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Abstract

We consider a model of sympatric speciation due to frequelependent competition,
in which it was previously assumed that the evolving traggeha very simple genetic ar-
chitecture. In the present study, we use numerical sinmratio test the consequences of
relaxing this assumption. First, previous models assum&dassortative mating evolves
in infinitesimal steps. Here, we show that the range of patarmdor which speciation
is possible increases when mutational steps are large.n8ettovas assumed that the
trait under frequency-dependent selection is determigeaddingle locus with two alleles
and additive #ects. As a consequence, the resultant intermediate plpndyalways
heterozygous and can never breed true. To relax this aseumpte now add a second
locus influencing the trait. We find three new possible evoh#ry outcomes: evolution
of three reproductively isolated species, a monomorphidgliegum with only the inter-
mediate phenotype, and a randomly mating population witeepsunimodal distribution
of phenotypes. Both extensions of the original model thaseiase the likelihood of com-

petitive speciation.
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1. Introduction

Sympatric speciation has long been a hotly debated topie r@dson is that speciation
processes of this kind are bothftbult to analyze theoretically and hard to demonstrate
empirically. On the empirical side, the few clear cases oglyfortuitous circumstances
that rule out alternative scenarios (for reviews, see Came Orr, 2004; Bolnick and
Fitzpatrick, 2007). One of the most widely cited examplehis $peciation of cichlids in
small and isolated crater-lake environments (Schliewea.efl994). On the theoretical
side, models to explain sympatric speciation necessaoityain a multitude of environ-
mental and genetic factors (for reviews, see Via, 2001; gdtkick and Ravigné, 2002;
Gavrilets, 2004; Bolnick and Fitzpatrick, 2007). This cdaxity makes it dificult to un-
derstand the observed behavior or to analyze more than aaimyf the large parameter
space.

One widely-studied scenario for sympatric speciation metitive speciation (Rosen-
zweig, 1978), where intraspecific competition for resosrogluces frequency-dependent
disruptive selection, which in turn favors the evolutionasiortative mating. The basic
idea, which already goes back to Darwin (1859), is that ex¢rphenotypes gain increased
fithess by specializing on underutilized resources. In sushtting, mating between dif-
ferent extreme types produces intermedidtepying with reduced fitness. Hence, females
can increase theirtspring’s fitness by mating with males of like phenotype. Basative
mating is stficiently strong, it will result in isolated phenotypic class and sympatric
speciation.

Dieckmann and Doebeli (1999) used numerical analyses toluwda that sympatric

speciation is theoretically plausible and even quite e@bgir model has been criticized
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for making unrealistic choices for some of the biologicalgmaeters, such as a high mu-
tation rate, the absence of costs for being choosy (Matésai,e2001) or unnaturally
polymorphic initial conditions (Gavrilets, 2005). Resges to these points were provided
by Doebeli and Dieckmann (2005). It has also been pointedhatitspeciation is not the
only possible evolutionary response to disruptive sedecfiVaxman and Gavrilets, 2005;
Rudiler et al., 2006). Other possibilities include the evoluttdbdominance (van Dooren,
1999; Peischl and Burger, 2008; Peischl and Schneide@)2filsexual dimorphism (Bol-
nick and Doebeli, 2003; van Dooren et al., 2004). During st tlecade, many models
have been published that come to partly contradictory emmmhs (reviewed by Bolnick
and Fitzpatrick, 2007). The problem is that most of thesekmions are based on limited
numerical analyses and that it is often not clear how thdiemay be &ected by specific
assumptions.

To resolve this problem, several studies have recentlyldegd simplified models,
which are analytically tractable and have helped explamesof the controversial results
from previous numerical studies (Matessi et al., 2001; da€aal., 2008; Pennings et al.,
2008; Kopp and Hermisson, 2008; Otto et al., 2008; Ripa, 2006 achieve analytical
tractability, however, the new models needed to rely on bfypg genetic assumptions:
Typically, it is assumed that assortative mating evolvemfimitesimal (i.e., infinitely
small) steps (making it possible to use fithess-gradiertitnigcies) and that the ecolog-
ical trait (i.e., the trait under frequency-dependentufitive selection) is determined by a
single locus with two alleles. These assumptions are uglikebe met in natural situa-
tions, but their &ects on the model results remain unclear.

In this study, therefore, we take a combined approach. We asgcrete-time version
of the analytically well-understood model by Pennings e{2008) as a basis, but extend
the analysis by targeted numerical simulations to remogentbst severe restrictions of

the analytical approach. Our focus is on how the genetidtaatiire of the ecological trait
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and of female choosiness influence the evolution of reprddiitsolation. In particular,
we study the evolution of assortative mating in large stapd,we extend the genetic basis
of the ecological trait from one to two loci. Below we provitdether background on these
two extensions.

The analytical models by Pennings et al. (2008) and otheesglsove) explicitly or im-
plicitly assumed that female choosiness evolves in verylstegps. In many cases, this as-
sumption will be innocuous. In particular, if assortativating is cost-free, the conditions
for invasion of large and small choosiness modifiers aretidanas long as they point into
the same direction (Pennings et al., 2008; Otto et al., 2D08nx and Van Dooren, 2009).
But for modifiers with large fect, invasion does not ensure fixation, and the further eours
of evolution cannot be predicted from invasion analysisalfGeritz et al., 2002). Peischl
(2010) finds that the size of théfect of modifiers for dominance and assortative mating
can indeed influence the model outcome. Matessi et al. (28@dyed that assortative
mating, if it evolves from random mating in small steps, cgpet“stuck” at intermediate
levels of choosiness resulting in only partial isolatiorerif complete isolation is locally
stable and could be reached if choosiness is initially higlother words, the evolution of
choosiness in this model may have two stable equilibriantarinediate equilibrium with
partial isolation and a high equilibrium with complete stbn. These results were later
confirmed by Pennings et al. (2008), Otto et al. (2008), apa& R2009), who showed that
the bistability is a consequence of positively frequenepahdent sexual selection. For
small mutational step sizes, the intermediate equilibrfarms a barrier against specia-
tion. But could this barrier be overcome by means of a largtatian, which would bring
the population into the domain of attraction of the alterrggtcomplete-isolation equilib-
rium? Limited simulations by Pennings et al. (2008) sug¢fest such a jump is indeed
possible, but the underlying conditions are not well uniberd. Here, we confirm these

earlier results and provide a detailed mechanistic expilmaf why and when mutations
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leading to a large increase in choosiness will go to fixatMare generally, we show that
the evolution of assortative mating depends on the genetiitacture of the mating mod-
ifier locus, and that complete isolation evolves most easitycan be reached in a single
large mutational step.

The models by Pennings et al. (2008), de Cara et al. (2008) gbal. (2008), and Ripa
(2009) are based on the simplifying assumption that theogamdl trait is determined by a
single locus with two alleles and additiveects. Such simplifications, which are made to
achieve mathematical tractability, can be problematicefitintroduce a bias or if they rule
out important outcomes. A potential problem with the onaskotwo-allele model is that
the intermediate phenotype is always heterozygous. Eveimas the highest fitness, it can
reach at most a frequency of 50%, simply because heterozygatl always have 50%
homozygous fispring. Here, we analyze the simplest model that allowsritesmediate
phenotype to be homozygous. In this model, the ecologiedt is controlled by two
diallelic loci with equal and additivefiects. As we shall show, this extension allows
additional outcomes, in particular the evolution of thrpe@es and the maintenance of a

single monomorphic species with intermediate phenotype.

2. Model and M ethods

Our model builds on the approach by Pennings et al. (2008Kap@ and Hermisson
(2008), which in turn is based on the so-called Roughgardeaetrof intraspecific com-
petition (May and MacArthur, 2001; Roughgarden, 1972). Ashs it corresponds to the
one-allele version of the model in Dieckmann and Doebel®@)9but with a simplified

genetic architecture.



2.1. Ecological assumptions

We consider a sexually reproducing population, whose iddals are diploid and
hermaphroditic. For simplicity, we refer to hermaphroslite female or male roles as
females or males. The individuals have two traits of interas ecological traiX and a
mating traitM, with the latter determining the degree of female choosines

The ecological traiX determines specialization on a certain type of resouraeeffo
ample, prey of dierent size) and can take values betwedmand 1. It is subject to two
sources of natural selection: (1) resource availabilityicly is measured by a phenotype-
specific carrying capacity function, and (2) density- ardjfrency-dependent competition
among individuals with similar phenotypes, which is meaduny a phenotype-specific
competition function.

For the carrying-capacity functidd(X), we assume a generalized Gaussian shape,
1 2
K(X) = Ko exp(—éxz/o-f() =: Ko(1 - k)*', (1)

whereKj is the carrying capacity of the phenotype= 0. We use the parametér:=
1- %) (where:=is the definition sign) to measure the strength of the selecomponent
resulting from the shape a&f. For positivek < 1, selection is stabilizing and(X) is a
standard Gaussian with varianeg = —1/(2In(1- k)). However, we will also consider
negativek. In this case, the intermediate phenotype has the lowesticgrcapacity and
selection is disruptive.

