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Preface

The paper is devoted to the problems of dynamic
linear programming (models and formalizations, theory
and computer methods, extensions and applications).

It contains a brief survey and discusses the necessities
and possibilities for research in the area.
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Problems of Dynamic Linear Programming

Abstract

Dynamic linear programming (DLP) can be considered
as a new stage of linear programming (LP)} development.
Nowadays it becomes difficult, maybe even impossible,
to make decisions in large systems and not take into
account the consequences of the decision over a long-
range period. Thus, almost all problems of optimal
decision making become dynamic, multi-stage ones.

New problems require new approaches. With DLP it
is difficult to exploit only LP ideas and methods:
even having found the optimal program, we often do not
know how to use it.

This paper represents in some sense the statement
of the problem; although it contains a brief survey of
DLP, it is focused on the things to be done, rather than
on those already being tackled.

1. Introduction

The impact of linear programming (LP) [1,2] models and methods
on the practice of decision making is well known. However, both
the LP theory itself, and the basic range of its application are
of a one-stage, static nature; that is in this case the problem
of the best allocation of limited resources is considered at some
fixed stage of development of a system.

However, when the system to be optimized is developing (and‘
not only in time, but possibly, in space as well), and this devel-
opment is to be planned, a one-stage solution is inadequate. In
this case a decision should be made several stages in advance and
the problem of optimization becomes a dynamic, multi-stage one,
for example, problems in long- and short-range planning, or gen-
erally speaking, in programming of a system development.

In fact, any static LP model may have its own dynamic variant,

the latter being of growing importance because 0of the increasing



role of planning in decision making. It leads to the emergence
of a general problem of dynamic linear programming (DLP), dynamic
transportation and distribution problems, dynamic integer pro-
gramming, etc.

With a new quality of DLP, new problems arise. While for the
static LP the basic question consists of determining the optimal
program, the realization of this program (related to the questions
of the feedback control of such a program, its stability and sen-
sitivity, etc.) is no less important for the dynamic problem.

Hence, the DLP theory and methods should be both based on the
classical methods of linear programming and on the methods of con-
trol theory, Pontryagin's maximum principle [3] and its discrete
version [4] in particular. One should distinguish in the DLP
theory two basic, closely related problems: determination of
an optimal program and its realization, i.e., control of the pro-

gram.

2. DLP Canonical Form

In formulating DLP problems it is useful to single out:
1) state (development) equations of the system with the distinct
separation of state and control variables; 2) constraints imposed
on these variables; 3) planning period (horizon) T, that is the
number of stages, during which the system is considered; 4) per-
formance index, which quantifies the quality of control.

State Equations. State equations have the following form:
x(t+1) = A(t)x(t) + B(t)u(t) + s(t) (1)

where the vector x(t) = {x1(t),...,xn(t)} defines the state of the
system at stage t in the state space X; vector u(t) = {u1(t),...,
ur(t)} specifies the controlling action at stage t; s(t) = {s1(t),
...,sn(t)} is a vector defining the external effect on the system
(uncontrolled, but known a priori in the deterministic model) .
Matrices A(t), B(t) are of dimensions (nxn), (nxr) and assumed
to be known.
Planning period (horizon) T is supposed to be fixed. Thus
in (1): t =10,1,...,T-1.



It is also assumed that the initial state of the system

x(0) = xO (2°

is given.
Constraints. In rather general form constraints imposed on

the state and control variables may be written as

G(t)x(t) + D(t)u(t) < £(t) (3)
u(t) > 0 , (4)
where f(t) = {f1(t),...,fm(t)}; G(t) and D(t) are of dimensions

(mxn), (mxr) and are given.
Performance index (which is to be maximized for certainty)
is

J,(u) = (a(T),x(T)) + I [(a(t),x(t)+(b(t),u(t))] ., (5)

(
1 t=0
where a(t) (t=0,...,T), b(t) (t=0,...,T-1) are known n- and m-vectors;

(«,+) denotes the inner product.

