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Abstract

There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and
between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting
partner’s investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in
interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a
comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially
structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We
demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before
both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show
that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic
partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In
spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in
which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-
diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting
these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered
as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a
polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such
polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the
coevolution and population dynamics of mutualistic interactions.
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Introduction

Investigating factors that promote cooperation is one of the

main topics in evolutionary biology [1,2]. Cooperation, a costly act

that provides benefit for a partner [3,4], is widespread in nature

[5–7] and has been essential in shaping our biosphere [8,9].

The basic dilemma of intraspecific cooperation [10] also applies

to interspecific mutualism [2,5]: while both partners of such

interactions would be better off helping each other, a cheater that

accepts help without reciprocating will have higher fitness and thus

spread in the population [11–14]. Cheating consistently commit-

ted by one partner can shift a mutualistic interaction into

parasitism [15], as corroborated by observations in ant–plant

mutualisms [16–18] or mycorrhizal mutualisms [19,20].

Despite the underlying dilemma being similar, interspecific

cooperation differs from intraspecific cooperation in several key

features. In interspecific cooperation, the interaction is under the

control of two separate genomes, the evolutionary success of

strategies in one species directly depends on the strategies in its

partner species [21,22] rather than on those on its own species,

and the spread of a successful strategy in one species does not

automatically result in the spread of a matching strategy in the

other. Another consequence of partners belonging to different

species is that one important mechanism promoting cooperation,

kin selection [1,2], cannot play a role. Furthermore, in many

mutualisms, the partners occupy different niches [5], and are thus

not in direct competition with each other. For all these reasons,

models of intraspecific cooperation do not cover the specificities of
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mutualisms, so that mechanisms promoting mutualism have to be

explored and identified separately [14,22].

Knowing the costs and benefits of a mutualistic interaction is

fundamental for understanding its ecology and evolution [13,23].

Commonly studied examples are nutritional mutualisms, such as

mycorrhiza [24–26] or rhizobia [27], and other forms of

symbiosis, including endosymbiosis [9]. However, these interac-

tions are often not described by a single discrete event, but involve

the long-term, often continuous, exchange of goods (such as in

rhizobia–plant interactions) [28,29]. Quantifying the effective costs

and benefits of these recurrent, and often reactive or conditional,

exchanges is more complicated. For example, experiments found

that the volume of nitrogen-containing substances provided by the

nitrogen-fixing bacteria (such as ammonium, aspartate, or alanine)

is increased by the concentration of oxygen and carbohydrates

(such as succinate or glutamate) provided and controlled by the

host plant [30,31]. In turn, from the perspective of the plant,

higher nitrogen supply via fixation can enhance plant metabolism

[27,32], which can translate into higher carbohydrate supply to

the symbiont [28]. Many studies have revealed similar mecha-

nisms for the conditional exchange of nutrients (such as

phosphates and carbohydrates) in mycorrhizal symbiosis [19,33–

35]. Such long-term (even lifelong) associations allow partners

continuously to adjust their investments into the mutualistic

interaction [36]. Individuals may increase or decrease rewards in

response to increased or decreased services received from a

partner [18,28,34,37–39]. This iterative reciprocation throughout

an interaction obviously involves phenotypic plasticity of the traits

involved in the interaction [40,41] and offers a control mechanism

between the partners [42]. Akin to reaction norms, which describe

how the environment can affect a genotype’s expression [41], the

rule of reciprocation can be described by an interaction norm [40],

which thus characterizes the expression of a trait as a function of

the interacting partner’s strategy.

In spite of the biological importance of, and the wealth of

information available for, interspecific cooperation, the evolution-

ary dynamics of mutualism are far less understood [13,14].

Moreover, among models of mutualism, few concentrate on the

evolutionary dynamics of interactions on the individual level when

there is continuous feedback between the partners [42], as

captured by the concept of partner fidelity feedback [1,11]. One

of the few existing models addressing this challenge is the one

proposed by Doebeli and Knowlton [43], which is among the

three most cited evolutionary models in the mutualism literature

(along with biological market models [44]; and models of

geographic mosaic theory of coevolution [45]). In their individ-

ual-based model, each individual’s strategy is characterized by two

values: the so-called initial offer and the reward rate. The initial

offer amounts to an unconditional or fixed investment in the

mutualistic interaction, whereas the reward rate quantifies a

conditional or variable component, which determines how an

individual’s investment depends on the payoff it gained from its

current partner in the previous round. This distinction is well

founded in the biology of mutualistic interactions. For example, in

mutualistic interactions involving ants defending their mutualistic

partners from predation, as in the case of ants and lycaenid

butterfly larvae [46] or aphids [14], both partners can adjust their

investments by providing less nectar or less tending. There is also

an unconditional initial investment in many interactions, which is

required for establishing an interaction with a partner before

evaluating its quality as a mutualist [14]. Examples include

honeydew droplets or volatile substances from tentacle organs to

attract partners [17] or chemical compounds released by plants in

mycorrhizal or rhizobial mutualisms [27]. Moreover, creating an

interface for physical contact sometimes requires high investments

from both parties before an exchange of nutrients can commence

[47].

Doebeli and Knowlton [43] concluded that population structure

or spatial confinement is essential for stabilizing mutualisms. They

elegantly demonstrated that without the facilitating effect of space,

mutualistic investments vanish from the populations. Nevertheless,

the specific role of spatial structure and the differences in the

dynamics of mutualism in spatially structured and well-mixed

populations need to be still more deeply understood. Moreover,

Doebeli and Knowlton’s conclusion regarding the necessity of

spatial population structure was based on a single example.

Reviews of the mutualism literature [13,14,38] have therefore

debated the importance of space in stabilizing mutualism, and

independent theoretical studies [37] could not corroborate the

necessity of space for stabilizing mutualism. What are the causes

for this apparent discrepancy? Are mutualisms really unstable in

the absence of spatial structure? Our aim here is to unravel the

role of space in the evolutionary dynamics of mutualism and to

provide a platform for connecting model results with experimental

findings.

Methods

Throughout this study, we closely follow the seminal model

introduced by Doebeli and Knowlton [43]. We define mutualism

as an interaction between individuals from different species,

Mutualist A and Mutualist B. We highlight that Mutualist A and

Mutualist B in our model can, more generally, be interpreted as

mutualist guilds: such guilds are composed of one species or

several species that share the same functional relationship with the

other guild. The fitness of an individual depends on the outcome

of its interaction with a member of the other mutualist guild, while

competition occurs only between members of the same guild.

Modeling the latter as competition for space, the populations of

the two mutualist guilds can be conceived as occupying two

separate square lattices. We do not consider sexual reproduction,

Author Summary

Mutualistic interactions between species are often best
understood as gradually adjustable reciprocal investments
made continuously or iteratively between participants.
Prime examples are the mycorrhizal and rhizobial mutu-
alisms so strongly affecting the productivity of plants.
When such interactions are described by continuous
reciprocal investment games, participants adjust their
investments plastically in response to their mutualistic
partner’s most recent investment. Although common
sense suggests that such conditional or reactive behavior
provides a potent defense against exploitation, our
comprehensive model analysis reveals that the coevolu-
tion of investment strategies will often instead induce
instability and decay of mutualistic interactions. We also
identify several factors that can prevent this decay. First,
mutualisms can be stably maintained if the investment
strategies of participants are sufficiently diverse. Second, if
participants are limited in their movements, the formation
of dynamic spatial mosaic structures promotes strategy
diversity and thereby facilitates the maintenance of
mutualism. These ecological and evolutionary dynamics
result in communities with a diversity of interaction types,
ranging from mutually beneficial to exploitative, and
varying both in space and in time.

