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PREFACE

Large-scale optimization models anse in many areas of application at [IASA. For
example. such models are useful for estimating the economic value of introducing solar
and wind generated electrical energy into an existing power grid and for determining
equilibrium prices for agricuitural commodities in international trade as a function of
national policies. Certain methods of decomposition for solving such optimization
problems require the solution of a relatively small problem whose objective function
is not everywhere differentiable. This paper gives an implementable aigorithm that
can be used to soive such nonsmooth optimization problems.
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ABSTRACT

We present an impismentable algorithm for solving constrained optimization
problems defined by functions that are not everywhere differentiable. The method is
based on combining, modifying and extending the nonsmooth optimization work of
Wolfe, Lemarechal. Feuer, Poljak and Memnil. It can be thought of as 2 generalized
reset conjugate gradient algorithm.

We also introduce the class of weakly upper semismooth functions. These
functions are locally Lipschitz and have a semicontinuous relationship between their
generalized gradient sets and their directional derivatives. The algorithm is shown to
converge to stationary points oi the optimization problem if the objective and constraint
functions are weakly upper semismooth. Such points are optimal points ii the problem
functions are aiso semiconvex and a constraint qualification is satisfied. Under stronger
convexity assumptions. bounds on the deviation from optimality of the agorithm
iterates are given.
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An Algorithm for Constrained

Optimization with Semismcoth functions

1. INTRODUCTION

In this paper we present an implementable algorithm for solv-
ing very general constrained ocotimization problems of the follow-
ing type:

minimize £(x)

subject to n(x) ¢ 0

where x ¢ R® and f and n are real-valued functions that are "locally
Lipschitz", i.e. Lipschitz continuous on each bounded subset of
R?. These problems are "nonsmooth” in the sense that the problem
functions £ and h need not be differentiable everywhere. However,
locally Lipschitz functions do have "generalized gradients" (Clarke
[2,3]) and a necessary optimality condition (3] is that cthe zero
vector 1is a certain convex combination of generalized gradients
of £ and h. This "stationarity® condition is sufficient for op-
timality if f and h are "semiconvex” (27] and a constraint gqualifi-
cation is satisfied.

Our algorithm combines, extends and modifies ideas contained
in Wolfe (39], Feuer (10,1%], Poljak (211 and Merrill [36] and, by
means of a map defined in [36], deals with "corners" arising from
constraints in the same manner as it handles discontinuities of
the problem function gradients. It has accumulation points that
satisfy the above stationarity condition if £ and 1 are "weakly up-
per semismooth" as defined in section 2. Such functions have a
semicontinuous relationship between their generalized gradisnts 2and
directional derivatives where this ralationship is properly weaker
than the corresoonding one for "semismooth” functions introduced
in (27].



The difficulties in minimizing a nonsmooth function are well
discussed in [33%] and [10], where implementable descent algorithms
are given. Wolfe's method [39] is for a convex function and Feuer
(10,111 has extended it for finding a stationary point of a function
that is the pointwise maximum or minimum of a family of continuously
differentiable functions. In [27] we show that such functions are
properlv contained in the class of semismooth £functions. The al-
gorithm in [39] is closely related to that of Lemarechal {21] and for
a quadratic function these both coincide with the method of con-
jugate gradients [(17] and, hence, have finite termination in this
case, as does an algorithm of Shor (35,36,37].

The descent approach for convex functions of Bertsekas and
Mitter [1] has been made implementable by Lemarechal (19] and has
been extended in theory to locally Lipschitz functions by Goldstein
{14]. Descent algorithms for min-max objectives, which are also
difficult to implement, are given in Demjanov {5} and Goldstain [13].

Lemarechal {20] has also suggested a method for constrained
convex programming problems which deals with nonlinear constraint
functions by means of an exact penalty function appreach (4,9,

28,407 . '