Individuals experience competition with other individsial he amount of competition
experienced by phenotypécan be expressed by an ecologicalieetive population size,
given by

C(X) = > 7(IX = YDN(Y). 2)
Y

Here, N(Y) is the number of individuals with phenotypg andy(]X — Y|) measures the

strength of competition between phenotypeandY. In accordance with previous work
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(e.g., Roughgarden, 1972; Dieckmann and Doebeli, 19993sseme that is a Gaussian

function of the phenotypic distance, with variantfe
1
(X =) = exp(—z(x - Y)Z/cri) = (1-"" (3)

This competition induces frequency-dependent disrusetection, and we will use the
parametec := 1 — y(1) to measure the strength of this frequency dependence tNat

cis also an inverse measure of the “range” of competition er'itdividual niche width”
(Bolnick et al., 2003): large means that competition is “short-ranged” and operates only
between very similar phenotypes. In consequendéereént phenotypes can coexist by
occupying diferent niches, and the number of niches increasesaviffhe competition

and carrying capacity functions are combined in the phgregpecific death rate,

d(x) = % (4)

which summarizes the action of natural selection in our rh@®eughgarden, 1972). In
addition, individuals are alsoftected by sexual selection due to assortative mating by
females, as described below.

Females may prefer to mate with males whose ecological pyeads similar to their
own. We assume a mating probabilitf/X — Y|) that depends on the phenotypic distance,

and, once again, has a Gaussian shape,
1
u(lX =Y = exp(—z(x - Y)Z/crg) = (1 - m)*Y, (5)

In particular, the parameten := 1 — (1) is the probability that a female rejects a male
with a phenotypic distance of 1. Similarlyy := 1 - (1 - m)* is the rejection probability
for phenotypes with a distance of 2. Both parameters takeegabetween 0 and 1. The
valuem = 0 means that the female is not choosy at all, correspondiraptom mating at

the population level. Converselyy = 1 means that females mate exclusively with males
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of their own ecological phenotype. At the population lewleis corresponds to complete
isolation. Finally, intermediate values wfcorrespond to partial isolation.

In contrast tok andc, m (andm) are not fixed parameters of the model, but instead
serve as the phenotypic values of the mating tk&it Only females are choosy, and the
mating genotype is not expressed in males. Based on the gratibabilities, we can
assign mating rateg(X) to different ecological phenotypes. In particular, the mating rat
of phenotypeX is the average of the female and male mating ratés) = (dremad X) +
Pmae(X))/2, where

¢female(x)

D UNu(X = YNQ(X)
Y
¢male(x)

D UNMu(X - YDQY). (6)
Y

Here,Q(X) is a standardization factor, which can be interpreted asrthating activity of
females with phenotyp¥ (Pennings et al., 2008). If females pay no cost for being siqoo
Q(X) is defined such thatemadX) = 1 (Dieckmann and Doebeli, 1999),

1
~ Sy NG Y)’
Even though all females have equal mating rate, this is netfor males @mae(X) # 1 if

Q(X) (7)

females are choosy). More precisely, female choosinesgewisexual selection against
males with rare ecological phenotypes (Dieckmann and Opdl$99). In Appendix C,
we also consider models in which females experience a coshadsiness (Kopp and
Hermisson, 2008; Doebeli and Dieckmann, 2003, 2005).

From the death rate in equation (4) and the mating rates iatexgu(6), we now con-
struct the total invasion fitne$&/(X) of a phenotypeX. As a discrete-time version of the
continuous-time fitness function in Pennings et al. (208@)use a Ricker model (Ricker,
1954)

W(X) = ¢(X) explo(1 - d(X))), (8)
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where expg) is the intrinsic growth factor. After viability selectidout before reproduc-

tion, the number of individuals with phenotypes thus given by
N(X) = N(X) exp(1 - d(X))), 9)
and the number of newborns with phenotypé.e., N(X) in the next generation) is
B(X) = ), NO)N@)(Y, 2)Q@)Rvz-x. (10)
Y,Z

whereRyz_ x is the probability that a mating between phenotygendZ results in phe-
notype X. All mated individuals are assumed to produce the same gearamber of
offspring. We will useo = 2log 2, for which the resultant domain boundaries for the
discrete-time model correspond well to those for the camurs-time model by Pennings
et al. (2008) and Kopp and Hermisson (2008) (see Appendix A).

2.2. Genetic assumptions

The discrete-time version of the model by Pennings et aD&2Will be used as our
baseline model and thus as a reference for comparisons.middsl assumes a minimal
genetic architecture. In particular, the ecological tkais determined by a single diploid
locus with two alleles, and the mating trat is modeled by sequential rare invasions of
mutant alleles with very smallfiect into an otherwise monomorphic resident population.
The main aim of this study is to compare the baseline modehtexdended model in
which two of its key assumptions are relaxed in several ways.

For the ecologic trait, we compare genetic architecturéls ane and two diploid loci
and with two or more alleles per locus. Our main focus will lpetloe case of two iden-
tical diallelic loci. All alleles are additive and theiffects equally spaced (see below).
The total phenotype range is always the intervdl,[L]. As a consequence, the phenotype

range covered by a single locus scales inversely with thebeurof loci. In particular,
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for a single locus with two alleles; and—, there are three ecological genotypic values:
-1 (genotype--), 0 (genotype-+), and 1 (genotype-+). With two diallelic loci, there
are five possible ecological genotypic valueg; —0.5, 0, Q5, and 1. We ignore environ-
mental contributions to the phenotype and equate genotghies with phenotypic values
(with the latter usually being referred to simply as phepes).

The mating traitM is determined by a single locus. This reflects the assumtian
evolution of female choosiness occurs by invasion and pialdixation of rare modifier
alleles with additive ffect and, therefore, isfiectively a single-locus problem. In the
extended model, we relax the assumption of infinitesimalatmnal steps that is made
in the baseline model. Instead, we assume thaMHecus has a given finite number of
equally spaced alleles chosen so that the resulting pheestpan the range,[0]. For
example, three alleles would take the values.R50and (6. With additive genetics (i.e.,
no dominance), this leads to five diploid phenotypes witieal0, (25, 05, 0.75, and 1.
We will refer to these phenotypes asvalues, which determine the degree of choosiness,
and to the alleles as-alleles. Finally, we assume free recombination betweemthting

locus and the ecological loci, and also among the ecolotpcal

2.3. Additional assumptionsfor numerical analysis

To address questions about these models that cannot beradsavalytically, we nu-
merically iterate the dynamics of genotype frequenciesgusiodified versions of equa-
tions (1)-(10), in which phenotypes have been replaced byptypes. This works in two
modes. In the deterministic mode, affexts of genetic drift are ignored. If recurrent mu-
tation is included, a fixed proportion of the total populatise designated as new mutants
in every generation. In the stochastic mode, there is artiaddl sampling step in each
generation, so as to include genetic drift through multimdsampling from the expected

genotype distribution. Since we want to link our results nalgtical predictions, which
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all ignore genetic drift, most of the analysis will use thésdministic mode.

Each generation starts with natural selection. Death fateall genotypes are cal-
culated according to equation (4) and selection occursrdopto equation (9). The
genotype frequencies in the next generation are calculetied) equation (10) (the func-
tion Ryz_x captures theféects of recombination). Mutation at the mating locus fokow
a stepwise mutation model with stepsnrof equal size (see above). In most simulations
with recurrent mutations, we use a step size .@b6(four steps, or five alleles). In each
generation, a fixed proportion (given by the mutation tgtef each mating-allele class is
shifted one step up or down, for example, fram= 0 tom = 0.25; if the mutant occurs in
a homozygote for then = O allele, the (diploid) phenotype then changeste 0.125.

For the highest level of choosiness, corresponding to cerapsolation, we usually
use a value slightly less tham= 1, such asn = 0.99 orm = 0.999999, which we indicate
by the symboim = 1°. The reason is that the case= 1 differs from the limitm — 1,
leading to an anomaly: due to sexual selection, (male) ergihto an empty phenotype
class (e.g., heterozygotes) usuallyfeua cost of rarity. Fom = 1, however, they will
always find a mate, since all females of the same class areddoanate within this class,
even if there are infinitely more mating partners outsid®én(nings et al., 2008). Note,
however, that too low a value for the maximumcan prevent speciation, if reproductive
isolation between neighboring phenotypes is too weak (esalk).

Our criterion for concluding that a simulation has reachethglete isolation is the
virtual absence of heterozygotes, defined in terms of heygaie frequencies that drop
below 0.01. In the two-locus case, we call an outcome “twaigse if the frequencies of
the three intermediate phenotypes are<all01 and “three species” if only the frequencies
of the two heterozygous phenotypes ar.01. We call an outcome “partial isolation” if
the meamm > 0.1 and the frequencies of heterozygotes:afe01, and we call an outcome

“random mating” if the meam < 0.1. Finally, we call an outcome “monomorphic” if all
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phenotypes but one have a frequerc§.01.

Since we are mainly interested in whether assortative matm evolve from random
mating, we usually start our simulations with a populatioma= 0. To analyze local
stability of complete isolation, we also perform simulasowith initial choosiness set
tom = 1°. The initial allele frequencies at the ecological loci al®$en to be either
almost monomorphic or nearly symmetric (with frequencigd .49, to avoid artefacts
caused by exact symmetry in the deterministic simulatiotfs)ot stated otherwise, the
simulations are run until complete isolation is reache@ @eove) or for a maximum of
10,000 or 50000 generations for the one- and two-locus model, respdygtiEach plot
like Figure 2 is based on about@00 simulations to cover the whole parameter range of

andc.

3. Resaults

We consider the evolution of assortative mating (or femhtsosiness), determined by
the valuem of the mating trait, for given ecological conditions andtteaichitectures. The
ecological conditions are specified by the (fixed) paramsdtemdc for the strength of
natural selection and for the frequency dependence of ctitiope respectively.

