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Preface 

The paper is devoted to the problems of dynamic 
linear programming (models and formalizations, theory 
and computer methods, extensions and applications). 
It contains a brief survey and discusses the necessities 
and possibilities for research in the area. 





Problems of Dynamic Linear Programming 

Abstract 

Dynamic linear programming (DLP) can be considered 
as a new stage of linear programming (LP) development. 
Nowadays it becomes difficult, maybe even impossible, 
to make decisions in large systems and not take into 
account the consequences of the decision over a long- 
range period. Thus, almost all problems of optimal 
decision making become dynamic, multi-stage ones. 

New problems require new approaches. With DLP it 
is difficult to exploit only LP ideas and methods: 
even having ,found the optimal program, we often do not 
know how to use it. 

This paper represents in some sense the statement 
of the problem; although it contains a brief survey of 
DLP, it is focused on the things to be done, rather than 
on those already being tackled. 

1 .  Introduction 

The impact of linear programming (LP) [ 1 , 2 ]  models and methods 

on the practice of decision making is well known. However, both 

the LP theory'itself, and the basic range of its application are 

of a one-stage, static nature; that is in this case the problem 

of the best allocation of limited resources is considered at some 

fixed stage of development of a system. 

However, when the system to be optimized is developing (and 

not only in time, but possibly, in space as well), and this devel- 

opment is to be planned, a one-stage solution is inadequate. In 

this case a decision should be made several stages in advance and 

the problem of optimization becomes a dynamic,. multi-stage one, 

for example, problems in long- and sl7ort-range planning, or gen- 

erally speaking, in programming of a system development. 

In fact, any static LP model may have its own dynamic variant, 

the latter being of growing importance because .of -the increasing 



role of planning in decision making. It leads to the emergence 

of a general problem of dynamic linear programming (DLP), dynamic 

transportation and distribution problems, dynamic integer pro- 

gramming, etc. 

With a new quality of DLP, new problems arise. While for the 

static LP the basic question consists of determining the optimal 

program, the realization of this program (related to the questions 

of the feedback control of such a program, its stability and sen- 

sitivity, etc.) is no less important for the dynamic problem. 

Hence, the DLP theory and methods should be both based on the 

classical methods of linear programming and on the methods of con- 

trol theory, Pontryagin's maximum principle [3] and its discrete 

version [4] in particular. One should distinguish in the DLP 

theory two basic, closely related problems: determination of 

an optimal program and its realization, i.e., control of the pro- 

gram. 

2 .  DLP Canon icu l  Form 

In formulating DLP problems it is useful to single out: 

1) state (development) equations of the system with the distinct 

separation of state and control variables; 2) constraints imposed 

on these variables; 3) planning period (horizon) TI that is the 

number of stages, during which the system is considered; 4) per- 

formance index, which quantifies the quality of control. 

State E q ? ! a t i o n s .  State equations have the following form: 

where the vector x (t) = {xl (t) . . . (t) 1 defines the state of the xn 
system at stsge t in the state space X; vector u(t) = {ul (t) # . .  ., 
ur(t)} specifies the controlling action at stage t; s(t) = {slit), 
..., sn(t)} is a vector defining the external effect on the system 
(uncontrolled, but known a p r i o r i  in the deterministic model). 

Matrices A(t), B(t) are of dimensions (nxn) , (nxr) and assumed 
to be known. 

P l a n n i n g  p e r i o d  ( h o r i z o n )  T is supposed to be fixed. Thus 

in (1): t = 0,1, ..., T-1. 



I t  i s  a l s o  assumed t h a t  t h e  i n i t i a l  s t a t e  o f  t h e  sys tem 

i s  g iven .  

C o n s t r a i n t s .  I n  r a t h e r  g e n e r a l  form c o n s t r a i n t s  imposed on 

t h e  s t a t e  and c o n t r o l  v a r i a b l e s  may be w r i t t e n  a s  

where f ( t )  = { f, ( t ) .  . . . , fm(t) 1 ; G ( t )  and D ( t )  a r e  o f  d imensions  

(mxn) , ( m x  r) and a r e  g iven .  