Shor's [34] nondescent "subgradient algorithm" for unconstrained
convex problems was extended to constrained problems by Poljak [31],
who developed a method that uses subgradients of the objective func-
tion at feasible pocints and subgradients of the constraint functions
at infeasible points. This idea is related to a concept employed
by Merrill [36] for solving constrained problems by means of a fixed
point algorithm. Similar ideas were also developed by Hansen (15],
Hansen and Scarf [16] and Eaves (6] for solving convex programming
problems by fixed point-type algorithms (7,33]. These methods are
combinatorial in nature and able to solwve equilibrium problems that
are more general than convex programming problems. OQur algorithm
differs from these, because it is a feasible point method which de-
pends significantly on the constrained optimization nature of the
oroblem. The method may use information from infeasible points,
but the objective function f need not ke evaluated at such points.
Our "algorithm employs a line search procedure along directions

that may be infeasible, and, hence, the method is not a feasible



direction {#1) algorithm. However, it is related to the similar
feasible direction methods of Mangasarian [24] (see also [12]) and
Pironneau and Polak [29] for continuously differentiable functions.
As with ours, these methods have search direction finding subprob-
lems that are quadratic programming problems involving convex com-
binations of problem function gradients. Our method differs, be-~
cause there is no linear term in the subproblem objective related
to complementary slackness and not all of the subproblem data need
be changed from iteration to iteration. Because we do not assume
differentiability, our subproblems may include more than one gen-
eralized gradient from the same problem function. This can be a
good idea even in the case of differentiable functions, because it
can bring curvature information about the functions into search
direction determination and, thus, have the potential for better
than linear convergence. There are tests in our algorithm which
attempt to smooth or balance the process of retaining or dropping
accumulated gradient information, and hopefully allow the method
to behave like a reset conjugate gradient [22,25] algorithm when
applied to smooth unconstrained problems. This process is flexi-
ble and gives the algorithm the potential for a good rate of con-
vergence.

The algorithm is defined in section 3 where we also discuss
how it compares to and differs from the methods in [10]1, [21] and
(33] when applied to unconstrained problems.

In section 4%, under the assumption that f and h are weakly
upper semismooth, we show that either our line search procedure
is finite or f is unbounded from below cn the set of feasible
points.

In section 5 we show stationarity of the algorithm's accumula-
tion points. Under convexity assumptions, we give bounds on the
deviation from ootimality of the iterates for a version of the
algorithm which uses a gradient deletion rule that is especially

designed for convex problems.

Throughout this paper we mostly adhere to the notation in
(32] and [39]. For example, conv(S) denotes the convex hull of a



o .
set ScR™, i.e. xzconv(S) if and only if x= = Xixl where p is a
. i=1 o
positive integer, Xi >0 and x~ =8 for i=1,2,...,p and ¢ Xi =1.
= i=1
The scalar produgt of x==§x1,x2,...,xn) and y =(y1,y2,...,yn) in
R%, defined by ) XYy is denoted <x,y> and the Euclidean norm
i=1

1/2I, is denoted |xj.

of x, defined by |<x,x>

2. DEFINITIONS AND PRELIMINARY RESULTS

2a. Locally Lipschitz and Semismooth Functions

Let B be an open subset of R® and F : R® +R be Lipsehiltz on B,

i1.e. there exists a positive number K such that

|Fly) =F(2)] ¢ X

y=2| for all y,2 =z B

If F is Lipschitz on each bounded subset of R" then F is called
locally Lipschitz.

Let xe¢B and d ¢ R"

As in Clarke [3], let

F%(x;d) = lim sup [F(x+h+td) - F(x+h)]/t
h+0
t+0

and let 3F (x) denote the generalized gradient of F at x defined
by

3F(x) = {geR":<g,d> <F%(x;d) for all 4 < R™}

The following proposition collects together useful properties of
o ~
FY and 5F.

Proposttion I.
fa) AF(x) 1is a nonempty convex cocmpact subset of R" (3]

() F%(x:;d) =max (<g,d> : g =3F(x)] [3]
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(c) 1If {xk}<:B converges to x and g e 3F (x)) for each k
then ngl S K and each accumulation point g of {gk}
satisfies ge 3F(x), i.e. 3F is bounded on bounded sub-~
sets of B and is uppersemicontinuous on B (3]

(d) Let y and z be in a convex subset of B. Then there
exists A e (0,1) and ge 3F (y+ A(2-y)) such that

F(z) - F(y) = <qg,z-y> ,

i.e. a mean value result holds [18] .

(e) Let {tk} +0, {h}~0 ¢ R® and F* be any accumulation
of

{[F(x+h +tkd) —E‘(x+hk)]/t }

k k

Then there exists g e 3F (x) such that

F* = <g,d> [27]

If lim [F(x+td) - F(x)]/t exists it is denoted by F'(x:;d) and
t+0
ralled the directional dertvative of F at x in the direction d.

Note that if F'(x;d) exists then, by (e) above, there exists
g € 3F {x) such that

F'(x:d) = <g,d>

Definition 1 and Proposition 2 to follow are given in [27]
along with other properties and examples of semismooth functions.

