 1eMl 1£M2
i#k
(10)
} ) x > e, (v.) ¥ (x T) u'(T)
- X. - . . - - ]
. i c it'i : i
1‘€Ml J_VM2 1;:_1\/12
1i#k
L n 2 n
=% ) v e ) =% ) k-1 w (vy)
1eMl 1€M?

”n
Since for any concave function ui(xi) < 0, the fipal form

of the equation (10) is

A = 5 (Xi"T) [ulj_(\)i) - U;L(T):| + 4 5 (Xi—\)i)ziu;(‘wi)!

1€M2 1.rl

2 ]
(x;-1) |ui(T)|
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It is obvious that as by the condition of the theorem
ie M
ui(T) < Al = (x } for any x. “fthe difference A > O. Therefore,

the theorem is proved.

Computational Procedures

Following the theorem three types of computational proce-
dures could be suggested.

I. Graphical solution of the problem

For solving the problem it is sufficient to draw all the

1
equations ui(xi) =X, i =1,n for any A < max “s (r) as is shown
i
*
in Fig. 1. ) After the drawing has been done, for every wvalue

n

of A the sum iél xi(k) is computed and hence, in accordance

to (2) the function A (y) is obtained.
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Fig. 1
n
* A\
)Tn the case when the constraint (2) is in the form X, LYy

X, 02 > 0, it 1s sufficient to consider only A in *hg 1n%evva]
0< X< max ug ' (1), because for A=0 the functlon ) ug ()

reaches 1ts absolute maximum (maximum w1th(”onst%a1nts)
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Having ) (y) the calculation of the optimal vector is very

simple. As is shown in Fig. 1 for a given y -= Yy the optimum
. * ) * I *
value of A is A and the optimal vector x~ = (xl,xz,...,x = 0,

o

* *
x X »
k’ n)

The graphical solution enables us to find the solution

"at conce" when y is changed, i.e. to find parametrical solutions.

ITI. Analytical solution of the problem in clozed form

Using Fig. 1 the following equation can be written

0.\, if ui(T) -2 >0
(11) x, (0 = , i=T17 ,

_ %
T , 1if Ui(T) - A 0

A

or in more compact form

(12) x () = ¢, () 1[u;m . x] - 1[5 PR, m] L= TS
1, if () > O

where 1(¢) =
0O, otherwise

§ is any positive number and it shows that when X - u.(7) = C,

then xi(A) is equal to T.

Il
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Let us denote with P the value of y when A
k

(13)

o]
il
o3

-
i

_ l{‘q_m,l[ui(r) - 3]

+ o1, 1[5 + A - u;(T)]} .

It is obvious from Fig. 1 that when y is changed, i.e.

x. (A ],
1 1 A—uk(t)

vy >y or vy < y_, the variable x, (X)) 1is
- Ty Ty k _



wk(A) ' ify-vy > 0
Tk
(14) Xk(l) = ' k = 1,n

~

'—l.

Hh
=

1
<
~
N
o

or in shortened form

(15) xk(l) = ¢k(_X) 1(y - ka) + 7. 1(8& + yT], - v)

n
According to the constraint (2), namely Z X

n
(16) ) ¢k(l),l(y -y, ) + 1. 1(§ + Yo -~ v) = vy

k=1 k k
In this equation, representing A as animplicit function
of y, only the variable X} is unknown and by solving it the
*
optimum value of A = A can be calculated.

*
Having A one can obtain the optimum value of all the

*
variables X, replacing » = X in (15), i.e.
* * * J—
(17) x, (A7) = ¢k(x ) 1(y - Y, ) + t. 1(8 + Y. - vy , k= 1,n
B3N k N k

The whole procedure for determining the optimal vector

*
X can be summarized as follows:

1. Choose 1

L
2. Calculate uk(T) , k =1,n

3. Calculate Yo ;, k=1,n from (13)
k
4. Solve the equation (16) in respect to A

* * *
5. Replace A in (17). The obtained values xk(A ) are

*
components of the optimal vector x .




ITII. Seeking method for the analytical solving of

the problem

Sometimes great computational difficulties will be met
when one solves the equation (16). To overcome these diffi-
culties, the following method can be proposed.

The method is based on the so-called "golden cut" [2]
which usually is applied for seeking the maximum of a unimodal
function.

Let us denote the upper and the lower boundaries of X
with G and A respectively (Fig. 2). The upper boundary

'
G = max ui(r), while the lower boundary has to be a greater

1
number approaching (-«). 1In the case when the constraint (2)
n
is in the form } x; <y, A= T.
i=1
A

e — Y

Fig. 2



Under these conditions the following procedure can be

applied:
1. Determine kl = A + Lo A
1.61803
]
| ¢.(\) , if w (1) =X >0
2. Determine X, = 1 , 1 =1
]
T , 1if ui(T) - A <0
n ————
3. Denote ] x;, =P. IfP =y, then x;, = x., i =1I,n
i=1

and the procedure is terminated.

If P >y (as is shown in Fig. 2), then A = Al and we have
to return to the first item of the procedure.

If P <y, then G = X, and we return to the first item.

It has to be mentioned that using the similar procedures

the following optimization problem can be solved:

n
max ‘Z uy (x4)
i=1
subject to
)
X, <Yy
i=1 ?
TS x; S EL i=1,n .

For this problem only a graphical solution is shown in

Fig. 3.




Example. Using a very simple example an analytical

solution of the problem in closed form will be shown.

1 5 5t 200 Vx ]

max [50 x1 - 2x2 + 100x., - x2

subject to

25 ;  x, >0 , i=1,2,3

Il e~
]
il

i

1. The first step of the algorithms is the choosing of
t. Let 1 = 0.00l.

2. Calculation of u;(T), k=1,2,3,.
ui(1) = 49.996; w(t) = 99.998; u(r) = 3333.33.

3. Calculation of yT , k=1,2,3 from (13)

k
y = 29.002; y = 1.003; y_ = 0.003.
T1 T2 T3
4. After replacing yT , k=1,2,3 in (16) we obtain
k

100 - A + 10000

2 12

= 25 .,
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Solving this equation the optimum value >f » i.. oktained,
*
A = 56.308.

5. The components of optimum vector x are cbtained by

*
(17) after replacing A = A , i.e.

X, = 0; x, = 21.85; x, = 3.15 .
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