P e r f o r m a n c e  i n d e x  (which i s  t o  be  maximized f o r  c e r t a i n t y )  

i s  

where a  ( t )  ( t = O ,  . . . , T )  , b ( t )  ( t = O ,  . . . ,T-1) a r e  known n- and m-vectors ;  

( * r e )  d e n o t e s  t h e  i n n e r  p r o d u c t .  

D e f i n i t i o n  s .  The v e c t o r  sequence  u  = (u ( 0 )  , . . . , u  (T-1 ) ) i s  a 

c o n t r o l  (program) of t h e  sys tem.  The v e c t o r  sequence x  = ~ x O , x  ( t )  , 
. . . , x  ( T )  1 ,  which c o r r e s p o n d s  t o  c o n t r o l  u  from (11 ,  ( 2 )  , i s  t h e  

s y s t e m ' s  t r a j e c t o r y .  The p r o c e s s  { u , x ) ,  which s a t i g f i e s  a l l  t h e  

c o n s t r a i n t s  of  t h e  problem ( i . e . ,  ( 1 ) - ( 4 ) ) ,  i s  f e a s i b l e .  The f e a -  

s i b l e  p r o c e s s  {u* ,x*) ,  maximizing ( 5 ) ,  i s  o p t i m a l .  

Hence, t h e  DLP problem i n  i t s  c a n o n i c a l  form i s  f o r m u l a t e d  

as f o l l o w s .  

P r o b l e m  I .  Find a  c o n t r o l  u  and a  t r a j e c t o r y  x ,  s a t i s f y i n g  . 

t h e  s t a t e  e q u a t i o n s  ( 1 )  w i t h  t h e  i n i t i a l  s t a t e  ( 2 )  and t h e  con- 

s t r a i n t s  ( 3 )  - ( 4 )  , which maximize t h e  performance index  ( 5 ) .  

The c h o i c e  o f  t h e  c a n o n i c a l  form o f  DLP i s  t o  some e x t e n t  

a r b i t r a r y  and t h e r e  a r e  v a r i o u s  p o s s i b l e  v e r s i o n s  and m o d i f i c a t i o n s  

o f  Problem 1 .  I n  p a r t i c u l a r ,  s t a t e  e q u a t i o n s  may i n c l u d e  t i m e  l a g s ;  



c o n s t r a i n t s  on s t a t e  and c o n t r o l  v a r i a b l e s  may be s e p a r a t e ,  g i v e n  

a s  e q u a l i t i e s  o r  i n e q u a l i t i e s ;  t h e  per formance  i n d e x  may be  de- 

f i n e d  o n l y ,  f o r  example ,  by t h e  t e r m i n a l  s t a t e  x ( T )  o f  t h e  sys t em,  

e t c .  

However, s u c h  m o d i f i c a t i o n s  may be  e i t h e r  r educed  t o  t h e  

c a n o n i c a l  Problem 1 ,  o r  it i s  p o s s i b l e  t o  u s e  f o r  them t h e  r e s u l t s ,  

s t a t e d  below f o r  Problem 1 [ 4 ] .  

3. Discussion 

F i r s t  o f  a l l ,  it s h o u l d  be n o t e d  t h a t  i f  T = 1 ,  t h e n  Problem 

1 becomes a  c o n v e n t i o n a l  LP problem. 

