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How sensitive are estimates of carbon fixation in
agricultural models to input data?
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Abstract

Background: Process based vegetation models are central to understand the hydrological and carbon cycle. To
achieve useful results at regional to global scales, such models require various input data from a wide range of
earth observations. Since the geographical extent of these datasets varies from local to global scale, data quality
and validity is of major interest when they are chosen for use. It is important to assess the effect of different input
datasets in terms of quality to model outputs. In this article, we reflect on both: the uncertainty in input data and
the reliability of model results. For our case study analysis we selected the Marchfeld region in Austria. We used
independent meteorological datasets from the Central Institute for Meteorology and Geodynamics and the
European Centre for Medium-Range Weather Forecasts (ECMWF). Land cover / land use information was taken
from the GLC2000 and the CORINE 2000 products.

Results: For our case study analysis we selected two different process based models: the Environmental Policy
Integrated Climate (EPIC) and the Biosphere Energy Transfer Hydrology (BETHY/DLR) model. Both process models
show a congruent pattern to changes in input data. The annual variability of NPP reaches 36% for BETHY/DLR and
39% for EPIC when changing major input datasets. However, EPIC is less sensitive to meteorological input data
than BETHY/DLR. The ECMWF maximum temperatures show a systematic pattern. Temperatures above 20°C are
overestimated, whereas temperatures below 20°C are underestimated, resulting in an overall underestimation of
NPP in both models. Besides, BETHY/DLR is sensitive to the choice and accuracy of the land cover product.

Discussion: This study shows that the impact of input data uncertainty on modelling results need to be assessed:
whenever the models are applied under new conditions, local data should be used for both input and result
comparison.
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Background
Modelling the net carbon uptake by vegetation (Net Pri-
mary Productivity, NPP) and estimating the yields of
agricultural plants have become important tools to
study the mechanisms of carbon exchange between the
atmosphere and vegetation, as well as issues of food
security. Different approaches are currently tracked
which can be grouped to their approaches how photo-
synthesis is modelled.
Models describing the chemical, physical and plant

physiological processes of plant development and the

interaction of plants with the atmosphere can be applied
to simulate the rate of carbon dioxide uptake of the
plant through photosynthesis (called Gross Primary Pro-
ductivity, GPP). These models follow the concept of [1]
and [2] to simulate the process of photosynthesis. More-
over, carbon uptake of well-watered and fertilized
annual plants is linearly related to the amount of
absorbed Photosynthetically Active Radiation (PAR),
which can be derived from satellite data (i.e. the fraction
of PAR which is absorbed by the canopy; cp. [3] or cal-
culated by the accumulation of dry matter.
NPP is defined as the difference between GPP and

autotrophic respiration. Therefore, it is important to
estimate the autotrophic respiration of plants following
the determination of GPP. Autotrophic respiration is
defined as the oxidation of organic compounds found in
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roots, stems and leaves, to CO2 or water. In the litera-
ture, different approaches to estimate autotrophic
respiration are discussed, taking into account the actual
biomass or GPP (e.g. [4-6]). When the Light Use Effi-
ciency (LUE) approach is integrated in a coupled soil -
plant - atmosphere model as in the EPIC (Environment
Policy Integrated Climate) model, daily estimates of eva-
potranspiration and carbon assimilation fluxes can be
obtained [7].
In contrast to these models, more sophisticated

approaches are in use and under development. These
models track photosynthesis on the molecule level. They
take into account the interaction between plants, atmo-
sphere and soil by simulating the uptake and release of
carbon by plants and soil in a physically consistent way
including conservation of energy and momentum.
In the literature one can find descriptions of estab-

lished vegetation models for use on different scales
[8-11]. Each of these models is driven by meteorological
input data and parameterized for global use with special
focus on the long-term competition between the plant
functional types when natural disturbance and succes-
sion driven by light competition occur. Models with a
spatial resolution of kilometres and a time horizon of
some years as e.g. the soil-vegetation-atmosphere-trans-
fer (SVAT) model BETHY/DLR (Biosphere Energy
Transfer Hydrology Model) [12] which can be used for
regional assessments of NPP or biomass development.
During the last decades, the use of both modelling

approaches was often met with resistance, mainly
because of the need of calibration, validation and deter-
mination of the level of uncertainty (e.g.: [13-15]).
Furthermore for many users, i.e. policy makers, it is dif-
ficult to judge whether the model outputs are within
acceptable levels of uncertainty or not, mainly due to
their limited background in model development [16].
However, in this context it is of importance to the pol-
icy maker to understand the validity of the model results
and their associated uncertainties.
Since empirical research traditionally advances in its

