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Three Algorithms for a Simple Nonlinear

Programming Problem

Ilya V. Gouevsky

In IIASA working paper WP-74-61[1] Yu. A. Rozanov suggested

an elegant method for solving the following optimization problem:

(1)

subject to

n
u (x) = max L

i=l
u. (x. )

1 1

(2 )
n

I
i=l

X.
1

= y (x. > 0)
, 1

where u. (x.) are concave utility functions.
1 1

For solving of this problem, when xi :::: .~, i. is a small

number approaching zero, other computational procedures could

be suggested. They follow closely the idea of parametrical

solution proposed in [lJ.

Let us divide all indexes of the variables x. into two
1

sUbsets: Ml and M2 , MI UM2 = M = {I, ..• ,k, ... ,n}; MI n M2 = ~.

Suppose, the first derivatives

(3 )
,

u. (x.) = A for all i E M
I1 1

(A is still an unknown parameter) and the inverse function of

(3) exist, Le.

(4) x. = lfJ. (A)
1 1

for all i E MI
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Then a following theorem holds true.
I

Theorem. If for a given A = Al , the value u
i

(T) ~ A
l

,

*i E M
2

, then vector x = {x.,iEM} obtained by the expression
1

'P. (It) = v. i E M
l1 1

*(5 ) x· =1

'P. (1") = '[ i E H21

is optimal vector (maximizing (1) subject to (2)).

Proof. For proving the theorem it is sufficient to be

shown that

(6 ) *1'1 = u. (x.) - u. (x.) =
1 1 1 1

u.(v.) +
1 1

u. (T)
1

for any vector x satisfying (2).

Since the function L u. (x.) is concave, it is twice
iEM 1 1

differentiable and it can be expanded in Taylor!s series in

the neighborhood of its optimum, i.e.

(7 ) L
iEM

u . (x &) =
1 1

u. (v.) +
1 1

r
(x . -\j .) It. (\). )

1 1 J..1.

+ ~
2 "

(x.-v.) u.(v.) +
1 1 1 1

I

(x. -1" ) u. (-r) + ~
1 1

2 "( ) .. ( )X.-,[ u. v.
J. 1 1
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In accordanc8 to (2)

(8 ) y = I
isM

x. =
1

v. +
1

T

and any variable, for example x k ' k E Ml , can be expressed as

a function of other (n-l) variables:

(9 ) X
k

=:: I \) + L T - '\ x. - l. x.I.
iE.:Ml

1 iE:M2 iE.:Ml
1 iEM2

~

ifk

Replacing (7) into (6) by taking into consideration (9),

one can obtain

1:1 = U. (v.) +
~ 1

u. (T) ­
1

U. (v.)
.1. 1

u. (T)
1

(10)

I
iFM

1
it-k

I

(x . -v .) u. (\).) -
1 1 1 1

x. ­
1

I

U. (\).) ­
1 1

I

(x. -T) U.(T)
1 1

2 "(x . -\) . ) u . (v. )
1 1 1 1

2 "(X . - T) - U. (\). )
~ 1 1

"Since for any concave function u. (x.) < 0, the final for~
1 1

of the equation (10) is

(x. -T)
1

)'
I,

1· c~.~d l

2 I " .(x . -v .) I u. (\1. )
1 1 1 1

+ .~
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It is obvious that
, ,

u. (T) < Al = u (X.) for
1 - i 1

the theorem is proved.

as by the condition of the theorem
i€ 1"12--.r-any x., the difference 6 > O. Therefore,

1

Computational Procedures

Following the theorem three types of computational proce-

dures could be suggested.

I. Graphical solution of the problem

For solving the problem it is sufficient to draw all the

hence, in accordance

,
= l,n for any A ~ max u. (T) as is shown

1
i

drawing has been done, for every value

= A, i

After the
n_
'~l x. (A) is computed and1= 1

,
equations u. (x. )

1 1

* )in Fig. 1.

of A the sum

to (2) the function A(y) is obtained.

A
~ (T) :

u' (T) I
n I

u~ (T)

u' (T)
e.

--4~-X.

1

I

I

'I, , I

ol~----l-------'_.__.--._. _
'T YTk Y

1

+ xj~ + x~';
K n

-..~~- ...

Fig" I

n
*)In the case when the constraint (2) is ~n the form.Y xi ~ y,

x. > 0, it is sgfficient to consider only \ in the in~~~val
1 - n

o < A < max u~ (T), because for A=O the function L u. (x.)
- -. i 1 . (. . liou~" i=l 1) 1

reaches 1tS absolute maX1mum maX1mum W1t -(constra1nts .
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Having A(y) the calculation of the optimal vector is v8ry

simple. As is shown in Fig. 1 for a given y co: y 1 th8 optimum

* * * * *value of A is A and the optimal vector x = (x l ,x2 ' ... ,x
0

= 0,

* *xk,xn ) •

The graphical solution enables us to find the solution

"at once" when y is changed, i. e. to find parametrical solu·tions.