Problem 1  i t s e l f  c a n  a l s o  be c o n s i d e r e d  a s  a  c e r t a i n  " l a r g e "  

LP problem w i t h  c o n s t r a i n t s  on v a r i a b l e s  i n  t h e  f o r n  o f  e q u a l i t i e s  

( I ) ,  ( 2 )  and  i n e q u a l i t i e s  ( 3 ) ,  ( 4 ) .  I n  t h i s  c a s e  t h e  o p t i m a l  con- 

t r o l  Problem 1 t u r n s  o u t  t o  be an  LP problem w i t h  t h e  s t a i r c a s e  

c o n s t r a i n t  m a t r i x  ( T a b l e  1 ) .  But i n  t h e  m a j o r i t y  of  c a s e s  dynamic 

LP problems a r e  f o r m u l a t e d  now d i r e c t l y  i n  s t a t i c  LP l a n g u a g e ,  a s  

f o r  example Problem 2 ( T a b l e  2 ) :  

Problem 2. Find  v e c t o r s  Cx* ( I )  , . . . , x *  ( T )  1 ,  which maximize 

s u b j e c t  t o  

L e t  u s  e x p r e s s  t h e  s t a t e  v a r i a b l e s  x ( t )  i n  Problem 1  a s  an  e x p l i c i t  

f u n c t i o n  o f  c o n t r o l .  One c a n  o b t a i n  from ( 1 ) :  



where 

@(t,t+l) = I  , I - identity matrix . 

Using (3) it is also possible to get directly the constraints 

(3) imposed on control variables. As a result, we shall get the 

following LP problem with a block-triangular matrix (Table 3). 

Problem 3 .  Find the control u*, for which 

where the vectors h(t), w(t) and the matrices W(t,-c) depend on the 

known parameters of Problem 1. 

Problems 2 and 3 admit their modifications in the same way a.s 

Problem 1 (a block diagonal structure with coupling constraints 

or with both coupling contraints and variables, different types 

of staircase structure, etc.). They have been studied intensely 

[1,2,5-151. But unlike control Problem 1, such formalizations 

of dynamical problems make no distinction between state and con- 

trol variables. Therefore this approach makes it difficult to use 

the ideas and methods of the control theory. This difference will 

be more significant, when "pure" dynamic problems are considered 

(stability and sensitivity of DLP systems, control of the optinal 

programs, etc.). 

The DLP problems in the form of Problem 1 were introduced and 

studied in [4,16-271 . 

4 .  DLP Models  

Dynamic linear models, known in the literature, are usually 

formalized in static LP language, as Problems 2 and 3. To intro- 

duce DLP models in the form of Problem 1, let us consider, as an 

example, an ecological system. 



EcoZog icaZ  S y s t e m s .  W e  s h a l l  c o n s i d e r ,  a s  a n  example ,  t h e  

p rob lem o f  o p t i m a l  s p e c i e s  p o p u l a t i o n  u s e  w i t h i n  a  g i v e n  p l a n n i n g  

p e r i o d  [ 2 8 , 2 9 , 1 8 ]  . 
L e t  x i ( t )  b e  t h e  q u a n t i t y  o f  b i o l o g i c a l  t y p e  i a t  s t a g e  t 

i = l , . . . , n ) .  T h e r e  a r e  r ways of  u s i n g  t h e s e  s p e c i e s ,  w e  s h a l l  

d e n o t e  a s  u . ( t )  t h e  i n t e n s i t y  o f  way j  1 . . . r )  a t  s t a g e  t .  
3 

.Let t h e  numbers a i j ( t )  d e t e r m i n e  t h e  q u a n t i t y  o f  s p e c i e s  of  t y p e  

i ,  c a u g h t  (removed from s p e c i e s )  p e r  u n i t  i n t e n s i t y  o f  t h e  way j .  

If some s p e c i e s  i s  a  p e s t  r e l a t i v e  t o  t h e  o t h e r ,  s p e c i e s  o f  
n 

t y p e  i a t  s t a g e  t w i l l  d e c r e a s e  by t h e  C c i s ( t ) x s ( t ) ,  where  
j=1 

c ( t )  d e t e r m i n e s  t h e  number o f  i n 6 i v i d u a l s  o f  t y p e  i ,  devoured  i s  
by a  s i n g l e  i n d i v i d u a l  o f  t y p e  s .  

