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PREFACE 

L q - s c a l e  optimization models yise in manv a rea  of application at IL4S.A. For 
example. juch models are useful for estimaang the economic value of introducing solar 
and wind generated elecmcd energ  into an exiSting power grid and ior tieterm- 
eqrulrbrium prices for agricultural commodities in international trade as a function ot' 
nationai policies. Certain metho& of decomposition for solving juch optimization 
problems require the solution of a relativelv j m d  problem whose objective function 
is not everywhere differentiable. This paper gves an implementable dgorithm that 
can be used to ~olve such nonsmooth optimization problems. 





We pment an implcmentable algorithm for solving constrained optimization 
problems defined by functions that are not everywhen diifenntilhle. The method is 
based on combirung, modifylnq and extendiq the nonamooth optimization work of 
Wolfe. Lemarechd. Feuer, Poljak m d  Memll. It can be thought of as a generalized 
nset conjugate gradient algorithm. 

We &o introduce the class of weakly upper jemismooth functions. These 
functions are locally Lipschitz and have a jemicontinuous relationship between their 
generalized gradient jeu and their directional derivatives. The algorithm is shown to 
converge to stationary points oi the optimization problem if the objective and constraint 
functions are weakly upper 3emismooth. Such poinu are optimal points if the problem 
functions are also iemiconvex and a constraint qualiiication is jatisfied. Under stronger 
convexity aslarmptiona. bounds on the deviation from optimality o i  the a@orithm 
iterates are given. 





.An Algorithm for Constrained 

Optimization with Senismoth Functions 

1. INTRODUCTION 

In this paper we ?resent an implementable algorit.hm for solv- 

ing very general constrained optimization problems of the follow- 

ing type : 

minimize f (X I  

subject to h ( x )  0 

where x c_ R" and f and i.l are real-valued functions that are "locally 

Lipschitz", i.2. Lipschitz continuous on aach Sounded subset of 

R". These problems are "nonsmooth" in the sense that the ?roblem 

functions f and h need not Se differentiable everywhere. Xowever, 

locally Lipschitz functions do have "generalized qradiencs" (Clarke 

[ 2,31 ) and a necessary optinality condition [ 31 is that che zero 

vector is 3 certain convex combination of generalized gradients 

of f and h. This "stationarity" condition is sufficient for op- 

timality if f and n are " semiconvex" [ 271 and a constraint qualifi- 

cation is satisfied. 

Our algorit,* combines, extends and inodilies ideas contained 

in Wolfe [19] , Feuer [ 10, I:], Poljak [31] and Yerrill (361 and, by 

means of a map defined in g61, deals with "corners" arising from 

constraints in the same manner as it handles discontinu~tics of 

the problem function gradients. It has accumulation ?oints tbat 

satisfy the above stationarity condition if f and h are "weakly l~p- 

per semismooth" as defined in section 2. Such functions have a 

semicontinuous relationship between their generalized gradients 2nd 

directional derivatives where this relationsh~p is sroperly weaker 

than the corresponding one for "semismooth" functions introduced 

in [L71 . 



The d i f f i c u l t i e s  i n  minimizing a  nonsmooth f u n c t i o n  a r e  w e l l  

d i s cus sed  i n  [39] and [ l o ] ,  where implementable d e s c e n t  a lgo r i t hms  

a r e  g iven .  Wolfe ' s  method [39] i s  f o r  a  convex f u n c t i o n  and Feuer 

(10,111 has  extended i t  f o r  f i n d i n g  a  s t a t i o n a r y  p o i n t  of a  f u n c t i o n  

t h a t  i s  t h e  poin twise  maximum o r  minimum of a  fami ly  of con t inuous ly  

d i f f e r e n t i a b l e  func t ions .  In  [17] we snow t h a t  such f u n c t i o n s  a r e  

p rope r ly  conta ined  i n  t h e  c l a s s  of semismooth f u n c t i o n s .  The a l -  

gor i thm i n  [39] i s  c l o s e l y  r e l a t e d  t o  t h a t  of Lemarecfial (211 and f o r  

a  q u a d r a t i c  f u n c t i o n  t h e s e  both c o i n c i d e  wi th  t h e  method of con- 

j uga t e  g r a d i e n t s  [I71 and ,  hence,  have f i n i t e  t e r m i n a t i o n  i n  t h i s  

c a s e ,  a s  does an  a lgo r i t hm of Shor [35 ,36 ,37 ]  . 
The descen t  approach f o r  convex f u n c t i o n s  of Be r t s ekas  and 

f l i t t e r  i l ]  has been made implementable by Lemarechal [ 191 and has 

been extended i n  theory  t o  l o c a l l y  L i p s c h i t z  f u n c t i o n s  by Go lds t e in  

[ 1 4 1  . Descent a l g o r i t A h s  f o r  min-max o b j e c t i v e s ,  which a r e  a l s o  
d i f f i c u l t  t o  implement, a r e  g iven  i n  Demjanov i51 and Go lds t z in  [I31 . 

Lemarechal [Z f ) ]  has a l s o  sugges ted  a  method f o r  c o n s t r a i n e d  

convex programming problems which d e a l s  wi th  n o n l i n e a r  c o n s t r a i n t  

f u n c t i o n s  by means of an exac t  p e n a l t y  f u n c t i o n  approach [U,9, 

28,401 . 
S h o r t s  [34] nondescent " subgrad ien t  algorit,hm" f o r  uncons t ra ined  

convex problems was extended t o  c o n s t r a i n e d  problems by Po l j ak  [31] ,  

who developed a  method t h a t  u se s  subgrad ien t s  of t h e  o b j e c t i v e  func- 

t i o n  a t  f e a s i b l e  p o i n t s  and subgrad ien t s  of t h e  c o n s t r a i n t  f u n c t i o n s  

a t  i n f e a s i b l e  p o i n t s .  Th i s  i d e a  is  r e l a t e d  t o  a  concept  employed 

by H e r r i l l  [36] f o r  s o l v i n g  c o n s t r a i n e d  problems by means of a  f i x e d  

p o i n t  a lgo r i t hm.  S i m i l a r  i deas  were a l s o  developed by Hansen 1151, 

Hansen and Scar f  [16]  and Eaves [ 6 ]  f o r  s o l v i n g  convex ?rogramming 

problems by f i x e d  poin t - type  a lgo r i t hms  [ 7 , 3 3 ] .  These methods a r e  

cornbina tor ia l  i n  n a t u r e  and a b l e  t o  soL:re e q u i l i b r i u m  problems t h a t  

a r e  more g e n e r a l  than convex programming problems. Our algorithm 

d i f f e r s  from t h e s e ,  because i t  i s  a  f e a s i b l e  p o i n t  method which de- 

?ends s i g n i f i c a n t l y  on t h e  c o n s t r a i n e d  o p t i m i z a t i o n  n a t u r e  of t h e  

groblern. The method nay use informat ion  from i n f e a s i b l e  p o i n t s ,  
bu t  t h e  o b j e c t i v e  f u n c t i o n  f  need no t  be eva lua t ed  a t  such p o i n t s .  

Our -a lgo r i t hm employs a  l i n e  s ea rch  3rocedure a long  d i r e c t i o n s  

t h a t  may be i n f e a s i b l e ,  and,  hence,  t h e  method i s  n o t  a  f e a s l b l e  



direction (IJl] algorithm. However, it is related to the similar 

feasible direction methods of Mangasarian [241 (see also [I21 ) and 

Pironneau and Polak [29] for continuously differentiable functions. 