Definitions. The vector sequence u = {u(0),...,u(T-1)} is a
control (program) of the system. The vector sequence x = {xo,x(t),
«..,x(T)}, which corresponds to control u from (1), (2), is the
system's trajectory. The process {u,x}, which sati§fies all the
constraints of the problem (i.e., (1)-(#)), is feasible. The fea-

sible process {u*,x*}, maximizing (5), is optimal.

Hence, the DLP problem in its canonical form is formulated

as follows.

Problem 1. Find a control u and a trajectory x, satisfying
the state equations (1) with the initial state (2) and the con-
straints (3)-(#), which maximize the performance index (5).

The choice of the canonical form of DLP is to some extent
arbitrary and there are various possible versions and modifications

of Problem 1. 1In particular, state equations may include time lags;




constraints on state and control variables may be separate, given
as equalities or inequalities; the performance index may be de-
fined only, for example, by the terminal state x(T) of the system,
etc.

However, such modifications may be either reduced to the
canonical Problem 1, or it is possible to use for them the results,

stated below for Problem 1 [4].

3. Discussion

First of all, it should be noted that if T = 1, then Problem
1 becomes a conventional LP problem.

Problem 1 itself can also be considered as a certain "large"
LP problem with constraints on variables in the form of equalities
(1), (2) and inequalities (3), (4). 1In this case the optimal con-
trol Problem 1 turns out to be an LP problem with the staircase
constraint matrix (Table 1). But in the majority of cases dynamic
LP problems are formulated now directly in static LP language, as
for example Problem 2 (Table 2):

Problem 2. Find vectors {x*(1),...,x*¥(T)}, which maximize

(c(t),x(t)) (6)

I~ 3

J2(X) =

t=1

subject to

A(1)x(1) = d4(1)
B(t-1)x(t=1) + A(t)x(t) = d(t) , (t=2,...,T) (7)
x(t) >0 (t=1,...,T)

Let us express the state variables x(t) in Problem 1 as an explicit
function of control. One can obtain from (1):
t-1 t-1

x(t) = ¢(t=1,0) + I ¢(t=1,T+1)B(T)u(t) + Z ¢(t=1,t+)s(t) , (8)
=0 =0

n



where

o(t,t) = A(t) r-*A(1) , 0 <t <t ,

d(t,t+1)

it
H
~

I - identity matrix

Using (8) it is also possible to get directly the constraints
(3) imposed on control variables. As a result, we shall get the

following LP problem with a block-triangular matrix (Table 3).

Problem 3. Find the control u*, for which

T-1
z (w(t),u(t)) » max ,
t=0

W(t,0)u(0) +...+ W(t,t-1Nu(t-1) + D(t)u(t) < h(t) ,

u(t) >0 , (t=0,1,...,T-1) ’

where the vectors h(t), w(t) and the matrices W(t,t) depend on the
known parameters of Problem 1.

Problems 2 and 3 admit their modifications in the same way as
Problem 1 {a block diagonal structure with coupling constraints
or with both coupling contraints and variables, different types
of staircase structure, etc.). They have been studied intensely
[1,2,5-15]. But unlike control Problem 1, such formalizations
of dynamical problems make no distinction between state and con-
trol variables. Therefore this approach makes it difficult to use
the ideas and methods of the control theory. This difference will
be more significant, when "pure" dynamic problems are considered »
(stability and sensitivity of DLP systems, control of the optimal
programs, etc.).

The DLP problems in the form of Problem 1 were introduced and.
studied in [4,16-27].

4. DLP Models

Dynamic linear models, known in the literature, are usually
formalized in static LP language, as Problems 2 and 3. To intro-
duce DLP models in the form of Problem 1, let us consider, as an

example, an ecological system.




Ecological Systems. We shall consider, as an example, the
problem of optimal species population use within a given planning
period [28,29,18].