Thus ,  t h e  dynamic e q u a t i o n  f o r  t h e  change  of  t h e  i - t h  s p e c i e s  

q u a n t i t y  w i l l  b e  w r i t t e n  a s :  

Here a i  ( t )  i s  t h e  c o e f f i c i e n t  o f  n a t u r a l  i n c r e a s e  ( a i  ( t )  > O )  , o r  

m o r t a l i t y  ( a i  ( t )  < O )  o f  t h e  s p e c i e s  o f  t y p e  i. 

I t  s h o u l d  b e  n o t e d  t h a t  i n  ( 9 )  ui ( t )  f o r  some j  may a l s o  
J 

d e t e r m i n e  t h e  q u a n t i t y  o f  t h e  j - t h  c h e m i c a l ,  u sed  a t  s t a g e  t .  

The c o n s t r a i n t s  h e r e  may b e  f o r  example ,  

where g i k ( t )  - i s  t h e  s p e c i f i c  r e q u i r e m e n t  of s p e c i e s  i f o r  t h e  

k- th  r e s o u r c e ;  d k  i s  t h e  a v a i l a b e  q u a n t i t y  o f  t h e  k - th  r e s o u r c e ;  

where  u . ( t )  i s  d e t e r m i n e d  by t h e  t e c h n o l o g i c a l  c o n s t r a i n t s  o r  t h e  
3 

s a n i t a r y  norms. 

The p e r f o r m a n c e  i n d e x  may b e  t h e  t o t a l  h a r v e s t  f o r  t h e  e n t i r e  

p l a n n i n g  p e r i o d  



or a specific structure of the ecosystem, desirable at the terminal 

stage 

where the weight ai(t), Bi(T) coefficient is characterized by the 

importance of the species of type i. 

This simple example illustrates the basic idea for formulating 

DLP models. In what follows models of this type are only mentioned 

and not written down in detail. 

Economic Mode ls .  Linear programming is closely related to 

economic models [I, 21 . In fact, transformation of static LP to 

dynamic ones are stimulated in great degree by transition from 

static input-output models to dynamic ones. Dynamic types of in- 

put-output economic models were considered, for example, in [30, 

311. As the DLP Problem 1, a multisector dynamic economic model 

was formulated and investigated in [32]. 

Energy S y s t e m s .  Many models of short- and long-range devel- 

opment of energy systems are formulated as dynamical linear prob- 

lems [33-361. In [33] the energy model was stated as a DLP prob- 

lem with time lags. 

Large O r g a n i z a t i o n  S y s t e m s .  Many problems in large organi- 

zation systems such as, manpower p l a n n i n g  o r  e d u c a t i o n a l  s y s t e m s  

can be viewed as important applications of DLP. Some dynamic 

models of such kind were considered, for example, in [37]. 

I n d u s t r i a l  S y s t e m s .  Many of the short- and long-range plan- 

ning problems in industry, as well as the production scheduling 

problems are reduced to DLP. (See, for example, [10,381). 

R e g i o n a l  and Urban Prob l ems .  The extensive field of appli- 

cations of DLP is given by regional and urban planning problems. 

(See, for example [39] (agricultural model), [40-421 (water re- 

sources) , [ 4 3 , 4 8 ]  (transportation systems) . ) 



Reflecting on these short examples and references it should 

be noted, that many practical problems of control and optimization 

in energy, water, ecological, regional, and urban systems may be 

stated in the form of DLP. Therefore the work on the survey of 

the existing DLP models and on the design of new ones is of 

essential interest. 

5.  T y p e s  o f  DLP Prob lems  

In the preceding section the DLP problem of a general type 

was considered. Besides the general one, it is useful to single 

out dynamic transportation and distribution problems [18,43], 

integer DLP, convex dynamic programming [19,44]. To illustrate 

this aspect of the problem, let us consider simple transportation 

problems of DLP. 