data accuracy and validity - in contrast - process-based
models do not always provide comparable outputs, it is
difficult to judge on the quality of modelled data, espe-
cially with the traditional criteria for assessing scientific
outcomes [17]. However, regardless of the data’s source,
there will always be some uncertainty associated with it.
To address these issues, we have assessed the variabil-

ity of the soil-vegetation-atmosphere-transfer model
BETHY/DLR [12] and the bio-physical process model
EPIC [7] on three different meteorological input datasets
and two land cover maps. Since the two models were
designed for different specific purposes, we do not
intend to discuss advantages or disadvantages but place
special attention on the investigation of model

sensitivity to the spatial resolution of the input datasets.
The Austrian Marchfeld region has been chosen as case
study analysis because many datasets (Table 1) are read-
ily available. The period of investigation is 2000 to 2003.
It is important to note that this study is not a classical
sensitivity analysis for assessing systematically the
responses of models to changes in input data and model
parameters (e.g. [18-21]), but a model variability
analysis.

Methods
Biophysical process models
EPIC is a comprehensive model under continuous devel-
opment since 1981, capable of simulating many agricul-
tural processes that occur as a result of climate forcing,
landscape characteristics, soil conditions and crop man-
agement schemes [7,22,23]. Biophysical processes simu-
lated with EPIC include among others plant and crop
growth, hydrology, wind and water erosion, and nutrient
cycling. These processes are simulated with daily time
steps or smaller. EPIC contains algorithms that allow for a
complete description of the hydrological balance at the
small watershed scale (up to 100 ha) including snowmelt,
surface runoff, infiltration, soil water content, percolation,
lateral flow, water table dynamics, and evapotranspiration.
Daily weather can be endogenously generated for precipi-
tation, temperature, solar radiation, wind speed, and rela-
tive humidity or it can be input exogenously.
EPIC uses the concept of radiation-use efficiency by

which a fraction of daily photosynthetically active radia-
tion is intercepted by the plant canopy and converted
into plant biomass. The leaf area index is simulated as a
function of heat units, crop stress and development
stages. Daily gains in plant biomass are affected by
vapor pressure deficits and atmospheric CO2 concentra-
tion [24]. Crop yield is simulated using the harvest
index which is affected by the heat unit factor and
includes the amount of the crop removed from the field
as well as the above-ground biomass. Stress indices for
water, temperature, nitrogen, phosphorus and aeration
are calculated daily using the value of the most severe
of these stresses to reduce potential plant growth and
crop yield. Similarly, stress factors for soil strength, tem-
perature, and aluminum toxicity are used to adjust
potential root growth [25].
The soil water balance depending on the potential

water use, the root zone depth and the water use distri-
bution parameter is applied in a general water use func-
tion where any water deficit can be overcome if a layer
that is encountered has adequate water storage. The
potential water use is reduced when the soil water sto-
rage is less than 25% of plant-available soil water by
using dependencies on the soil water contents at field
capacity and wilting point [7].
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BETHY/DLR belongs to the family of SVAT models,
which track the transformation of atmospheric carbon
dioxide into energy storing sugars, a process known as
photosynthesis. BETHY/DLR is based on the Jena
Scheme of Atmosphere Biosphere Coupling in Hamburg
(JSBACH) by [4] and was modified by [12]. The
JSBACH model was originally considered for global
usage and computes the biosphere-atmosphere exchange
within the Global Circulation Model ECHAM5 (Eur-
opean Centre Hamburg). BETHY/DLR as well as
JSBACH use the combined approach to integrate photo-
synthesis [26,27], which means that the enzyme kinetics
are parameterized on the leaf level. In this context, C3
and C4 plants are distinguished because of significant
differences in the way of their carbon-fixation: C4 plants
(e.g. corn and sugar cane) are able to fix more atmo-
spheric carbon dioxide at high temperatures than C3
plants (e.g. wheat and barley). Thus, the photosynthesis
of C3 plants is saturated at higher temperatures. In a
second step, the rate of photosynthesis is extrapolated

from leaf to canopy level by taking into account both,
the canopy structure as well as the interaction of the
plant between soil, atmosphere and vegetation. The
two-flux scheme of [28] which includes three canopy
layers, is used to approximate the radiation absorption
in the canopy. Evapotranspiration, stomatal conductance
and the soil water balance is included in the model for-
mulation. To compute NPP on an annual basis snow is
included in the water budget. Water stress is considered
by calculating the demand for evapotranspiration using
the approach of [2] limited by the criteria of [29]. Here
it is assumed, that evapotranspiration can not be higher
than a certain soil water supply via roots. Autotrophic
respiration is evaluated as the sum of maintenance and
growth respiration. The plant specific dark respiration
determines the maintenance respiration, while growth
respiration is assumed to be proportional to the differ-
ence between GPP and maintenance respiration. The
main outputs of BETHY/DLR are given by time series
of GPP, NPP, evapotranspiration, and of soil water

Table 1 Meteorological, land cover, and other data.