As with ours, these methods have search direction finding subprob- 

lems that are quadratic programming problems involving convex com- 

binations of problem function gradients. Our method differs, be- 

cause there is no linear term in the subproblem objective related 

to complementary slackness and not all of the subproblem data need 

be changed from iteration to iteration. Because we do not assume 

differentiability, our subproblems may include more than one gen- 

eralized gradient from the same problem function. This can be a 

good idea even in the case of differentiable functions, because it 

can bring curvature information about the functions into search 

direction determination and, thas, have the potential for better 

than linear convergence. There are tests in our algorithm which 

attempt to smooth or balance the process of retaining or dropping 

accumulated gradient information, and hopefully allow the method 

to behave like a reset conjugate gradient [?2,151 algorithm when 

applied to smooth unconstrained problems. This process is flexi- 

ble and gives the algorithm the potential for a good rate of con- 

veryence. 

The algorithm is defined in section 3 where we also discuss 

how it compares to and differs from the methods in [I9 1 , [ 211 and 

p?] when applied to unconstrained problems. 

In section 4, under the assumption that f and h are weakly 

upper semismooth, we show that either our line search procedure 

is finite or f is unbounded from below on the set of feasible 

points. 

In section 5 we show stationarity of the algorithm's accumula- 

tion points. Under convexity assumptions, we give bounds on the 

deviation from o~timality of the iterates for a version of the 

algorithm which uses a gradient deletion rule that is especially 

designed for convex problems. 

Throughout this paper we mostly adhere to the notation in 

[:j2] and [ j 9 ]  . For example, conv (5) denotes the convex hull of a 



n  P s e t  s c R , i. e .  x  3 conv ( S )  i f  and on ly  i f  x  = 3 A .  xi where g  i s  a  
i= 1 1 

D 
> O  and x i e S  f o r  i = 1 , 2  ,..., p and 4 .  =l. p o s i t i v e  i n t e g e r ,  X i  = 

i = l  

The s c a l a r  g roduc t  of x  = ( x ,  , x2 ,  . . . , xn)  and y  = (y  , y 2 ,  . . . , y n )  i n  
n - - 

n  
R , d e f i n e d  by 1 xiyi ,  i s  denoted  < x , y >  and t h e  Eucl idean  n o r a  

i= 1 

of x ,  d e f i n e d  by ( < x , x > ' / ~ ~ ,  is denoted  1 x 1 .  

2 .  DEFINITIONS AND PRELIMINARY RESULTS 

2a.  Loca l l y  L i p s c h i t z  and Semismooth Func t ions  

Le t  B be an open s u b s e t  of R" and F  : R" - R be L i p s c h i t z  on a, 
i . e .  t h e r e  e x i s t s  a  g o s i t i v e  number K such t h a t  

J F ( ~ )  - F ( z )  2 ~ / y - z /  f o r  a l l  y , z  z B . 

I f  F  is  L i p s c h i t z  on each bounded s u b s e t  of Rn t hen  F  is c a l l e d  

i o c a l i y  i i ? s c h i t z .  

Let  x  E B and d  E Rn.  A s  i n  C la rke  [ 3 ] ,  l e t  

P O  ( x ; d )  = l i m  sup  [F (x+h+td)  - F  (x+h) 1 /t 
h- 0  
t + O  

and l e t  3 F ( x )  denote  t h e  q e n e r c z l i z e d  g r a d i z n t  of  F  a t  x  d e f i n e d  

by 

a F ( x )  = . ~ q  E R" : < q , d >  2 F0 ( x ; d )  f o r  a l l  d  E R"! . 

The fo l l owing  p r o p o s i t i o n  c o l l e c t s  t o g e t h e r  u s e f u l  p r o p e r t i e s  of  

r"' and 3F. 

?reposition i . 
( a )  2F ( x )  1s a  nonernpty convex compact s u b s e t  of R" [ 3 ]  . 

(b) F 3 ( x ; d )  =max [ < q , d > : g ~ 3 F ( x ) ]  [ 3 1  . 



( c )  I f  {xk 1 c B converges t o  x  and gk E aF (xk)  f o r  each k  

then lgk(  ;K and each accumulation po in t  g  of {gk} 

s a t i s f i e s  g  E a F ( x ) ,  i . e .  aF i s  bounded on bounded sub- 

s e t s  of B and i s  uppersemicontinuous on B [31 . 
(dl Let y  and z be i n  a  convex subse t  of B. Then t h e r e  

e x i s t s  X E ( 0 , l )  and g ~  aF(y+X(z-y))  such t h a t  

i. e .  a  mean value  r e s u l t  holds [ I  81 . 
(e l  Let { tk l  + 0, (hk l  + 0  E Rn and F* be any accumulation 

0 f 

Then t h e r e  e x i s t s  g  E aF ( x )  such t h a t  

I f  l i m  [F (x+ td )  - F  ( x )  ] / t  e x i s t s  it i s  denoted by F' (x ;d )  and 
t+ 0 

c a l l e d  t h e  directional derivative of F  a t  x i n  the  d i r e c t i o n  d. 

Note t h a t  i f  F' (x ;d )  e x i s t s  then,  by (e) above, t h e r e  e x i s t s  

g  E aF (x)  such t h a t  

Def in i t ion  1 and Proposi t ion 2 to  follow a r e  given i n  [27 I 
along with o the r  p r o p e r t i e s  and examples of semismooth funct ions .  

3ejinition I .  F  : R n + R  i s  semismooth a t  x E Rn i f  

( a )  F  is  Lipschi tz  on a  b a l l  about x 

and 



n  ( b )  f o r  each d  z R and f o r  any sequences C t k l c  R+, Z R "  

and igk} C R" such t h a t  

< t k )  4 0 ,  { 3  / 1 - 0  s R" and gk E 3F(x+tkd+ak)  , k  tk 

t h e  sequence [ < g k , d > )  has e x a c t l y  one accumulat ion p o i n t .  

I f  F  is  semismooth a t  x  t hen  f o r  each d  E Rn, F '  ( x ; d )  e x i s t s  

and e q u a l s  l i r n  < g k l d >  where [gk}  is  any sequence a s  i n  D e f i n i t i o n  1 .  
k+- 

9 z f i n : : ; i o n  2 .  F  : R n + R  i s  weakly  u p p e r  semismooth a t  x  t 3 n  

i f  

( a )  F  i s  L i p s c h i t z  on a  b a l l  about  x  

and 

( 5 )  f o r  each d  t 2" and f o r  any sequences { t 'i z R+ and k  
i g k i C  Rn such t h a t  [ t k l '  0  and gk 5 3F(x+ tkd )  it fo l l ows  

t h a t  

l i r n  i n f  < g k l d >  2 l i r n  sup [ F ( x + t d )  - F  ( x )  ] / t  . 
k+- t ~ 0  

2 r o p o s 2 t i o n  3 .  