Let xi(t) be the guantity of biological type i at stage t

(i=1,...,n). There are r ways of using these species, we shall
denote as uj(t) the intensity of way j (j=1,...,r) at stage t.
Let the numbers aij(t) determine the quantity of species of type

i, caught (removed from species) per unit intensity of the way j.

If some species is a pest relative to the other, species of
n
type 1 at stage t will decrease by the I cis(t)xs(t), where
j=1
cis(t) determines the number of incividuals of type i, devoured
by a single individual of type s.
Thus, the dynamic equation for the change of the i-th species
quantity will be written as:
n r
xi(t+1) = (1+ai(t))%i(t) - I cis(t)xs(t) - .Z a,.((tua. () . (9)
s=1 j=
Here ai(t) is the coefficient of natural increase (ai(t)>0), or
mortality (ai(t)<0) of the species of type i.
It should be noted that in (9) uj(t) for some j may also
determine the quantity of the j-th chemical, used at stage t.

The constraints here may be for example,

T-1 n
z I g.,(t)x.(t) <d
=0 i=1 71 K
where gik(t) - is the specific requirement of species i for the

k-th resource; d; is the availabe quantity of the k-th resource;

0 < u.(t) < u.(t)
- ] - ] !
where ﬁj(t) is determined by the technological constraints or the
sanitary norms.
The performance index may be the total harvest for the entire

planning period



T-1 n,r
J = I I a.(tya.. (t)u. (t)
£=0 i,j=1 * 1] J

or a specific structure of the ecosystem, desirable at the terminal

stage

O
!
I~ s

: Bi(T)xi(T) ,

i
where the weight ai(t), Bi(T) coefficient is characterized by the
importance of the species of type 1i.

This simple example illustrates the basic idea for formulating
DLP models. In what follows models of this type are only mentioned

and not written down in detail.

Economic Models. Linear programming is closely related to
economic models [1,2]. 1In fact, transformation of static LP to
dynamic ones are stimulated in great degree by transition from
static input-output models to dynamic ones. Dynamic types of in-
put-output economic models were considered, for example, in [30,
311. As the DLP Problem 1, a multisector dynamic economic model

was formulated and investigated in [32].

Energy Systems. Many models of short- and long-range devel-
opment of‘energy systems are formulated as dynamical linear prob-
lems [33-36]. 1In [33] the energy model was stated as a DLP prob-
lem with time lags.

Large Organization Systems. Many problems in large organi-
zation systems such as, manpower planning or educational systems
can be viewed as important applications of DLP. Some dynamic

models of such kind were considered, for example, in [37].

Industrial Systems. Many of the short- and long-range plan-
ning problems in industry, as well as the production scheduling

problems are reduced to DLP. (See, for example, [10,38]1).

Regional and Urban Problems. The extensive field of appli-
cations of DLP is given by regional and urban planning problems.
(See, for example [39] (agricultural model), [40-42] (water re-

sources), [43,48] (transportation systems).)



Reflecting on these short examples and references it should
be noted, that many practical problems of control and optimization
in energy, water, ecological, regional, and urban systems may be
stated in the form of DLP. Therefore the work on the survey of
the existing DLP models and on the design of new ones is of

essential interest.

5. Types of DLP Problems

In the preceding section the DLP problem of a general type
was considered. Besides the general one, it is useful to single
out dynamic transportation and distribution problems [18,43],
integer DLP, convex dynamic programming [19,44]. To illustrate
this aspect of the problem, let us consider simple transportation

problems of DLP.

The Dynamic Transportation Problem. We shall consider a
transportation network with some homogeneous goods of i-th pro-
duction and j;th consumption points (plants). Let ai(t) be the
production volume of the i-th point (i=1,...,n) at stage t-
(t=0,1,...,T=-1) and bj(t) be the demand value of the ji-th point
(3=1,...,m) at stage t.

It is assumed that each productidn or consumption point has
an opportunity to store goods. We shall denote by yj(t), zi(t) the
guantity of stock goods at the i-th consumption point and j-th
production point at stage t; by ci(t), dj(t) the storage expendi-
tures of a unit of goods; uij(t) will be the quantity of goods
transported from the i-th to the j-th point at stage t; cij(t)
is the transportation cost of a unit of goods.