Datatype Period used Resolution of
space and time

Parameters used Characteristics References

Meteorology 2000-2003 weather stations;
daily

Precipitation;
Minimum
temperature;
Maximum
temperature;
Wind Speed;
Radiation;
Relative Humidity

Measured time series Central Institute for Meteorology and
Geodynamics (ZAMG)

Meteorology 2000-2003 1 km2 grid; daily Precipitation;
Minimum
temperature;
Maximum
temperature;
Wind Speed;
Radiation;
Relative Humidity

Reallocated time series (from
now on ‘ZAMG reallocated’)

[32]

Meteorology 2000-2003 0.25°; up to 4
times a day

Precipitation;
Minimum
temperature;
Maximum
temperature;
Wind Speed;
Cloud cover;
Soil Water Content

Time series of model re-analysis
(ERA-40)

European Centre for Medium-Range
Weather Forecasts (ECMWF)

Vegetation
Indices

2000-2003 1 km2 grid; 36
time steps per
year

Leaf Area Index
(LAI)

Global coverage Pôle d’Observation des Surfaces
continentales par TELédétection
(POSTEL)

Landcover 2000 1 km2 grid, year
2000

Land cover / land
use information;
22 classes

Global coverage (GLC2000) [35,36]

Landcover 2000 1 ha grid, year
2000

Land cover / land
use information;
44 classes

European coverage (CORINE
2000)

[37]

Census 1999 ‘Agrar-
struktur-
erhebung’

Marchfeld sub-
regions, year 1999

Agricultural land
use information;
Main soil type
distribution

Land use data of farms
aggregated to municipalities

[30,42]
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content in daily steps with the spatial resolution of the
respective land cover classification. A more detailed
model description can be found in [12].
The general characteristics as e.g. main outputs and

the general formulation to compute NPP of the two
models BETHY/DLR and EPIC are presented in table 2.

Framework of Case Study Analysis
The Austrian Marchfeld region serves as case study area
to assess the variability of the two biophysical process
models on alternative input datasets. The EPIC model
has already been applied and validated here [30], and
the data necessary for our study is readily available (see
table 1). The Marchfeld region is located in Lower Aus-
tria, part of the Vienna Basin, and forms with around
100,000 ha one of the largest plains in Austria. Around
75% of the area is used for agricultural production. The
natural boundaries are to the East the river March (the
Austrian border to Slovakia), to the North the hills of
the Weinviertel, to the West the mountain range of
Bisamberg and the city of Vienna, and to the South the
river Danube. For locating the region a map is presented
in Figure 1.
Since land use practices are not homogenously distrib-

uted in this area, five sub-regions have been identified
using the cluster analysis methods [31]. Each sub-region
has an area of in between 85 km2 and 250 km2 . The
urban land cover as well as forest and shrub lands have
not been taken into account in the variability analysis.
Five typical soils have been selected with respect to
majority criteria for the agricultural land cover (four dif-
ferent Chernozems and one black earth; [30]).
The biophysical process models have been applied

with different meteorological inputs (table 1) from the
period 2000 to 2003. We have used meteorological
observations from weather stations of the Central Insti-
tute for Meteorology and Geodynamics (ZAMG) in the
Marchfeld region, reallocated meteorological data from
weather stations across Austria of ZAMG [32], and
meteorological data from the European Centre for Med-
ium-Range Weather Forecasts (ECMWF).

The meteorological observations (ZAMG) are from
the weather station in Gross Enzersdorf, and provide
daily values of six weather parameters including mini-
mum and maximum temperatures, relative humidity,
wind speed precipitation and solar radiation.

Table 2 General characteristics of the biophysical process models EPIC and BETHY/DLR.