To discuss and compare the results for the various genetiitactures, we first in-
troduce some terminology. As described above, the modallpbpns can reach several
qualitatively diferent equilibria or outcomes (e.g., random mating, parsiallation, or
complete isolation). We dissect parameter space into egjitdere, a regime refers to the
set of all parameters that allow for the same set of stabldilega (or evolutionary out-
comes). Some regimes are monostable, that is, there is nalpassible outcome. Others
are bistable or multistable and the outcome depends on itied conditions. We are par-
ticularly interested in the outcomes reached from our stechdhitial conditions, that is,

random mating and a (slightly asymmetric) polymorphisnhatecological loci. We will
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label these outcomes by an asterisk and refer to the comdsmpparameter regions as
their domains (e.g., the C* domain is the set of parametenslitcch evolution from stan-
dard initial conditions leads to complete isolation). Ntitat monostable regimes are, by
definition, subsets of the corresponding domains. For el@rtipe P* domain consists of

the P* regime and the A€ regime (see below).

3.1. Basealine model

For later reference, we first describe results obtaineddobaseline model, in which
the ecological trait is determined by a single locus and sim@ss evolves in infinitesimal
steps. As in the analogous continuous-time model (Peningls, 2008), the equilibrium
structure can be determined analytically. The key resuhas (in the absence of costs of
choosiness) evolution of the mating tritis determined by the fithessfiérence between

heterozygotes and homozygotes,

Aw = Whom - Whet = exp(o(l - dhom))¢hom - exp(o(l - dhet))¢het- (11)

A mutantmallele for increased choosiness can invade a monomorider population

if and only if homozygotes are favored, that isAfv > 0. Analogously, a mutant that
decreases choosiness can invade if and omiyik 0. As pointed out in the Introduction,
this criterion does not depend on the absoldteat size of the mutant allele, but only
on the direction of change it induces; in our model, the imrasonditions for small and
large mutations pointing into the same direction are idahtiHowever, only in the limit

of small modifiers does invasion imply fixation of the mutaliela.

The proof of criterion (11) is somewhat technical, but esiyianalogous to the continuous-

time case analyzed in Pennings et al. (2008), and thus i®petted here. Intuitively, the
criterion arises because females with highewill more often mate with their own type

and produce more homozygougspring than females with lowen. If homozygotes have
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higher fitness than heterozygotes, thispring of a mutant female with increasedwill,
therefore, be fitter than theffspring of resident females, and the mutation will spread.
In consequence, we can use the sigmafto determine the direction of selection on

In particular, random mating is a locally stable equililoniif Aw < 0 atm = m = 0,
and complete isolation is locally stableAfv > 0 atm = nY = 1~ (see also Appendix A).
Locally stable equilibria with (monomorphic) intermediat are characterized by the con-

dition Aw = 0.

-
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Strength of frequency-dependent selection, c

0 T T ' r
-0.4 -0.2 0 0.2 0.4 0.6
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Figure 1: Evolutionary regimes in the baseline model. The ecolodiat is determined by a single
locus, and choosiness evolves in infinitesimal steps. Nwkrtegativek implies that selection due to the
carrying capacity function is disruptive. C*: completela®mn; R*: random mating; P*: partial isolation;
R*/C: random mating or complete isolation;/B* partial or complete isolation; M: monomorphic outcome
with only one extreme phenotype. The asterisk indicatestligaoutcome is reached from random mating.
The boundary for the local stability of random mating and ptate isolation is calculated according to
Appendix A. The boundary of the C* regime is calculated nup#ly using equation (11), and the boundary

of the M regime is determined by numerical stability analyas in Pennings et al. (2008).

For the baseline model, we obtain sixtdrent evolutionary regimes depending on the

14



parameters andk (see Fig. 1):

Complete isolation (C*). For smallk and intermediate, evolution of assortative mating
in small steps always leads to the formation of two repradalst isolated species. From
any initial condition, the population evolves towards= 1 and a heterozygote frequency

of phet = O.

Random mating (R*). For suficiently largek, no amount of assortative mating can evolve.
Instead, stabilizing selection is so strong that randonimgdtvith p,e; = 0.5) evolves from

arbitrary initial values ofn. Note that we do not allow for dis-assortative mating.

Partial isolation (P*). If frequency-dependent selection is very strong (largend stabi-
lizing selection is at most moderate, a third niche opensoujintermediate phenotypes,
which is filled by heterozygotes. As a consequence, the pesf@phenotype distribution
has an intermediate frequency of heterozygotes,fe: < 0.5, which leads to the evolu-
tion of an intermediate level of choosiness<0n < 1, and hence, to partial reproductive

isolation.

Random mating or Complete isolation (R*/C). For lowc and intermediatg, the outcome
depends on the initial condition. If female choosiness i8aily low, natural selection
leads to the evolution of random mating & 0). However, if initial choosiness is high,
the dominating force is sexual selection against rare metierbzygotes, which drives the

population towards complete isolatiom & 1).

Partial isolation or Complete isolation (P*/C). For intermediatec and k, there is an-
other bistable regime, in which the population reacheseplartial or complete isolation
(Matessi et al., 2001). Starting at random mating, natwiaicsion is disruptive and favors
increased female choosiness (because choosy females baxdamozygousféspring).

Choosiness, however, induces sexual selection, whiciddneierozygotes as long as they
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are common. If choosiness evolves in small steps, a pabédtion equilibrium is reached
where natural and sexual selection are balanced (Penrtiajs 2008). In contrast, if the
initial mis already high, heterozygotes are rare, and sexual saigetind, potentially but
not necessarily, also natural selection) favors homoagyoesulting in evolution towards
complete isolation. The existence of the@tegime shows that the instability of random
mating and the stability of complete isolation are nafisient conditions for complete

isolation to evolve in small steps.

Monomor phic equilibrium (M). For smallc andk, the ecological polymorphism is lost,
and the population reaches a stable monomorphic equiibviith only a single allele.
Once such an equilibrium is reached, all selection for aatee mating ceases. The do-
main of attraction of the monomorphic equilibrium (with pest to the initial frequencies
of the ecological alleles) depends on For soman, it may be globally stable, meaning
that the polymorphic equilibrium is unstable. This is thee# sexual selection and dis-
ruptive selection resulting for negatikeare stronger than negative frequency-dependent
selection due to competition. The M area in Figure 1 showsahge of ecological param-
eters for which the ecological polymorphism is lost for adesome values ah € [0, 1]
(see Pennings et al., 2008, for more details). If evolutibohmosiness leads to such an
mvalue, the monomorphic equilibrium may be the stable auedrom random mating.
This is the case for sticiently smallk. However, for largek, the population may also stay
at random mating or partial isolation without losing theymbrphism. (For this reason,
we do not write M*; note also that, as we do not resolve theotsripossibilities, the M

area does not fully fit our definition of a regime.)

3.2. Genetic architecture of the mating trait

We now ask to what extent the results of the baseline modebéarest with respect to

the genetic architecture of the mating trait. In particulse are interested in whether large
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mutations can help the population “jump” over the internageliequilibrium in the PC
regime.

We first study when a randomly mating resident populationreash complete isola-
tion in a single mutational step. To this end, we introduceusamt “isolation allele” (with
m = 1°) at frequencyp = 10 into a resident population with mating genotyme= 0.
All further evolution is deterministic, and there is no reent mutation. As in the baseline
model, the ecological trait is determined by a single diallecus.

The results of these simulations are shown in Fig. 2a. Inrdecwe with predictions
from invasion-fitness analysis, the isolation allele iresth the complete isolation (C*),
partial isolation (P*), and bistable partie@dmplete isolation (PC) regimes. However, it
rises to fixation in only part of this parameter range. In thedgime and in parts of the
P*/C regime, the outcome is a stable polymorphism between thekalleles, leading to
an intermediaten in the population average. In contrast, in the C* regime anplairt of
the P¥C regime close to the C* regime, the isolation allele readixasion. We thus see
that “jumping” across the stable intermediate equilibrisnmdeed possible in a part of the
P*/C regime. As a consequence, the total parameter range iftwbioplete isolation is
reached from random mating (C* domain) is somewhat extenelative to the case with
infinitesimal mutational steps.

Second, we consider the fate of an initially rare isolatibel@ (m = 1) in a resident
population with a non-zero initial level of choosiness ¢ 0). In a series of simulations
(conducted as described foy = 0 above), we find that both invasion and fixation of the
isolation allele becomes morefiicult when the resident population has already evolved
an intermediate level of choosiness. For example, whetirggast m = 0.1 instead of
m, = 0, there are some parameter combinations for whiclrtkel™ allele no longer goes
to fixation. We consistently find that larger jumps to comgisblation are easier. That is,

if the jJumpm, — 17 is possible then this implies that, — 1~ is possible form, < my,
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Figure 2:Evolution of assortative mating in the single-locus modighwarge mutational steps. (a) Single-
step model: An isolation mutant wittm = 1~ = 0.99 is introduced at frequengy = 10~* into a resident
population withm, = 0. (b) Stepwise mutation model with five mating alleles= 0, 0.25,0.5,0.75, 0.99)
and a mutation rate af = 107° (see text). Shades of gray indicate the mean choosin@sshe population

at the end of the simulation (whiten = 17, black: m = 0). The continuous line is the boundary of the C*
regime for infinitesimal mutational steps, as in Fig. 1. THetevarea outside this line shows the additional
region where complete isolation is possible via “jumpinyate that the range df values shown is smaller

than in Fig. 2
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but not vice versa. In particular, we find that fixation of tkelation allele is no longer
possible in the PC regime if the resident population is already at (dfisiently near) the
stable equilibrium point with intermediatg,. Thus, evolution of assortative mating can
indeed get stuck in this regime.