Definition 1. F : R® >R is semismooth at x e R® if
(a) F is Lipschitz on a ball about x

and



(b) for each d:R" and for any sequences {tk}: R
and {gk}c:Rn such that

n

{tk} + 0, {ak/tk} + 0 ¢ R and gy ¢ 3F(x+tkd+e Yy,

k
the sequence {<gk,d>} has exactly one accumulation point.

Proposizion 2.

If F is semismooth at x then for each d ¢ R®, F'(x;d) exists
and equals lim <g,,d> where {gk} is any sequence as in Definition 1.

k+>

C n . ] . n
Defin<itzon 2. F : R +R is weakly upper semismooth at xR

(a) F is Lipschitz on a ball about x
and

(b) for each d = R® and for any sequences {tk}::R+ and
{gk}:Rn such that (t,} +0 and g, = 3F (x+t,d) it follows
that

lim inf <g,_,d> > lim sup [F(x+td) -F(x)]/t
k+= k - £+ 0

Propos<ition 3.

If 7 is weakly upper semismoots at x then for each 4 = RT,
F'(x:d) exists and there exist seguences {ry}C:R+ and (gk}: r"

such that {1, } + 0, sBF(x+rkd) and

k 9

lim <gk’d> = F'(x;d)

X+

Prooyf: Suppose,{rk} +0 1is a seguence such that

lim [F(x+rkd) -F(x)]/7. = lim inf [F(x+td) -F(x)]/t
< t+0

XK+

By (d) of Proposition 1, there exists tk = (0,7,) and Ine saF(x+tkd)
such that

Fx+7, d) - F(x) = Tk<gk’d>



Then, by Definition 2, since {tk}+ 0, we have

[F(x+rkd) F(x)]/r = 1lim <gk,d/ > lim sup (F(x+td) -F(x)]/t
k+x k k= t+0

So,

lim inf (F(x+td) -F(x)]/t = llm <gk,d> > lim sup [F(x+td) -F(x)]/t
t+0 0

and the desired results follow immediately.Q
It is clear from the above definitions and propositions that
the following holds:

Proposgition 4.

If F is semismooth at x then F and -F are weakly upper semi-
smooth at x.

We say that F is weakly upper semismooth (semismooth) on XcRr"
if F.is weakly upper semismooth (semismooth) at each xe X.

An example of a locally Lipschitz function F(x) for x ¢ R that
is weakly upper semismooth on R but not semismooth at x=0 is the
following:

F(x) = x2 for x ¢ 0 or x > 1 ,

and for each integer n=1,2,...

(143 (x =) for 201 - (@) < x 2%

F(x) =
1 1 1.2
—<x-<nTl) form;xéﬁ'“-(n—-q-]- ]

It can be verified that F'(0;1) =0 and 3F(0) =conv (0,1} is the
set of possible accumulation points of {gk} where Iy saF(xk) and
{xk} + 0. Note also that the locally Lipschitz function -F(x) is
not weakly upper semismooth at x =0.

From (27, Proposition 3] and Proposition 4 we have the follow-
ing:
Proposition 3.

If F: R -R is convex, then F is locally Lipschitz,



F(x) = (geR :Fly) >F(x) + <g,y-x> for all y <R} for sach x ¢ & ,

v

o

F iS semismooth on R" and, hence, F i1s weakly upper semismooth on
R".

Remark: 3F in Proposition 3 is called the subdifferenital
[32] of the convex function . We refer to the inequality in the

expression for 3F as the subgradrent inequality.

2b. Stationarity

Corresponding to the locally Lipschitz ontimization problem

functions f and h, define M4 : R - 2”7 by
3£ (x) if hix) < 0
M(x) = {conv {3£(x)VU 3h(x)! if h(x) =0 for x ¢ RD
ah (x) if hix) > 0

This map was introduced and used bv Merrill [36, Chapter 12] for
problems with differentiable and/or convex functions.

We say that x £ R™ is Jeas<dle 1f h(x) £ 0 and that xzR" is
oprimal if % is feasible and f(x) ¢ f(x) for all feasible x. We
call x = R™ stationary if X is feasible and 0 :cM(X). The following
necessary optimality result is proved directly in {27] and follows

from a more general result in {37]:

If x is optimal then x is stationary.

From parts (a) and (c) of Proposition 1, the definition of

M and Caratheodory's theorem {32, Theorem 17.1] one can derive the
following result useful for establishing convergence of our algor-

ithm:
Proposition 7.