I f  F i s  weak ly  xppsr  semiarnooth a t  x  then  f o r  each  d  : Rn, 

F'  (x:d)  e x i s t s  and t h e r e  e x i s t  sequences i r ,  ; C R+ and !gk: c R" 
L 

such t h a t  : r  1 + 0, gk E 3F (x+rl<d)  and k 

l i r n  < g  , d >  = F '  ( x :d )  . 
:c +a 

k 

r o o f :  Suppose i r k )  i 0 is a  sequence such t h a t  

l i r n  [F ( x + ~ ~ d )  - F  ( x )  ]/rk = l i m  i n f  [ r " (x+ td )  - F ( x )  ] / t  
:< -a t r O  

By ( d )  of P r o p o s i t i o n  1 ,  t h e r e  e x i s t s  t, r ( O , r ,  ) and g, s 3F(x+ tkd )  .< .< X 
such t h a t  



Then, by Definition 2, since {tk} + 0,  we have 

Lkn [F (x+-rkd) - F (x) I /fk = Lkn cgkf& - 2 l h  sup [F (x+td) - F (x) 1 /t . 
k +- k- tSO 

So. 

l h  inf [F (x+td) - F (x) ] /t = lim <gkf& 2 l h  sup [F (x+td) - F (x) 1 /t 
t+ O k- t$O 

and the desired results follow ~nunediate1y.o 

It is clear from the above definitions and propositions that 

the following holds : 

P r o p o s i t i o n  4 .  

If F is semismooth at x then F and -F are weakly upper semi- 

smooth at x. 

We say that F is weakly upper semismooth (semismooth) on XCR" 

if F .is weakly upper semismooth (semismooth) at each x E X. 

An example of a locally Lipschitz function F(x) for x E R  that 

is weakly upper semismooth on R but not semismooth at x =  0 is the 

following: 

and for each integer n = 1,2, ... 

It can be verified that F1(O;l) = 0  and aF(0) =conv {0,1) is the 

set of possible accumulation points of Cgkl where gk E 2F(xk) and 

{xkj + 0. Note also that the locally Lipschitz function -F(x) is 
not weakly upper semismooth at x = 0 .  

From [27, Proposition 31 and Proposition 4 we have the follow- 

ing : 

F ( x )  = 

P r o p o s i t i o n  5 .  

1 1 1 1 2  1 
(1 +,$ ( x - ~ )  n+ for -[I n - (T) n+ ] 2 x 2 z 

I 

1 1 2  1 
-(X- (-) ) for - 1 1 2  

. n n+ 1 + X 2 1 - (-1 n+ 1 1 . 

If F : R" - R is convex, then F is locally Lipschi tz, 



n n 
3F (x) = ig s R : F (y) 2 F(x) 7 <g, ;I-x> tor all y 5 8 1 for a& x R" , 

F is semismooth on Rn and, hence, F is weakly upper semismooth on 

R" . 
,?emark: 3F in Proposition 5 is called the ~ubdiffersnital 

[32] of the convex function ?.  We refer to the inequality in the 

expression for 3F as the subgradiznt inequality. 

2b. Stationarity 

Corresponding to the locally Lipschitz ontimization problem 

funct~ons f and 5 ,  define :4 : R"-zdn by 

This map was introduced and used by Merrill r36, Chapter 121 for 

problems with differentiable and/or convex functions. .. - n .  we say that x E R" is feasi3Lz if h (x) 5 0 and that x : R 1s - 
q z i r n a L  if is feasible and f (E) 5 f (x) for all fessible x. We - 
call ; c R" s : a z i o n a ~ y  if 2 is feasible and 0 5 1\1(;). The following 

necessary optirnality result is proved directly in [271 and follows 

from a nore general result in [3 1 : 

I 

If x is optimal then x is stationary. 

X(x) = 

From parts (a) and (c) of Proposition 1 ,  the definition of 

N and Caratheodory's theorem [32, Theorem 17.11 one can derive ths 

following result useful for establishing convergence of our algor- 

ithm: 

3f (x) if h(x) < 0 

1 conv I3f (x) U 3h(x) !, n for x c R  . 

!4 is bounded on bounded subsets of R", ?4 is uppersenicontin- 

uous on Rn, and for each x z R" !4(x) is convex. 

ah (x) 



3.  THE ALGORITHM 

For x  E R n ,  d  E Rn and pa r ame te r s  m l  and in2 s a t i s f y i n g  

0  c m 2  < m l  < 1  w e  d e f i n e  

LT = ( t l O  - : f ( x + t d ) - f i x )  r - m 2 t d 2 1  - h ( x + t d l  2 0 )  - 

and 

where g  ( t )  f o r  t 2 0  is an element  of  M(x+td) r e t u r n e d  by a  u se r -  

s u p p l i e d  s u b r o u t i n e .  For  e a s e  of  e x p o s i t i o n ,  w e  assume t h a t  

g ( t )  E af ( x+ td )  i f  h ( x + t d )  = 0  and w e  d e n o t e  g ( 0 )  by gx. 

G i s  a  se t  o f  g e n e r a l i z e d  g r a d i e n t s .  A t y p i c a l  e lement  o f  G 

is  denoted  g  and a s s o c i a t e d  w i t h  each  g .  E G t h e r e  i s  - a  y E R" such  
j  I j  

t h a t  g .  E M(y.1 .  The a l g o r i t h m  r e q u i r e s  t h e  s o l u t i o n  of  t h e  prob- 
3 3 n  2 

l e r n o f  minimizing I E / ~ = ~ ~ ~  z i  s u b j e c t  t o  3 -  & A . g . ,  5 i . 1 ,  
g,cG 1 1 3 1 

J 

A .  0  f o r  a l l  j .  The minimizing z  is  deno t ed  by N r ( G ) ,  i - e .  N r ( G )  
3 - 

i s  t h e  n-vec tor  i n  conv ( G )  n e a r e s t  t o  t h e  o r i g i n  w i t h  r e s p e c t  t o  

Euc l i dean  d i s t a n c e .  S i n c e  t h i s  problem i s  a  q u a d r a t i c  programming 

problem having  a  ve ry  s p e c i a l  s t r u c t u r e ,  e s p e c i a l l y  e f f i c i e n t  f i -  

n i t e  a l g o r i t h m s  such a s  i n  [38] can  be  de s igned  f o r  i t s  s o l u t i o n .  

The a l g o r i t h m  r e q u i r e s  a  s t a r t i n g  f e a s i b l e  p o i n t ,  i . e .  an 

xO 5 Rn ouch t h a t  h  ( x o )  2 0. I f  such  a  p o i n t  i s  n o t  immediately 

a v a i l a b l e ,  w e  may app ly  t h e  a l g o r i t h m  t o  t h e  uncons t r a ined  prob- 

lem of  minimizing h ove r  R". Under c e r t a i n  assumpt ions  (see 

Theorem 5 . 2 ,  C o r o l l a r y  5 . 3  and Theorem 5 . 5  below) t h i s  a l g o r i t h m  

w i l l  f i n d  a  f e a s i b l e  p o i n t .  

I n  a d d i t i o n  t o  assuming h ( x o )  2 0 ,  w e  assume t h a t  go # 0  where 

go E a f ( x o ) .  Bes ides  inl and m 2 ,  t h e  a l g o r i t h m  r e q u i r e s  3 0 s i t i v e  

pa r ame te r s  a l , ~ 2 , B 1 , s 2  and q  s a t i s f v i n g  a 2  < a l ,  q~ 1 and 
- 

s 2  5 e l  < I /  1 g O l q - l .  Given t h e  above d a t a  and d e c i n i t i o n s  t h e  a l -  

g o r i t k !  is  a s  f o l l ows :  

S t e p  0  ( I n i t i a l i z a t i o n ) .  S e t x = x  G = C g O l ,  d = - g o  and : ' = g o .  0 '  



Step  1 (L ine  Sea rch )  . S e t  tL = 0 ,  s = + m  and t = + m  and choose R 
t > 0 .  

Loop: I f  t E LT s e t  t = t .  Otherwise s e t  tx = t .  
L 

I f  t E RT s e t  tR = t .  