The Dynamic T r a n s p o r t a t i o n  Problem.  We shall consider a 

transportation network with some homogeneous goods of i-th pro- 

duction and j; th consumption points (plants) . Let ai (t) be the 

production volume of the i-th point (i=l, ..., n) at stage t 
(t=O,1, ..., T-1) and b.(t) be the demand value of the j-th point 

3 
(j=l, ..., m) at stage t. 

It is assumed that each production or consumption point has 

an opportunity to store goods. We shall denote by y.(t), zi(t) the 
3 

quantity of stock goods at the i-th consumption point and j-th 

production point dt stage t; by ci(t), d.(t) the storage expendi- 
3 

tures of a unit of goods; u (t) will be the quantity of goods 
ij 

transported from the i-th to the j-th point at stage t; c (t) 
ij 

is the transportation cost of a unit of goods. 

Then the dynamics of the change of stocks will be determined 

by the equation 

n 
y. (t+l) = y. (t) + C uij (t) - bj(t) t y.(O)=y 0 3 3 i= 1 I j 

m 
zi (t+l 1 = z. (t) - E uij (t) + ai (t) , z. (0) = z 0 

1 1 
j=1 i 



with the constraints 

So, the problem is formulated as follows. To find a transportation 

plan {u* . (t) ) (control u* = {u* (t) ) )  such that it maximizes the 
1 3 i j 

total expenditures 

subject to constraints (1 0) and (1 1 ) . 
It should be noted that with T = 1 and y. (0) = 0, zi(0) = 0 

3 
the problem becomes a conventional LP problem of the transportation 

type. 

6 .  T h e o r y  o f  D L P  

The theory of DLP is connected with two main problems: 

(i) determination of optimal program; 

(ii) realization of this optimal program. 

D e t e r m i n a t i o n  o f  Op t ima2  Program.  This side of the theory 

is linked with duality relations and optimality conditions for 

Problem 1 ,  which are the base for building of numerical methods 

of DLP. 

Analysis of the Lagrange function of Problem 1 reveals the 

following dual DLP problem [ 1 6,4,17] . 

P r o b l e m  I D .  To find the dual control X = {X(T-I), ... X(Q)) 
and the associated dual trajectory p = {p(~), ...,p (0)) satisfying 

the co-state ,{dual) equation 

with the boundary condition 



subject to the constraints 

and minimizing the performance index 

Here p(t) E En; X (t) E Em; A (t) - > 0 are Lagrange multipliers for 

constraints (1 ) - (4) . 
The dual Problem I D  is a control-type problem as is the pri- 

mal one 1P. Here the variable X tt) is a dual control and p (t) is 
a co-state or a dual state at stage t. We- have reversed time in 

the dual Problem 13: t = T-1 ,...,1,9. 

T h e o r e m  I .  ( T h e  DLP " G l o b a l r r  D u a l i t y  T h e o r e m ) .  The solva- 

bility of either of the 1P or ID problems implies the solvability 

of the other, with 

If the performance index for any of the pair of dual problems 

' 1P or 1D is not bounded (from above in 1P, from below in ID), then 

the other problem has no solution. 

Let us introduce Hamilton functions 

and 

for the primal and dual problems respectively. 



T h e o r e m  2 .  (Y'he DLP "LocaZ" D u a Z i t y  T h e o r e m ) .  The solutions 

of the primal {u*,x*] and dual {X*,p*) problems are optimal if and 

only if the values of Hamiltonians coincide: 

Thus, the solution of the pair of dynamic dual problems can 

be reduced to analysis of a pair of static linear programs 

max H~ (p(t+l) ru(t)) 

min HD( ~ ( t )  , 1 (t) 

linked by the state (1 1 ,  ( 2 )  and co-state (1 2) , (1 3) equations. 

In particular, it can be shown, that there exist the following 

optimality conditions for problems 1P and ID [4,17]. 