In a third series of simulations, we consider the evolutibragsortative mating in
multiple steps of finite size. In contrast to the single-stape, we now assume recurrent
mutation at the mating locus and a stepwise mutation modelsodel description). An
example with five mating alleles (step siz9) is shown in Fig. 2b. We see that isolation
can still evolve in parts of the A& regime, but also that the total parameter range is
smaller than for a single jump from random mating to compistdation. We obtain
similar results with diferent variations of the genetic architecture (not showrliion
of complete isolation is consistently easier with largepst

So far, no costs have been assigned to the mating allelesisésgsged in Kopp and
Hermisson (2008), however, female choosiness can eaatlyttediferent types of costs.
In a fourth step of our analysis, we therefore consider ttwdugon of reproductive iso-
lation under two types of costs (Kopp and Hermisson, 2008 a¢&0 Doebeli and Dieck-
mann, 2005): (i) mating costs, resulting from females hgwanly a finite number of mat-
ing trials (i.e., choosy females run a risk of remaining uted and (ii) viability costs,
resulting from a negative direct physiologicdllext of increasednvalues. Results from
simulations with both types of costs are reported in Appei@iThey generally confirm
our basic conclusion that speciation is facilitated by éamgutations at the mating locus.
In addition, two findings are noteworthy. First, mating soshn promote speciation via
“jJumping”, provided they are primarily paid by heterozygoiemales (which is the case
for largec, see Discussion). In some cases, this has the paradoffiect #hat speciation is
possible with costs but not without. Second, for some typ&gbility costs, speciation is

impossible in the limit of infinitesimal steps (see Kopp aneridisson, 2008), but occurs
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in a sizeable parameter range if mutational steps are large.

Finally, we repeat our previous analysis with a sampling stieer each generation
to simulate the fects of genetic drift. We find that drift introduces some basticity,
but does not lead to significant shifts in the regime bourdafnot shown). For small
population sizes, newly introduced mutants are often lmdtthe qualitative conclusions
from the large-population limit still hold. A populationz& of 5000 nearly recovers the
deterministic case.

Summarizing these observations, we consistently find tlwtigon of complete isola-
tion from random mating is mostficult for very small step sizes and easiest for a single
jump fromm. = 0 tom = 1". “Realistic” genetic architectures with various interrizd

step sizes show an intermediate behavior.

3.3. Genetic architecture of the ecological trait

We now turn to the genetic architecture of the ecologicat &ad its influence on the
evolution of reproductive isolation. Our main focus is oe ttase of two diallelic loci
with equal €fect. In addition, we consider a model with a single ecolddmeus and
multiple alleles. In all cases, evolution at the mating &z modeled using a stepwise
mutation model with five equidistant alleles (implying apssize of 025 in homozygotes)
and a mutation rate af = 10°. The ecological loci are initiated in a fully polymorphic
state (but with slightly asymmetric allele frequencies gf®0and 061, respectively). Note
that, form = 0, full polymorphism is always the only stable equilibriufnci > 0 and
k > 0. While we cannot exclude the existence of equilibria tlztnot be reached from
these initial conditions in allele frequency, our exteesmmerical explorations have not
revealed any such equilibria. Furthermore, potential tamithl equilibria do not play a
role for our main question, that is, under which conditioomplete isolation can evolve

from random mating.
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For two identical diallelic loci, the deterministic simtilzns exhibit a total of six qual-
itatively different evolutionary equilibria (as opposed to merely fourth@ single-locus
model). The new outcomes are an intermediate monomorphiitetum (in addition
to the extreme monomorphic equilibrium already presenhédne-locus model) and a
three-species equilibrium (in addition to the two-spe@aqailibrium). As both the two-
and the three-species equilibrium are locally stable ovarge parameter range, the sys-
tem is often bi- or even tristable. Indeed, Figure 3 revealess than thirteen evolutionary
regimes with qualitatively dierent equilibrium structures (i.e., sets of locally staduiei-
libria), as opposed to merely six for the single-locus mottetead of enumerating all of

these diferent possibilities, we will discuss them in terms of foundwt categories.

Regimes with stable monomorphic equilibria.. Unlike the one-locus model, the two-locus
model has two dferent monomorphic equilibria. In addition to the familiaudibrium
with one extreme phenotype (ME,= +1), there is a second equilibrium in which only
the intermediate phenotype is present (MI= 0) and which does not exist in the one-
locus case. Figure 3 shows that the two monomorphic equaildye reached from random
mating in diferent parameter regions separated by thekine 0. That is, an extreme
monomorphic equilibrium is only reached if selection angfing from the resource distri-
bution is disruptiveK < 0), while the internal monomorphic equilibrium is only réad
if this selection component is stabilizing.

In Appendix B, we show that the intermediate monomorphicildayium is locally

stable if

l1-c 2
exp|p(1— )] < . (12)
[ 1-K') 1+V1-m
Here, local stability refers to the invasion of additionabkgical alleles at a given value
of m. Form = 0, this condition reduces tk > c. Indeed, for this parameter range,

the intermediate equilibrium is always reached in our satiohs, independent of initial
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Figure 3:Evolutionary regimes for the model with two diallelic ecgical loci of equal ect. Continuous
lines and labels with asterisks indicate domains, in whifecent evolutionary equilibria are reached when
simulations start from random matingn = 0). C2*: two species; C3*: three species; P*: partial iSolat
R*: random mating; ME*: monomorphic equilibrium with exine phenotype; MI*: monomorphic equilib-
rium with intermediate phenotype. Shades of gray show tbel Istability of complete-isolation equilibria
with either two or three species, as determined from siraratstarted atn = 1~ = 0.999999. In the light
gray area, only the three-species equilibrium is localpk. In the medium gray area, only the two-species
equilibrium is locally stable. In the dark gray area, both tlvo- and the three-species equilibria are locally
stable. Simulations started with three species in the arednich only two species are locally stable reach
the intermediate monomorphic equilibrium in the part capping with the MI* domain and the two-species
equilibrium otherwise. The boundaries of the medium gray dark gray areas are derived analytically as
described in Appendix B. In particular, the upper boundagd] stability of two species) is identical to the

corresponding line in Figure 1 and is, indeed, independiiieogenetic architecture of the ecological trait.
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Figure 4:Comparison of the one- and two-locus models. The continlioes are the domain boundaries
for the two-locus model (delineating the outcomes from mananating), as shown in Fig. 3. The dashed

lines are the domain boundaries for the one-locus modeh@srsin Fig. 1.

conditions, except in the area in which complete isolatiwith( two species) is locally
stable due to sexual selection (Fig. 3). Equation (12) shbas form > 0, the inter-
mediate monomorphic equilibrium can be locally stable &sac > k (e.g., form = 1
andp = 2log 2, one obtains < (15+ k)/16). However, over this parameter range, this
equilibrium is never reached in simulations when startinggadom mating.

Appendix B also gives the conditions for local stability bétextreme monomorphic
equilibrium. In contrast to the intermediate equilibriuthe extreme equilibrium is not
always reached over the whole parameter range in which dcally stable form = 0.
This is because the outcome also depends on the initial wonsliat the ecological loci.
In Figure 3, the upper boundary of the MI* domain is shown tdlyf polymorphic initial

conditions (ecological allele frequencies close &) 0
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Regimes with stable random-mating equilibrium. In the two-locus model, random mating
(m =~ 0) is locally stable in a narrow band close to the MI* domairhene selection
still favors an excess of intermediate phenotypes (R* danmaiFig. 3). An analytical
approximation for the upper boundary of this band is derimedppendix B. It is based on
a comparison of the fitness of extreme and intermediate pyjee®k = +1 vs.x = 0) and
follows the same logic as equation (11). Simulations shawtthis approximation is very
accurate (not shown). Note that most of the parameter raitheavgtable random-mating
equilibrium belongs to bi- or even tristable regimes, foiahlalso complete isolation with
either two or three species (or both) is locally stable.

The random-mating equilibrium in the two-locus modéfetis from that in the single-
locus model in an important way: to maintain symmetry, thel@frequencies at a single
ecological locus must always be equal t6.0/ith two ecological loci, however, they are
generally shifted away from.B in opposite directions at the two loci, that is5@ « with
0 < a < 0.5. This leads to a symmetric phenotype distribution withagtpeak ak = 0
and an excess of intermediate phenotypes relative to tleeveiilsa = 0. Fora — 0.5,
the random-mating equilibrium turns into the Ml equilibmulndeed, we find that, in the
R* domain of Figure 3¢ increases gradually from 0 at the P*-R* boundary 16 &t the
R*-MI* boundary (Fig. 5).

Regimes with stable partial-isolation equilibrium. There are two connected parameter
ranges for which partial-isolation (& m < 1) is a stable equilibrium of the two-locus
model (P* domain in Fig. 3). First, for very higty competition is sfliciently short-
ranged to create (at least) five distinct ecological nicliesa consequence, all five pos-
sible phenotypes coexist, with their relative frequentiemg determined by the degree
of choosiness. In part of this range, complete isolatiomthtree species is also locally

stable, owing to sexual selection (see below). Second, @r@w band between the R*
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Figure 5:Frequency of the intermediate phenotype in the two-locudehavhen simulations are started
from random mating. Shades of gray indicate the frequentiyeophenotype = 0, ranging from 0 (black)

to 1 (white). The upper continuous line shows the border betvthe R* and P* domains, while the lower
continuous line shows the border between the R* and the Mitiaias. Across the R* domain, the frequency
of the intermediate phenotype increases fraB(@t the boundary to the P* domain) to 1 (at the boundary
to the MI* domain). This is achieved by an increasing asynmynef the allele frequencies at the ecological

loci, 0.5 + «, with « increasing from 0 to &.

and the C* domains, partial isolation is stabilized by a beéabetween natural and sexual
selection (as in the P€ regime of the single-locus model). In this area, naturgcti®n
favors complete isolation with either two or three spedes these equilibria can only be

reached from a high initial value o.