Mutualism with Investment Cycles and Polymorphism
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and the only characteristics of individuals we examine are the

traits affecting their mutualistic investments, as detailed below.

Mutualistic investments
Each individual’s strategy for interacting with individuals from

the other guild is specified by two (non-negative) quantitative

adaptive traits: an unconditional investment a, determining the

initial offer to be made to a partner, and a conditional investment

b, determining the reward rate according to which investment

received from a partner are reciprocated. Thus, the strategy of

Mutualist A is given by the pair (aA,bA), and the strategy of

Mutualist B is given by the pair (aB,bB). The initial offer is an

unconditional and fixed investment into the mutualistic interac-

tion, whereas the reward rate determines how the investment

changes depending on the last payoff gained from the interaction

with the current partner.

Interactions and payoffs
Payoffs are calculated through an iterative procedure, based on

a fixed number T of iterations, or interaction rounds. Following

Doebeli and Knowlton [43], we use T~15 rounds. Before the first

iteration, the payoffs of all individuals are set to zero. Below we

consider the investments made, costs incurred, benefits received,

and payoffs accrued by a mutualist with strategy i interacting with

a mutualist with strategy j. In the first iteration t~0, the

investment I1,i,j is simply given by the trait a, I1,i,j~ai. In every

subsequent iteration tw0, the investment It is determined by a

linear reactive strategy,

It,i,j~aizbipt{1,i,j ,

where pt{1,i,j is the net benefit, or payoff, obtained in the previous

iteration t{1 by strategy i interacting with strategy j (see below for

further details on how partners are chosen). Investments It,i,j are

always non-negative: if they would be negative, they are set to

zero.

The payoffs are calculated from the investments made by the

individuals of Mutualist A and Mutualist B. Each investment

implies a cost for the donor and a benefit for the receiver,

C(It,i,j)~C0It,i,j ,

B(It,j,i)~B0½1{exp({B1It,j,i)�:

Accordingly, the payoff from one iteration of the interaction is

pt,i,j~B(It,j,i){C(It,i,j),

where It,i,j and It,j,i, respectively, are the investments of the focal

individual i and of its partner j in round t [43]. Total payoffs are

obtained by summing payoffs over all rounds of the mutualistic

interaction, Pi,j~
PT

t~1 pt,i,j .

Benefit-to-cost relationship
Compared to traditional game theoretical models, for which the

benefit-to-cost ratio is given by b=c (benefit divided by the cost of

cooperation), for the current model, it is much harder to define the

benefit-to-cost relationship, because of the nonlinear benefit

function and the complex iterated nature of the game. It is

therefore helpful to examine an approximation for infinitesimally

small investments: in this case, the benefit function simplifies to

B(I) {?
I?0

B0B1I . We can then consider the benefit-to-cost ratio

B(I)=C(I) in this limit, which gives (B0B1I)=(C0I)~B0B1=C0.

This simple expression serves as an upper bound: for higher

investments, the nonlinearity of benefits causes the benefit-to-cost

ratio always to fall below B0B1=C0. Hence, for our model, a

higher benefit-to-cost ratio means a higher product of the two

parameter values for the benefit function compared to the

parameter value for the cost function.

Competition
In the spatial model, the focal individual and its m closest

neighbors (we use the Moore neighborhood with m~8) compete

for the focal site. In the well-mixed model, we randomly draw as

competitors m individuals from the focal individual’s whole

population. We employ either of two update rules. With ‘‘best

takes over’’ updating, which was also used by Doebeli and

Knowlton [43], the individual with the highest payoff replaces the

focal individual [43,48,49]. This implies that, if no competitor has

a higher payoff than the focal individual, the later stays

unchanged. If two individuals have the same payoffs, the winner

is randomly chosen between them. With ‘‘pairwise comparison’’

updating, a random competitor i (interacting with individual j)
replaces the focal individual k (interacting with individual l) with

probability 1=½1zexp({wDP)�, depending on their payoff

difference DP~Pi,j{Pk,l [50,51]; for scaling the strength of

selection, we use w~1. Both rules belong to the class of so-called

death–birth updating processes [51].

Mutation
The two traits can mutate independently with probability m per

update. The mutant trait value is drawn from a normal

distribution, with a mean equaling the current trait value and a

given variance. Doebeli and Knowlton [43] assumed that the

standard deviation s of this normal distribution is a given

percentage (5%) of the current trait value. This assumption

implies that the coefficient of variation (CV ) is constant; thus, for

smaller trait values the resultant variance is smaller than for larger

trait values. Accordingly, when a trait value approaches 0, its

mutational variance also approaches 0. This means that trait

values can essentially get ‘‘stuck’’ close to 0. To evaluate the

consequences of this effect, we also consider models in which the

mutational standard deviation is kept fixed (s~0:05).

Updating
In our model, N2 updates occur per generation, where N2 is the

population of Mutualist A and Mutualist B. In the spatial model,

N is the width and height of the square lattice (we consider values

N~10, 30, 50, and 100). For each update, we choose an

interacting pair of Mutualist A and B. In the spatial model, the

chosen individuals that occupy matching sites on the two lattices,

whereas in the well-mixed model, they are randomly drawn from

the two lattices. With synchronous updating, all individuals are

updated at once, while with asynchronous updating, randomly

chosen individuals are updated. Unless mentioned otherwise, we

use asynchronous updating. Each update starts with an update of

the payoffs of the involved individuals, followed by competition

among them.

We initialize the model dynamics with two homogeneous

populations with both trait values close to 0 (0:005, unless

indicated otherwise), implying that individuals are not mutualistic.

We also consider different initial conditions, with one or both of

the traits set to higher values (chosen from the interval 0{10). We

then run the dynamics for 100,000 generations (unless otherwise

Mutualism with Investment Cycles and Polymorphism
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indicated), which is a time horizon chosen to be long enough to

detect the main dynamical trends for all considered model settings.

Results

As the dynamics of the full model are highly complex, we

gradually build up understanding by analyzing model versions of

increasing complexity throughout the next five sections, starting

with the simplest model version that still retains key dynamical

features of the full model, and after five steps eventually arriving

back at the full model. Based on the payoffs defined above, we

start from a best-response analysis of the mutualistic investment

strategies; we then examine the selection pressures on these

investments for mutualists with low polymorphism, consider the

individual-based model without spatial population structure but

with higher degrees of polymorphism, reinstate the spatial

population structure, and finally conclude our analysis of the full

model by exploring the effects of different mutation schemes and

update rules. The insights gained through this five-step investiga-

tion allow us to revisit and reinterpret the results by Doebeli and

Knowlton [43] at the conclusion of this section.

No investment as a best-response equilibrium
As a first step, we determine best-response equilibria of the

mutualistic investments. The interspecific best response sj~r(si) is

defined here as the strategy sj of mutualist j that has the highest

payoff playing against strategy si in the other mutualist guild, for

i,j~A,B, i=j. Thus, investment strategies are in a best-response

equilibrium (sA,sB), if r(sA)~sB and r(sB)~sA, if, that is, these

strategies are the best responses to each other. Incidentally, this

implies r(r(sA))~sA, which highlights a similarity with the concept

of Nash equilibrium in intraspecific games; in that case, a strategy

simply is the best response to itself [52].

As an analytical derivation of the best-response function r is not

possible for our model, we calculate it numerically by fixing a

strategy sA for Mutualist A, and then scan the two-dimensional

strategy space of Mutualist B for the strategy r(sA)~sB that yields

the highest payoff to Mutualist B. We find that the best response to

no investment is no investment, r(0,0)~(0,0), which therefore is a

best-response equilibrium. The intuitive explanation is simple:

when a partner does not reciprocate, the best strategy is not to

invest in that partner. Furthermore, as our numerical investiga-

tions reveal, ((0,0),(0,0)), i.e., no investment by both mutualists

(aA~0, bA~0, aB~0, and bB~0), is the only best-response

equilibrium of our model.