BETHY/DLR EPIC

Abbreviation Biosphere Energy Transfer Hydrology
Model

Environmental Policy Integrated Climate

References [4,12] [7,22,23]

Model type SVAT model crop model

Time step Daily Up to < 1 day

Main simulation processes GPP, NPP, NEP, evapotranspiration, soil
water content

plant and crop growth, heat and water balance, wind and water
erosion, nutrient cycling

General formulation to
compute NPP

NPP = GPP - autotrophic respiration NPP = (yield+straw+roots)- (water content+non carbon fraction)

Figure 1 Map of the study area. The case study area Marchfeld
with the four sub-regions (upper figure), with underlying CORINE
land cover dataset 2000. Green pixels represent forest, red and
violet pixels urban areas, brown pixels shrub land, and yellow pixels
agricultural areas. The lower figure highlights the location of the
Marchfeld region. The red square represents the map extract of the
upper figure.
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[32] developed a reallocated meteorological dataset
comprising climate data for Austria and the period from
1975 to 2007 with temporal and spatial resolutions of
one day and 1 km2 . In addition climate change scenar-
ios have been developed for the period 2008 to 2040.
They processed daily data from 34 weather stations of
ZAMG to 60 spatial climate clusters with homogeneous
climates relating to mean annual precipitation sums and
mean annual temperatures from the period 1961-1990.
Based on these precipitation and temperature classes
four climate clusters describe the climate in the March-
feld region (cluster 1: mean annual precipitation sums
smaller than 500 mm and mean annual temperatures
between 8.5°C and 9.5°C; cluster 2: mean annual precipi-
tation sums smaller than 500 mm and mean annual
temperatures between 9.5°C and 10.5°C; cluster 3: mean
annual precipitation sums between 500 mm and 600
mm and mean annual temperatures between 8.5°C and
9.5°C; cluster 4: mean annual precipitation sums
between 500 mm and 600 mm and mean annual tem-
peratures between 9.5°C and 10.5°C). For each homoge-
nous climate cluster, [32] performed regression model
analyses primarily to compute a set of daily climate data
for the time period 2008 to 2040. This method has also
been applied for the time period 1975 to 2007 to pro-
vide a consistent dataset. The integral parts of the
regression model are i) the consideration (extrapolation
in the period 2008 to 2040, respectively) of the observed
linear temperature trend from 1975 to 2007 derived
from a homogenized dataset, and ii) the repeated boot-
strapping of temperature residuals and of observations
for solar radiation, precipitation, relative humidity, and
wind speed to ensure consistent spatial and temporal
correlations. We have also used these reallocated data
for the period 2000 to 2003 in our variability analysis.
The third dataset is derived from ECMWF data and

has a temporal resolution of up to four times a day and
a spatial resolution of 0.25° × 0.25°. It includes model
analysis data of 2 m air temperature, cloud cover, soil
water content of the four upper layers and wind speed
at 10 m above ground. From this dataset the daily
mean, as well as minimum and maximum temperatures
and the daily mean of cloud cover in all three strata
(high, medium, low) are used. The daily temperature
values are scaled with the difference between ECMWF
reference height and the global ETOP05 (Earth Topo-
graphy and Ocean Bathymetry Database) 5-minute
gridded elevation data by using the temperature gradient
of the U.S. Standard Atmosphere (-0.65 K per 100 m) in
order to downscale the ECMWF temperature data to
km2 resolution. Precipitation values are derived twice a
day from the ECMWF re-analysis project (ERA-40).
PAR is not used directly from the corresponding
ECMWF product data as it is only available as forecast

data and therefore rather uncertain. Thus, daily PAR is
determined from global radiation which is computed
following the approach of [33] taking into account the
geographical coordinates of the day, and using a trans-
mission, which depends on the degree of cloudiness.
The degree of cloudiness is calculated as a weighted
sum of each cloud strata for each day, and the global
radiation is calculated for each location in the time step
of one hour. The advantage of this approach is the use
of analysis data of cloud coverage to compute PAR data
which leads to more exact results than directly using the
PAR forecast data [12].
Hence the BETHY/DLR model needs an initial soil

water content, the ECMWF soil water dataset is used
only for the transient phase of the model. Afterwards
the model simulates the soil water content indepen-
dently, according to the hydrological boundary condi-
tions. Investigations of [12] have shown that in most
cases sufficient hydrological boundary conditions are
available after a transient phase of about one year.
In addition to the meteorological data, the BETHY/