I f  t x -  t < 3 ; / d l  go t o  End. Otherwise  r e p l a c e  t by 2 t  i f  
L =  2 

+ = +m o r  by $ ( tL + \ )  i f  tN i s  f i n i t e  and go t o  Loop. -x 
End: S e t  y L = x +  t , d ,  

.A 
q L = q ( t L ) ,  y R = x + t  R d and q R = q ( t R ) .  

S t e p  2  (Update x , G 1 6  and d ) .  

a .  Replace x  by yL.  

b.  Replace G by G U{qL ,qR) .  

c .  De l e t e  a l l  p o s s i b l e  q .  from G acco rd ing  t o  d e l e t i o n  
I 

r u l e s  I  o r  I 1  g iven  below s o  t h a t  i f  q  . z M ( y  . ) i s  
I I 

d e l e t e d  t hen  [ x  - y j  > 2 1 .  
d.  Compute N r  ( G )  . 
a .  I f  ~r ( G )  1 < 325q r e ? l a c e  6 by a l  jq and go t o  St?? 2c'. 

Otherwise s e t  d  = - N r  ( G )  , r e p l a c e  5 by min [ t  , d  1 ] and 

go t o  S t ep  1 .  

De l e t i on  Rules .  De l e t e  q .  5 M ( y . )  from G i f  
I 3 

I I a .  h ( y . )  > 0 
1 

and 

and 
. , f ( ; , . )  - f ( x )  + < q . , x - Y j >  < - Q 1 . : g x - q j l  

I I 

where 



Using the  Cauchy-Schwartz i n e q u a l i t y  it i s  not  d i f f i c u l t  t o  

e s t a b l i s h  t h e  following r e s u l t  t h a t  shows t h a t  t n e  delet ion- re- 

quirement of Step 2c i s  s a t i s f i e d :  

Lemma 3.1. I f  (3 .2)  holds ,  o r  i f  (3 .3 )  and (3.41 hold ,  then 

( 3 . 1 )  holds.  

u s :  Some i n s p i r a t i o n  f o r  r u l e  I I a  cane from Elzinga and 

Moore's [ 81 c e n t r a l  c u t t i n g  plane method. 

I t  i s  c l e a r  t h a t  (3.3) i s  s a t i s f i e d  i f  f  i s  convex on a  convex 

s e t  conta ining x  and y  Thus, ( 3.3) need n o t  be checked i f  i t  i s  
1 -  

known t h a t  f  is convex. The advantage of r u l e  I1 over r u l e  I ,  when 

appl ied  t o  convex problems, is t h a t  the  former requ i res  s to rage  of 

two s c a l a r s ,  h ( y . )  and < g .  > i f  h ( y . )  > 0  o r  [ < g j , y j >  - f ( y j ) ]  i f  I I lY1 I 
h  (y ) 6 0 ,  i n s tead  of t h e  n-vector y  . Rule I I b  a l s o  has a  good 

I ' 
f e a t u r e  f o r  t h e  case when f  is p o ~ y h e d r a ~ ,  i . e .  , the  maximum of a  

f i n i t e  number of a f f i n e  funct ions .  In t h i s  case  i f  x  and y .  a r e  on 
I 

t h e  same polyhedral  p iece ,  i . e .  , f  ( x )  = f  (y . )  + < g j  ,x-y. > , then 
3 I 

r u l e  I I b  w i l l  no t  drop g .  no matter  how f a r  y .  i s  away from x .  Use 
3 3 

of t h i s  r u l e  causes t h e  polyhedral  example due t o  M . J . D .  Powell m [391 

t o  be solved i n  a  f i n i t e  number of s t e p s ,  i f  t h e  l i n e  search proce- 

dure i s  modified t o  f i n d  t h e  exact  minimum of f ( x + t d )  over t >  0 ,  

which i s  poss ib le  i n  the  polyhedral  case .  ' 

These d e l e t i o n  t e s t s  which a r e  appl ied  before each N r ( G )  c a l -  

cu la t ion  cause s e l e c t i v e  dropping of o ld  genera l ized g rad ien t s .  

When appl ied  t o  unconstrained problems, t h i s  makes our method s ig -  

n i f i c a n t l y  d i f f e r e n t  from t h e  methods i n  [10,21,391, because these  

l a t t e r  algori thms accumulate g rad ien t  information u n t i l  Cer ta in  

d i s t ances  a r e  too l a r g e  and then drop a l l  but  t h e  most r ecen t ly  

generated g rad ien t .  Our method a l s o  d i f f e r s  from those i n  [10,21,39] 

because of the  way it incorporates  a  convergence v a r i a b l e  5 t h a t  is 

automat ica l ly  generated and forced t o  zero by t e s t s  involving user- 

supplied parameters. 

For the  case  of quadra t i c  f  and no c o n s t r a i n t  h the  f i n i t e l y  

terminat ing conjugate gradient  property i n  [39,  Section 6 1  is re- 

t a ined  i f  our l i n e  search is modified t o  be exact  and a ,  happens 

t o  be so  l a r g e  t h a t  no d e l e t i o n  a t  Step 2c occurs.  



Our line search subroutine is a modification of the 

bisection-type procedure in [ 3 9 ]  which was modelled on the 

differentiable case. The idea of using two points from the line 

search rather than one appears to be new and is crucial in deal- 

ing with constraints. Our procedure has a stopping criterion 

depending on the convergence variable 6 and different decision 

rules from those in [39] due to the fact we work on nonconvex 

and/or constrained problems and LTnRT may have an empty interior 

4. LINE: SEARCH CONVERGENCE AND ASSOCIATED RESULTS 

Throughout the remainder of this paper we assume that f and 

h are weakly upper semrsmooth functions on S CR" where S 1s the set 

of all points in Rn lylng within a Euclidean distance of L.2 : g o  o f  

In this section we discuss convergence of the line search 

procedure in Step 1 of the algorithm and give some implications 

of this procedure's termination conditions. This discussion de- 

pends on our parameter choices satisfying 0 < m2 < m < 1 .  
1 

Theorem 4 . 1 .  Suppose  x E S o ,  I dl # 0 znd  6 > 0 .  Then t h e  

Zine  s e u r c n  procedure  o f  S t o p  1 o t t h e r  

(rrl  r e r m i n a t e s  v i t h  tL, yL, y R  222 g sat is'^ T' 

R J ,J ang 

a n d  

, , - .  
9 ,  g e n e n ~ s e s  7 s ~ c i i e n s e  it. I - +m s u c h  : h a :  

. . if ( x +  tkd) l - - m  zrld h ( x  + tkd) 2 3 f g n  ;:_ k .  



?roo j: I f  every t genera ted  by t h e  s e a r c h  s a t i s f i e s  t z LT 

and t # XT then 5 and tR remain +-, t h e  procedure does not  termin- 

a t e  and doubling causes t -  +-. In  t h i s  c a s e  t h e  d e f i n i t i o n  of LT 

shows t h a t  h ( x + t d )  5 0  f o r  a l l  t and f ( x + t d )  ---, s i n c e  -m21dI2 < 0 ,  

so  ( b )  holds .  

Suppose ( b )  does not  hold.  Then some t e i t h e r  s a t i s f i e s  t f LT 

o r  t a RT. In  t h e  former c a s e ,  '% becomes f i n i t e ,  doubling ceases  

and b i s e c t i o n  beg ins ,  un le s s  t he  procedure t e r m i n a t e s ,  because 

t - t L = t 4 - \ i a 2 S / l d l .  I f  t he  former case  does not  hold ,  i . 2 .  

t E LT, then t e LT n RT and t h e  s e a r c h  t e rmina te s .  I f  t h e  sea rch  does 

not  t e r m i n a t e ,  then b i s e c t i o n  causes  - t L  t o  approach ze ro ,  because 

e i t h e r  5 o r  5 is rep laced  by 4 ( \  + t) i n  each loop.  