Then the dynamics of the change of stocks will be determined

by the equation

n

0
A1) = v (E) v T .. - R R =
yj( ) yj( ) L ulj(t) bj(t) ’ yJ(O) Y5
- (10)
z; (£F1) = 2 (t) - j; gy (B +a® ,  z(0 = zg



with the constraints

y;(0) 20 z, (£) >0 ugs (k) > 0 . (11)

So, the problem is formulated as follows. To find a transportation
plan {uij(t)} (control u* = {u*ij(t)}) such that it maximizes the
total expenditures
T-1
J= % {Z c..(t)u..(t) + L c.(t)z.(t) + £ d.(t)y.(t)}
2o U2 ey (Bhuy 4 (E) : J(B)z, () 4 )y (£)
subject to constraints (10) and (11).
It should be noted that with T = 1 and yj(O) = 0, zi(O) =0
the problem becomes a conventional LP problem of the transportation

type.

6. Theory of DLP

The theory of DLP is connected with two main problems:
(i) determination of optimal program;

(ii) realization of this‘optimal program.

Determination of Optimal Program. This side of the theory
is linked with duality relations and optimality conditions for
Problem 1, which are the base for building of numerical methods
of DLP.

Analysis of the Lagrange function of Problem 1 reveals the
following dual DLP problem [16,4,17].

Problem 1D. To £ind the dual control XA = {A(T-1),...2(0)}
and the associated dual trajectory p = {p(T),...,p(0)} satisfying
the co-state {dual) equation

p(t) = AT(E)p(t+1) - GT(B)A(E) + a(t) (12)
with the boundary condition

p(T) = a(T) (13)
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subject to the constraints

BT (£)p (t+1) = DT (£)A(t) < -Db(t)
(14)
Alt) > 0
and minimizing the performance index
0 T-1
JpA) = (p(0),x7) + 2 [(p(t+1),s(t))+(£(t),A(t))]
t=0

Here p(t) ¢ En; A(t) e ET; a(t) > 0 are Lagrange multipliers for
constraints (1)-(4).

The dual Problem 1D is a control-type problem as is the pri-
mal one 1P. Here the variable A(t) is a dual control and p(t) is

a do-state or a dual state at stage t. We have reversed time in

the dual Problem 1D: t = v-1,...,1,0.

Theorem 1. (The DLP "Global" Duality Theorem). The solva-
bility of either of the 1P or 1D problems implies the solvability
of the other, with

Jp(u*) = JD(A*) .
If the performance index for any of the pair of dual problems

1P or 1D is not bounded (from above in 1P, from below in 1D), then

the other problem has no solution.

Let uslintroduce Hamilton functions
HP(p(t+1),u(t)) = (b(t),u(t)) + (p(t+1),B(t)ult))
and
HD(X(t),A(t)) = (X(t);f(t)) - (X(t).G(ﬁ)X(t))

for the primal and dual problems respectively.
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Theorem 2. (The DLP "Local" Duality Theorem). The solutions
of the primal {u*,x*} and dual {A*,p*} problems are optimal if and

only if the values of Hamiltonians coincide:

Hy (p* (£+1) 0¥ (£)) = Hp (%% (£) , A% (£))

Thus, the solution of the pair of dynamic dual problems can

be reduced to analysis of a pair of static linear programs
max Hy (p(t+1),u(t))

(15)
G(t)x(t) + D(t)u(t) x £(¢)

u(t) > 0

min H_(x(t),A(t))

D
(16)
T T
B (t)p(t+1) - D (t)A(t) < -b(t)
A(t) > 0

linked by the state (1), (2) and co-state (12), (13) equations.
In particular, it can be shown, that there exist the following

optimality conditions for problems 1P and 1D (4,17].