DLR model is driven by two sets of remote sensing data.
Detailed and homogenous land cover / land use infor-
mation are used to get information about the vegetation
types the model is run for. Vegetation is represented by
time series of the Leaf Area Index (LAI). Time series of
LAI were used from the “Carbon cycle and Change in
Land Observational Products from an Ensemble of
Satellites” (CYCLOPES) 10 day composite datasets of
POSTEL (Pole d’Observation des Surfaces continentales
par TELedetection), which have a spatial resolution of 1
km × 1 km. For each of the grid cells, time series analy-
sis has been applied in order to eliminate data gaps and
outliers. In the framework of this study the harmonic
analysis has been used. The method of the harmonic
analysis is based on the method of superposition such as
the Fourier transformation. This method ([34]) is used
to process LAI time series at the German Remote Sen-
sing Data Center.
The CYCLOPES dataset additionally contains informa-

tion of land cover and land use and is available as
GLC2000 (valid for the year 2000). The Land Cover
Classification System of the Food and Agriculture Orga-
nization of the United Nations has been used to derive
land cover classes of GLC2000 resulting in 22 different
land cover classes [35,36].
A translation of the GLC2000 vegetation classes had

to be performed in order to use the GLC2000 land use /
land cover classification to model NPP with BETHY/
DLR. The actual model setup of BETHY/DLR includes
33 inherent vegetation classes which can be regarded as
vegetation types. Each vegetation type is linked with bio-
chemical parameters as i.e. the maximum electron trans-
port rate and the maximum carboxylation rate, and
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other vegetation specific parameters as maximum height
and rooting depth. These parameters describe the
mechanism of photosynthesis of vegetation. In this
study only the GLC2000 class 16 “Cultivated and mana-
ged areas” has been used and translated to the BETHY/
DLR vegetation type “arable land” as no further detailed
information about the land use (e.g. crop rotation) is
available from the GLC2000.
In addition to the GLC2000 dataset the Coordinated

Information on the European Environment (CORINE)
2000 land cover / land use classification has been used,
to validate the GLC2000 dataset. The CORINE 2000
data was derived from LANDSAT satellite images and is
also available for the year 2000 [37]. The CORINE 2000
is available as raster datasets in spatial resolutions of
100 m × 100 m, 250 m × 250 m and 1 km × 1 km for
32 European countries, including Austria. For this study
the dataset with resolution 100 m × 100 m has been
used. The CORINE 2000 provides information about 44
vegetation classes which had also to be translated to
BETHY/DLR vegetation types. We assumed that only
the CORINE 2000 class “Non-irrigated arable land” con-
tains the needed information about agricultural land,
since all other classes which are available for the March-
feld region report different land use (e.g. forests and
urban areas). The CORINE 2000 class “Non-irrigated
arable land” is then translated to the BETHY/DLR class
“arable land”.

From Crop Yield to NPP
The crop yields of EPIC for the thirteen crops in the
Marchfeld region have been converted to NPP values
(table 2) for comparison with the BETHY/DLR outputs,
which are given as time series of NPP. For this purpose,
conversion factors of the relation between yield and
straw as well as the above- and below- ground biomass
are used. Empirical conversion factors about the rela-
tions between crop yield and straw yield can be found
in e.g. [38,39]. In a first step, the above-ground biomass
is computed for each crop using these empirical conver-
sion factors. In a second step the below-ground biomass
is computed with the use of conversion factors about
the ratio of above- to below- ground biomass which are
described in [40]. These conversion factors which ori-
ginally have been derived for crops in Canada are
assumed to be valid for the area of interest as well, as it
already was proposed by [41]. After calculating the bio-
mass of the whole plant, the remaining water content
and the non carbon content have to be subtracted, fol-
lowing crop specific values, which are also reported in e.
g. [38]. A detailed description of the approach and the
used factors can be found in [41].
In order to compare the now available NPP per crop

and sub-regions of EPIC with the BETHY/DLR results,

statistical data about the land use of each of the four
sub-regions is used to aggregate the NPP of EPIC.
These statistical data provided by [30] and [42] give
detailed information about the distribution of agricul-
tural area over the thirteen main crops as well as the
distribution of the five main soils being representative
for the Marchfeld region. The results of BETHY/DLR
have been aggregated to annual sums per sub-region
with a Geographic Information System (GIS) tool, taking
into account the equi-rectangular projection (latitude -
longitude, WGS84 (World Geodetic System 1984)) of
the data.