Theorem 3 .  (Maximum P r i n c i p l e  o f  P r i m a l  ProbZem I P I .  The 

control u* is optimal for Problem 1P if and only if there exists 

a solution {X*,p*) to dual Problem ID, such that for any t = 0,1, 

. . . ,T-1 

max ~ ~ ( p * ( t + l )  .u(t)) = HD(p*(t+1).u * (t) 
u ( .t) 

where the maximization is carried out with respect to all u(t) 

satisfying constraints (3), ( 4 ) ,  and X (t*) is the optimal dual 

variable for LP problem (1 5) . 

T h e o r e m  4 .  (Minimum P r i n c i p Z e  f o r  Dual  P r o b l e m  I D ) .  The con- 

trol A* is the optimal for the problem 1D if and only if there 

exists a solution { u * , * l  to the primal problem 1P such that for 

any t = 0,1, ..., T-1 



min H (x*(t) .A(t)) = HD(xr(t) .A*(t)) , 
A (t) 

D 

where the minimization is carried out with respect to all A(t), 

satisfying the constraints (1 4) , ' and u* (t) is the optimal dual 
variable for the LP problem (16). 

The foregoing optimality conditions define a decomposition 

principle for solving the pair of dual problems 1P and ID. These 

conditions permit replacing the solution of the rT and mT - dimen- 

sional dynamic problems with variables u. (t) and A .  (t) (i=l,.. . , r; 
3 3 

j=l, ..., m; t=O,1, ..., T - 1 )  by the successive solution of T static 

LP problems (15), (16), containing r and m variables respectively 

and linked by the state equations (I), (12) with the boundary con- 

ditions ( 2 ) ,  (13). 

T h e  C o n t r o l  o f  t h e  O p t i m a l  Program.  Unlike static LP the 

realization of optimal solution in dynamic problems has no less 

importance than its determination. One should mention here the 

questions of realization of the optimal solution as a program (i.e., 

in dependence of the numbers of stage: u*(t) (t=O,...,T-1)) or 

as a feedback control (i.e., in dependence on the current value 

of states: u* (t) = u* (t, x* (t) ) ( t = O  T-1) ; stability and 

sensitivity of the optimal system, connection of optimal solutions 

for long- and short-range models, etc. These problems are waiting 

for their solution. We shall mention only some of them here. 

(i) It is often necessary to determine in what way the 

performance index and/or the optimal control will behave when the 

parameters of the problem are changing (for example, "prices" s(t), 

b (t) , "resources" f(t) , "demand" s (t) ) , (parametric DLP) . Solu- 

tion methods in this case can be developed on the basis of static 

parametric LP [ 1 , 2 ] .  A general approach to parametric problems 

of linear and quadratic programming is given in [45]. 

(ii) In computing the optimal program, especially for the 

large T I  it is very important to know, how the inaccuracy in know- 

ledge of matrices A(t), B(t) coefficients and other parameters of 

the system influences the stability of the optimal program and the 

quality of control (sensitivity problem). 



(iii) Assume t h a t  an aggrega ted  DLP problem f o r  a l a r g e  p lan-  

n ing  hor izon  T i s  so lved .  How can t h e  i n fo rma t ion  abou t  t h e  o p t i -  

mal dua l  p r o c e s s  { p * ( t ) , X * ( t ) )  of  t h e  agg rega t e  model be  of  any 

u s e  t o  t h e  o p e r a t i v e  s o l u t i o n  ( f o r  each c u r r e n t  s t a t e  of t h e  

system) of more d e t a i l e d  b u t  having a s h o r t e r  p l ann ing  hor izon  

DLP problem? 

( i v )  How can t h e  l o c a l  s y n t h e s i s  of t h e  sys tem,  i . e . ,  t h e  

c o n t r o l  of t h e  form 

6u* ( t )  = ~ ( t . 1  bx* ( t )  1 ( t = O , l f . - . , T - 1 )  

f o r  smal l  d e v i a t i o n s  of s t a t e s  b x * ( t )  from t h e  op t ima l  t r a j e c t o r y  

x* ( t )  be c a r r i e d  o u t ?  

