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Abstract 

 Floods and water use have been linked together since ancient times. Rivers 
provide water and keep the society alive, but they also cause danger: they damage 
properties and even take lives. During the last few decades we can observe an unusual 
frequency of flood events. High flood losses are typical either for developed or 
developing countries. Examples of enormous flood damages in Poland in 1997, in 
Germany, the Czech Republic and Slovakia in 2002, and also in China, the United 
States, Southern Africa and many other countries are well known. Although the reasons 
for the increasing frequency of extreme events are difficult to exactly recognize, some 
of them may be given: possible climate/weather fluctuations, increasing population and 
asset concentrations in flood-prone areas and improper land-use practices. Floods are 
not the strongest or the most sudden physical phenomena in the world. However, they 
appear to be the most disastrous events. We should not expect that this phenomenon 
will be inhibited by itself. On the contrary, it may be expected that floods become one 
of main development barriers for countries which are unable to cope with the problem. 
Thus, proper flood protection strategies become dramatically important.  
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Control of Flood Defense Reservoirs System Under Undertain 
Inflows: NYSA Reservoirs Stystem Case Study 
Tomasz Dysarz 

1. Introduction 

 Floods and water use have been linked together since ancient times. Rivers 
provide water and keep the society alive, but they also cause danger: they damage 
properties and even take lives. During the last few decades we can observe an unusual 
frequency of flood events. High flood losses are typical either for developed or 
developing countries. Examples of enormous flood damages in Poland in 1997, in 
Germany, the Czech Republic and Slovakia in 2002, and also in China, the United 
States, Southern Africa and many other countries are well known. Although the reasons 
for the increasing frequency of extreme events are difficult to exactly recognize, some 
of them may be given: possible climate/weather fluctuations, increasing population and 
asset concentrations in flood-prone areas and improper land-use practices. Floods are 
not the strongest or the most sudden physical phenomena in the world. However, they 
appear to be the most disastrous events. We should not expect that this phenomenon 
will be inhibited by itself. On the contrary, it may be expected that floods become one 
of main development barriers for countries which are unable to cope with the problem. 
Thus, proper flood protection strategies become dramatically important.  

 Flood defense systems consist of uncontrollable and controllable structures, e.g., 
dikes, polders and reservoirs linked to decision support systems which allow for a 
selection of proper ex-post controls. The controllable structures are designed on the 
basis of a long-term strategy taking into account economical, sociological and 
hydrological conditions in the prevented area. The problem was studied by many 
researchers and practitioners which can be identified from recent publications: Bachoc 
et al. (2000), Viljoen et al. (2001), Xia et al. (2001), Stevens et al. (2001), Plate (2001). 
The controllable structures deal with medium- and short-term strategies drawn up on the 
basis of the current state of the system. Various operational decision rules were 
analyzed, i.e., by Agthe et al. (2000), Takeuchi (2001), Shim et al. (2002), Islam and 
Sado (2002) and many others. The linkage between structures and controls is essential 
for the efficiency of a flood defense system. 

 In this paper the proper design of robust control rules for reservoirs under 
uncertain inflows is considered. The case study system chosen is the Nysa Klodzka 
basin. The system and the problem of flood losses in this basin are shortly introduced in 
Section 2. The importance of explicit treatment of inflow uncertainty is discussed in 
Section 3. Section 4 presents the deterministic approach to the control problem. The 



 2

need for stochastic models and new approaches are discussed in Section 5. In Section 6 
solutions for the most important computational problems are proposed. The simplified 
single reservoir case is studied in Section 7. Finally, some concluding remarks are 
presented in Section 8. 

2. The case study system: the Nysa Klodzka basin 

2.1 Description of the system 

 The water resources are not very big in Poland. The average annual rainfall over 
its territory is about 600 mm. However, the flood danger is very high, especially in 
mountain areas, where sudden extreme rainfalls may occur. In 1997 10% of Poland's 
territory was flooded causing economic losses of 2.9% of Poland's GDP. The annual 
precipitation in these regions is much higher then the average in Poland. Therefore, the 
case study area, the Nysa Klodzka basin in the southern part of the country is considered 
of high importance. This river is a tributary of the Odra, one of two biggest rivers in the 
country. The length of the catchment is 181.7 km and its area is 4565.7 km2. It is one 
third of the Odra river basin in the junction of both rivers, which means it is the biggest 
tributary of the Odra in this region. The population and industry density in the 
catchment is very large. The safety of big cities like Wroclaw, Brzeg, Olawa depends on 
the flow conditions in these two rivers.  

 The annual rainfall in the case study region varies between 700-1200 mm. The 
wettest season is July, when precipitation is 100-140 mm. The rainfalls are often very 
quick and intensive. The resulting fast runoff causes a sudden increase of flow in rivers 
and channels. Floods are a very frequent phenomenon in the area. Since they are very 
sudden and wide-spread, such kinds of flood protection as building dikes or standard 
water management in reservoirs are very difficult to implement. During the control 
action taken to prevent floods the complexity of the system should be taken into 
account. Simple water management on the basis of engineering rules applied in existing 
reservoirs may secure the area located below the reservoirs. However, it may cause 
flood wave interaction in the junction of both rivers.  