Let  us suppose b i s e c t i o n  has begun, i. e . ,  f ( x + t d )  /--, and 

assume, f o r  c o n t r a d i c t i o n  purposes ,  t h a t  t h e  sea rch  does not  t e r -  

minate.  In  t h i s  ca se  Lhe i n t e r v a l  [ t L ,  51 converges t o  some t 2 0 .  
A 

Since  tL : t  and f and n a r e  cont inuous  on S ,  Lhe d e f i n i t i o n  of LT 

shows t h a t  E LT, i . 2 .  

and 

A 

Since  5 f LT, t e LT and ty t ,  5! must take  on an i n f i n i t e  number 

o f  d i s t i n c t  va lues  g r e a t e r  than t .  I f  t z RT i n f i n i t e l y  o f t e n  then 

( $  - tL) = (5 - ti) - 0 f o r  t hese  5 and the  s e a r c h  must s t o p ,  be- 

cause  a 2 j /  1 dl is 9 o s i t i v e .  So, suppose 4 r 2T f o r  only  f i n i t e l y  

many b i s e c t i o n s .  Then f o r  i n f i n i t e l y  many b i s e c t i o n s  we have 

There a r e  two cases  t o  cons ide r  depending sn whether o r  not  x + +  d 
3 

is f e a s ~ b l e  inf  F n i t e l y  o f t c n .  



Case I. Suppose for infinitely many tN we have 

Then g(tx) s ;h(x+t d) and combining (4.6) and ( Q .  8) with the fact ?.I 
that tN > ^t gives 

Thus, since h is weakly upper senismoot5 and g ( 5 J  E jh(x+id+ ($q-e)d), 

lin +nf cg(t ) ,d> 2 lia 5up 
4 >!I . 

N - - 
t7+t t,] t t:J-t 

Bu.~ this contradicts (4.7) , because -m, d 1 L < O .  

Case 11. Suppose for infinitely many 5 (4.8) does not hold. 
Then g (%) E 3f (x+hd) and, since tX ,? LT, 

2 f (:c+hd) - f (x) > -m2tx (dl , 

which combined with (4.5) gives 

Thus, since f is weakly upper semismooth and g (t) 5 3 f (x+td+ (t-z)d) , 

f (x+tyd) -f (x+td) 
lim _inf <g(t ) ,d;. 2 lim sup -- 

2 
2 -m2;dJ . N - tNCt tN+t 5-t 

aut this also contradicts (4.7) , because m2 < m, and 1 dl # 0. 

Therefore neither case occurs and the search terminates. From 

various definitions and rules of tile algorithm it is easy to 

show that (4.1 ) through (1.4) hold at tarminati0n.o 



From the assumptions that h (xo) 2 0, 1 go 1 # 0 and 0 < B 2  
0 ,  < l/lgO1q-l. Theorem 4.1 and the rules of the algorithm it is 

easy to establish inductively that the following holds: 

Lemma 4 . 2 .  All values assigned to x, d, 6, yL and yR by 

the algorithm satisfy X E  So, Id( # 0, 0 < 6 (gO1, yLc So and 

YRE S- 

The next result shows that in the case of a convex problem 

we do not need the variable tN in the line search procedure, be- 

cause it may be replaced by tR wherever it appears, since if 

t f! LT then t E RT. 

Theorem 4 . 3 .  I f  f and h a r e  c o n v e z  f u n c t i o n s  on Rn t h e n  

e v e r y  v a l u e  o f  t g e n e r a t e d  b y  t h e  l i n e  s e a r c h  procedure  s a t i s -  

f i e s  t E LT URT. 

P r o o f :  If t E LT we are done. So, suppose t g! LT. Then either 

If (4.9) holds then g(t) E af (x+td) and, by the convexity of 

h, the subgradient inequality and the feasibility of x, we have 

Combining (4.9) and (4.1 1 ) yields 

If (c.9) does not hold then (4.10) holds and g(t) E af(x+td). 

By the convexity of f and the subgradient inequality we have 



Combining (4 .10 )  and (b . : 3 )  g i v e s  

E i t h e r  by ( 4 . 1 2 )  o r  by ( 4 . 1 4 )  and t h e  f a c t  t h a t  m 2  < m, we 

have 

2 2 
<g  ( t )  , d >  2 -m2  Id1 > -in, d 1 , 

In  o r d e r  t o  d e r i v e  convergence r e s u l t s  f o r  t h e  a l g o r i t h m  i n  

t h e  n e x t  s e c t i o n  we need t h e  fo l lowing  lemma, which does n o t  de- 

pend on t h e  convergence assumptions o f  s e c t i o n  5. It  g i v e s  t h e  

reason  f o r  augmenting G w i t h  a  g R  s a t i s f y i n g  ( 4 . 4 )  where m, < 1 .  

A s i m i l a r  r e s u l t  f o r  m, 2 1 / 2  is g iven  i n  [391 . 

Lzmma 4 . 4 .  Let  d = - N r ( G )  be a  s e a r c h  d i r e c t i o n  used a t  S t e p  1 

t o  g e n e r a t e  a  g  t h a t  is added t o  G a t  S t e p  2 5  t o  form G+ = G U I g L , g R j  B 
and suppose no g .  is d e l e t e d  from G +  a t  S t e p  2c. Le t  d+ = - N r ( G + )  

I 
be computed a t  S t ep  2d and suppose c z m a x  ( g . 1  : g .  z G + } .  Then I I 

P r o o f :  By assumption 

SO, 

and 



Recall t h a t  0  < m l  < 1 and Id1 #O,  s o  by ( 4 . 4 ) ,  ( 4 . 1 6 )  and (4 .17)  

w e  have 

and 

a  + b  = l g R + d I 2  > o . ( 4 .  ~ 9 )  

SO, f o r  u E R ,  

2  - 2 a u  + (a+b)u  
2 

(u(-d) + ( l - u ) g R I  ' lgRl 

is a  s t r i c t l y  convex f u n c t i o n  of 2 with  a g l o b a l  ninimum a t  

and, t h e r e f  o r e ,  by ~ 4 . 1 8  1 and (4.19)  , wi=h a  c o n s t r a i n e d  ninimum 

f o r  ;r [O, 11  a t  

So, i f  a: 0 ,  t h e n ,  by (4 .16 )  and ( 4 . 3 ) ,  

Supgose a >  0. Then 

From ( 4 . 1 6 )  and (4.171 w e  have 

2 2 
a  - b =  kRl - d l  1 



~ f i u s ,  from (4.18) and ( 4 . 1 9 ) ,  

By assumption czmax  I : / d l , l g R l l r  SO,  by ( " . 1 6 ) ,  ( 4 . 1 7 )  and t h e  

Cauchy-Schwartz inequa l i ty  , 

Combining ( 4 . 2 1 ) ,  ( 1 . 2 2 )  and (4.23) g ives  

2 2 2 2  
rnin p ( - d )  + (1-u)gRl2 1 - d l  ( 1  - [ ( l - m , )  Id1 /4c 1 ) .  ( 1 . 2 4 )  

0 1 ~ 5 1  - - 

The d e s i r e d  r e s u l t  then follows from (4.15) , ( 4 . 2 0 )  and ( 4 . 2 4 )  . 0 

'qemarks:  Lemma 4 .  4 a l s o  holds i f  any gi is de le ted  from G, f o r  

which .\ = O  where -d=Yr(G)  - i h i q i  L A i = !  and i i 1 0  f o r  a l l  i. 
j - 

gi eG i 

Thus, such g may a l s o  be d e l e t e d  a t  Step 2c and t h i s  devrce can 
j 

be used t o  keep t h e  number of elements in  G bounded, because, by 

Caratheodory's  Theorem, N r ( G )  can be ex?ressed a s  a convex combina- 

t i o n  of n + 1 o r  l e s s  elements of G. 