Analyzing the local stability around this equilibrium, we find

two types of local best-response dynamics. The equilibrium

((0,0),(0,0)) is locally stable [53], but strategies converge there

only if they start out below a threshold level bT of reciprocation

(gray lines in Figure 1A and B). Using the same approximation as

Killingback and Doebeli [54] for small investments, we find that

this threshold is determined by the slopes of the benefit and cost

functions at zero investment, bT~C’(0)=½B’(0)2{C’(0)2� [53,54],

with B’(0)~B0B1 and C’(0)~C0 for our model. Thus, when

starting out below bT, best-response strategies converge to the no-

investment equilibrium, whereas when strategies start out above

bT, best responses lead to an increase in investment levels.

To understand the latter behavior, we consider the global best-

response dynamics, which gives us full information about the

coevolutionary changes we must expect in mutualistic investment

strategies. For this, we start from the initial strategy of one

mutualist, determine the optimal strategy of its partner, then again

determine the optimal strategy of the first mutualist, and so on

(Figure 1A). Interestingly, this shows that the no-investment

strategy is not always the best response: above the thick gray line

in Figure 1A, the best response differs from (0,0) and causes

reciprocation to increase in the first step (Figure 1A). After a few

best-response steps, however, the dynamics always converge to the

no-investment equilibrium, which is thus a global attractor of the

best-response dynamics.

In conclusion, when the best-response dynamics start out below

the threshold line, these dynamics will directly lead to the no-

investment equilibrium, whereas when the initial strategies lie

above the threshold line, the best-response dynamics will cause

investments to increase temporarily, before bringing them down to

0 eventually (Figure 1A). Throughout this study, we refer to the

latter behavior as the investment cycle.

Investment cycle and selection pressures on mutualistic
investments

We now show how our insights from the best-response analysis

above extend to individual-based evolutionary dynamics under

low degrees of polymorphism (Figure 1B, C). We find that when

started below a threshold line (thick gray line in Figure 1B), the

evolutionary dynamics monotonically converge to no investment.

Above that line, the evolutionary dynamics temporarily drive

investments up (Figure 1B and C). After these investments have

passed a maximum, they monotonically converge to zero. In other

words, we again find a ‘‘boom and bust’’ kind of investment cycle.

We can obtain the threshold of increasing investments (thick

gray line in Figure 1B) in the limit of vanishing polymorphism. In

Figure 1. Illustration of investment cycle and reciprocation
threshold in well-mixed communities. (A) Best-response dynamics.
Arrows indicate the succession of best responses, leading to
(a,b)~(0,0) in just four steps. (B) Evolutionary dynamics in a community
with low degrees of polymorphism and ‘‘pairwise comparison’’
updating. Arrows indicate changes of the selection gradient along
the investment cycle. In A and B, representative evolutionary
trajectories are shown starting above the reciprocation threshold (thick
gray lines). (C) Resultant changes of investment traits and payoffs along
the investment cycle in B. Results in B and C are averaged over 15
replicate model runs for the same initial condition. Parameters:
N2~100, T~15, B0~4:7, B1~1:8, C0~0:6, s~0:005, and m~0:005.
doi:10.1371/journal.pcbi.1002660.g001

Mutualism with Investment Cycles and Polymorphism
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that case, the selection pressures on the investment traits are given

by gX ,x(xX )~LPi,j=Lx’X Dx’X ~xX
, where X is the focal mutualist (A

or B), Y is the other mutualist (B or A, respectively), x is the focal

trait (a or b), i~(a’X ,b’X ) is the strategy of a mutant in X , (aX ,bX )

is the resident strategy in X , and j~(aY ,bY ) is the resident

strategy in Y . Positive selection pressures mean that mutants with

increased trait values have higher payoffs than the current

resident, and therefore can spread in the population. This kind

of evolutionary dynamics is still simplified compared with an

individual-based model; it yields good approximations only when

population dynamics are sufficiently faster than trait dynamics

(m%1), so mutants mostly encounter monomorphic populations,

and when mutational steps are sufficiently small (s%1), so the

derivatives defining the selection pressures carry sufficient

information for predicting the fate of all arising mutants. The

obtained threshold line (thick gray line in Figure 1B) is the unstable

part of the evolutionary isocline for trait b, along which the

selection pressure on b passes 0 and thus changes sign. For small

investments, and thus for a?0, this isocline is located at b~bT.

We find that our aforementioned results regarding the

investment cycle are robust. First, we can approximate the

underlying individual-based evolutionary dynamics by adaptive

dynamics theory [55], using the selection pressures gX ,x defined

above. For low mutation probabilities m and standard deviations s,

this approximation is accurate. Second, we can consider ‘‘best

takes over’’ updating in an individual-based model with low

degrees of polymorphism, and third, we can use a modification of

this updating, so that the most successful mutant is drawn from a

circle around the resident traits (for this, we sample random

combinations of mutants from a circle of radius 0:005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2zDb2
p

,

where Da and Db denote the trait differences between mutants and

residents, and choose the one mutant with the highest payoff). All

three of these variants yield results in agreement with those

summarized above.

The emergence of the investment cycle can best be understood

by examining the gradual coevolution of the two investment traits.

Evolution starts from a slightly reactive state (b exceeds the

threshold bT), and both the unconditional and conditional

investments first increase, as selection pressures are positive on

both traits. Higher reactivity (resulting from higher conditional

investment b) selects for a higher initial investment a, because

making a high initial investment then yields high returns already

from the first round of the interaction; consequently, individuals

obtain higher payoffs by making high investments already from the

beginning of the interaction. While the initial investment increases,

the selection pressure for the conditional response decreases and

finally reverses, as a strategy investing a large amount in the

beginning and increasing investments even further in the following

rounds may end up overinvesting. Eventually, after the reactivity b

evolves close to 0 (falling below bT), the initial investments a also

evolve to 0. In this final phase, with very little reactivity, the

dynamics simply resemble those of the continuous prisoner’s

dilemma, in which no cooperative investments can be maintained

without additional mechanisms.

Phases of the investment cycle
Next, we introduce a measure that helps us monitor the

evolution of strategies along the investment cycle, and that suitably

reduces the two-dimensional trait space, spanned by the two

investment traits, to one dimension. For this purpose, we define

cycle phases, QA and QB for Mutualist A and B, respectively, so

that these monotonically increase along the investment cycle. As

shown by the small arrows in Figure 1B, these phases are

determined by the direction of the selection gradients (gX ,a,gX ,b)

acting on the traits (aX , bX ) of Mutualist X with X~A,B.

Depending on the signs of gX ,a and gX ,b, we can distinguish four

quadrants of QX , measured clockwise relative to the positive

vertical axis. In the first quadrant, QX ~arctan(gX ,a=gX ,b); in the

second quadrant, QX ~{arctan(gX ,b=gX ,a)zp=2; in the third

quadrant, QX ~arctan(gX ,a=gX ,b)zp; and in the fourth quadrant,

QX ~{arctan(gX ,b=gX ,a)z3p=2. The boundaries between these

phases thus correspond to evolutionary isoclines, i.e., to curves in

the trait space along which the selection pressure vanishes for

either one of the two traits.

Phase I is characterized by positive selection pressures on a and

b, so that both trait values and investment levels increase (phase I

in Figure 1B and 1C, 0ƒQvp=2). In phase II, while trait a still

increases, trait b declines, as the selection pressure on b is negative

(phase II in Figure 1B and 1C, p=2ƒQvp). In phase III, more

exploitative strategies, which invest less and thus gain more, are

favored by selection, so that investment levels evolve to 0, as traits

a and b both decline (phase III in Figure 1B and C, pƒQv3p=2).