 The system is shown in the Figure 2.1. It consists of two big channels: the Odra 
and its tributary, the Nysa Klodzka. Two big reservoirs are located on the tributary. 
These are the Otmuchow (the upper one) and the Glebinow (the lower). Their storages 
are about 100 million m3 (Table 2.1). The main goals of the system are flood protection 
during wet seasons and water supply with production of hydroelectric power during the 
rest of the year. The inflows to the system are determined on the basis of measurements 
or precipitation forecasts from the net of meteorological and hydrological stations. The 
chain of inflows consists of the main inflow to the upper reservoir, aggregated lateral 
inflow to the lower one, flow in the Odra river and lateral inflow along the Nysa 
Klodzka channel below the reservoirs. The outflows from the reservoirs are controlled. 
The outflow from the lower reservoir is transformed in the flow in Nysa Klodzka outlet.  
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Figure 2.1. Nysa Klodzka catchment 

 

2.2 The flood defense system 

 The most dangerous situation in the system is flood waves interaction in the 
junction of both rivers. If extreme flow peaks occur in the junction at the same time, the 
severe flood threatens the main water users in the system located below the junction. 
Such an event took place in 1997, when a severe flood damaged Wroclaw, one of the 
biggest cities in Poland, and many other cities and villages. Inappropriate control of 
reservoirs caused interaction of flow peaks. The resulting maximum flow below the 
junction was over 3000 m3/s (Figure 2.2).  
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Figure 2.2 Flood wave interaction in 1997 

 

 The Flood Defense System in the case study area consists of controllable 
reservoirs. They should be linked by proper control strategies (decisions). This linkage 
is essential for the effectiveness of the defense system, since inappropriate controls may 
cause floods and losses. The main parameters of two existing reservoirs are shown in 
Table. 2.1. Currently outflows are selected on the basis of simple engineering rules 
based on current storage and short-term inflow forecast. Unfortunately the existing 
system is not able to prevent floods similar to the flood in 1997. Therefore, two 
additional reservoirs with similar capacity are built and a fifth reservoir is planned, 
which will be located above the current upper reservoir. For the effectiveness of the 
whole system the design of an appropriate decision support system, which enables 
selection of optimal controls, is necessary.  

 

Table 2.1 

Reservoirs' capacity and releases 

RESERVOIRS 
PARAMETERS OTMUCHOW GLEBINOW 

Reservoir Capacity [106 m3] 

emergency storage 9,64 6,0 

useful capacity: 76.18 79.68 

flood capacity:   

constant flood capacity 15,27 27,92 

strenuous flood capacity 23,37 − 

total capacity 124,46 113,60 

Maximum Outflow [m3/s] 1363,0 1960,0 

 

 The decision support system consists of methods which can be divided into two 
main groups: inflow forecasts and control algorithms. The main parts of inflow 
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prediction are precipitation forecast and rainfall-runoff transformation models. The 
precipitation part relies on a global circulation model linked to statistical downscaling 
procedures. The rainfall-runoff part is formed by physically based or conceptual 
models. On the basis of these algorithms the meteorological and hydrological forecast is 
composed. The main parts of the control algorithms are flow transformation models and 
optimization procedures. The decisions are selected on the basis of inflow 
measurements or forecasts and predicted effects in the system.  

 Precipitation and runoff are the phenomena which are still not well recognized. 
These processes are very complex, since many factors influence them. Only some of 
them are known and investigated. For this reason decision makers are not able to rely a 
100% on forecasts and must take existing uncertainties into account. This is discussed 
more extensively in Section 3. 

 The main problem concerns the explicit treatment of uncertainties regarding the 
inflows to the reservoir system. Stochastic optimization may be applied as a part of the 
control module. In this case the data provided by the forecast module should consist of 
inflow forecast, its validity and possible range of changes. In other words, the inflow 
forecast should be formulated in a probabilistic sense. The main aim of this paper is to 
develop a procedure which enables the control of the reservoir system under uncertain 
inflows. 

3. Treatment of uncertainties 

3.1 Current state of inflow forecasting 

 As was mentioned in Section 2, the decision support system for flood control in 
the case study area consists of an inflow forecast module and control algorithms. The 
results produced by the forecast module are the basis for the selection of controls. 
Though the problem of inflow forecasting is not the subject of the research presented, a 
short overview would be useful for a clear understanding of the main problem, the 
stochastic control of reservoirs. The inflow prediction module may consist of two parts: 
precipitation forecast and rainfall-runoff transformation model. These parts form a 
meteorological and hydrological forecast. Sometimes one of the flow routing models 
described in Section 4 is an additional element of the hydrological part. 

 The precipitation forecast is based on so-called global circulation models 
(GCMs) and downscaling techniques. GCMs are well known models describing the 
evolution of global weather variables such as temperature, pressure and moisture, wind 
strength and wind direction. The governing equations are mass, momentum and energy 
balance equations. Since the GCMs operate with a small resolution, they are not used to 
describe local weather changes. For this purpose downscaling techniques are used. It is 
possible to indicate three main approaches to the problem: dynamical downscaling, 
stochastic downscaling and stochastic weather generators (Prudhomme et al., 2002, 
Prudhomme et al., 2003). 

 The dynamic downscaling is based on the same kind of physical laws as global 
circulation models, but the resolution is much finer. Such techniques were investigated 



 6

by Jones et al., (1995), Murphy (1999), Bates et al. (1998) and many others. This 
approach allows to include subregions which are not represented in the GCM grid. The 
processes nested in GCMs provide boundary conditions for this kind of downscaling, 
which is also called Regional Climate Models or Limited Area Models. In statistical 
downscaling relationships between large-scale climate features and regional 
characteristics are used to produce future scenarios. Examples of such an approach may 
be found in Burger (1996), Conway and Jones (1998), Sailor et al. (2000), Stehlik and 
Bardossy (2002), Wilby et al. (2002). The range of summary statistics that could be 
provided by the GCM output is used to create sub-daily weather series in the third 
approach, stochastic weather generators. Some results were provided by Semenov and 
Barrow (1997), Schnur and Lettenmaier (1998), Wilks (1999), Goodsell and Lamb 
(1999) and others.  