7 .  Economic  I n t e r p r e t a t i o n  

A s t anda rd  economic i n t e r p r e t a t i o n  can be  g iven  t o  t h e  p a i r  

of d u a l  problems 1P and 1 D  and r e l a t i o n s  between them [17,181,  

analogous t o  t h o s e  o f  t h e  s t a t i c  LP problems [1 ,21.  

8 .  DLP Methods  

W e  s h a l l  d i s t i n g u i s h  f i n i t e  and i t e r a t i v e  methods f o r  s o l v i n g  

DLP problems. 

T h e  DLP  ini its M e t h o d s .  These methods a r e  t h e  development 

o f  l a r g e - s c a l e  LP methods f o r  t h e  dynamic problems. Now two main 

approaches  beg in  t o  be  r e v e a l e d  enab l i ng  u s  t o  b u i l d  DLP f i n i t e  

methods. 

The f i r s t  approach i s  based on decomposi t ion  methods o f  LP 

[ 1 , 4 6 , 4 7 ] ,  e s p e c i a l l y  on Dantzig-Wolfe decomposi t ion  [1,461.  For 

Problems 2 and 3 t h i s  t e chn ique  was used i n  [ lo-12,151,  f o r  Prob- 

lem 1 i n  [19,21,271.  I t  should  be noted  h e r e  t h a t  o r i g i n a l l y  

t he  Dantzig-Wolfe decomposit ion method was developed f o r  LP prob- 

l e m s  w i t h  b lock-angular  s t r u c t u r e  such a s  i n  Problem 3 [61. 

The second approach i s  based on t h e  f a c t o r i z a t i o n  of  c o n s t r a i n t  

m a t r i x  and used f o r  Problems 2 and 3 i n  [13-151 and f o r  Problem 1 

i n  [ 2 6 ] .  



I t e r a t i v e  M e t h o d s .  The application of the LP finite methods 

to the dynamic problems causes certain difficulties especially for 

the large planning horizon T. This can be explained by the fact 

that in these methods the approach of an approximate point to the 

optimum is fulfilled over the vertices of the feasible polyhedral 

set (in some space). But the number of vertices of such a set for 

the dynamic problems increases exponentially with T I  so does the 

volume of calculation. 

The iterative LP methods seems to by-pass these difficulties. 

They are also characterized by low demands to the.computerls 

memory, the simplicity of the computation flowchart, low sensi- 

tivity to the disturbances. 

We shall differentiate the following iterative methods. 

P e n a l t y  F u n c t i o n s .  This is one of the most universal and 

simple technique of optimization. But its direct use of 

the DLP problem is hampered by relatively low convergence rates 

in the vicinity of solution. The idea of extrapolation of decision 

was suggested in [ 2 2 ]  which remarkably improves the effectiveness 

of the method for static LP and is developed for DLP in [ 2 3 1 .  

G e n e r a Z i z e d  G r a d i e n t s  M e t h o d s .  The other group of methods 

is based on finding the extremum of function 

$(Alp) = max L(u,x;X,p) 
x,u~O 

$(u,x) = min L(u,x;X,p) 
p,X>O - 

where ~(u,x;X,p) is the Lagrange function of Problem 1P (Problem 

ID). 

It can be shown that minimization of $(Alp) is equivalent to 

solution of the dual Problem ID, while the maximization of $(u,x) 

is equivalent to the solution of primal Problem 1P. But functions 

$ and $ nondifferentiable by nature, so the generalized gradient 

technique [ 4 8 ]  is needed. Application of the generalized gradients 

for DLP reduces the solution of large DLP Problem 1P to successive 

solutions of small LP problems (1 5) , ( 16) . 



Modified Lagrange Function Methods. The i d e a  of t h e  method 

was s u g g e s t e d  i n  [ 4 9 ] ,  a l t h o u g h  t h e  methods o f  t h i s  g r o u p  began 

t o  be  deve loped  o n l y  r e c e n t l y  [50-511. T h i s  approach  combines 

t h e  a c c u r a c y  of f i n i t e  methods w i t h  s i m p l i c i t y  o f  i t e r a t i v e  o n e s .  