Theorem 3. (Maximum Principle of Primal Problem 1P). The
control u* is optimal for Problem 1P if and only if there exists
a solution {X*,p*} to dual Problem 1D, such that for any t = 0,1,
ves,T-1

max HP(p*(t+1),u(t)).= H_(p* (t+1),u*(t))
D
u(t)
where the maximization is carried out with respect to all u(t)
satisfying constraints (3), (&), and A(t*) is the optimal dual
variable for LP problem (15).

Theorem 4. (Minimum Principle for Dual Problem 1D). The con-
trol A* is the optimal for the problem 1D if and only if there
exists a solution {u*,x*} to the primal problem 1P such that for
any t = 0,1,...,T-1
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min H_(x*(t),A(t)) = H_ (x*(t),r*(t)) ,
D D
A(t)
where the minimization is carried out with respect to all A(t),
satisfying the constraints (14), and u*(t) is the optimal dual

variable for the LP problem (16).

The foregoing optimality conditions define a decomposition
principle for solving the pair of dual problems 1P and 1D. These
conditions permit replacing the solution of the rT and mT - dimen-
sional dynamic problems with variables uj(t) and Aj(t) (i=1,...,r;
j=1,...,m; t=0,1,...,T-1) by the successive solution of T static
LP problems (15), (16), containing r and m variables respectively
and linked by the state equations (1), (12) with the boundary con-
ditions (2), (13).

The Control of the Optimal Program. Unlike static LP the
realization of optimal solution in dynamic problems has no less
importance than its determination. One should mention here the
questions of realization of the optimal solution as a program (i.e.,
in dependence of the numbers of stage: u*(t) (t=0,...,T-1)) or
as a feedback control (i.e., in dependence on the current value
of states: u*(t) = u*(t,x*(t)) (t£=0,...,T-1); stability and
sensitivity of the optimal system, connection of optimal solutions
for long- and short-range models, etc. These problems are waiting
for their solution. We shall mention only some of them here.

(i) It is often necessary to determine in what way the
performance index and/or the optimal control will behave when the
parameters of the problem are changing (for example, "prices" a(t),
b(t), "resources" f(t), "demand" s(t)), (parametric DLP). Solu-
tion methods in this case can be developed on the basis of static
parametric LP [1,2]. A general approach to parametric problems
of linear and gquadratic programming is given in [45].

(ii) In computing the optimal program, especially for the
large T, it is véry important to know, how the inaccuracy in know-
ledge of matrices A(t), B(t) coefficients and other parameters of
the system influences the stability of the optimal program and the

quality of control (sensitivity problem).
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(iii) Assume that an aggregated DLP problem for a large plan-
ning horizon T is solved. How can the information about the opti-
mal dual process {p*(t),A*(t)} of the aggregate model be of any
use to the operative solution (for each current state of the
system) of more detailed but having a shorter planning horizon
DLP problem?

(iv) How can the local synthesis of the system, i.e., the

control of the form
Su*(t) = A(t)dx*(t) , (t=0,1,...,T=1)

for small deviations of states §x*(t) from the optimal trajectory

X¥(t) be carried out?

7. Economic Interpretation

A standard economic interpretation can be given to the pair
of dual problems 1P and 1D and relations between them [17,18],
analogous to those of the static LP problems [1,2].

8. DLP Methods

We shall distinguish finite and iterative methods for solving
DLP problems.

The DLP Finite Methods. These methods are the development
of large-scale LP methods for the dynamic problems. Now two main
approaches begin to be revealed enabling us to build DLP finite
methods.

The first approach is based on decomposition methods of LP
[1,46,47], especially on Dantzig-Wolfe decomposition [1,U46]. Forv
Problems 2 and 3 this technique was used in [10-12,15], for Prob-
lem 1 in [19,21,27]. It should be noted here that originally
the Dantzig-Wolfe decomposition method was developed for LP prob-
lems with block—-angular structure such as in Problem 3 [6].