 The second stage model of inflow forecast is rainfall-runoff transformation. 
According to the classification proposed by Beven (1985) and used by Yu and Jeng 
(1997) there are two basic types of rainfall-runoff models: the kinematic wave approach 
and the conceptual storage approach. The first is physically based on mass and 
momentum balance principles. It was studied by Eagelson (1972), Jønch-Clausen 
(1979), Abbott et al. (1986), Morris (1980), Edward et al. (1977), Ross et al. (1979), 
Jayawardena andWhite (1977, 1978), Osuch (2003) and others. The desired runoff is 
obtained by the solution of the partial differential equation. The boundary condition is 
provided by the measured or predicted rainfall. The main assumption here is that the 
real area may be modeled as system with a uniform slope. Such an ideal approach is not 
always possible, even if we postulate the use of equivalent parameters in the governing 
equation, which replace the original ones. In the second group of models the real system 
is replaced by an approximate one. Some examples may be found in Laurenson (1964), 
Ibbitt and O’Donnell (1971), Ciriani et al. (1977), Diskin and Simpson (1978), Diskin et 
al. (1984), Knudsen et al. (1986), Szymczak (2003). In this approach particular 
processes in the basin are replaced by specifically designed reservoir cascades. They 
may also be represented by a specially calibrated unit hydrograph function. 

3.2 Uncertainties in precipitation and runoff modeling 

 Uncertainty is almost always involved in any comprehensive management task. 
Since our knowledge about the nature is limited, taking into account uncertainty is 
essential in environmental problems. According to Hulme and Carter (1999) we can 
specify two different sources of uncertainties, the so-called ‘incomplete’ knowledge and 
the ‘unknowable’ knowledge. The first is included in model design affected by our 
knowledge about the process and ability to describe the phenomenon properly in 
mathematical terms. We can expect that further development of science and modeling 
may reduce this kind of uncertainty. The second source, ‘unknowable’ knowledge, is 
the indeterminacy of the future human society and climate system. Human actions like 
greenhouse gas emissions and changes of land cover are not predictable in the 
deterministic sense. We are only able to predict main trends in the future on the basis of 
past events and expert opinions, which only allows for the generation of possible 
scenarios. No exact predictions are possible. 

 The advantage of Regional Climate Models is their physical basis. However, 
they are still dependent on signals included in their boundary conditions provided by an 
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inaccurate Global Circulation Model. The accuracy of statistical downscaling is much 
lower since the algorithms are simpler and the set of the relationships considered 
between large scale and local weather parameters is subjectively selected. In addition, 
this approach is based on the assumption that present relationships between large-scale 
and local parameters remain unchanged in the future. Such assumption leads to 
uncertain errors in the presence of global and local climate changes. Similar problems 
affect the use of stochastic weather generators (Prudhomme et al., 2003). 

 If the rainfall is uncertain, the results of runoff model cannot be exact either. 
Another source of uncertainty in the rainfall-runoff transformation is the current state of 
the system. Especially the intensity of infiltration is an important factor. It depends on 
the previous rainfalls. The simple calibration of rainfall-runoff models on the basis of 
past recorded data represents the next uncertainty source. Land-use changes make an 
exact deterministic calibration completely useless. The set of integrated parameters 
included in the model is sufficient for the past state of the system, but it should be 
calibrated once again after change. In many cases data which describe the new changed 
system do not exist and the most important approach is again an explicit treatment of 
uncertainties. 

3.3 Desirable forecast for the stochastic control of the reservoirs 
system 

 On the basis of the techniques mentioned shortly in subsections 3.1 and 3.2, 
long-, medium- and short-term forecasts are formulated. The two first kinds of forecast 
techniques provide averaged parameters in a specified time horizon whose length varies 
from decades to years. Even a decade time horizon is much longer than the time step 
which has to be considered in the presence of flood. For this reason hourly and daily 
short-term forecasts are used for flood management. However, their accuracy is still not 
sufficient and we have to assume some range of the uncertainty. A proper uncertainty 
model is very important for realistic conclusions. The desired inflow forecast for flood 
control of the reservoir system should consist not only of the predicted course of the 
flood, but also of its validity and possible range of changes. As far as possible the 
probability should be assigned to inflow scenarios. In the other case the inflow scenarios 
may be considered uniformly distributed. 

 The stochastic inflow generating problem has quite a long history. One of the 
first results was publicized by Thomas and Fiering (1962). A stochastic approach for 
water supply reservoir control with many inflow scenarios excluding catastrophic floods 
was proposed, i.e., by Willen (1979). 
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Figure 3.1 Generation of inflow scenarios: use of deterministic models 

 

 The set of possible inflow scenarios may be generated by sophisticated 
deterministic models described in Sections 3.1 and 3.2 (Figure 3.1). The main sources 
of the uncertainties are easily identified. The first source is the GCM output or weather 
measurement. The GCM downscaling output is the rainfall-runoff model input. The 
value of current infiltration is another source of uncertainty in the process. We can 
imagine also that GCM output is not treated as deterministic. Instead of an exact 
determination of climate variables such as temperature, pressure, etc. their probability 
distributions should be determined. A similar approach may be implemented in the case 
of infiltration. On this basis a wide range of possible inflow scenarios might be 
generated. Even the changes of the model parameters may be taken into account. Some 
studies of the impact on the climate and land cover changes on the flood regime are 
discussed by Wood (1974), Katz (1999), Muller-Wohlfeil et al. (2000), Prudhomme et 
al. (2003).  