Regimes with stable complete-isolation equilibrium. In the two-locus model, evolution of
complete isolationrfi ~ 1) can lead to the formation of either two or three species. As

shown in Figure 3, the ranges of local stability of these iapia are overlapping, and
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they extend into the R* and the MI* domains. However, our materest here is in the
parameter range over which complete isolation can evobm frandom mating in small
steps. We denote the domain where this leads to two speci€2bynd the domain
where it leads to three species by C3* (Fig. 3). The C2* donsaimesponds to the C*
regime of the single-locus model (Fig. 4). Here, the twoexie phenotypes = -1 and
x = 1 form two reproductively isolated species, and the threéermediate phenotypes
go extinct. The speciation process takes somewhat longer ftir a single ecological
locus (with the diference being on the order of a few hundred generationsiveekat a
total time to speciation of about 1,000-3,000 generatiohs)ontrast, the C3* domain
has no direct correspondence in the single-locus case. tWigHoci, three species can
evolve due to symmetry breaking at the individual loci. Of¢he two +— haplotypes
goes extinct, such that the= 0 phenotype consists only of one haplotype and does not
produce heterozygousfepring. As a consequence, the allele frequencies at thegical
loci necessarily deviate from.® (the rarer allele at each locus has the same frequency
as one of the extreme phenotypes). Since the deviation htlbot occurs in opposite
directions, symmetry at the phenotypic level is maintained

The formation of three species requires a very high degréenadile choosiness (usu-
ally m > 0.999, as opposed tm > 0.95 for the two-species regime). The reason is that
the three species are phenotypically closer than the twaeseso that female choosiness
must be highly &ective to prevent hybridization. If the maximal possibiés too small,
symmetry breaking will not occur and evolution will stop atate of partial isolation, for
which the frequency of heterozygotes is still relativelgth{between @2 and 005). This

is true even in the presence of genetic drift (not shown).

Dynamics underlying the formation of three species.. The formation of three species is

illustrated in Figure 6. Notably, this process involves aghtransition, i.e., a fast change
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Figure 6:Evolution of three species, in a stepwise-mutation modtH five mating alleles. (a) Evolution
of mating phenotypes and mean choosiness. Shades of griy thepfrequencies of the nine mating phe-
notypes (with white indicating a frequency of 0 and with d&wdicating a frequency of 1). The continuous
line shows the mean choosiness (b) Evolution of ecological phenotypes. Shades of grayial¢pe fre-
quencies of the five ecological phenotypes (with white iatliy a frequency of 0 and with black indicating
a frequency of 0.5). (c) Evolution of the frequencies of the tlleles at one ecological locus. Parameters:

k = 0.05,c = 0.6, andu = 10°°.
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after a period of apparent stasis. The typical sequenceotditianary events is as follows.
First, the mean choosiness rapidly evolves to a relativei kialue (Fig. 6a), for which
the population attains a state of partial isolation, tyjycaith a low frequency of the
intermediate phenotype (Fig. 6b). In all cases observedetis a polymorphism involving
the highest and the lowest available mating alleles (fomgxe, in Fig. 6a, the high-
frequency phenotypes are the = 1 homozygote and then = 0/1 heterozygote). At
this stage, the allele frequencies at the ecological loeistitl symmetric (Fig. 6¢). In
the deterministic simulations, this transient state cah flar many (up to about,£00)
generations without conspicuous changes. Then, the tiang speciation is initiated by
symmetry breaking at the ecological loci (compare Fig. Gt &im). Only after one of the
mixed haplotypes«— or —+) has gained dominance, does the meaquickly increase
up to (almost) 1, the allele frequencies at the ecologiaalreach their final values, and
speciation occurs. These two-stage dynamics, with an é&tetransient phase, do not
depend on choosing symmetric initial conditions. Even & ihitial allele frequencies at
the ecological loci deviate strongly from3) symmetry is rapidly restored within the first
few generations, before itis broken again at the transgi@nt. If genetic driftis included,
the transient phase tends to be shortened, but, for pareoéise to the P* domain, the

population may also get stuck at partial isolation (App&riaj.

Comparison with the single-locusmodel. Figure 4 shows how the introduction of a second
ecological locus changes the regime boundaries relativetsingle-locus case. Four main

observations are worth highlighting:

1. Stability of random matingnG = 0). The boundary for the local stability of random
mating (upper boundary of the R* domain) is only slightlyad by the introduction
of a second ecological locus. The maiffelience is that, in the two-locus model, a

large part of the former R* domain is taken up by the MI* domain
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2. Stability of partial isolation (intermediats). The parameter region featuring a sta-
ble partial-isolation equilibrium (P* domain) is strongkstricted in the two-locus
model, mainly due to the new three-species equilibrium.

3. Stability of complete isolatiom{ = 1). Similarly, the parameter region implying
local stability of complete isolation (gray areas in FigBjeextends to much higher
values ofc in the two-locus model than in the single-locus model. Thisntirely
due to the new three-species equilibrium. Indeed, locaillgiaof the two-species
equilibrium is independent of the genetic architecturegémdix B).

4. Two-species equilibrium. Finally, it is remarkable thia¢ upper boundary of the
parameter regions where two species can evolve from randatimgnare almost
identical in the two models (C* domain with one locus, C2* domwith two loci;
compare the middle solid and dotted lines in the left-hand p&Fig. 4). This
is because the three-species equilibrium in the two-locadehexists only in the

parameter range of the former P* domain, but not of the for@fedlomain.

One locus with multiple alleles. To complement the diallelic two-locus model, we con-
sider a single-locus model with multiple alleles. For theesawe tested, no new phe-
nomena occurred. With three or five alleles, the intermeda#leles go extinct in the C*
domain and in part of the P* domain, recovering outcomesadireobserved for the di-
allelic single-locus model. Thus, evolution of three speailoes not occur. In the MI*

domain of the two-locus model, only the intermediate aliel@ains in the population.

Genetic drift. Finally, including genetic drift does not significantly cftge the results of

deterministic simulations (Appendix D).
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4. Discussion

We have investigated how the evolution of reproductiveasoh in a model of com-
petitive speciation depends on the genetic architecturédsececological trait and of the
mating trait that determines female choosiness. Our maulteeare that speciation is
easiest if choosiness can evolve through a single largetimodh step and that additional
ecological loci enlarge the number of evolutionary outcem@ompared to models with
one ecological locus and infinitesimal mutations for theinggtrait (Pennings et al., 2008;
Kopp and Hermisson, 2008; Otto et al., 2008; de Cara et &8;Ripa, 2009), bothfeects

increase the range of parameters where speciation is pmssib

4.1. Genetic architecture of the mating trait

For the single-locus model, we have shown that, in part obik@ble P}C regime,
complete reproductive isolation can evolve through a siteyige mutational step, but not
through a series of small steps. In this regime, there arestalale equilibria, partial and
complete isolation, and evolution of assortative matimgfrandom mating in small steps
always leads to the partial-isolation equilibrium. In cast, a large mutation can lead to
the complete-isolation equilibrium (by “jumping” over tipartial isolation equilibrium),

and thus to speciation.

Role of sexual selection. To understand this result, it helps to first consider the cdise
mating evolution through small steps, assuming that aividdals carry the same-allele

and therefore express the same degree of choosiness. Azairttee population is at the
intermediate equilibrium. As detailed in the Results settthe intermediate equilibrium
is maintained by a balance between natural and sexual iseldEtennings et al., 2008;
Otto et al., 2008; Ripa, 2009). In particular, sexual séecfavors heterozygotes (and

thus a decrease in choosiness), because they constitligegast phenotypic group.
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Let us now imagine a population with the same genotype Hdigion at the ecolog-
ical locus and the same meam but consisting of individuals witim = 0 alleles and
m = 1~ alleles. We assume that the ecological locus and the maimgslinitially are
at linkage equilibrium. The important point is that thisusition cannot be stable. Since
offspring withm = 1~ are more likely to be homozygous thaffspring withm = 0,
them = 1= mutants will accumulate disproportionally in the homoziggo The result-
ing linkage disequilibrium between the polymorpimeallele and the diploid ecological
genotype increases sexual selection for homozygotes (@réases sexual selection for
heterozygotes) relative to the scenario with monomorphidPut simply, if the linkage
disequilibrium is strong enough, sexual selection favamrmbzygote males, because only
part of the female population is choosy, but most of the chdemales are homozygotes.
Furthermore, the level of linkage disequilibrium is projpamal to the allelic step size at
the mating locus. This explains why a single step frors 0 tom = 1~ is most conducive
to speciation.

In most of the PfC regime, then = 1~ allele goes to fixation when introduced into a
population withm = 0. In a small parameter range with larger k, however, fixation does
not occur, and the two alleles are maintained at a stablempwiyhism. In this parameter
range, as the number of homozygotes increases, naturatiselagainst them becomes
strong enough tofset the &ect of sexual selection in their favor. This is also the range
which, when mutational steps are small, the basin of attnacif the complete-isolation
equilibrium is very small (Kopp and Hermisson, 2008).