For low degrees of polymorphism, selection gradients in the fourth

quadrant rarely occur; here, trait b would grow while trait a would

shrink (3p=2ƒQv2p).

Figure 1 shows that the cycle phase derived from the selection

gradients acting on Mutualists A and B adequately indicates the

direction of evolutionary dynamics along the investment cycle, in

monomorphic populations or in populations with a low degree of

polymorphism.

Phase polymorphism
In the next step of our analysis, we allow higher degrees of

polymorphism. As shown in the previous section, when mutation

probability and/or mutation variance are low, the polymorphic

spread among strategies remains narrow, as the two mutualist

communities evolve along the investment cycle (Figure 2A, left-

hand side). However, there is a sharp transition in the outcome as

the variety of mutants increases. Above a critical supply of strategy

diversity, the two polymorphic populations can perpetually

maintain strategies that on average are mutualistic and that lead

to a high and stable level of average payoff (Figure 2A, right-hand

side). This stable community-level mutualism still implies cyclic

behavior, as the averages of both investment traits gradually evolve

along the investment cycle also in populations with higher degrees

of polymorphism (Figure 2B–D). Importantly, however, with the

increase of mutational variability, this cyclic behavior becomes

perpetual, as the evolutionary dynamics no longer collapse to zero

investments at the end of phase III. The increase of mutational

variance not only affects the polymorphic spread of strategies

along the investment cycle, but also its shape and amplitude

(observe the decrease of cycle amplitude with the increase of s in

Figure 2B–D). To understand these effects of mutational variabil-

ity, we need to appreciate, first, how and why polymorphism

arises, and second, what it implies for the community-level stability

of mutualistic interactions. For this, it is helpful again to consider

phases and selection gradients along the investment cycle.

Individuals in polymorphic populations encounter a diverse set

of strategies, so the selection gradients they experience need to be

determined accordingly: gi,x(xi)~L 1
J

PJ
j~1

Pi,j

 !,
Lx’i Dx’i~xi

,

where i is the focal individual, the sum extends over all individuals

j of the other mutualist, and the parenthesis encloses the expected

payoff of a mutant offspring of individual i with strategy (a’i,b’i).
These selection gradients, shown as arrows in Figure 3A, help us

understand the emergence of cyclic dynamics and phase
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polymorphism. At the beginning of the investment cycle (phase I),

mutations will typically cause some symmetry breaking between

the investment strategies of the two mutualists, while the

polymorphic spread among strategies still remains narrow

(Figure 3A, Panel 1). Once a trajectory reaches phase II, the

selection pressures on the two b traits approach 0, making them

especially susceptible to neutral drift, and thus enhancing the

symmetry breaking and polymorphic spread (observe the diversity

of gradient angles in Figure 3A, Panel 2). Similar mechanisms

operate at the boundary between phases II and III, where selection

pressures become weak on the a traits (Figure 3A, Panels 3 and 4).

Finally, when a trajectory reaches phase III (Figure 3A, Panel 5),

the strongest effect occurs: when traits evolve close to the

boundary that separates trait combinations corresponding to

phases III and I (see the partially overlapping black and thick gray

lines in Figure 1B), mutations can take the two traits across the

boundary, from phase III to I and back. Such a jump across the

boundary changes the sign of the selection gradient for both of the

traits for at least one of the mutualists (Figure 3A, Panels 6 and 1).

This causes recurrent transitions across the boundary, so

trajectories linger at this boundary, which naturally increases their

polymorphic spread. Once a sufficient proportion of the popula-

tion has thus traversed the boundary, the investment cycle is

retriggered (Figure 3A, Panel 1). Notice that the degree of phase

polymorphism varies along the investment cycle. It typically

decreases in the middle of phases I and III (observe how all

gradients are pointing in essentially just one direction in Figure 3A,

Panels 1 and 5), and increases at the boundaries between the

phases (observe the diversity of gradient angles in Figure 3A,

Panels 2, 3, 4, 6).

With further increases of mutational variability, even higher

levels of polymorphism develop, so strategies diffuse across all

phases of the investment cycle. In highly polymorphic populations,

as a consequence of this phase spread, selection pressures become

widely different for different parts of the populations; hence, a

wide variety of strategies becomes established, ranging all the way

from phase I to phase IV (Figure 3B). Competition between

strategies and strategy pairs shapes the phase distribution of the

Figure 2. Evolution and stability of mutualistic investments in
communities with higher degrees of polymorphism. (A) Diversity
thresholds revealed by the effect of mutational variability on the
average payoff in the community. For lower mutational standard
deviations s, there is no mutualism (left-hand side), while stable
community-level mutualism evolves abruptly once mutational variabil-
ity is high enough (right-hand side). Results are averaged over the two
mutualists and 15 replicate model runs. Payoffs can range between 0
and the maximal potential payoff Pmax~TB0 . (B, C, D) Polymorphic
spread of strategies in well-mixed communities, and their evolution
along the investment cycle, with low, medium, or high mutational
standard deviations: s~0:0075 in B, s~0:025 in C, and s~0:1 in D. As
the averages of the traits a and b move along the investment cycle, they
trace out the shown circular lines, corresponding to cyclic oscillations
whose amplitudes decrease as s increases. Other parameters:
N2~10,000 in A and N2~2,500 in B, C, and D; lower benefit-to-cost
ratio of 14:1 in A: B0~4:7, B1~1:8, C0~0:6; higher benefit-to-cost ratio
of 175 in A, B, C, and D: B0~7, B1~2:5, C0~0:1; T~15, m~0:02.
doi:10.1371/journal.pcbi.1002660.g002

Figure 3. Selection gradients along the investment cycle and
resultant phase distribution in a well-mixed polymorphic
community. (A) Arrows indicate the selection gradients on a random
subsample of individuals of Mutualist A as that mutualist’s trait
distribution (gray dots) moves along the investment cycle (gray circular
lines). Average long-term polymorphic distribution of (B) phases along
the investment cycle and (C) corresponding phase asymmetries during
the evolution of mutualistic investments, averaged over three replicate
model runs and shown on logarithmic scales. The phase asymmetry in
pairs of interacting individuals of Mutualist A and B is measured as the
difference of their phases, QA{QB. The peaks at 0 and p in B
correspond, respectively, to the vertical and horizontal edges of the
investment cycle. Parameters: N2~900 in A and N2~2,500 in B and C;
s~0:025 in A and s~0:05 in B and C; T~15, B0~7, B1~2:5, C0~0:1,
and m~0:02.
doi:10.1371/journal.pcbi.1002660.g003
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community (Figure 3B and C), as individuals or pairs with a

competitive disadvantage fade out from the community. These

losing strategies are typically those at the beginning of phase I or at

the end of phase III (Q&0 or Q&3p=2), as well as strategy pairs

with an extreme asymmetry or exploitation (at the tails of the

distribution in Figure 3C). The two most successful, and hence

most frequent strategies, are conditional cooperators (akin to Tit-

for-Tat strategies, with high b and low a; Figure 3B, peak close to

0) and unconditional cooperators (akin to All-C strategies, with

high a and low b; Figure 3B, peak close to p). The result of

competition within the polymorphic populations is thus a diverse

cast of interactions, ranging from strongly mutualistic (central peak

in Figure 3C, corresponding to both mutualists being in the same

phase) to exploitative (two lateral peaks in Figure 3C, correspond-

ing to one mutualist being in phase I and the other in phase III, or

vice versa).