 

Figure 3.2 Generation of inflow scenarios: medium- term forecast and time downscaling 

 

 Another approach is based on the special design of the inflow forecast (Figures 
3.2 and 3.3). Approximate medium-term forecast for pentads, weeks or decades may be 
defined by some informative events (“something happened”) in a certain period of time, 
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e.g., when extreme flow peaks occurs. If this information is downscaled in time, it 
would lead us to so-called unconditional time downscaling described in Bierkens et al. 
(2000). This approach may be suggested for generating hourly scenarios from averaged 
pentad or decade inflows. A similar method for stochastic generation of runoff series 
was used by (Willen, 1979). The following Figure 3.3 illustrates the main idea. We can 
assume a continuous function which describes the flood wave course, e.g., the Reitz-
Kreps function as used in many engineering applications. The form of such a function 
may be specified on the basis of historical data describing floods in selected river cross-
sections. The parameters of the function may be calibrated for the given averaged 
inflows in subsequent periods of time. If the averaged inflows are not specified exactly, 
but are determined as ranges of possible variations, many possible functions are 
feasible. Accordingly we determine a number of inflow scenarios. The main conditions 
which should be satisfied are equalities of water volume obtained from forecasts and 
downscaling. Therefore the integrals of calibrated functions have to be approximately 
equal to the integrals of the predicted averaged inflows in given time intervals. 

Figure 3.3 Main concept of time downscaling for inflow forecasting 

 

 In this paper it was assumed that generated inflow scenarios are available. Our 
main purpose is to analyze how these data can be used for control algorithms. This is 
described in Section 5. 

4. Control of a reservoir system: deterministic approach 

4.1 Reservoir state equations and constraints 

 First of all, let us outline the deterministic case. The control system is shown in 
Figure 4.1. It consists of N reservoirs in series and long channel reach which connects 
the system with the end-users. The inflows I1, I2, … IN+1 are determined on the basis of 
measurements or forecast. Each reservoir outflow u1, u2, … uN is controlled. Reservoir 
storages V1, V2, … VN  should not exceeded the admissible minimum Vmin j and 
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maximum Vmax j values (for j = 1, 2, … N) at any moment t ∈  [0, TH] where TH is a 
given time horizon. Similar constraints are set for reservoir outflows: Umin j ≤ uj ≤ Umax j 
for any j = 1, 2, … N and t ∈  [0, TH]. Since channels connecting reservoirs are very 
short, we can assume that each outflow uj for j = 1, 2, … N - 1 is the second inflow to 
the lower reservoir j+1. Only the outflow from the last reservoir uN is transformed in the 
long channel reach. This transformed flow with lateral inflow along the channel q(x, t) 
forms the flow Qr in the outlet of the reach. The flow in the end-users’ area is 
summarized as outflow from the reach Qr and last inflow to the system IN+1.  

Figure 4.1 System of reservoirs in series 

 

 The system dynamics is described by mass and momentum balances principles. 
The reservoir equations may be written in the linear form as follows 

  11
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−= , (4.1) 
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with initial conditions Vj(0) = Vj0 for j = 1, 2, … N. Equations (4.1) - (4.2) are also 
expressed in the nonlinear form 
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where hj is the water level of the jth reservoir and Fj(hj) is the water surface area. 
However, equations (4.1) - (4.2) are more useful for our purpose, since we are able to 
determine the amount of accessible water directly from (4.1) - (4.2). This is the main 
task of many water management problems. The first set of equations is especially 
important when we deal with explicit treatment of uncertainties. 

 The constraints set on control and state variables have the form 

  Umin j ≤ uj ≤ Umax j , Vmin j ≤ Vj ≤ Vmax j (4.5) 

and in a deterministic model should be satisfied for each t ∈  [0, TH] and j = 1, 2, … N. If 
the dynamics of the reservoir system is described by (4.3) - (4.4), the values Umin j and 
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Umax j depend on water level hj in the reservoir. However, in a simple linear case we 
may assume they are constant. 

4.2 Unsteady flow transformation models 

 The flow channel reach transformation model from the last reservoir may be 
written in a general form as 

  ( ) ( )tquΨtQ Nr ],[=  (4.6) 

where Ψ[uN, q] represents one of the following well-known (Chow,1959; Cunge et al. 
1980) open channel flow models: 

 

a.  Dynamic wave (de Saint-Venant equations). 
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The independent variables are x and t, which represent space and time, respectively. 
Dependent variables are functions: Q(x, t) - discharge and H(x, t) - water depth. The set 
of (4.7) and (4.8) is completed by initial and boundary conditions. For each x ∈  [0, L] 
the initial state of the flow should be known: Q(x, t = 0) = QP(x) and H(x, t = 0) = HP(x). 

In the most practical cases the condition 1<gHv  (v is average speed of flow in cross 

- section, v = Q / A ) is satisfied. Then boundary conditions are as follows: for each t ≥ 0 
the inflow to the reach is equal to the outflow from the reservoir system 
Q(x = 0, t) = uN(t) and the relationship between discharge and water depth is postulated 
in the last cross-section of the channel F[Q(x = L, t), H(x = L, t)] = 0. 

 

b. Diffusive wave. 

This model is such a simplification of (4.7) - (4.8) that inertia terms are neglected: 

  q
x

Q

Bt

H
=

∂
∂

+
∂
∂ 1

, (4.9) 

  fSS
x

H
−=

∂
∂

0 . (4.10) 

The validity of such a procedure was proved by Henderson (1966). The set of equations 
(4.9) - (4.10) may be rewritten in a few different forms. One of them is shown below 
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The equations (4.9) - (4.10) are completed by the same initial and boundary conditions 
as set (4.7) - (4.8). 

 

c. Kinematic wave. 

This model is also a simplification of the de Saint-Venant equations (4.7) - (4.8). Inertia 
and pressure terms are neglected, which leads to 

  q
x

Q

Bt

H
=

∂
∂

+
∂
∂ 1

, (4.13) 

  fSS =0 . (4.14) 

The model may be simplified to the nonlinear advection equations form  

  q
m

Q

x

Q

m

Q

t

Q mm

  

11

αα

−−

=
∂
∂

+
∂
∂

. (4.15) 

In such a case initial and boundary conditions are: for x ∈  [0, L] searched function is 
Q(x, t = 0) = QP(x) and for t ≥ 0 inflow to the reach is equal the outflow from the 
reservoir system Q(x = 0, t) = uN(t). 