Lemma 4 . 4  a l s o  holds i f  G+ = ~ y l g ~ ) ,  SO gL need not be 

added t o  G a t  Step Zb, but in  order  t o  implement d e l e t i o n  r u l e  

IIb gL s u s t  be saved,  because it rep laces  gx when .\ rep laces  x .  

'rJe conclude from Lennna 4 . 1  t h a t  i d ,  is l e s s  than a f r a c t i o n  

of ( d l  and t h a t  i f  the re  is an i n f i n i t e  number of consecutive i ter-  

a t i o n s  where each - N r ( G )  computed a t  Step 2d is a search d i r e c t i o n  



d ,  no s i g n i f i c a n t  g  is de le ted  from G and a l l  Ig.1 a r e  uniformly 
j I 

bounded then Id ( + 0 .  This idea  i s  used i n  the  next s e c t i o n  t o  

show t h a t  5  4 0 when f  ( x )  and g  cM(y) a r e  uniformly bounded f o r  a l l  

x  and y  generated by t h e  algori thm. 

5. CONVERGENCE OF T I E  ALGORITHM 

Throughout t h i s  s e c t i o n  we assume t h a t  each execution of t h e  

l i n e  search procedure of Step 1 te rminates  and t h a t  t h e  following 

boundedness assumption holds: 

There e x i s t s  a  p o s i t i v e  number C such t h a t  

l g (  2, C f o r  a l l  y  E S and g  E M ( Y )  . (5.1) 

Note t h a t  i f  S i s  bounded then a  value f o r  C is sup { lgl : g  E M(y),  

y  E s which i s  f i n i t e ,  because, by Proposi t ion 7 ,  M is bounded on 

bounded subse t s  of R". Under t h i s  assumption Lemma 4..2 impl ies  

t h a t  a l l  g .  generated by t h e  a lgor i thm s a t i s f y  I g .  1 I C. 
I 3 

The next  r e s u l t  is t h e  p r i n c i p a l  lemma from which t h e  var ious  

convergence theorems deal ing wi th  s t a t i o n a r i t y  and op t imal i ty  

follow. I t  is t h e  only r e s u l t  i n  t h i s  s e c t i o n  t h a t  does no t  de- 

pend on which d e l e t i o n  r u l e  is  used by t h e  algorithm. 

Lemma 5 . 1 .  Suppose (5.1 ) holds.  Then e i t h e r  6 + 0 o r  f  (x)  +-a. 

Proof :  There e x i s t s  a number b 2 0 such t h a t  6 + r ,  because 

t h e  sukcessive values of 6 a r e  p o s i t i v e  and form a  monotone non- 

inc reas ing  sequence. 

Suppose > 0. We must show t h a t  f  (x) + -a. Define sequences 

{xkl and Cdk) by s e t t i n g  k  = -1 a t  Step 0 and, a t  en t ry  t o  Step 1 

replacing k  by kc1 and then s e t t i n g  xk = x  and 6k = 5. Note t h a t  

t h e  loop c o n s i s t i n g  of Steps  2c-2d-2e-2c cannot be executed in- 

f i n i t e l y  o f t e n ,  because, s ince  e l  6q-1 2 e l  lgO I q - '  < 1 ,  t h e  5-change 

a t  Step 2e would imply t h a t  6 + 0 ,  a  con t rad ic t ion .  

Thus, t h e  sequences !xk) and E6k1 a r e  i n f i n i t e ,  /dkl  + ?i and 

we may assume without l o s s  of g e n e r a l i t y  t h a t  a l l  e x i t s  from Step 

2e a r e  t o  Step 1 .  Now w e  show, by con t rad ic t ion ,  t h a t  { f ( x k ) ) +  --. 



Suppose { f  (xk)  ) is bounded from below. From ( 4 . 2 )  wi th  x ~ + ~  = xL 

and xk = x we have t h a t  

where, by S t e p  ? e  and t h e  monotonici ty of { 6 ) ,  

Thus, { f ( x k ) )  is  monotone nonincreas ing .  So ,  t h e r e  e x i s t s  a  r e a l  

number f such  t h a t  { f ( x k ) } + P .  By (5 .2)  and (5 .31 ,  f o r  i < L we 

have 

The re fo re ,  by t h e  d e f i n i t i o n  of and t h e  t r i a n g l e  i n e q u a l i t y  we 

have f o r  i 2 2 

S ince  ;r2 < a ,  , w e  may choose rl such t h a t  ( a 2 / a  ) < r\ < 1 . Then, s i n c e  

{Skj  + 3 > 0 and { f  ( x k ) j  + ?, t h e r e  e x i s t s  an i n t e g e r  I such t h a t  f o r  

a l l  i > I 

and 

So, by (5 .4 )  and C5.6), f o r  L i > I 

Consider any g . t h a t  e n t e r s  G a f t e r  t h e  d e f i n i t i o n  of  x I ,  i. e. 
3 

t h e r e  is an i 2 I + 1 such t h a t  xi- = X ,  6 i-, = 6 ,  xi = yL  and 

t h e  y . a s s o c i a t e d  wi th  g equa l s  yL  o r  yR. By ( 4 . 3 )  and ( 5 . 5 )  , 
3 j 

w e  have 



I f  such a g is  de le ted  from G then ,  by Step 2c, t h e r e  e x i s t s  an 
j 

I. 2 i such t h a t  

But, by t h e  t r i a n g l e  inequa l i ty ,  (5.7) and (5.8) , we have 

which is a con t rad ic t ion .  Thus, no such g .  is dele ted from G I  so  
3 

the  only candidates f o r  d e l e t i o n  from G a r e  t h e  f i n i t e  number of 

g j  
' s  t h a t  entered G a t  o r  before the  d e f i n i t i o n  of xI. Therefore,  

t h e r e  a r e  an i n f i n i t e  number of consecutive i t e r a t i o n s  where G i s  

replaced by G U{gL,gR),  no g j  i s  dele ted from G and, hence, by 

Lemma 4.4,  s ince  (g.1 2 C f o r  a l l  j ,  
3 

But t h i s  c o n t r a d i c t s  (5.3 ) . So, {f (xk) 1 + -- when 6 > 0. 

From here  on we assume f ( x )  j--, SO, by Lemma 5 . 1 ,  6 -r 0 and, 

thus ,  f o r  i n f i n i t e l y  many algorithm v a r i a b l e  t r i p l e s  ( x ,  G I  6 )  a t  

Step 2e we have ( N r  (GI  1 < 6 .  Each time ( N r  ( G )  1 < 6 occurs l e t  an 

i n t e g e r  sequence index k be increased by 1 and def ine  sequence 

q u a n t i t i e s  xk = x, Gk = G and 6 k  6 .  Note t h a t  C I ~r ( G k )  1 } -r 0,  s i n c e  
k !6 + O .  Also, note t h a t  these  sequences do not necessa r i ly  cor- 

respond t o  t h e  ones defined i n  t h e  previous proof.  