We highlight that the results depicted in Figure 2A are

essentially invariant for lower mutation rates (not shown). The

intuitive explanation is that such lower mutation rates have two

effects. First, there are fewer mutations occurring in any given time

window, which by itself would hinder the retriggering of the

investment cycle. Second, the pace of directional evolution slows

down for such lower rates, so the trait distribution lingers for

longer periods at the phase boundaries, which by itself would

facilitate the retriggering of the investment cycle. These two effects

essentially cancel, leaving the critical levels of mutational

variability needed for retriggering the investment cycle largely

independent of the considered mutation rates. By contrast, this

retriggering is strongly affected by the benefit-to-cost ratio. When

the benefit-to-cost ratio is large, a smaller amount of mutational

variability suffices to maintain strategy polymorphism and thus

community-level mutualism (Figure 2A, compare upper and lower

pairs of curves). Moreover, localized interactions and limited

dispersal promote strategy polymorphism, by creating a spatial

mosaic structure, as we will describe in more detail in the next

section. Accordingly, in spatially structured populations the

transition to stable community-level mutualism appears at lower

mutational variability (Figure 2A, compare gray to black pairs of

curves).

Spatial bubbles and polymorphism
In spatially structured mutualistic communities with local

interactions and limited dispersal, strategy polymorphism occurs

together with a dynamic spatial mosaic structure (Figure 4A) of

spatially abutting ‘‘bubbles.’’ Here we use the term ‘‘bubble’’ to

describe spatial clusters that are compact and contiguous, contain

similar strategies on the inside and different ones on the outside

(Figure 4B), and grow gradually in size from a small core before

disappearing through a sudden collapse (Figure 4D). For the most

part, there is a strong correspondence between Mutualist A and

Mutualist B with regard to the position and extent of spatial

bubbles, and typically the corresponding strategies are asymmet-

ric, giving one species a higher payoff than the other (compare the

shading of corresponding sites in Figure 4A). To fully understand

the role of spatial population structure in stabilizing mutualism, we

thus have to understand the composition of, and the ongoing

dynamics among and within, these bubbles.

As we saw in the previous section, symmetry breaking and phase

polymorphism along the investment cycle can lead to asymmetry

between the mutualistic partners. This emerging asymmetry is

strongly exaggerated by the spatial bubble structure, as compet-

itively inferior strategies vanish quickly, while exploiting strategies

are likely to attempt an invasion of adjacent bubbles, supported by

their high payoffs. Hence, spatial bubbles are often composed of

exploiting strategies and their exploited partners. The degree of

asymmetry and its trend among bubbles can vary, and this

diversity of asymmetries provides the stage for bubbles expanding,

Figure 4. Spatial bubble dynamics and appearance of the insulating boundary layer. (A) Typical snapshot of the spatial mosaic structure,
indicating a high degree of polymorphism and spatial bubbles comprising different strategies. Each pixel represents an individual, rendered
according to its payoff between zero (light gray) and the maximal value (black). (B) Enlargement of a bubble with its surrounding insulating boundary
layer. Notice that individuals inside and outside the bubble both have higher payoffs than the individuals forming the boundary layer. This panel is
obtained as an overlay of Mutualist A and B from the third column in D according to their average payoff values. (C) Shading of background strategies
ranges from white to mid-gray, while shading for the focal bubble ranges from dark-gray to black, as the payoffs of individuals increase. (D) Time
series of snapshots for a spatial bubble (black to dark-gray shading) that first expands and then vanishes, illustrating a spatial ‘‘boom and bust’’ cycle
(snapshots are taken in generations 3013, 3040, 3260, 3399, 3493, 3625, 5165, 5620, 6400, and 6408). Parameters: N2~2,500 in A and N2~900 in D;
T~15, B0~7, B1~2:5, C0~0:1, CV~0:05, and m~0:02.
doi:10.1371/journal.pcbi.1002660.g004
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splitting, or collapsing in various ways (Figure 5). If a strategy can

outcompete that of a neighboring strategy, its successful invasion

further depends on its maintaining its competitive superiority in

the invaded patch. Hence, invasion success can be determined by

considering the relative payoff of the invader before and after

invasion.

To demonstrate this, we consider the interface between two

bubbles as the site where strategy pairs can meet. We can then

analyze all possible dynamics at this interface. We label the two

bubbles so that Mutualist A has a higher payoff (.) in bubble 1

than in bubble 2. We can neglect cases with equal payoffs in the

two bubbles, as these do not change the configuration of strategies,

and thus do not contribute to the bubble dynamics. Relations

between the payoffs in bubble 1, at the interface, and in bubble 2

(Figure 5) can thus be represented as , , , or for

Mutualist A, and by , , , or for Mutualist B, yielding

seven distinct situations: , , , , , , .

Corresponding to Figure 5, the upper row in these stacked

symbols refers to Mutualist A and the lower row to Mutualist B,

while the first column refers to the payoff comparison between

bubble 1 and the interface, and the second column to the interface

and bubble 2. The first four cases, in which Mutualist A in bubble

1 always has a higher fitness than Mutualist A at the interface

( ), correspond to replacement dynamics (Figure 5A–D) involv-

ing unidirectional invasion (Figure 5A), partner swapping

(Figure 5B), catalyzed invasion (Figure 5C), and coexistence of

the two bubbles (Figure 5D). In the last three cases, Mutualist A

has a higher payoff at the interface than in either bubble ( ). We

can interpret these situations as having a bubble with a strategy

pair formed at the interface that can spread in both directions. The

resultant new pairs of adjacent bubbles will then behave in one of

the ways covered by the first four cases above. Thus, the four cases

shown in Figure 5A–D and discussed in more detail in that figure’s

caption cover all possible dynamics between the two bubbles.

The most relevant case for preserving phase polymorphism

occurs when the two exploiting strategies of two adjacent bubbles,

having high payoffs within their bubble, can both enter the

intervening interface, but their exploited partners cannot

(Figure 5D). Then, these exploiting strategies meet at the interface,

but are mismatched: by interacting with each other, they

experience lower payoffs compared to when they interact with

their original partners. Consequently, neither bubble can invade

the other (under deterministic updating), and an insulating

boundary layer forms between them (Figure 5D). These effects

yield a relatively static mosaic structure, in which most bubbles are

separated by insulating boundary layers, which in turn fosters the

long-term coexistence of a diverse set of strategies in both

mutualist guilds. Nevertheless, the resulting mosaics are eventually

not immune to the degradation of mutualism within bubbles, as

strategy pairs evolve along the investment cycle, making the

mosaic structure (if only slowly) dynamic.

The dynamics of the spatial mosaic are governed by evolution-

ary processes that maintain a balance between the expansion or

emergence and the contraction or collapse of bubbles. First of all,

inside a bubble, evolution drives strategies through the investment

cycle. Sooner or later, this stochastic evolution changes the

strategy pairs of two neighboring bubbles in such a way that their

boundary layer (Figure 5E, gray area) loses its insulating property,

thus enabling invasion from one bubble to the other (Figure 5E,

white or black areas). Although this invasion itself is a rapid

process, the evolutionary time that is required for the insulating

boundary layer to break down is usually long. Counteracting

mechanisms can restore the loss of diversity resulting from bubble

collapse: this happens through the emergence of new bubbles as a

result of successfully established mutations (if such a mutant

conquers only part of a bubble) or through the fragmentation of

existing bubbles. In the latter case, mutants occurring within the

insulating boundary layer are able to invade either one of the

adjacent bubbles. Through this invasion, the mutant opens up the

boundary and can catalyze the invasion of strategies from the

neighboring bubble (similar to how Mutualist A1 catalyzes the

invasion of B1, as in Figure 5C). Thus, while the two neighboring

bubbles could originally not invade each other, this becomes

possible through the mutant serving as a ‘‘third party.’’ The

resultant expansion of the invading bubble can then split the

invaded bubble (Figure 4D, from fifth the column onwards), upon

which the two resultant parts can take separate evolutionary paths.