The t h e o r y  o f  t h e  method f o r  DLP was c o n s i d e r e d  i n  [241. One o f  

i t s  r e a l i z a t i o n s  based  on  employment o f  t h e  Kalman-Bucy f i l t e r  

t e c h n i q u e  [52]  was g i v e n  i n  [ 2 5 ] .  

9. Some Extensions 

N a t u r a l l y ,  a l l  t h e  p r a c t i c a l  p roblems c a n n o t  be k e p t  w i t h i n  

t h e  framework o f  DLP. H e r e  w e  s h a l l  s t a t e  t h e  f i e l d s  o f  DLP d e v e l -  

opment,  which a r e  o f  t h e  g r e a t e s t  i n t e r e s t .  

Nonlinear Dynamic Programming. T h i s  i s  e s s e n t i a l l y  t h e  o p t i -  

mal  c o n t r o l  t h e o r y  o f  t h e  g e n e r a l  t y p e  o f  d i s c r e t e  s y s t e m s  w i t h  

s u b s t a n t i a l  u s e  o f  n o n l i n e a r  programming t e c h n i q u e s .  Some a p p r o a c h e s  

i n  t h i s  d i r e c t i o n  have  been c o n s i d e r e d  i n  [ 4 , 4 4 ] .  

Stochastic DLP. W e  s h a l l  o n l y  n o t e  [53 ,54 ]  h e r e  t h e  p a p e r s  

on  m u l t i - s t a g e  s t o c h a s t i c  programming. 

Maxi-min (mini-max) DLP Problems. The s o l u t i o n  o f  s u c h  prob- 

l e m s  i s  o f  c o n s i d e r a b l e  p r a c t i c a l  i n t e r e s t  when g u a r a n t e e d  c o n t r o l  

q u a l i t y  i s  t o  be  o b t a i n e d  under  t h e  c o n d i t i o n s  o f  u n c e r t a i n t y ,  a s  

w e l l  a s  f o r  s e n s i t i v i t y  a n a l y s i s ,  and  game problems o f  p l a n n i n g .  

L e t  i n  Problem 1 t h e  v a l u e s  o f  v e c t o r s  s ( t )  b e  unknown, and 

o n l y  t h e  r a n g e  o f  t h e i r  v a r i a t i o n s  St be  known, which i s  assumed 

t o  be bounded p o l y h e d r o n s .  

Problem 4. F i n d  c o n t r o l  u* and t h e  t r a j e c t o r y  x* s u b j e c t  t o  

( 1 ) - ( 3 )  and p r o v i d i n g  

max min J ( u , s )  = w- , 
u  S 

1  1  

where s = { s ( t )  E St}, t h e  per formance  i n d e x  J1 i s  d e t e r m i n e d  from 

( 5 ) .  

Problem 5. F i n d  c o n t r o l  u* and  t r a j e c t o r y  x* s u b j e c t  t o  ( 1 ) -  

( 3 )  and  p r o v i d i n g  



max min ... max min J1 = o- 
u(0) s(3) u(T-1) s(T-1) 

2 -  

The solution of Problems 4, 5 guarantees the values of the 

performance index J1 no worse than oi, if the program control u* 

is realized and no worse than o (with o- > o-) if there is a 2 2 -  1 
possibility of recalculation of the program for each x(t) (the 

feedback control u(t) = u(t,x(t)) of a system). The solution of 

Problems 4, 5, is considered in [ 5 5 ]  . 

Above a short survey has been given of the contemporary state- 

of-the-art in dynamic linear programming, reflecting the author's 

possibilities and point of view. The development of optimization 

methods for dynamic problems, i.e., planning and control methods 

for large scale problems (which are of such a necessity in our 

dynamic world), irrespective of the directions they will take, 

will, undoubtedly, enrich the practice of decision making in 

complex systems. 
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