Under some conditions, speciation via “jumping” may belartfacilitated if females
have only a limited number of mating trials (i.e. choosinessirs mating costs). The rea-
son is that the risk of remaining unmated is largest for chidesales with a rare ecolog-
ical phenotype. If frequency-dependent competition isrgjr(largec), most individuals

are homozygotes, and mating costs are primarily paid byr¢mtgous females. This ad-
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ditional source of sexual selection can combine with segelgiction against heterozygous
males, thus promoting fixation of the highallele.

Large mutations also enable speciation if choosiness snabsolute viability costs
(Appendix C; Fig. A2). With this type of costs, speciatiomigossible in small steps, be-
cause, as heterozygotes become very rare, the costs obtvsigotential benefit of being
even more choosy. However, speciation is still possiblenfaifier inducing complete

isolation invades a population in which heterozygotes ilteesmmon.

Limiting scenarios. As a consequence of the considerations above, evolutioasoirta-
tive mating through infinitely small steps can be consideéhed‘worst-case scenario” for
speciation, and evolution in a single large step the “basescenario”. Any realistic ge-
netic architecture will lie in between these two extremeg Mive demonstrated this for
a single locus with intermediate step sizes (Fig. 2b), baitsthme conclusion should also
apply more generally to polygenic mating traits. In agreetwéth our results, previous
studies have consistently found that speciation is eaaret faster) if the mating trait is
determined by a small number of loci with large individuéieets than if it depends on
a large number of loci with smallféects (e.g., Dieckmann and Doebeli, 1999; Gavrilets
et al., 2007; Gauvrilets and Vose, 2007). This is true everménrhonostable C* regime
(i.e. independent of “jumping”), simply because largeet alleles are under stronger
selection. Our results reveal a second independent adyeotdarge step sizes at the mat-
ing locus, which results from linkage disequilibrium andbles “jumping”. On the other
hand, if mutation rates are high and linkage disequilibriwntds up between polymorphic
loci, multiple small mutations may combine to a larger stApthe far end of this scale,
Doebeli et al. (2007) showed that evolution of completeasoh occurs rather easily in
large populations, if the choosiness trait shows contisugquantitative genetic variation

(which can be modeled using the so-called infinitesimal madeere the trait is based on
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an infinite number of loci with infinitely smallféects). Whether or not quantitative varia-
tion can also help the population “jump” over an unstablealdarium is an open question
that deserves further study.

For modeling purposes, detailed knowledge about realdraftitectures will usually
not be available. As an alternative strategy, it therefersnss advisable to cover the range
of possibilities by considering the extreme cases, bothtotlvare relatively easy to treat.
For our present model of intraspecific competition, théedénces between these limiting

scenarios turn out to be relatively modest.

4.2. Genetic architecture of the ecological trait

Arguably the strongest assumption of the analytical molglBennings et al. (2008),
de Cara et al. (2008), Otto et al. (2008) and Ripa (2009) isttieaecological trait that
underlies competition and mate choice is determined bygesitiallelic locus. Here, we
have studied theffect of adding a second locus for the ecological trait in thapetitive-
speciation model of Pennings et al. (2008). This additibm@ls creates enhanced flexi-
bility for shaping the distribution of phenotypes. In addlitto the evolutionary equilibria
that are already known from the single-locus model, we tbhezdind three new outcomes:
(1) a monomorphic equilibrium featuring only the internmegdi phenotype, (2) a strongly
peaked unimodal phenotype distribution with random maiangl (3) a three-species equi-

librium.

Intermediate monomor phic equilibrium. Our analytical and numerical results show that a
monomorphic equilibrium at the intermediate phenotypestahle evolutionary outcome

if and only if net selection under random matirg € 0) is stabilizing, that is, if the sta-
bilizing component of natural selection is stronger thagtrency-dependent disruptive
selection due to competitiok & ). In this parameter range, there is only a single eco-

logical niche, and evolutionary branching (which requines disruptive selection) is not
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possible. In part of this range, complete isolation can batamed by sexual selection,
but can never evolve from random mating, irrespective ofdgtails of the genetic archi-
tecture. In contrast, fok < c, evolutionary branching can occur, and the intermediate
monomorphic equilibrium does not play a role, at least indérministic case. With ge-
netic drift, the monomorphic equilibrium is sometimes ileeat close to the love-border

of the C2* domain.

High frequency of the intermediate phenotype. Fork < ¢, the intermediate monomorphic
equilibrium is no longer stable. However, close to this pagter region, polymorphic
equilibria still have a phenotype distribution with a higieduency of intermediate phe-
notypes. In the two-locus model, such a distribution candieexed by an asymmetric
shift of the allele frequencies at the ecological loci. ®itis shift is exactly opposite
at the two ecological loci, the resulting phenotype disttitn is symmetric. This high-
lights the increased flexibility of the two-locus model tela to the single-locus model,
for which the frequency of the intermediate phenotype caeroeed & in the absence

of dis-assortative mating.

Three species. In the two-locus model, three species evolve over nearlywthele pa-

rameter range for which the one-locus model predicts pastdation. This is because
short-range competition creates three ecological nicheshe one-locus model, the in-
termediate niche can be filled only by heterozygotes (whasguency is determined by
the degree of assortative mating). In the two-locus modetontrast, the only way to
achieve a symmetric solution with three phenotypic clssterstead of five) is via com-
plete isolation. Partial isolation evolves only over a dipatameter range with very strong
frequency dependence 1fear 1), in which five phenotype clusters are favored oveethr
or when partial isolation is stabilized by sexual seledtidrne formation of three species

also fails if the maximal possible is too low to ensure reproductive isolation between
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neighboring species. In this sense, speciation is easikeitwo- than in the three-species
domains.

In contrast to the two-species equilibrium, evolution aEthspecies requires symme-
try breaking: while one intermediate haplotype (i+e-,0or —+) goes extinct, the other one
is preserved and constitutes the third species. As describaore detail in the Results
section, this can lead to the delayed evolution of compgetiation, with an extended "pre-
speciation” phase during which all haplotypes are stilspre in the population. Similar
threshold phenomena have also been described in other snofdgpeciation (e.g., Bol-
nick, 2006; Heinz et al., 2009), although it is not clear Wwieetthe underlying mechanism
is the same in each case. In our model, the long stagnaticsepza be explained by the
fact that the population passes close to a saddle point. $leaira point, selection is very
weak, and it only becomes stronger again once the populaermoved on into a new
dimension of state space. This escape requires symmetakibge which takes a long
time in a deterministic system, but can easily occur duedotststic fluctuations. There-
fore, genetic drift enables the system to leave the neididmut of the saddle point faster.
Bolnick (2006) speculates that, in his model, the stagnailtase is used for a process of
genotype sorting (into groups that breed true). In our mdu®hever, this sorting is not
a lengthly process, but rather a sudden event that is oliderwaly directly before the
symmetry breaking. Once one of the mixed haplotypes hagdalominance, it quickly
spreads through the population by a positive feedback (lsectne more frequent haplo-
type has fewer heterozygousfspring and this advantage increases as it becomes more
frequent).

While all new possibilities for shaping the phenotype dlsttion are realized in our
two-locus model, none of these changes the evolutionamgoouts over the parameter
range in which two species evolve from random mating. Indeesifind that the C2*

domain remains remarkably stable with respect to the geagthitecture of the ecological
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trait. Given appropriate ecological parameters, two elissat the edges of the phenotype
range are favored. In our model, a sexual and recombininglptpn can reach such a
phenotype distribution only by evolving complete isolatid his result is complemented
by the finding that local stability of the two-species eduilim does not depend on the
genetic architecture of the ecological trait as long asdted tange of possible phenotypes

remains constant (Appendix B).

4.3. Other genetic architectures

Competitive speciation results from a combination of fextdviost importantly, the
ecological conditions must induce frequency-dependesrudtive selection. With a re-
stricted phenotype range (as assumed here), such selttia the extreme phenotypes.
All loci that contribute to spanning this range maintainymobrphism. However, under
random mating, recombination and segregation producenetgiate phenotypes. Finally,
selection against these intermediates entails seleatioadsortative mating (unless fre-
guency dependence is strong enough to create a large nufmbehnes, in which interme-
diates are protected from competition).

Since more polymorphic loci contributing to the ecologitalt lead to more interme-
diates, we then expect selection for assortative matingcéoiroover a larger parameter
range. Indeed, this is what we see if we compare the modetsami¢é and two diallelic
loci. In the two-locus model, the two-species domain is clemented by a three-species
domain, in which evolution of complete isolation is drivengelection against additional
heterozygotes (which do not exist in the one-locus modeljh &en more polymorphic
loci and stficiently strong frequency dependence, we can expect additgjuilibria with
four or more species, as observed by Bolnick (2006).