 In equations (4.7) - (4.15) A[H(x, t), x] is the cross-section area, B[H(x, t), x] - 
the width of the channel, g - gravity acceleration equal to 9.81 m/s2. S0(x) and 
Sf[Q(x, t), H(x, t), x] are bottom and friction slopes, respectively. q(x, t) is the lateral 
inflow along the channel, K[H(x, t), x] is module flow. α and m are parameters derived 
from empirical formulas or determined on the basis of optimization.  

 In some cases constraints may be set on water levels in the important cross -
sections of the channel: 

  H(xl, t) ≤ Hmax l , for t ∈  [0, TH] . (4.16) 

Formula (4.16) is used for selected xl (l = 1, 2, …). Obviously, all water levels have to 
be greater than or equal to zero H(x, t) ≥ 0 for all t ∈  [0, TH] and all x ∈  [0, L].  

4.3 Control criterion 

 In the case of floods the most important goal of the control is the flood 
protection of the main water users in the system. Under deterministic inflow forecast 
this aim may be expressed as a minimization of the flow peak below the last inflow to 
the system. If the reservoir system is also used as a water supply source during the drier 
periods of the year, the second goal may be formulated as the water storing at the end of 
the time horizon. This can be written as a minimization of the difference between the 
maximum storage of the reservoir and its storage at the end of the control horizon TH. 
Thus we can formulate the problem as one scalar criterion 

  ( )
[ ]

( ) ( ) ∑
=

+∈
−++=

N

j
jHjNr

Tt
VTVtItQtqf

H 1

2
max1

,0
])([  ][ max,,, βλIu , (4.17) 
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where β is the coefficient which determines the significance (trade-offs) of criterion 
parts and λ is the scale coefficient. The dependence of (4.17) on controls is implicit. The 
state equations (4.1) - (4.2) connect storages with outflows. The optimal set of controls 
u = [u1(t), u2(t), … uN(t)] should minimize (4.17) for given inflows 
I = [I1(t), I2(t), … IN+1(t)] and q(x, t). 

5. Stochastic optimization problem 

5.1 General formulation of the problem 

 Optimization problems with random parameters may be written symbolically as 
follows (Ermoliev & Wets, 1988): 

find u ∈  U ⊂  Rm 

such that ( ) 0, ≤ωuif  for i = 1, 2, … n (5.1) 

and for each ωωωω ∈  Ω ⊂  Rq, ( )ωuω ,0fz =   is minimized (5.2) 

where u is the vector of control variables and ωωωω is an unknown vector of random 
variables. Set Ω consists of probable ωωωω elements. This set and its elements are the parts 
of the probabilistic space (ωωωω, Ω, P) where P(dωωωω) is the probability of event ωωωω 
determined in domain Ω. Constraints (5.1) and the objective function (5.2) may depend 
on random ωωωω variables. Since constraints may not be satisfied for some sampled ωωωω and 
the objective function can not be minimized for all ωωωω, the problem (5.1), (5.2) has to be 
properly formulated. 

 To formulate exactly the problem (5.1) - (5.2) one has to consider depending on 
a concrete application of a wide range of exact statements of the above problem, 
according to specifying in which sense function (5.2) is minimized and constraints (5.1) 
are satisfied. The simplest model is to average random variable 

 ( )∫
Ω

= dωωω P  (5.3) 

where ω  is the average value of ωωωω in Ω and P(dωωωω) is the probability distribution 
associated with uncertainties in the  Ω set. This is common practice in standard 
deterministic models. In many cases such simplification does not lead to reasonable 
results.  

 Among other approaches two of them are most common. A certain level of 
safety is assumed in the first case. The problem is formulated as follows (Ermoliev & 
Wets, 1988): 

find u ∈  U ⊂  Rm 

such that ( ){ } iifP α≥≤ 0,ωu  for i = 1, 2, … n (5.4) 

and ( ){ }00 , α≥ωufP   is minimized (5.5) 
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where P( . ) is probability of such an event that the random sample objective function 
f0(u, ωωωω) should not exceed a given “safety” level α0 subject to constraints. αi 
(i = 1, 2, … n) are assumed to be the desirable levels of reliability. Therefore in this case 
the optimal solution u should guarantee that the constraints (5.1) are not violated with 
probability αi. 

 The model (5.4) - (5.5) causes in many cases additional problems. The objective 
function (5.5) and constraints (5.4) may not be convex, even if the original random 
sample functions f0(u, ωωωω), fi(u, ωωωω) are convex and even linear with respect to u. For 
many applications a different approach based on averaging of stochastic objective 
function and constraints can be used. The optimization problem in this case is 
formulated as follows (Ermoliev & Wets, 1988): 

find u ∈  U ⊂  Rm 

such that 0)],([ ≤ωuω ifE  for i = 1, 2, … n (5.6) 

and )],([ 0 ωuω fE   is minimized. (5.7) 

Eωωωω is the mean value of f0(u, ωωωω), i.e. for any random function ϕ( . , ωωωω) depending on 
random variable ωωωω ⊂  Ω it is determined as 

  ( )[ ] ( ) ( )dωωωω PE
Ω
∫= , . , . ϕϕ . (5.8) 

 Let us note that for non-linear in u stochastic functions f(u,ωωωω) the average value 
of f(u,ωωωω) is not equal ),( ωuf , i.e. the model (5.6), (5.7) significantly differs from the 
standard deterministic models. 