Our f i r s t  convergence r e s u l t  shows s t a t i o n a r i t y  of accumulation 
k points  of ( x  1, when de le t ion  r u l e  I is used. Consider the  f o l -  

lowing condi t ion : 

f is bounded from below on So and t h e r e  e x i s t s  an 

c So and an i n f i n i t e  s e t  K g C 1 , 2 , .  . . , } such t h a t  
k {x  lkEK + z.  (5.9) 

i?emark: By the  con t inu i ty  of f and h, (5 .9)  holds i f  So i s  

bounded, f o r  then So is a l s o  closed and, hence, compact. Also 

note t h a t  t h e  con t inu i ty  of h impl ies  h (G) 5 0. 



Theorsm 5.2. Suppose  :ha t  (5.1) and (5.9) h o l d  2nd t h a t  t h e  

a2gor1;tit.m u s e s  d e l e t i o n  r x l e  I. Then  h(x) 10 and 3 EM(;), C . z . ,  - 
x i s  s s a t i o n a r y .  

? r o o f :  For each k zK, by Caratneodory's theorem, tkere ex- 
k ists a positive integer p 2 n + 1 such that 
k 
P k  Pk ~r($) E con" i U (gL}) = conv i (J M(~:)) 
2= 1 2 =  1 

where for each 2 E I 1,2,. . . ,pk} , there is a j depending on 2 such 
k that gL = k k g j r  y t = y .  and g. cM(y.) f l ~  . Then there exists an in- 

3 I I k finite set K1 C K and an integer p s 1 1  ,2,. . . ,n+li such that p = p 

for all k E K,, and, thus, 

k P 
Nr(G ) E conv ( L J  ;Cl(yt)) for all k E K1 . (5.10) 

e= I 

ay assumption (5.1 ) and Froeosition 7, M is bounded and upnersemicon- 

tinuous on S, so, tie map T : sP + 2Rn defined by 

P 
T ( Z ~ ~ Z ~ , . . . ~ Z  P ) = conv ( u M ( z I ) )  for ( z ~ , z ~ ~ . . . ,  zp) i sP 

2- 1 (5.11) 

is uppersemicontinuous on sP. By deletion rule I 

~ x ~ - ~ t l  2 o,6* for each I z {1,2 ,.... pi and k E K1 . 

k k Thus, since {x } k E K + s ~ S I  ( 6  ] + O  and K 1 c K I  

+ 2 for each 2 E (1,21-..1P1 

Combining ( 5.10) , (5.1 1 ) and (5.12 1 with the facts that T is upper- 
k 

semicontinuous on S? and Xr(G ) I ! - 0 gives 
;F' 

9 E conv ( u ~ ( 2 ) )  = conv (M(:)) . 
2=1 

By definition , ?4(x) is convex, so 0 E M(:) .a 
Combining Theorem 5.2 with Theorem 9 of [27] glves the following: 



Coro l  t o r y  5 . 3 .  Suppose, i n  a d d i t i o n  t o  t h e  assumptions of Theorem 5 . 2 ,  

t h a t  f  and h  a r e  semiconvex [27] on Rn.  Then a t  l e a s t  one of t h e  

fo l lowing  ho lds  : 

( a )  ; is  op t ima l .  

( b )  { z  E R~ : h ( z )  < 01 is empty. 

T h e  remaining convergence r e s u l t s  a r e  f o r  convex problems,  

and,.hence, assume t h e  fo l lowing  cond i t i on :  

f  and h  a r e  convex func t ionb  on Rn . (5 .13 )  

The f i r s t  such r e s u l t  shows how an x  gene ra t ed  by t h e  a l g o r -  

i thm approximates s a t i s f a c t i o n  of  s add le  p o i n t  o p t i m a l i t y  condi-  

t i o n s  i n  terms of H r ( G )  and 5 .  This  r e s u l t  p a r a l l e l s  Theorem 7 

i n  1391 f o r  uncons t r a ined  problems and depends on our  d e l e t i o n  

r u l e  11. 

Theorem 5 . 4 .  Suppose (5 .1 )  and (5.13)  h o l d ,  t h e  a l g o r i t h m  

u s e s  d e l e t i o n  ruLe 11 and x, G and 6 a r e  a l g o r i t h m  v a r i a b l e s  a t  

t h e  end o f  S t e p  2d. Let  ~ = { j : g . E G n M ( y . ) ,  h ( .y j )  $01 ,  - I  1 
J = E j  : gi c G n M ( y j ) ,  h ( y j ) .  > 01, and 1 > O  f o r  j E J U J  s a t i s f y  

2 j = 
N r ( G )  = Z -Xjgj and Z - A j  = I .  Defsne X E [ 0 , 1 ]  b y  X = Z X j .  

jEJUJ j  eJUJ I EJ 

Then for a l l  z E Rn 

( b )  x ( ~ ( x ) - ~ ( z ) )  6 / N T ( G ) I I z - x I  + 2 9 6  if h(z)  2 0  
and 

( c x = 1 i f  h(x) 2 . 

Proof :  :Joke t h a t  j may be empty, b u t  J is  nonempty, because 

x  i s  f e a s i b l e  and g x ~ G n M ( x ) .  S ince  g  E G  f o r  j  E J  was n o t  de- 
j  

l e t e d  a t  S t ep  2c by r u l e  I I b  and (3 .3)  was s a t i s f i e d ,  because f  

is convex, w e  conclude t h a t  (3 .4 )  was n o t  s a t i s f i e d .  The re fo re ,  

s i n c e  X .  > 0,  w e  have 
3 = 

Xj(f(y.)  - f ( x ) )  + X <g.,x-y.> 2 -X.z,Slg 7.1 for j E J . (5.74)  
3 1 3  I -  I X I  



S i m i l a r l y  from ( 3 . 2 )  of r u l e  I I a  w e  have 

\ . < q , x - y j >  2 - 1 . o  514 .  f o r  j  r  j . 
3  3  3 1  3  

~ l s o ,  s i n c e  h ( y . )  > 0 f o r  j  ~j and h ( x )  5 0 ,  w e  have 
3  

X . ( h ( y . ) - h ( x ) )  2 0 f o r  j  E 5 . 
3  3  

( 5 . 16 )  

Adding (5 .14 )  summed ove r  j  E J t o  (5 .15 )  and (5.16 ) summed o v e r  

j  E j and u s i n g  t h e  f a c t  t h a t  ( 9 .  1 2 C  f o r  a l l  j  g i v e s  
3  

S i n c e  f  and h  a r e  convex, g .  ~ a f ( y . )  f o r  j  E J  and g .  ~ a h ( y . )  
3  3  3  3  

f o r  j E 2, t h e  s u b g r a d i e n t  i n e q u a l i t y  i m p l i e s  t h a t  f o r  any z 5 R" 

X . ( ~ ( Z )  3  - f ( y . ) )  3  2 X . [ < g j , z - x ~ + < g j r x - y , > ]  1 1 f o r  j  E J ( 5 . 1 8 )  

and 

( h  - h 1 1 .  g z - x  + g .  x - y ]  0 j $7 . ( 5 . 19 )  
3  3 3  

Adding (5 .18 )  and (5 .19 )  ove r  j  r  J U ~  g i v e s  

Adding ( 5 . 1 7 )  and ( 5 . 2 0 ) ,  and n o t i n g  t h a t  A , =  L l .  = 1 -  1 and 
~ E J  3  E j  j  

n N r ( G )  - 1 X , g ,  g i v e s  f o r  all Z E R ,  
j r ~ u j  1 3  



which i s  equ iva len t  t o  t h e  f i r s t  d e s i r e d  r e s u l t  ( a ) .  