In summary, strategy diversity, and thus, community-level

mutualism, is efficiently stabilized through the formation of an

insulating boundary layer between bubbles of strategies. This

would result in a static mosaic structure, which, however, becomes

Figure 5. Possible replacement dynamics at the interface
between two spatial bubbles. We presume that strategy pairs meet
at the interface (white columns) of bubble 1 (dark-gray columns) and
bubble 2 (light-gray columns). Here, the following cases can occur: (A)
Unidirectional invasion: both mutualists from bubble 1 invade the other
bubble, as both A1 and B1 have a higher payoff than A2 and B2. (B)
Partner swapping: A1 has a higher payoff and outcompetes A2, but B2
has a higher payoff and outcompetes B1, hence A1 pairs up with B2. (C)
Catalyzed invasion: only A1 is able to outcompete its competitor from
bubble 2, but as it spreads, it makes it possible for B1 to follow. This is
feasible because B2 fares worse with A1 than with A2, so as A1 spreads,
the payoff of B2 decreases with its new partner, and hence B1 can now
invade. (D) Insulating boundary layer: at the interface of two spatial
bubbles, the originally competitively superior strategies A1 and B2
enter the interface, but as both then have a lower payoff than with their
original partners, neither can spread further. Column heights depict the
payoffs of strategies. For the described dynamics, the payoffs of a
strategy with its two possible partners (i.e., from either bubble 1 or 2) at
the interface must lie within the interval indicated by the two whiskers
in the middle column. (E) Invasion dynamics depend on the strategy
compositions of the mutualist pairs. Formation of an insulating
boundary layer is the result of the encounter of two strategy pairs
(A1&B1, A2&B2) that are mutually unable to invade each other (gray
area). Otherwise, one bubble invades and replaces the other (in the
white area, the strategy pair of bubble 1 wins, whereas in the black
area, the strategy pair of bubble 2 wins). We evaluate these outcomes in
the absence of evolution (no mutations) and for one strategy pair
(A1&B1) initially occupying one half of the lattice and the other strategy
pair (A2&B2) occupying the other half. Parameters: A1 and B1, a~0:1
and b~0:01; A2, a~0:1 and b~0:1; B2, a[½0:001,1� and b[½0:001,1�;
T~15, N2~900, B0~7, B1~2:5, and C0~0:1.
doi:10.1371/journal.pcbi.1002660.g005

Mutualism with Investment Cycles and Polymorphism

PLOS Computational Biology | www.ploscompbiol.org 8 November 2012 | Volume 8 | Issue 11 | e1002660



dynamic as strategies evolve along the investment cycle. The

invasions resulting from these stochastic evolutionary processes

establish a balance between the emergence and collapse of bubbles

that maintains a level of polymorphism in a more efficient way

than the corresponding well-mixed mutualistic community. The

diversity threshold for community-level mutualism is thus more

easily passed in spatially structured communities (Figure 2A).

Extended analysis of the Doebeli-Knowlton model
In the light of our understanding of the evolution and stability of

interspecific cooperative investments established in the previous

sections, we can now revisit, complement, and extend the

pioneering investigation of Doebeli and Knowlton (DK) [43].

Specifically, we can present a more comprehensive and

systematic overview of the evolution of interspecific cooperative

investments under various relevant conditions (Figure 6). First, we

present the necessary condition that no mutualistic investments

can evolve below B0B1=C0v1, that is, when the benefit-to-cost

ratio falls below 1 and mutualism is thus not advantageous (see

thin black lines with white background in Figure 6), which in

general holds under all conditions. Also, the transition to high

stable levels of mutualistic investments is sharper for higher

benefit-to-cost ratio (rows with B0~10 in Figure 6). Second,

besides the synchronous updating that was originally applied by

DK in the spatial model, we also consider asynchronous updating,

and find that mutualism is unstable for a wider range of benefit-to-

cost ratios (compare third and fourth columns in Figure 6). Third,

we test different competition rules under asynchronous updating,

such as the pairwise comparison rule instead of the best-takes-over

rule used by DK, and we can conclude that outcomes are

essentially unaffected by these different rules (not shown). Fourth,

we consider two methods for generating mutant traits. In one

version, as in the original DK model, we draw the trait values of

mutants with a constant coefficient of variation, so that the

mutational standard deviation linearly increases with the current

trait value (row labeled ‘‘CV constant’’ in Figure 6). With this

approach, mutational variance for small trait values becomes very

low, equaling 0 when trait values equal 0. Here we examine a

different assumption, according to which mutational variance is

constant for all trait values (rows labeled ‘‘s constant’’ in Figure 6).

Comparing the results, we arrive at an important conclusion,

namely, that the qualitative contrast reported by DK between

Figure 6. Average payoff as a function of the parameters of the cost and benefit functions, spatial structure, and update rules. Each
individual panel shows the average payoff of Mutualist A and Mutualist B, calculated as the arithmetic mean of their payoffs over the last 1,000
generations, out of the total of 100,000 generations, and averaged over five replicate model runs. The three parameters of the benefit and cost
functions are varied as follows: B1 and C0 along the axes and B0 between the upper (B0~3) and lower (B0~10) eight panels. The black line on white
background indicates the B0B1=C0~1 threshold, below which no investments can evolve. Results for well-mixed populations are shown in the eight
panels on the left, while results for spatially structured populations are shown in the eight panels on the right. Odd and even columns correspond to
synchronous and asynchronous updating, respectively. Rows show results for a constant mutational standard deviation s~0:05 (first and third rows)
and a constant mutational coefficient of variation CV~0:05 (second and fourth rows). Other parameters: T~15, N2~2,500, and m~0:02.
doi:10.1371/journal.pcbi.1002660.g006
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‘‘gradual evolutionary decay of cooperation’’ in the well-mixed

model and ‘‘long term persistence of mutualism’’ in the spatially

structured model is restricted to the assumption that mutations

have a constant coefficient of variation (‘‘CV constant’’ in

Figure 6). Notably, our investigation reveals that relaxing this

assumption, by assuming constant and medium levels of muta-

tional variance, mutualism robustly evolves for all kinds of

populations structures and update rules (compare ‘‘CV constant’’

vs. ‘‘s constant’’ in Figure 6). We note here that our results are

qualitatively robust to changes of the number T of iterations

during the mutualistic interaction, which we have confirmed by

examining shorter (T~3) and longer (T~50) interactions instead

of T~15 (not shown). Fifth, we demonstrate that below a

threshold level of mutational variability no stable levels of

mutualistic investments evolve in the community, and this

threshold is considerably lower for higher benefit-to-cost ratios

and for spatially structured populations (Figure 2A). In summary,

we conclude that spatial population structure has a beneficial effect

on the evolution of stable high interspecific investment levels, but

this effect is only apparent for constant CV , for small mutational

variability, and for small benefit-to-cost ratios. By changing these

conditions, mutualism can be stable both in well-mixed and in

spatially structured communities.

Finally, our results enable us to understand the mechanisms

underlying the evolution and stability of mutualism in greater depth.

In particular, we can highlight several new mechanisms for

stabilizing mutualism, both in well-mixed and spatially structured

populations. First and foremost, we have presented the investment

cycle (Figure 1), which drives the main coevolutionary dynamics of

traits, and underlies the evolution of cooperative investments levels

in mutualist communities. While the cyclic dynamics can already be

seen in DK’s results (e.g., in their Figure 2), here we have put it into

the spotlight of our analysis. Second, we have demonstrated the

spreading of the investment cycle phases, and have revealed the

diverse ways strategies interact when they are in different phases,

both within and between mutualist guilds (see Figure 2 and Figure 5).