The second approach is based on the factorization of constraint
matrix and used for Problems 2 and 3 in [13-15] and for Problem 1
in [26].
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Iterative Methods. The application of the LP finite methods
to the dynamic problems causes certain difficulties especially for
the large planning horizon T. This can be explained by the fact
that in these methods the approach of an approximate point to the
optimum is fulfilled over the vertices of the feasible polyhedral
set (in some space). But the number of vertices of such a set for
the dynamic problems increases exponentially with T, so does the
volume of calculation.

The iterative LP methods seems to by-pass these difficulties.
They are also characterized by low demands to the computer's
memory, the simplicity of the computation flowchart, low sensi-
tivity to the disturbances.

We shall differentiate the following iterative methods.

Penalty Functions. This is one of the most universal and
simple technique of optimization. But its direct use of
the DLP problem is hampered by relatively low convergence rates
in the vicinity of solution. The idea of extrapolation of decision
was suggested in [22] which remarkably improves the effectiveness

of the method for static LP and is developed for DLP in [23].

Generalized Gradients Methods. The other group of methods

is based on finding the extremum of function

y{A,p) = max L(u,x;X,p)
x,u>0
or
$p(u,x) = min L(u,x;X,p)

p,kiO

where L(u,x;k,p) is the Lagrange function of Problem 1P (Problem
1D) .

It can be shown that minimization of ¥ (X,p) is equivalent to
solution of the dual Problem 1D, while the maximization of ¢ (u,x)
is equivalent to the solution of primal Problem 1P. But functions
¢ and ¥ nondifferentiable by nature, so the generalized gradient
technique [48] is needed. Application of the generalized gradients
for DLP reduces the solution of large DLP Problem 1P to successive

solutions of small LP problems (15), (16). |

i
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Modified Lagrange Function Methods. The idea of the method
was suggested in [49], although the methods of this group began
to be developed only recently [50-51]. This approach combines
the accuracy of finite methods with simplicity of iterative ones.
The theory of the method for DLP was considered in [24]. One of
its realizations based on employment of the Kalman-Bucy filter

technique [52] was given in [25].

9. Some Extensions

Naturally, all the practical problems cannot be kept within
the framework of DLP. Here we shall state the fields of DLP devel-

opment, which are of the greatest interest.

Nonlinear Dynamic Programming. This is essentially the opti-
mal control theory of the general type of discrete systems with
substantial use of nonlinear programming techniques. Some approaches

in this direction have been considered in [4,44].

Stochastie DLP. We shall only note [53,54] here the papers

on multi-stage stochastic programming.

Maxi-min (mini-max) DLP Problems. The solution of such prob-
lems is of considerable practical interest when guaranteed control
quality is to be obtained under the conditions of uncertainty, as
well as for sensitivity analysis, and game problems of planning.

Let in Problem 1 the values of vectors s(t) be unknown, and
only the range of their variations Sy be known, which is assumed

to be bounded polyhedrons.

Problem 4. Find control u* and the trajectory x* subject to

(1)-(3) and providing

max min J1(u,s) = wy
u s
where s = {s(t) ¢ St}’ the performance index J1 is determined from

(5).

Problem 6. Find control u* and trajectory x* subject to (1)-

(3) and providing
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max min ... max min J1 = w§
u(0) s(0) u(T-1) s(T-1)

The solution of Problems 4, 5 guarantees the values of the
performance index J1 no worse than Wy, if the program control u¥*
is realized and no worse than ws (with Wy > wT) if there is a
possibility of recalculation of the program for each x(t) (the
feedback control u(t) = u(t,x(t)) of a system). The solution of

Problems 4, 5 is considered in [55].

10. Conclusion

Above a short survey has been given of the contemporary state-
of-the-art in dynamic linear programming, reflecting the author's
possibilities and point of view. The development of optimization
methods for dynamic problems, i.e., planning and control methods
for large scale problems (which are of such a necessity in our
dynamic world), irrespective 6f the directions they will take,
will, undoubtedly, enrich the practice of decision making in

complex systems.
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