II. Analytical solution of the problem in clo'~=d.__~2rm

Using Fig. 1 the following equation can be written
I

'P. (A) if u. (T) - A > 0
1 1

(11) x. (A) = i
'.~~'---

.- .L J n
1 I

T if u. (T) - A < 0
1

or in more compact form

- AJ + T.

(.) > 0

(12)

where

= 'P. (A) l[U~ (T)
1 1

{

1, if
1 (.) =

0, otherwise

+ A - II: (T)J
1.

i- 1, ",

I

r) is any positive number and it shows that when A - u
i

(T) = Or

then x. (A) is equal to T.
1

I

Let ns denote with YT the value of y when A = uk (T), i. ,?

k

(13) YTk = iIl xi(A) IA=u~Cr;) ~ ill {'Pi(A)'J.[IL~(-f) - )1

+ To 1 [8 + A - u~ (T)J }

It is obvious from Fig. 1 that when y is chang0o, i.e.

y > YT or Y < YT ' the variable Xk(A). is
k k
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'P k (A ) if Y - Y > 0Tk(14) x
k

(;\) = k = l,n

T if Y - YT
< 0

k

or in shortened form

(15 ) x
k

(J.) = 'P (A) 1 (Y - YT ) + T. 1 (0 + YT
- y)k k k

n
According to the constraint (2) , namely L x

k
(;\) - '1.. ,

i=l

n
(16 ) L 'Pk(;\)·l(y - YT ) + T. 1(0 + YT

- y) - Y
k=l k k

In this equation, representing A as animplicit function

of y, only the variable J. is unknown and by solving it the

*optimum value of ;\ = A can be calculated.

*Having;\ one can obtain the optimum value of all the

*variables x replacing A =;\ in (15), i.e .
.1<.

(17) Y ) + To 1 (0
T k

+ Y - y)
Tk

, k = Irn

The whnle procedure for determining the optimal ve8tor

*x can be summarized as follows:

l. Choose T

,
2. Calculate uk (T) k = l,n

3. Calculate YT
k = l,n from (13)

k
4 . Solve the equation (16 ) in respect to A

* * *5. Replace ;\ in (17) • The obtained values Xk(A ) are

*components of the optimal vector x .



III. Seeking

the problem

method for the analytical solving of

Sometimes great computational difficulties will be met

when one solves the equation (16). To overcome these diffi-

culties, the following method can be proposed.

The method is based on the so-called "golden cut" [2J

which usually is applied for seeking the maximum of a unimodal

function.

Let us denote the upper and the lower boundaries of A

with G and A respectively (Fig. 2). The upper boundary
,

G = max u. (T), while the lower boundary has to be a greater
. 1

1

number approaching (-00). In the case when the constraint (2)
n

is in the form I x. < y, A = T.
i=l 1-

,
I G = max U. (T)

i 1

Fig. 2



Under these conditions the following procedure can be

applied:

1. Determine Al = A + G - A

1.61803

2. Determine x. =
1

'P.(A)
1

r
if u. (T) - A > 0

1

,
if u. (T) - A < 0

.~ -

i l,n

terminated.

3 •

and the

n
Denote L

i=l
procedure is

x. = P.
1

If P = y, then x.
1

*=x., .~--
1

If P > Y (as is shown in Fig. 2), then A = Al and we have

to return to the first item of the procedure.

If P < y, then G = Al and we return to the Eirst item.

It has to be mentioned that using the similar procedures

the following optimization problem can be solved:

n
max L

i=l

subject to

u. (x. )
1 1

n

L
i=l

x. < Y
1 -

T < X. < t,;.
1 - 1

i = l,n

For this problem only a graphical solution is shown in

Fig. 3.
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Example. Using a very simple example an analytical

solution of the problem in closed form will be shown.

max [50 xl - 2X~ + 100x2 - X~ + 200 IX ]

sUbject to

3

I
i=l

x. = 25
1

x. > 0
1 -

1. The first step of the algorithms is th~ choosing of

T. Let T = 0.001.
1

2. Calculation of Uk(T), k = 1,2,3.
t I I

ulh) == 49.996; u2h) = 99.998; u3h) = 3333.33.

3. Calculation of y , k = 1,2,3 from (13)
Tk

Y
T

= 29.002; Y = 1.003; YT = 0.003.
1 T2 3

4. After replacing y , k = 1,2,3 in (16) we obtain
Tk

100 .\ + 10000 = 25
2 .\ 2
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Solving this equation the optimum valu8 ~f A i., ottainEd,

*A = 56.308.

5. The components of optimum vector x are obt,d.De(1 by

*(17) after replacing A = A , i.e.

*x
2

= 21.85; 3.15
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