Results and discussion
The variability analysis consists of seven model setups to
compare model response to different input datasets.
Three model simulations with the EPIC model have
been performed and four with the BETHY/DLR model.
The model setups are presented in table 3.
The EPIC model requires homogeneity with respect to

data input (i.e. soil, topography, weather, crop manage-
ment) such that the model has been applied for all com-
binations of climate, soil, and crop management,
separately. Thus, the variability analysis has been con-
ducted mainly for the meteorological datasets. In total
60 different model runs have been performed with EPIC
for each crop. In contrast, the BETHY/DLR model is
driven with the two different land cover classifications
as well as the three different meteorological input data
sets. For the Marchfeld region the FAO soil map of the
world, which is used as input data for BETHY/DLR,
reports one major soil type (Haplic Chermozem) which
occupies 89% of the area and four additional soil types
for the rest of the area. The EPIC model setup EPIC(1)
is interpreted as reference, as it represents the already
validated model setup [30].
In Figure 2, all model results fare compared to the

EPIC(1) results (table 3). The values of NPP are given in
kilotonnes carbon per sub-region and year.
Depending on the model setup, the NPP results of

BETHY/DLR show a variability of overestimations of up

Table 3 Model setups for the variability analysis

Model Meteorological
input

Land cover
classification

Short
Name

BETHY/
DLR

ZAMG CORINE 2000 BETHY(1)

ZAMG reallocated CORINE 2000 BETHY(2)

ECMWF CORINE 2000 BETHY(3)

ECMWF GLC2000 BETHY(4)

EPIC ZAMG - EPIC(1)

ZAMG reallocated - EPIC(2)

ECMWF - EPIC(3)
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to 32% and underestimations of up to 12%, linked with
coefficients of determination between 0.94 and 0.63,
respectively. The highest overestimation of NPP (32%) is

modelled when using the GLC2000 and meteorological
input data from ECMWF (Figure 2D). Figure 2D repre-
sents the results of both models with the typical setup

Figure 2 Comparison of the model results. Comparison of the model results (NPP) of BETHY/DLR and EPIC for the four Marchfeld sub-regions
and the period 2000 to 2003. The nomenclature follows the scheme of table 3. Circles represent sub-region 1, triangles sub-region 2, crosses
sub-region 3 and diamonds sub-region 4.

Tum et al. Carbon Balance and Management 2012, 7:3
http://www.cbmjournal.com/content/7/1/3

Page 7 of 13



which was used in previous investigations (default
setup). This overestimation is combined with a high
coefficient of determination of about 0.94. When chan-
ging the land cover classification from GLC2000 to
CORINE 2000 (while the meteorological input remains
unchanged) an underestimation of about 12% has been
found (Figure 2C). From Figure 2C it is evident that
only 4 BETHY/DLR results determine the underestima-
tion and thus the coefficient of determination of about
0.77. These four data points are all representative for
sub-region 4, whereas the rest is close to the 45° line.
Using measured meteorological data from ZAMG
results in an overestimation of NPP of about 11% (Fig-
ure 2A), which is combined with the highest variability
within the sub-regions and years for all four model set-
ups of BETHY/DLR. Nevertheless a high coefficient of
determination of about 0.68 is achieved. When using
the reallocated ZAMG data of [32] for BETHY/DLR
combined with CORINE as land cover an overestima-
tion of the modelled NPP of about 15% (Figure 2B) has
been found. A strong correlation of the simulation years
is observed, which indicates homogeneity in the meteor-
ological data.
The comparison between EPIC results with different

weather input reveals that the ECMWF data affects the
EPIC model to underestimate NPP by 8% (Figure 2F).
The use of the reallocated meteorological dataset (Figure
2E) results in a little underestimation, linked with the
highest coefficient of determination (0.97). Figure 2E
demonstrates that EPIC is not very sensitive to mea-
sured or homogenized meteorological input data just in
contrast to BETHY/DLR which can be seen in Figure
2A and 2B. Measured meteorological data during the
four years result in a high variability of the annual NPP
of sub-regions 1 and 4 while the reallocated meteorolo-
gical data cluster the annual NPP of all sub-regions
resulting in low variability for all sub-regions.
Figure 2D and figure2F show that the EPIC model as

well as the BETHY/DLR model react in a similar way
when alternating between ECMWF and ZAMG data.
The BETHY/DLR model simulates 23% more NPP
when using the ZAMG data, and the EPIC model simu-
lates around 7% more NPP when using the ZAMG data.
A reason for investigating the influence of different

land cover classifications (GLC2000 versus CORINE
2000) is the higher spatial resolution of CORINE 2000.
It is expected that CORINE 2000 represents the small
scale land use structure of the Marchfeld region better
than the GLC2000 classification. In Figure 3 the agricul-
tural areas reported in the statistical source [30,42], the
GLC2000 and CORINE 2000 are presented for all four
Marchfeld sub-regions.
The agricultural areas presented in GLC2000 and