The formulation of the control of the flood defense system problem is based on 
these two approaches. However, they are not applied directly. The complexity of the 
task considered involves some other modifications, which are described in subsequent 
parts of this section. 

5.2 Straightforward application and its disadvantages 

 Assuming that initial state of the system V(0) = V0 is exactly known, state 
equations (4.1) - (4.2) enable evaluation of reservoir storages Vj(t) (j = 1, 2, … N) in any 
t ∈  [0, TH] for a certain set of reservoir inflows Ij(t) and outflows uj(t) (j = 1, 2, … N). 
This allows us to consider the problem discussed in Section 3 as a stochastic 
optimization problem dependent on random inflows (ωωωω variables) and controlled 
outflows. Following the straightforward formulation (5.6), (5.8) we can write the 
reservoir system control problem as follows 

find u(t) ∈  U(t) 

such that for i = 1, 2, … N 

 u

T

jjt

H

dtuUE ε≤



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


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and 
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
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=
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jHjNr
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q VTVtItQE
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2
max1

,0
, ])([  )]()([ max βλI    is minimized. (5.11) 

The constraints (4.5) are formulated in average integral form, where εu and εV are small 
positive numbers which determine the acceptable level of average constraint violation. 
This is compatible with model (5.6) - (5.8) but in practice the constraints on reservoir 
storages and outflows must not be violated for extreme situations. If this happens, the 
dam-break problem should be considered instead of flood damages, i.e., higher losses 
are involved than the losses caused by flood. 

5.3 Two-stage recourse model: robust control strategy 

 The problem of constraints violation introduced may be overcome by application 
of stochastic optimization models with recourse actions (Ermoliev & Wets, 1988). Let 
us consider problem (5.2) with constraints (5.1). We can present the control variable as 
the combination of anticipative action taken in advance u′ and adaptive action u″ 
selected when first information (measurements) about ωωωω are available. 

 Now, the stochastic optimization problem (5.6) with (5.7) may be written as  

find u′′′′ ∈  U′ ⊂  Rm 

such that ( )[ ] ( )[ ]{ }ωωuuωωuuuω ,,,,,0 ′′′+′′′′ qgE  is minimized (5.12) 

where g0[u′, u″(u′, ωωωω), ωωωω] is defined as optimal objective function value of the problem: 

for given u′ find u″″″″ ∈  U″ ⊂  Rm 

such that 0),( ≤ωuif  for i = 1, 2, … n (5.13) 

and for each ωωωω ∈  Ω ⊂  Rq, ),(0 ωuω fz =   is minimized, (5.14) 

where u is determined as a function of u′ and u″ 

u = ρ(u′, u″),         (5.15) 

In (5.12) function q[u″(u′, ωωωω), ωωωω] describes the aggregated cost of recourse action. In 
important cases the cost of recourse action may be formulated as 

  ( )[ ] ∑
=

′′=′′′
m

j
iuq

1

2)(,, ωωuu       (5.16) 
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5.4 Application of a two-stage recourse model for the reservoirs control 
problem 

 Fortunately, in the analyzed case of flood protection we are able to implement a 
very simple combination of u′ and u″ as desired control u:  

  u = u′ + u″ (5.17) 

which leads us to a modified version of (4.1) and (4.2) 

  )( 111
1 uuI

dt

dV
′′+′−=  (5.18) 

  )()( 11 jjjjj

j
uuIuu

dt

dV
′′+′−+′′+′= −− , j = 2, 3, … N. (5.19) 

Now the flow transformation model has the form 

  ( ) )](,[ tquuΨtQ NNr ′′+′= . (5.20) 

 The application of a recourse model as discussed in 5.3 by taking into account 
(4.17) leads to two optimization levels 

  ( ) 







′′+′′′+′ ∑ ∫
=′′∈′′′∈′

N

j

T

j
UqU

H

dttutqqfE
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2, )]([],,),,,([minmin βIIuuu

uIu
, (5.21) 

where objective function from (4.17) f[u′ + u″(u′, I, q), I, q, t] is minimized according 
to constraints (4.5) 

  Umin j ≤ u′j + u″j ≤ Umax j , Vmin j ≤ Vj ≤ Vmax j , (5.22) 

 This model allows us to avoid constraint violation, due to the flexible control 
actions. First of all, we are able to prepare the system before the flood occurs, which is 
achieved by proper selecting of the first stage controls u′. The second term in (5.20) 
expresses the need of small changes at the second stage by choice u″ which is 
compatible with decision makers’ expectations in practice. 

6. Computational complexity of the problem 

6.1 Representation of reservoir outflow 

 The problem formulated in Sections 4 and 5 is defined in continuous function 
space. The controls and state equations are functions of time or time and space (lateral 
inflow along the channel). The problem in general can be viewed as a dynamic 
stochastic optimization task. Unfortunately, the important Bellman’ dynamic 
programming equations and Pontriagin’s maximum principle are not applicable for our 
model. The first of them enables the decomposition of the problem, if the objective 
function is separable in time. The second is applied in differentiable deterministic cases. 
the minmax-type criterion of the problem (5.17) - (5.20) is neither separable nor 
differentiable. The complexity is also associated with continuous time equations. These 
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equations may be replaced by approximate discrete time equations but such a direct 
approximation causes an enormous dimensionality.  

 A reasonable step seems to be the replacement of continuous controls uj(t) by 
their parametric representation. Due to the state equations the reservoirs storages and 
outflow from the channel depends also on control parameters. The representation of the 
outflow should be selected in such a way that the number of parameters is not very big, 
but the choice of the decision rules must be consistent with the real performance of the 
system. The proper form of parameterization can be chosen as a chain of time 
dependent rectangular pulses shown in Figure 6.1 (Dysarz and Napiórkowski, 2002a). 
Each reservoir outflow in the system is represented by parameters α1, α2, … αNp-1 
where the first Np-1 parameters describe the length of time interval with constant value 
of outflow. The rest of the parameters describe the value of constant outflows according 
to Figure 6.1. Np is the number of determined pulses. 