On the other hand, increasing the number of ecological lagi also entail fects that

oppose speciation. In particular, with more loci, neighgmphenotypes become more
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similar to each other, and female choosiness needs to etmhigher levels before gene
flow is effectively stopped. Indeed, the level of choosiness requipeahaintain three
species is very high (see above). Furthermore, also in tbespgcies domain, speciation
takes longer in the two-locus model than in the one-locusehod

Of course, there are many more ways to increase the compteidihe trait architec-
ture than just increasing the number of loci. An obvious esi@n is to vary the number of
alleles per locus. To cover this case, we performed nunieest with one ecological lo-
cus and between three and five equally spaced alleles. Téw #tlele case, in particular,
complements the diallelic two-locus model, since it prasuthe same set of diploid phe-
notypes. Somewhat counter-intuitively, however, the g¢rafele model does not have a
three-species regime. Instead, in the relevant paranstger the intermediate allele goes
extinct, and the population evolves to a partial isolatigaikbrium, as in the P* regime of
the one-locus two-allele model. The reason for this resukiat, at random mating, the in-
termediate allele is selected against, because the intigteaniche is already occupied by
heterozygotes carrying the two extreme alleles. Note &la unlike the two-locus two-
allele model, the one-locus three-allele model has tvi@int ways of producing three
coexisting phenotypes: either with three alleles and cetepsolation or with two alleles
and partial isolation. In simulations starting at randontingg the initial low fitness of
the intermediate allele steers the population towardsabersd solution. The intermediate
allele also goes extinct in the C2* regime, after which theylation evolves complete
isolation with two species. This is in line with results byh8eider (2007), who showed
analytically that, in a general multilocus model, all imediate alleles go extinct if the
fitness function is quadratic (which is a good approximafansituations with exactly
two niches). Indeed, in our model, three alleles were maiathonly in simulations with
very high values o€, were short-ranged competition creates more than thréesic

Our model does not consider epistasis and dominance, laé ttas potentially have
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important éfects. In particular, complete dominance can prevent theéymteon of inter-
mediate phenotypes in heterozygotes. Therefore, evalati@ominance has been sug-
gested as an alternative to the evolution of assortativengat diploid sexual populations
(Durinx and Van Dooren, 2009). A recent study by Peischl aclih8ider (2010) shows
that this is sometimes possible, but the detailed analgsisinplex. Similarly, epistasis
generally leads to an evolving trait architecture. Two ssdKopp and Hermisson, 2006;
van Doorn and Dieckmann, 2006) show that disruptive s@eatiill usually favor a trait
architecture with only few polymorphic loci of largéect, such that few intermediate het-
erozygote phenotypes are produced. In the light of theskestuassuming a small number
of polymorphic loci may be more realistic than extensiveypabrphism at many loci with
small individual €fects. Indeed, for situations with two or three niches, thel@ by
van Doorn and Dieckmann (2006) and Kopp and Hermisson (20@@lict only a single
diploid polymorphic locus. However, this result rests oa #ssumption that there are no
constraints on theffect a single locus can have. If a one-trait architectureaggmted due
to an upper limit on individual locusfkects, a two-locus architecture, as studied here, is
the logical next alternative. More generally, evolutiomehetic architecture and evolution
of assortative mating are alternative responses to théeciga@ presented by disruptive se-
lection against intermediate phenotypes (fReeet al., 2006). Often, evolution of one of
these responses will weaken the selection pressure fothlee @urinx and Van Dooren,
2009; but see Peischl and Schneider, 2010). In the thre@espegime, for example, evo-
lution of a single-locus architecture (if possible) wouddbix selection on the mating trait
to a degree that full isolation will no longer evolve. If, iddition, the range of allelic ef-
fects at this locus is unconstrained, selection pressutkeomating locus may be reduced
even further (Ripa, 2009). In this sense, one might say tlatigon of assortative mating
is driven by constraints on the genetic architecture of twagical trait. Interestingly,

with regard to the “problem” of intermediate phenotypesya-tocus model turns out to
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be more constrained than a one-locus model with the sametetaotypic range.

4.4. Conclusions

We have investigated how competitive speciation dependb@genetic architecture
of both the ecological and the mating trait (i.e. female coess). Our analysis revealed
opposite patterns: In general, speciation is easiestliakffects are small at the ecolog-
ical trait and large at the mating trait. Thidl@irence arises because the traits are under
different forms of selection: Frequency-dependent disrugtection on the ecological
trait can induce directional (or stabilizing) selectiontbie mating trait. More precisely,
frequency-dependent disruptive selection tends to maiptdymorphism at multiple loci,
which in turn creates low-fitness intermediate phenotydas (o segregation and recom-
bination). Eliminating these phenotypes by means other #isgortative mating becomes
more dificult if the genetic architecture is complex. In contrastyndespread polymor-
phism is maintained at the mating trait. Here, large mutatiare under stronger (direc-
tional) selection, and in addition, they allow the populatio reach complete isolation by
“jJumping” over an alternative partial isolation equilibm. Finally, the original motivation
for our study was to test the robustness of previous analytimdels, which assumed a
single ecological locus and evolution of choosiness in itggimal steps. It turns out that
both of these assumptions are conservative with respebetpdssibility of competitive

speciation.
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Appendix A. Derivationsfor single-locus model

In this Appendix, we derive the conditions for local stalyilof random mating and

complete isolation in the discrete-time single-locus nhode

Sability of random mating

According to condition (11), random mating is stabl&\ifs > Wom atm = 0. Since
there is no sexual selection with random mating, all matatgs ares(X) = 1 in this case.
All di fferences in the fitness values (8) are therefore dueffiereinces in the death rates

(4). In particular, random mating is stabledif,, > dne, and thus

(L+ (1 - ©)"Nhom + (1 = S)Nhet S 2(1— ¢)Npom + Nhet
Ko(1 - k) Ko '

With £= = 2 for random mating, this leads to

_ _ n\4
K> 1-(1-c) ’
4-2c
which is identical to the condition in the continuous-timeadel (Pennings et al., 2008)

with a Gaussian shape of the competition function.

Sability of complete isolation
Complete isolation is stable Whe < Whom atm = 1. We can assumis,g — 0. Asu
for complete isolation is 0 (5), equation (6) givesgige = 0. From equation (8), we thus

get
1+ NhomQhom
2

As dnom at equilibrium is 1 andQnom = @ according to equation (7), we can simply

2(1—0) Nhom
=, where

1
Whe = explo(1 - dhet))z < exp(1 - dnom)) = Whom

write expp(l — dhe)) < 2 Ordheg > 1 — "’97(2) Using equation (4)ghe =

Nhom = —ﬁ(ﬁg‘z that is » - -
(1-0@1- )>1_ og( )'
1+(1-c)* 0
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This leads to the condition
(1- 2221+ (1- )
2(1-0
With the choicep = 2log(2), this again matches the condition in the contindtome

k<1-

model (Pennings et al., 2008),

_ _ 4
<3 4c+ (1 c).

k
4 - A4c

Appendix B. Derivationsfor multi-locus model

In this Appendix, we summarize several analytical resudtsmodels in which the

ecological trait is influenced by either two loci or an araiyr number of loci.

Sability of monomorphic equilibria

The stability of the monomorphic equilibria can be caloedator an arbitrary genetic
basis of the ecological trait. Only the monomorphic stafeb® intermediate phenotype
x = 0 (MI) and the extreme phenotypas= +1 (ME) are of interest. The equilibrium
is stable if and only if no mutant with afiierent phenotype can invade. Since the fitness
of rare mutants is necessarily dominated by the heteroeggahis is equivalent to the
condition that the fitness of all heterozygote single muitardgders into the monomorphic
resident population is less than one. Let us assume thatopypic &ect of a given
mutant is In. In particular, this is theféect of a single mutant in a model withidentical
diallelic loci spanning the phenotype rangelf1]. Forn = 1 andn = 2, this covers the
models considered in the bulk of the paper.

For the internal monomorphic equilibrium MI withi(0) = K, andN(x) = 0 for x # 0,
the mating rate of a rare mutant with phenotype is given bys(1/n) = (1+(1-m)¥™)/2,

and its fitness follows from (8) as
1-cym
W% = exp[p (1 - (m) )
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which leads to the stability condition
l1-c\3 2
exp[p (1 = (m) )l T3 o
Form = 0, the MI equilibrium is stable fok > ¢, independent of the genetic architecture
of the mating trait.
For the extreme monomorphic equilibrium MBExat 1, we haveN(1) = Ko(1—k) and
N(x) = 0, x # 1. For a mutant with phenotype-11/n, the conditionW;_1,, < 1 leads to

the stability condition

2

explp (1 - (1 - ®M(1 - KEDI7)] < T+ (1—mye

Form = 0, the right-hand side is 1, and the extreme monomorphidibgum is stable

for
1

N (1- K21’
In particular, the equilibrium is never stableat O if k > 0. For negativé, the domain of

c<1

stability increases with increasimgthat is, with decreasing mutationdfect. This shows
that the stability of the ME equilibrium depends on the Iatgautation that is possible for
the ecological trait. It is, therefore, not necessariletiiat the equilibrium is more stable
for a polygenic trait, unless the genetic architecture wke$ (even occasional) mutations

with large dfect.