CORINE 2000 have been computed using GIS tools. As

shown in Figure 3, the GLC2000 considerably overesti-
mates the agricultural areas (sub-regions one, three and
four) by 25% to 57% compared to the statistical infor-
mation. On the other hand, CORINE 2000 slightly over-
(17%) or underestimates (6%) the agricultural areas
compared to the statistical sources. However, approxi-
mately the same agricultural area is found for sub-
region two for each land cover classification. For all
sub-regions of the Marchfeld region the statistical data
report an agricultural area of around 670 km2 ,
GLC2000 of 881 km2 , and CORINE 2000 of 718 km2 .
As the difference in agricultural area between CORINE
2000 and the statistical data is smaller than the differ-
ence between GLC2000 and the statistical data, we con-
clude that the CORINE 2000 land cover represents the
real situation more precisely than GLC2000. The differ-
ences of the results described in Figure 2D and 2C
showing an NPP decrease when changing from
GLC2000 to CORINE 2000 can thus be explained by
the fact that the BETHY/DLR model was driven for a
smaller agricultural area.
To proof this, the results for BETHY(3) and BETHY(4)

are presented in Figure 4 as a linear correlation. For both
model setups meteorology was fix (ECMWF), but the
land cover classification was changed. With this direct
comparison it becomes clear that the reason for the
highly different model results presented in Figure 2C and
2D lays in the uncertainty in the two land covers.
When comparing the ECMWF data with the mea-

sured ZAMG data it is obvious that the ECMWF data
underestimates the maximum and minimum tempera-
tures (see Figure 5). The comparison of daily weather
measurements is conducted for two of the 34 ZAMG

Figure 3 Validation of Land cover land use products .
Comparison of agricultural areas described by statistical sources
[30,42], GLC2000 and CORINE 2000 in km2 for the four sub-regions
of the Marchfeld region.
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weather stations which are situated closest to the
Marchfeld (Schwechat and Gross Enzersdorf) and for
the time period 2000 to 2003.
For both stations the maximum temperature of the

ECMWF data is underestimated by about 21% expressed
by a high coefficient of correlation of up to 0.72. The
minimum temperature is underestimated even slightly
higher (up to 28%) but again combined with a high coef-
ficient of correlation (up to 0.74). In contrast, precipita-
tion is not represented very well by ECMWF data as the
correlation reveals high uncertainties. Hence a compari-
son of the ECMWF data for only two measurement sta-
tions is not very meaningful. Therefore the analysis has
been expanded to all of the 34 available ZAMG weather
stations. The analysis shows that the mean maximum
and minimum temperatures of ECMWF data averaged
over daily values in the period 2000 to 2003 are about
24% and 29% lower, respectively, than the temperatures
recorded by the 34 ZAMG weather stations. However,
minimum and maximum temperatures are both linked
with a coefficient of determination of about 0.65, which
is in good correspondence with the two presented obser-
vation stations in Figure 5. The comparison between
sums of annual precipitation between the ECMWF and
the ZAMG data reveals over- and underestimations of up
to 90% for single stations. The daily precipitation rates
averaged over all ZAMG observation stations show a
coefficient of determination of about 0.27. This very low
coefficient corresponds with the presented stations in
Figure 5 and indicates poor agreement of measured and
simulated precipitation.

As ECMWF data significantly underestimate tempera-
ture, the increase of NPP when using ZAMG data could
be explained by longer vegetation periods in the ZAMG
data. We investigated the vegetation period by comput-
ing the growing-degree-days (GDD). The basic equation
is: GDD = [(TMAX + TMIN)/2]-TBase, where TMAX and
TMIN are daily maximum and minimum temperatures,
respectively and TBASE is the base temperature which
can be fixed at 10°C [43]. Furthermore, the growing per-
iod in Austria is assumed to be from mid March to mid
October. The mean GDD averaged over all 34 ZAMG
stations in Austria and the years 2000 to 2003 is about
1186.2, which is about 136.1 (~11.5%) more than the
corresponding ECMWF GDD value (1050.1).
In a third model setup both models are driven with

the reallocated ZAMG data to test the model response
to homogenized trend data. Figure 2B and 2E show that
both, the EPIC and the BETHY/DLR models respond in
a consistent way, concerning their annual variability, to
the reallocated ZAMG data. The variability in the NPP
over the four years within one sub-region is about 4%
(EPIC) and 3% (BETHY/DLR), respectively.
To give information about the annual variability of