Now suppose h ( x )  2 -CalG. W e  show ( c )  by showing t h a t  3 is  

empty. Suppose 5 i s  nonempty, i . e . ,  t h e r e  is a  y .  cor responding  
1 

t o  g  . E G such t h a t  h  (y  . ) > 0. Then, by d e l e t i o n  r u l e  I I a ,  
1 3 

S i n c e g . ~ a h ( y . ) ,  t h e c o n v e x i t y  of  h a n d  (5.21) imp l i e s  . 
1. I 

Hence, h ( y j )  6 0 ,  but  t h i s  c o n t r a d i c t s  t h e  suppos i t i on  t h a t  

h ( y j )  > 0. Thus, 5 i s  empty, X = 1 ,  and ( c )  holds .  

To e s t a b l i s h  ( b )  , we no te  t h a t  i f  h ( z )  2 0  t h e n ,  by ( a )  and 

t h e  Cauchy-Schwarz i n e q u a l i t y  

I f  X = 1 ,  then ( b )  fo l lows immediately from 15.22). I f  X < 1 t hen ,  

by ( c )  , - h ( x )  < Cal 6 ,  which combined wi th  (,5.22) g ives  ( b )  .o 
Returning t o  t h e  sequence ( x k } ,  w e  next  show t h a t  any accu- 

mulat ion p o i n t  x s a t i s f i e s  saddle-poin t  c o n d i t i o n s  i f  t h e  prob- 

lem f u n c t i o n s  a r e  convex and t h e  a lgo r i thm uses  d e l e t i o n  r u l e  11. 
k  k k k  Define t h e  sequence { X } C [O, 1 ] corresponding t o  (x , G  , 6  ) 1 

by l e t t i n g  Ak = X where X i s  t h e  m u l t i p l i e r  a s  i n  Theorem 5.4 cor -  
k k k  

responding t o  (x,G1 6 )  when t h e  l a t t e r  q u a n t i t y  equa l s  (x  ,G , 6  ) . 
Theorem 5.5. Suppoee (5 .  I ) ,  15.3) and (5.13) o l d  and t h e  

a l g o r i t h m  u s e s  d e l e t i o n  r u l e  11. L e t  1 E [ o ,  11 be any accumula-  
k  t i o n  p o i n t  o f  IX 1 

~ E K '  
Then 



(d) (ZER" :h(z) < 01 is empty if X = 9 ,  

and 

(e) ; is optimal if 1 > 0 . 

P r o o f :  Part (a) follows from the remark following assumption 

(5.9). 

, .k 
Since (xkjkEK+xI - ilNr(G")(1+0, i . ,  l + O  and f and h are con- 

k Gk .k k 
tinuous, (a) of Theorem 5.4 with (x,G,b,i) = (x , ,o ,A ) implles 

(b) . 
'c .k 

By (c) of Theorem 5.4, if h(x $-Call then h k =  1 .  T ~ U S ,  
if h (i) < 0, since + { dk} + 0 and h is continuous, we have 
k - 

X = 1 for all k sufficiently large and, hence, A = 1 . Thus, (c) 

holds. 

Parts (d) and (el are well-known [23] consequences of (a) , 
(b) and (c) .o 

Theorem 5.4 shows that if x* is optimal and the multiplier 

is positive then 

I 

Under the stronger assumptions given below we can obtain upper 
I 

bounds on the quantities I x-x* 1 and 1 / X  in terms of ( Nr (GI 1 and 5. i 
Theorem 5. S .  I n  a d d i t i o n  t o  t h e  a s s u m p t i o n s  of Theorsm 5 . 4 ,  

s u p p o s e  t h a t  x* is o p t i m a l  and t h a t  f i s  s r r o n q l y  c o n v s z  [ 3 0 ]  

on So i . z . ,  t h e r e  s z i s t s  a  number 9 > 7 s u c h  Char 

1 1 1 
f(I(y+~) 2 ~ ( y )  + jiz) - f(y-zl2 for all y,z E S ~  . (5.23) 

Then 



-27- 

x* is the only optimaL point 

and 

Furtnermore, if there ezists 2 E R~ such that h(2) < 0 then 

where 

Proof: Note that, by the convexity of f and h, So is a 

convex set so if y, z E SO then f(y+z) cS0. Part (a) follows 
immediately from (5.231, by contradiction, if we suppose y 
and z to be two distinct optimal points. 

Since x* is optimal, (5.23) with y = x and z =x* implies 

that 

Thus, 

Combining (5.24 1 and (b) of Theorem 5.4 with z = x* gives 

which, when multiplied by (X/u) 2 0, yields - 

where t = X 1 x-x* / , u = I ~r (G) / u  and v = ZXCir, G/v. Considered as a 

function of t the right hand side of (5.25) is a strictly convex 

quadratic, so an upper bound on all t satisfying (5.25) is the 



2 t 2 r o o t  + [u  + ( u  +4v) 1 .  ~ h u s ,  t 2 f [u + ( U  +4v) 'I, which, by t h e  d e f i -  

n i t i o n s  of t ,  u and v ,  imp l i e s  ( b )  , s i n c e  X 5 1 imp i r e s  v 5 2Cal 3/11. - 
:.low suppose h(2) < 0 and no te  t h a t  ( c )  ho lds  ~f  X = 1 ,  be- 

cause  f  (;) - f  ( x* )  - h(G) , - h ( % )  > 0 imp l i e s  t h a t  t h e  r i g h t  hand - 
s i d e  of ( c )  is  bounded above by one .  So, suppose X < 1 ,  vh i ch  

by ( c )  of Theorem 5.4 imp l i e s  

From ( a )  of  Theorem 5 . 4  w i th  z =; and t h e  Cauchy-Schwartz i n e q u a l i t y  

we have 

Combining C5.26) and C5.27) with t h e  f a c t  t h a t  f  (x*)  2 f  ( x )  g i v e s  

which is e q u i v a l e n t  t o  ( c )  . 
I n  o r d e r  t o  have a  lower bound on X t h a t  does  not  depend on 

x we need an upper bound on 

Combining (.5.28) and (5.241 wi th  t h e  f a c t  t h a t  f ( x )  ; f  ( x j )  g i v e s  

t h e  l a s t  d e s i r e d  r e s u l t  ( d )  .a 
Our f i n a l  r e s u l t  shows t h a t  under t h e  s t r o n g  assumptions of 

Theorem5.6we have t h a t  t h e  a c c u m u l a t ~ o n  o o i n t  e x i s t e n c e  c o n d i t i o n  
k (5.91 f o r  Cx 1 ho lds  w i th  ~ = C 1 , 2 ,  ... i and G = x *  and t h a t  a l l  t h e  

accumulat ion p o i n t s  of {Xk] a r e  bounded below by a p o s i t i v e  number. 

C o r o l l a r y  5.  7 .  I f  a l l  t h e  assumptions of Theorem 5 . 6  nold  then 

l i m  i n f  ;\k 2 ( - h ( % ) ) / ( f ( i ) - f ( x * )  - h ( % ) )  > 0 
k+m 



and ixk> -x*. 

Proof: The results follow immediately from ib) , (c) and (d) 
k of Theorem 5.6 with (x,G,S,X) = ( x ~ ~ G ~ ~ ~ ~ ~ A ~ )  , since C6 ? - 0  and 

c I N ~ ( G ~ )  ( 1  - 0.0 
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