Thus, in contrast to the interpretation of DK, that mutualism is

maintained by a balance between the ‘‘continual reoccurrence of

mutualistic types’’ and then a ‘‘gradual evolutionary decay of

cooperation’’ (DK), we show that mutualism is mainly stabilized by

phase polymorphism along the investment cycle (Figures 2, 3, and

4). The emerging phase polymorphism and underlying strategy

diversity recurrently retrigger evolutionarily increasing levels of

cooperative investments in some portion of the community (phase I

in Figure 3A, B), a process that is essential for maintaining high

investment levels. Third, while DK already noticed ‘‘considerable

genetic heterogeneity,’’ here we have demonstrated the existence of

sharp diversity thresholds. In addition, we can provide an

explanation for the differences in the stability of mutualism under

constant CV vs. constant s, as well as under low s vs. high s. These

differences derive from the fact that if phase polymorphism is largely

lost, it is much harder to retrigger the investment cycle (by attaining

trait combinations above bT) once the community has reached the

last phase of the investment cycle (or in other words, once phase I

has vanished from the community). For similar reasons, any

mechanism that prevents or counteracts the generation of phase

polymorphism will increase the chances of losing mutualism.

Whereas DK suggested that ‘‘for mutualism to evolve,… spatial

structure… is required,’’ here we have reversed that logic, by

clarifying that strategy diversity and phase polymorphism along the

investment cycle are responsible for maintaining high investment

levels and that the only effect of spatial structure is to enhance this

polymorphism. Fourth, we have studied spatial mosaic dynamics by

analyzing replacement dynamics in the mutualist populations to

understand why spatial structure increases polymorphism (Figure 5).

Combining our insights with DK’s intuitive concept of the ‘‘boiling

Figure 7. Schematic representation of mutualistic interactions in (A) monomorphic and (C) polymorphic mutualist communities.
Spheres depict strategies, and the links between spheres represent the interactions between interacting strategies from the two mutualist guilds. (B)
According to its own and its partner’s strategy, an individual receives a payoff (schematically illustrated by two triangles that become darker and
wider as the received payoff increases). The comparison of payoffs between partners shows whether their interaction is more mutualistic (middle) or
more exploitative (bottom and top). (D) Average distribution of interaction types in our model, showing that small relative differences D between the
payoffs of interacting individuals are more common or longer-lasting than extreme exploitations. (E) Average distribution of the payoff sums and
relative payoff differences for interacting individuals of Mutualist A and Mutualist B, demonstrating that, on average, payoffs in asymmetric, or
exploitative, interactions are lower than in symmetric, or more mutualistic, interactions. The distributions in D and E are based on sampling all
individuals in every 100th generation for 100,000 generations and for five replicate model runs. The relative difference between the payoffs Pi,j and

Pj,i of individuals i and j is given by D~(Pi,j {Pj,i )=(Pi,jzPj,i), and 2Pmax is given by 2TB0 . Parameters: N2~2,500, T~15, B0~7, B1~2:5, C0~0:1,
CV~0:05, and m~0:02.
doi:10.1371/journal.pcbi.1002660.g007
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sea of mutualistic bubbles,’’ our investigation reveals the complex

dynamics among bubbles and the key role of the insulating

boundary layer in preserving polymorphism in spatially structured

populations. Fifth, this enables us to understand why asynchronous

updating makes mutualism less stable, as it more easily shatters

insulating boundaries, promotes asymmetric and uncoupled inva-

sion of the two mutualists among bubbles, and hence makes the

homogenization of bubbles more likely. Sixth, while our results

explain why spatial structure is helpful in maintaining mutualism,

they also demonstrate that space itself does not always suffice, and

neither always is necessary, to maintain community-level mutual-

ism.

Discussion

Here we have revealed several fundamentally new mechanisms

for the maintenance of interspecific cooperation. We show that

pairs of strategies evolve through investment cycles, which on their

own always result in full defection. Our analyses demonstrate,

however, that in both well-mixed and spatially structured

communities mutualisms can be perpetually stable if a strategy-

diversity threshold is exceeded and sufficient polymorphism is

generated and maintained in the community. In other words, such

a polymorphism of investment strategies is the main factor

stabilizing mutualism. Compared to the well-mixed case, a lower

amount of variation suffices to maintain mutualism in spatially

structured populations; we have shown that this is because of

insulating boundary layers that promote polymorphism by

preserving spatial bubbles of matched mutualistic strategies. Our

findings underscore that mutualism is not always a stationary

outcome, but may involve a polymorphism of investment levels

that vary both in space and in time (Figure 7).

Importance of polymorphism
Our analysis has shown that when our model community

exhibits a stable mean level of mutualism, it is invariably

characterized by a high degree of polymorphism, and that

mutualism persists only if this polymorphism is maintained.

Without strategy polymorphism, the evolutionarily stable state of

the system is a community consisting only of full defectors (no

investment). This is because full defection is the best response to

itself, and no mutant investing more can spread in either species

[53]. No other strategy pairs are best responses to each other, so

there are no other evolutionarily stable states. However, there are

many pairs of strategies that can spread in initially non-mutualistic

populations (Figure 1); above a threshold of reciprocating

investments, evolution guides these strategies through an invest-

ment cycle, which eventually always results in no investment.

Hence, mutualistic investments in our model are fundamentally

unstable [56], never reaching finite stable levels even though they

may initially be increasing. This means that in our model

evolution without strategy polymorphism can only temporarily

lead to high mutualistic investments before these eventually

collapse again.

Similar dynamics have been observed in studies investigating the

evolution of intraspecific cooperative investments in different game-

theoretical models. For example, in the prisoner’s dilemma game

with discrete reactive strategies [4,57], the Tit-for-Tat strategy

(TFT) can oust the always-defect strategy (All-D), but the always-

cooperate strategy (All-C) can spread in a population adopting TFT,

which in turn enables invasion by All-D. As mentioned in the

Results section, TFT is similar to strategies with high conditional

investments b in our model, whereas All-C is similar to strategies

with dominating unconditional investments a. Without the contin-

uous reestablishment of strategies by mutations, models with

discrete strategies may also end up in a fully defective state [4,57].

In contrast to these results for communities with low degrees of

polymorphism, when sufficient polymorphism is generated,

community-level mutualism becomes stable. For this to happen,

the degree of polymorphism needs to exceed a threshold

(Figure 2A). Even in well-mixed populations, stochastic symmetry

breaking in the interactions, combined with phase polymorphism

along the investment cycle, leads to the emergence of a high

variety of strategy pairings and payoffs (Figure 3B, C). While

evolution drives individual strategy pairs toward exploitation (and,

ultimately, to zero investment), the exploited partner has a fitness

disadvantage: consequently, the highly exploitative pairs are

replaced by more mutualistic pairs, which show less asymmetry

in their payoffs (Figure 3C). These pairs are typically composed of

strategies from phase I of the investment cycle (Figure 3). Our

findings thus indicate that the interspecific interactions exist in a

state of permanent flux, fluctuating between different investment

levels at the individual level. In contrast, the mean level of

mutualistic investment remains positive (and for high degrees of

polymorphism becomes stable), shaped by a balance between two

components of selection: strategy evolution along the investment

cycle and replacement of overly exploited strategies and of

mismatched strategy pairs.

Spatial population structure further facilitates the stability of

mutualism by playing a key role in supporting polymorphism

(Figure 4 and 5). However, limited dispersal and localized

interaction alone do not maintain mutualism, but only when they

work together with mutational variance that is high enough to

sustain a critical level of polymorphism (Figure 2A). In spatially

structured populations, the interaction among emerging, invading,

and collapsing spatial bubbles of strategy pairs creates a dynamic

spatial mosaic, by means of which different phases of the

investment cycle are distributed among bubbles. As a result of

this phase spread, the evolutionary dynamics of mutualistic

investments become decoherent among the different bubbles.