Sability of random mating

Unlike in the single-locus model, we were not able to derimeamalytical condition
for the stability of the random mating equilibrium. The reass that the simple criterion
(11), which compares the fitness values of two phenotypg&sels (homozygotes and het-

erozygotes), can no longer be applied when the number fedascreases. Nevertheless,
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the following heuristic leads to a quite accurate analyapgroximation for the two-locus
case:

Assume that mutants with non-zero choosiness segregatsvdtdquency in link-
age equilibrium with the ecological loci. As in the singtelis case, these mutants will,
on average, produceffspring with more extreme phenotypes (in particular, mate o
spring with phenotypes1 and fewer with phenotype 0). Suppose that among residents
W(£1) > W(x0.5) > W(0). Then the &spring of rare mutants will be fitter than the
residents, and the mutation will spread. In the opposite,8&é+1) < W(«=0.5) < W(0),
mutant dfspring are less fit, and the mutation will decrease in frequebnfortunately,
this heuristic is inconclusive if the fithess values are nohotonic. However, for a resi-
dent population at random matingn(= 0), it turns out that the fitness values are mono-
tonic in almost the entire parameter space spanned &ydk. In fact, the conditions
W(x1) = W(0) andW(+0.5) = W(0) lead to boundaries in thek plane that are almost
indistinguishable by eye. We can use the fact that) at0, differences in fithess are only

due to diferences in the death rates. Frdfa1) = d(0), we derive
1-(4(1-01/4)+6(1-c)+4(1-0)9/4)+(1-0)*+1

2(4-c)+8(1-c)1/4) ’
which is the boundary line used in Fig. 3.

k(c) =

Sability of complete isolation

Also the limitm — 1 allows for further analytical derivations. Note, firstathithe
condition for local stability of the two-species equililam with respect to invasion of rare
heterozygotes with phenotype= O is the same as in the single-locus case. An analogous
calculation shows that invasion of mutants with phenotypeO is always more diicult
and can thus be ignored. We can conclude that the boundaitgdal stability of two
species with complete isolation is independent of the geaethitecture of the ecological

trait, as long as the total phenotypic range is kept constant
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For the three-species equilibrium, the equilibrium fraggies can be obtained from
the condition that all three phenotypes must have equakBtn®ince the mating rates are
necessarily equal & = 1, this condition reduces to equal death ratég,= +1) = d(x =
0). Using Eq. (4), we obtaid(0) = 1—c+ poc andd(+1) = ((1- po)(1+ (1-c)*) +2pe(1-
c))/(2 - 2k), wherepy is the frequency of the third speciesxat 0. The above system of

equations evaluates to
_ 2(c-K)
2c(c — k) + c?(2-c)?’

We find thatpy < 1 for ¢ > k, which is consistent with the finding that the intermediate

Po=1 (B.1)

monomorphic equilibrium (i.epy = 1) is always stable foc < k. The conditionpy > 0

leads to

o2 - C)z). (B.2)

2(1-0
For smallelk, only a two-species equilibrium is (locally or globallyabte. Finally, a con-

k>c(1—

dition for invasion of phenotypes at= (+0.5) into the three-species equilibrium can be
formulated, but leads to higher order polynomials that aag be analyzed numerically.
Note that the stability results depend on the scaling of dlsad é€fects chosen in our
model, which leaves the total phenotype range invariantvgaeng from one to two loci.
An alternative scaling, which keeps the single-loctie@s constant, would result in a
doubling of the phenotype range with two loci. Compared & ghngle locus case, the
emerging species at the boundaries of this range have muoh entreme phenotypes.
We can obtain the corresponding regime picture by a simgleatngk — 1 - (1-Kk)* and
¢ — 1- (1 - ¢)* of the model (not shown). Since an enlarged phenotype rangedses
the dfective strength of both stabilizing and frequency-depatselection, the area where

two species are stable shifts to smaller values afidc.
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Appendix C. Costsof choosiness

Until now, we have assumed that assortative mating does ffextt demale mating
success or viability, that is, there are no costs of chogsinEhis may be not realistic if, for
example, rare choosy females have problems of finding amptadde mate or if choosiness
increases the death rate. In this Appendix, we investigatedosts of choosinesgftact
our conclusions from the main text, focusing on ttigeet of mutational step size at the
mating locus in the model with a single ecological locus.

We model costs according to Kopp and Hermisson (2008),ndisishing between
mating costs andviability costs. With mating costs, a female has only a finite num@er (
of mating trials in a breeding season. Thifeats the female mating rate according to

T

remaie(X) = 1 - [1 - [% Z NCY)u(X, Y)) . (C.1)

The sum on the right-hand side is the probability that an entsy of a female with a ran-
dom male leads to mating. Mating costs are frequency-degrgrachd will most strongly
affect females with a rare phenotype, which need many trialsntb di matching male.
They are, therefore, an example of relative costs (Otto.e2@08; Kopp and Hermisson,
2008).

Other types of costs are absolute and do not depend on theemwhating trials.
These can occur, for example, if choosiness comes with aiglbggcal cost and, thus,
reduces female viability. Absolute viability costs can beluded as an extra term in the
death rate,

C(X)

d0) = 0 * folm= ). (C.2)

wheref; is a costs function that depends only on thiéestence between the mutant choosi-
nessm and the mean resident choosinassThe latter assumption implies soft selection,

which can arise if costs do noffact the carrying capacity. In this case, costs are only paid
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by mutants, and their magnitude depends on the mutaticemabste. For example, we can

assume a linear costs function
fs = 6(m—m) + &' (M —nY), (C.3)
whered and¢d’ are the costs linked tm andnt, respectively.

Evolution of complete isolation
We investigate how (relative) mating costs and (absolus#)ikty costs d@ect the con-

ditions under which complete isolation can evolve from @ndnating in large steps.

Mating costs. To test the &ect of mating costs, we performed simulations with costs of
choosiness modeled according to equation (C.1). Other réstnicting the number of
mating trials toT = 10 andT = 5, respectively, we used the same assumptions as in the
simulations without costs. The results are shown in Fig. Ade parameter range where
complete isolation can evolve (C* regime) is shifted tovealmver values ok compared

to the simulations without costs (compare Fig. Al to Fig.kRl, it is still larger with one
step and costs than with infinitesimal steps and costs. &umibre, mating costs appear to
facilitate “jumping” near the higle-boundary of the C* regime (where it is almost absent
without costs, see Fig. 2), to the point that there are somanpeter combinations for
which complete isolation can only evolve in the presencerafderate) costs. As detailed
in the Discussion, this result arises because mating codtee sexual selection against
rare females (Kopp and Hermisson, 2008). If most males (amdles) are homozygous
due to strong frequency-dependent competition, thiececombines with sexual selection

against heterozygous males to facilitate fixation of thénmuallele.

Viability costs. With absolute viability costs and soft selection (eq. Ce2plution of com-
plete isolation in infinitesimal steps is impossible fortsdsinctionsfs(m— m) with a pos-

itive first derivative am— m = 0 (as is the case for the linear costs function eq. C.3). The
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Figure Al:Evolution of assortative mating in the single-locus modighwnating costs, assuming a single
large mutational step. The number of mating trials per feniwl = 10 in (a) andT = 5in (b). Shades
of gray indicate the equilibrium frequency (black: 0, whifg of an “isolation allele” withm = 1~ = 0.99
introduced at the low frequency=p0* into a randomly mating resident population with = 0. The
continuous lines show the corresponding boundaries of dneptete-isolation regime for infinitesimally

small steps (calculated as in Kopp and Hermisson, 2008).

reason is that, fom — 1, heterozygotes disappear from the population, and ttresiox
fitness gradient (which measures the selection pressuned@asingm) vanishes even in
the absence of costs. Unless the derivative of the costsidunanishes, too, the invasion
fithess gradient becomes negative, which precludes ewalaficomplete isolation (Kopp
and Hermisson, 2008).

However, the above reasoning applies only to infinitesinegps With large steps,
anm = 1 isolation mutant can invade while heterozygotes are s@tjdient, such that
a fitness advantage for homozygotéspring can potentially fiset the negativefiect of
costs. Whether this is easier for (finitely) small or largetations depends on the details
of the costs function (C.2). Recall that this function degseonly on the dference be-

tween the mutant and residamt If costs are low for small diierences but high for large
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differences, small steps will be preferred. But if costs for sntiffierences are sizeable
and costs for large fferences are only moderate, evolution of complete isolatight be
possible only in large steps. In summary, it is possible twstrmict costs functions that fa-
vor either finitely small or large steps, but evolution of quate isolation via infinitesimal
small costly steps is always impossible.

Figure A2 demonstrates evolution of reproductive isotaiioa single large step, using
as an example the linear cost function (C.3) with 0.01 andy’ = 0. The parameter range
where complete isolation evolves is quite large. This ie eMen though the boundary
for the stability of random mating is shifted slightly towlarlowerk as compared to the
boundary for infinitesimal steps. Note, however, that sith@einvasion fithess gradient
atm — 1 is negative (see above), the whole C* regime is susceptiblavasion by
small (but not large) modifiers for lowen. It is, therefore, possible that nearly complete
reproductive isolation is reached in a large step, but themehses again slightly due to

invasion and fixation of alleles with small negativéeet.

Appendix D. Genetic drift in the two-locus model

Including genetic drift in the two-locus model yields rolgkthe same results as the
deterministic model. In the three-species domain C3*, thgrstion phase described in
the main text is shorter and, during this phase, the polyhisnpis not between tha = 1
and them = 0 allele but between then = 1 allele and the lowesn allele that is still
present in the population (usually, the= 0 has died out at this point, something which
is not possible in the infinite population limit). Near thertber to the P* domain, the
formation of three species sometimes fails altogethertlamgopulation gets stuck at par-
tial isolation. Note that this may be a transient state, hareand the phase transition to
three species might still occur eventually. Near the boandéthe C2* domain, evolution

from random mating with drift sometimes leads to the formaof two species instead of
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Figure A2: Evolution of assortative mating in the single-locus modi¢hvabsolute viability costs and a
single large mutational step (see Fig. Al for more deta8fades of gray indicate the equilibrium frequency
(black: 0, white: 1) of an “isolation allele” witm = 1-00.99 introduced at the low frequengy= 10~ into

a randomly mating resident population witlh = 0. The figure shows simulation results for the linear cost
function (C.3) withé = 0.01 ands” = 0. Note that, with this costs function, evolution of completolation

through infinitesimally small mutational steps is alwaygossible.
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three. Furthermore, in the presence of drift, the intermedmonomorphic equilibrium
MI sometimes evolves also with parameters pertaining tdRther C2* domain, and the

extreme monomorphic equilibrium ME is reached in a largeapeeter range, too.
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