 

Figure 6.1 Rectangular pulse-type representation of the reservoir outflow  

 

6.2 Sequential optimization technique 

 Although such a representation of the outflow is useful, it still leads to a large-
scale optimization problem. Taking into account the huge reservoirs' capacity, the 
control horizon should be 100 to even 800 hours. Due to sudden changes in the system 
during the flood, proper decisions should be made hourly, which leads to large scale 
optimization problems. The next step which allows decreasing the computational efforts 
is the decomposition of the problem. Such an approach leads to the application of a 
sequential optimization algorithm which is implemented on the basis of the specific 
features of the system. The proposed procedure is based on a paper by Dysarz and 
Napiórkowski (2002b). The main idea is the following. 

 Let us assume that there is a known admissible solution of the problem (4.1) - 
(4.2) with (4.5) and (4.6) for a certain set of inflows I1, I2, … IN + 1. This solution is 

 

 

 

 

 

 

 

 

 

T(4) = α 4 (TH - T(1) - T(2) - T(3)) 

u(1) = Umin + α  5 (Umax - Umin) 

u(5) = Umin + α 9 (Umax - Umin) 

. . .
u(2) = Umin + α  6 (Umax - Umin) 

T(1) = α 1 TH T(2) = α 2(TH - T(1)) 

T(3) = α 3 (TH - T(1) - T(2)) 
TH - T(1) - T(2) - T(3) - T(4) 

I(t), u(t) 

TH 
0 

I(t) u(t) 
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denoted as u1
(k), u2

(k), … uN
(k). According to the state equations (4.1) - (4.2) we can find 

storages which match the controls V1
(k), V2

(k), … VN
(k). At the current step k+1 we are 

going to improve the control criterion value (4.17) by modifying only one storage Vl
(k+1). 

The rest of the storages in the system Vj
(k+1) (for j = 1, 2, … N and j ≠ l) are fixed like 

they were at step k. We can achieve this by selecting a new value of lth outflow, ul
(k+1). 

The rest of outflows in the system is modified according to equations (4.1) - (4.2). 
Under the assumption Vj

(k+1) = Vj
(k) for j ≠ l, the state equations have the form 
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with the exception of j = l. Such a simplification leads to 
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Now the problem is as follows: find ul
(k+1) such that f(u(k+1), I, q, t) is minimized where 
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kk
l

kkk uuuuu KKu . The constraints (4.5) should be satisfied. 

 The search procedure may be repeated several times. In each step a different 
storage is selected by selecting one new outflow. 

6.3 Control random search method 

 The minmax-type criterion (5.20) and representation of reservoir outflow 
described in Section 6.1 may cause non-convexity of the objective function. In such 
cases the global optimization search methods are needed. Procedures based on the 
Monte Carlo method, simulated annealing or others may be applied in the case 
presented. One global method, namely the Control Random Search, showed a good 
performance for deterministic models (Dysarz and Napiorkowski, 2002a), therefore we 
adjust this algorithm also for the stochastic case. 

 The original method was proposed by Price (1987). Its basis is a well known 
simplex method used in non-linear optimisation. The set of points from n-dimensional 
space is processed iteratively. At each step, new solution is generated by the reflection 
of a simplex vertex. 

 The algorithm starts from the creation of a set of points, greater than n + 1 points 
in n -dimensional space, selected randomly from the domain. The optimal number of 
points 10(n + 1) is taken as suggested by Price (1987). Let us denote the initial set as S. 
After evaluating the objective function for each of the points, the best xL (i.e., that of the 
minimal value of the performance index) and the worst xH (i.e., that of the maximal 
value of the performance index) points are determined and a simplex in n-space is 
formed with the best point xL and n points (x2, x3, …, xn+1) randomly chosen from S. 
Afterwards, the centroid xG of points xL, x2, …, xn is determined. The next trial point xQ 
is calculated as the reflection of xn+1, that is xQ = 2xG − xn+1 (Niewiadomska-
Szynkiewicz et al., 1996). If the last derived point xQ is admissible and “better”, it 
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replaces the worst point xH in the set S. Otherwise, a new simplex is formed randomly, 
and so on.  

 If the stop criterion is not satisfied, the next iteration is performed. This criterion 
may be formulated as 
 ( )ave LF F x ε− <  (4.16) 

where Fave is the mean objective function value in the set, F(xL) the objective function 
value in the best point xL and ε is the expected accuracy determined empirically (Dysarz 
and Napiórkowski, 2002a). 
6.4 Numerical methods for partially differential equations 

 For our model the effective solution procedure for the flow transformation in the 
open channel is a problem of high importance. The models introduced in Section 4 are 
the sets of partially differential equations with initial and boundary conditions. The 
domain of the problem is set D = {(x, t): 0 ≤ x ≤ L, t ≥ 0} ⊂  R2. The solution of the 
problem consists of two functions of space and time: discharge Q(x, t) and water depth 
H(x, t). In general it is not possible to solve such a problem analytically. Numerical 
methods and special approximation schemes have to be used. There are three groups of 
such methods: the methods of characteristic, the finite difference method and the finite 
element method (including the finite volume schemes).  

 The choice of the method is restricted the same way as the choice of the model. 
The flow transformation part should provide as exact results as possible and the 
computations should not be too long. These two goals are conflicting and there is a need 
for a balance between them. The simplest and quickest schemes are finite differences 
schemes. Unfortunately they are not good in the case of full de Saint-Venant equations 
(4.7) - (4.8). Even the Preissman scheme recommended by many researchers (i.e., 
Mahmood and Yevjevich, 1975; Cunge et al., 1980) does not guarantee the success, 
though the stability of this method is well recognized. However, in many cases the 
application of such a complicated model is not necessary (Henderson, 1966), especially 
when we deal with uncertainty. The application of the simpler diffusive or kinematic 
wave model as a part of the stochastic control algorithm may provide results of similar 
quality. Application of simple finite differences schemes may be recommended for such 
cases, because this guarantees stability of numerical computations. 