This is called phase diffusion, which in general occurs when

stochastic drift reduces correlations among the cycle phases of

subsystems (here the spatial bubbles) comprising a system (here the

full community). Consequently, among bubbles, the community

shows a wide but stable range of interaction types along the

mutualism–exploitation continuum (Figure 7D). We have shown

how mechanisms operating at the interface of these bubbles

effectively prevent the spatial homogenization of strategies across

the community by creating insulating boundary layers (Figure 4B

and 5D) that in turn sustain the spatial mosaic structure of bubbles

together with the implied strategy polymorphism. We emphasize

here that the mechanism of spatial population dynamics and

interaction between neighboring bubbles described here funda-

mentally differs from previously described roles of spatial structure

in models of intraspecific cooperation (in which, in a nutshell,

cooperation is maintained by the clustering of cooperators and by

their spatial segregation from defectors [49]).

Complexity of mutualisms in nature
One implication of our study is that the diversity of mutualistic

strategies in natural communities may be high not only because of

mutation and recombination, or inherent species diversity, but also

as a product of selection pressures resulting from the complex

dynamics of mutualistic interactions occurring within polymorphic

mutualist guilds. We note here that, based on our model

assumptions, the two mutualist populations may correspond not

only to single species interacting pairwise, but also to two

interacting mutualist guilds [58], that is, a collection of species
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with the same function in mutually beneficial ecological interac-

tions. Thus, strategy polymorphism in our model can relate not

only to variation within, but also across, species. Indeed, growing

empirical evidence suggests that polymorphisms of mutualistic

investment strategies are common in nature [19,21,22,27,34,58–

66], even on small spatial scales [67,68]. Many studies suggest that

microbial populations and communities are often structurally and

genetically more diverse [67,69], considering both type or strain

richness and/or genetic diversity [68], than what can be explained

by local host diversity [70]. Also the effectiveness of rhizobia, such

as their ability to form nodules and their capacity to fix nitrogen,

varies greatly within species, and naturally, between species

[27,58,71,72]; similar conclusions hold for the performance of

mycorrhizal interactions [26,65,73]. This diversity amounts to a

high variety of investment strategies; in other words, less

mutualistic types coexist with more beneficial mutualists in natural

communities [6,19,21,22,27,34,36,71].

Mutualistic interactions are known to shift along the mutual-

ism–exploitation continuum in response to changes in environ-

mental factors [7,19,58,59,74,75]. For example, many nutritional

mutualisms, including mycorrhizal or rhizobial mutualisms [13],

are highly beneficial for host plants as long as the resource

provided (e.g., phosphorus, nitrogen, or copper) is absent from the

environment, but can become harmful (implying that costs exceed

benefits) when that resource no longer is a limiting factor

[2,38,19,76]. This not only underscores the importance of reactive

strategies for modeling mutualism, but also offers one explanation

for the spatial mosaic structures observed that involve different

genotypes, as well as the different local coevolutionary states

shaped by different local selective forces [45,65,77–79]. Our

findings highlight that spatial environmental heterogeneity is not

required for the creation of such mosaics, as the mechanisms

unraveled here provide a testable alternative explanation of these

empirical observations, even in the complete absence of spatial

environmental heterogeneity.

Mutualisms can also be unstable on a much longer time scale,

and there can be a diversity of mutualistic, parasitic, and free-

living variants within higher taxa. The phylogenetic analysis of

mycorrhizal and free-living homobasidiomycetes suggests that

there have been several transformations between symbiotic and

free-living forms [80]. The gain and loss of mutualistic traits thus

seems to be relatively common on an evolutionary time scale, a

finding that is in good agreement with our model-based results.

Limitations
The model by Doebeli and Knowlton [43] has been criticized for

being applicable only to organisms with high cognitive abilities [13].

Yet it has been demonstrated that even the simplest unicellular

organisms are capable of complex reactive behavior. For example, it

has been shown that, in response to the concentration of received

nutrients and synthesized products, hosts and symbionts can control

their exchange of material simply by controlling fluxes through their

various metabolic pathways [31], regulating and operating proteins

[29,81], or inducing structural changes at the host–symbiont

interface [28,82]. Such adjustments closely resemble the reactive,

conditional nature of interspecific cooperative investments, as

captured by the model we have analyzed here.

However, there are assumptions in our model that can and

should be relaxed and modified in subsequent studies. For

example, in the model studied here, one individual always

interacts with only one partner. Yet, in the majority of examples

in nature, one host can interact with several symbionts at the same

time, and vice versa [12,13,27]. The square grid we have

considered here might be suitable if both mutualists have limited

dispersal and are thus spatially confined. Of course, one or both

partners can be more motile, without well-mixed populations

being the immediate result. Moreover, different interaction

topologies could be considered, such as small-world or scale-free

networks. Finally, partners in the current model have similar life

cycles, which might apply only to a very limited number of

biological examples; thus, assuming life-cycle asymmetries could

be an important extension of the current model [43].

Outlook
Our study has shown that the community-level picture of

mutualism can be quite different from that at the individual level.

As the mean outcome can provide misleading or poor information,

a full understanding of the involved ecological and evolutionary

dynamics requires an appreciation of the distribution of outcomes

[40]. In line with various recent studies, we have demonstrated

that mutually beneficial interspecific interactions should not be

conceived only as (z,z) interactions, but as a continuous range of

symmetrically beneficial (z,z), asymmetrically beneficial (z,0),

and explicitly exploitative or parasitic (z,{) interactions [36]

(Figures 3 and 7). Our results thus suggest that it is not enough to

monitor average fitness advantages, as localized individual

interactions may be situated at different points along the

mutualism–parasitism continuum (Figure 7), and may also shift

in time. The long-standing notion of mutualistic interactions being

static is thus becoming extended as new findings, both experi-

mental and theoretical, broaden our understanding. Consequent-

ly, exploitation and mutualism are not always strictly separate

types of interactions, but in many instances may serve as

boundaries of a continuous distribution of interactions between

two mutualist guilds. This distribution reflects not only population

or guild-level variation, but also dynamical changes of interactions

occurring on ecological and evolutionary time scales.
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50. Szabó Gy, Tőke Cs (1998) Evolutionary prisoner’s dilemma game on a square
lattice. Phys Rev E 58: 69–73.

51. Ohtsuki H, Nowak M (2006) The replicator equation on graphs. J Theor Biol

243: 86–97.

52. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Amer Math

Soc 40: 479–519.

53. Scheuring I (2005) The iterated continuous Prisoner’s Dilemma game cannot

explain the evolution of interspecific mutualism in unstructured populations.
J Theor Biol 232: 99–104.

54. Killingback T, Doebeli M (2002) The Continuous Prisoner’s Dilemma and the

evolution of cooperation through reciprocal altruism with variable investment.
Am Nat 160: 421–438.

55. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation
from stochastic ecological processes. J Math Biol 34: 579–612.

56. Bendor J, Swistak P (1997) The evolutionary stability of cooperation. The

American Political Science Review 91: 290–307.

57. Nowak MA (2006) Evolutionary dynamics: exploring the equations of life.

Cambridge, London: Belknap/Harvard Press. pp. 71–91.

58. Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective

on mutualisms. Am Nat 162: S10–S23.

59. Burdon JJ, Gibson AH, Searle SD, Woods MJ, Brockwell J (1999) Variation in
the effectiveness of symbiotic associations between native rhizobia and temperate

Australian Acacia: within-species interactions. J Appl Ecol 36: 398–408.

60. Offenberg J (2001) Balancing between mutualism and exploitation: the symbiotic

interaction between Lasius ants and aphids. Behav Ecol Sociobiol 49: 304–310.

61. Bever JD (2002) Negative feedback within a mutualism: host-specific growth of

mycorrhizal fungi reduces plant benefit. Proc R Soc B 269: 2595–2601.
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