NPP within the model results, annual sums of NPP over
the whole area of investigation are presented in Figure
6. The values are given in kilotonnes carbon per year.
The nomenclature in Figure 6 follows the scheme of

table 2. When using the reallocated weather data, the
annual variability of NPP is very low for both models
BETHY(2) and EPIC(2), which can also be seen from
Figure 2B and 2E. This is not surprising since they
represent trend data with lower inter-annual variability.
When looking at the model setup for BETHY(1) with
measured ZAMG data, BETHY/DLR strongly responds
to the climate data. This is very prominent for the year
2003, for which a water stress situation for the March-
feld region is reported [44]. In comparison to the NPP
sum calculated for 2002, the annual NPP in 2003 is
lower by about 23%. However, this model response can-
not be seen in the EPIC output, which might be due to
the reason that for one of the four climate clusters,
which is representative for most of the area of the
Marchfeld region, higher crop yields have been simu-
lated especially for winter crops in 2003. With the use
of ECMWF data in model setup EPIC(3), the EPIC out-
put shows a massive NPP decrease in 2003 compared to
2002. This could again be explained with the lower
GDD of the ECMWF. In addition, the ECMWF data
represent around 8.5% less precipitation over the days
which have been counted as GDD.
The reason for the non equidistant annual differences

between the BETHY/DLR model runs BETHY(3) and
BETHY(4) might be that the misclassified pixels of
GLC2000 represent non agricultural areas which react

Figure 4 Comparison of the BETHY/DLR model response to
different land cover / land use products. Comparison of the
model results (NPP) of the BETHY/DLR runs BETHY(3) and BETHY(4)
for the four Marchfeld sub-regions and the period 2000 to 2003.
The nomenclature follows the scheme of table 3. Circles represent
sub-region 1, triangles sub-region 2, crosses sub-region 3 and
diamonds sub-region 4.
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in different ways to climate conditions than agricultural
areas.
It is notable that the variability of the model outputs

can be as large as 36% for BETHY/DLR and 39% for
EPIC when changing major input datasets. Furthermore,
it is remarkable that both models response similarly
when using the same datasets. For instance, all three

model setups with the ECMWF data show for all four
sub-regions a relative increase of NPP from 2000 to
2001 followed by a decrease in 2002 and again in 2003.

Conclusions
Net-Primary-Productivity (NPP) has been modelled
using the SVAT model BETHY/DLR and the biophysical

Figure 5 Validation of ECMWF meteorology. Comparison of the ECMWF time series of minimum and maximum temperatures as well as
precipitation with the corresponding daily measured data of the ZAMG stations Gross Enzersdorf and Schwechat in the period 2000 to 2003.
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process model EPIC for the Austrian Marchfeld region
and the period 2000 to 2003. Both models seem to be
robust but respond differently on alternative input data-
sets (i.e. meteorological and land cover / land use data).
We have used meteorological data from the ECMWF
and the ZAMG as well as a reallocated dataset based on
ZAMG weather observations. Land cover / land use
information have been taken from the GLC2000 and the
CORINE 2000 products. With these datasets, we have
performed a variability analysis with the two models
BETHY/DLR and EPIC with respect to their output
responses. We show that lower NPP values were mod-
elled when using ECMWF data as an input compared to
ZAMG data. This is confirmed by both models. The
reason is traced to the underestimation of the GDD of
about 11.5% in the ECMWF data. We observe that both
models respond similarly to changes in input data, albeit
with a different magnitude. For single years, variabilities
in the NPP of up to 36% for BETHY/DLR and of up to
39% for EPIC can occur with alternative input data.
Besides the variability analysis of alternative model

input data sources, we have also analysed the accuracy of
the input data. We have found that the GLC2000 land
cover classification overestimates the agricultural area of
the Marchfeld region by 24%, whereas the CORINE 2000
dataset overestimates land cover classification by only
7%. With this finding preference for land cover datasets
with higher resolution is recommended. The ECMWF
data has been compared with measured data from
ZAMG. We have found high uncertainties in the daily
precipitation and small ones in daily maximum and mini-
mum temperatures, which is confirmed by other studies.

For further investigations in other regions, the finding
of the bias in the ECMWF data should be taken into
account and crosschecked with local weather station
data. In addition, more detailed land cover products
should be considered with respect to spatial resolution
and reported land use practices. Thus whenever the
models (or any model) are applied under new condi-
tions, local data (if applicable) should be used for both
input and result comparison.
This study shows that especially for process-based

modelling approaches, not only comprehensive valida-
tion and calibration approaches need to be applied, but
also knowledge of input data uncertainty and variability
of the modelling results need to be assessed. Process-
based models have a potentially valuable role for various
applications. However their validity must be determined
where possible, especially when used for decision mak-
ing processes.
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