7. The single reservoir control problem - a simplified 
example 

 To illustrate the importance of explicit treatment of uncertainties in flood 
management a simplified example was tested. This is a single reservoir flood control 
problem. The system is shown in Figure 7.1. It consists of one reservoir with single 
inflow I(t) and controlled outflow u(t) and one end-user. The changes of reservoir 
storage V(t) are described by mass balance equation  

  uI
dt

dV
−=  (7.1) 

with initial condition V(0) = V0. This equation was approximated by means of the Euler 
explicit method. 
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Figure 7.1 Single reservoir system 

 

 The first stage flood control rules are designed as so-called “basic rule” 
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The main idea of this concept is as follows: At the beginning of the control horizon the 
reservoir outflow is equal to inflow. In time t0 the reservoir starts performing with the 
equalized outflow q. The outflow from reservoir is equal to inflow once again in time t2, 
which is determined as follows 

 t = t1 or t = t2  when q = I(t) and t1 < t2 . (7.3) 

This control rule is shown in Figure 7.2. In this approach the reservoir may be emptied 
before flood comes, and the whole peak of the flow may be stored there. The second 
stage control rules u″(t) are very simple, created as an if-then decision in order to satisfy 
the reservoir storage constraints 

  Vmin ≤ V ≤ Vmax . (7.4) 

This follows from the specifics of the second-stage optimization problem. When the 
reservoir storage exceeds the lower Vmin or the upper Vmax bound, the outflow from 
reservoir is corrected in such a way that it is equal to inflow I(t). 

 

Figure 7.2 Basic rule control function and single maximum inflow 
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 To simplify the problem an inflow with only one maximum peak was tested. 
One of many analytical formulas describing such an inflow is shown below 
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where parameters I0 and Im are the basis flow and the maximum flow, respectively. tP is 
the time of flood occurrence and Tm is the time of maximum flow occurrence after the 
beginning of the flood. The idea of such a representation of the inflow is shown in 
Figure 7.2.  

 It is assumed that the basis flow I0 and the time when flood begins tP are certain 
and known. For the tests their values were chosen as 10 m3/s and 0 h, respectively. The 
forecasted values of maximum flow Im and its time Tm are 600 m3/s and 20 h, 
respectively, in the 48 h control horizon. It is assumed that these values' validity is 70 % 
and they have multivariate normal distribution. 

 In this simple task the chosen risk indicator is a minmax-type criterion 
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There is no need to add the second part of the (4.17) objective function. The demand of 
water storing at the end of the time horizon is satisfied by optimal control rules. The 
control random search method described in section 6 was used to solve the problem. 

 

Table 7.1 

Single reservoir control problem - results obtained 
 deterministic case stochastic case 

optimal maximum outflow 83.5 m3/s 101.9 m3/s 

probability that assumed level is not exceeded 

max u ≤ 83.5 m3/s 61 % − 

max u ≤ 101.9 m3/s 64 % 78 % 

 

 The deterministic and stochastic cases were compared. In the first case the 
controls were selected only on the basis of deterministic inflow forecast. In the 
stochastic case a wide range (scenarios) of possible inflows was considered. Although 
the optimal maximum outflow is lower in the deterministic case (see Table 7.1), the 
probability that the assumed critical level is not exceeded for a wide range of possible 
inflows is much better in the stochastic approach. We can observe a significant 
difference even in such a simple application with the normal density function. Careful 
consideration of real inflow conditions can make this conclusion much stronger. 
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8. Concluding remarks 

 In the research presented the problem of a reservoir flood defense system control 
under uncertain inflows was studied. The problem is common for many countries. In 
Poland the biggest flood event in 1997 caused losses equal to 2.9 % of the GDP. The 
case study system chosen in this paper, the Nysa Klodzka basin, is almost in the center 
of the “flood strike”. The flood defense system in this region consists of two big 
reservoirs in series located on the Nysa Klodzka. Since the reservoirs affect the flow 
conditions in the Odra river, the safety of many big Polish cities and factories depends 
on the proper selection of their controls. The linkage between the design of reservoirs 
and their controls is critically important for the effectiveness of the flood defense 
system, as was shown in Section 2 by using the example of flood wave interaction in the 
junction of the Odra and Nysa Klodzka rivers affected by severe flooding in 1997. 

 The existing decision support system for flood control consists of methods and 
algorithms which can be classified as parts of the inflow forecast module and control 
algorithms. that enable explicit treatment of uncertainty of the inflow forecast.  

 The mathematical description of the system is based on physical principles: 
mass and momentum balances. The nonlinearity may be involved in modeling of two 
processes: flow routing in open channels and reservoir mass balance. The importance of 
reservoir storage constraints is critical. Their violation results in the destruction of the 
system, which causes high losses. For dealing with uncertainties a stochastic two-stage 
recourse model is proposed, which treats jointly ex-ante and ex-post decisions. The 
complexity of the model causes several computational problems, which can be 
overcome by numerical techniques described in Section 6. 

 As was indicated in Section 7, we can observe a significant difference in the 
results between deterministic and stochastic approaches even in a very simple single 
reservoir case. The real situation is much more complicated and the stochastic approach 
to the problem discussed may be critically important for effective flood management, 
since it allows to find robust controls against flooding by taking into account a set of 
possible scenarios in contrast to only one scenario of the deterministic models. 
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