. n . . .
M is bounded on bounded subsets of R, M is uppersemicontin-
wous on R", and for each x =z R? M(x) is convex.



3. THE ALGORITHM

For x ¢ R®, d e R" and parameters m, and m, satisfying

0 <m, <my <1 we define

LT = (£20: £(xvtd)=£(x) ¢ -myt[d|®, hix+td) <O}
and

RT = {£20: <q(t),d>_>__-m1|d|2} ,

where g(t) for t>0 is an element of M(x+td) returned by a user-
supplied subroutine. For ease of exposition, we assume that
g(t) € 3f(x+td) if h(x+td) =0 and we denote g(0) by Iy

G is a set of generalized gradients. A typical element of G
is denoted gj and associated with each gj € G there is.a yj ¢ R? such
that gj € M(yj) . The algorithm requires the solution of the prob-
£ . =1,

L

A.g., -
g *3930 5
Xj 20 for all j. The minimizing z is denoted by Nr(G), i.e. Nr(G)

n
lem of minimizing |z|2=i§1 zi subject to = =

is the n-vector in conv (G) nearest to the origin with respect to
Euclidean distance. Since this problem is a guadratic programming
problem having a very special structure, especially efficient fi-
nite algorithms such as in {38] can be designed for its solution.
The algorithm requires a starting feasible point, i.e. an
X4 ¢ R" such that h(xo) $£0. If such a point is not immediately
available, we may apply the algorithm to the unconstrained prob-
lem of minimizing h over R™. Under certain assumptions (see
Theorem 5.2, Corcllary 5.3 and Theorem 5.5 below) this algorithm
will find a feasible point.
In addition to assuming h(xo) <0, we assume that 9 # 0 where
and m

9g € af(xo) . Besides m the algorithm requires oositive

1 27
parameters 0‘1,32,31,52 and g satisfving a, < a4, q2 1 and
82551 < 1/\golq—1. Given the above data and definitions the al-

gorithm is as follows:

Step 0 (Initialization). Set x=x,, G= (go}, d=-g, and ¢ = \gO} .
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Step 1 (Line Search). Set tL= 0, tN = +» and tR=+°D and choose
T >0.

Locp: If t=LT set tL t. Otherwise set t\] =t.
&
If t zRT set tR=t.
If tq-tLguZS/\d| go to End. Otherwise replace t by 2t if
= 1 £ i i 1
Ty =*® or by ls(tL+tN) if £y is finite and go to Loop.

End: Set yL=x+tLd, gL=g(tL), yR=x+th and gR=g(t ).

R
Step 2 (Update x, G, § and d).

a. Replace x by Yy,

b. Replace G by G U{g,,9p).

c. Delete all possible gj from G according to deletion
rules I or II given below so that if gj :M(yj) is
deleted then |x - yj\ > a3,

d. Compute Nr(G).

If [N (G)| < 325q replace § by 315q and go to Step 2c.

Otherwise set d =-Nr (G), replace 3 by min [¢,]|d]|] and

1]

go to Step 1.

Deletion Rules. Delete gj < M(yj) from G if

I }x-yj\ > oyl (3.1)
IIa. iy > 0
and
<gj,x-y.> < "11‘:\9]-1 (3.2)
b. hiy)) 20
fix) + <gerj - x> g f(j]) (3.3)
and
f(jj) - £(x) + <g.,x-y.> < -a1-3§gx-gj| (3.4)
where
g = 3f(x) N G
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Using the Cauchy-Schwartz inequality it is not difficult to
establish the following result that shows that tne deletion re-

guirement of Step 2¢ is satisfied:

Lemma 3.1. If (3.2) holds, or if (3.3) and (3.4) hold, then
(3.1) holds.

Jemarks: Some inspiration for rule IIa came from Elzinga and
Moore's [8] central cutting plane method.

It is clear that (3.3) is satisfied if f is convex on a convex
set containing x and yj. Thus, (3.3) need not be checked if it is
known that £ is convex. The advantage of rule II over rule I, when
applied to convex problems, is that the former requires storage of
two scalars, h(yj) and <gj,yj> if h(yj) >0 or [<gj,yj> -f(yj)] if
h(yj) ¢ 0, instead of the n-vector yj. Rule IIb also has a good
feature for the case when f is polyhedral, i.e., the maximum of a
finite number of affine functions. In this case if x and yj are on
the same polyhedral piece, i.e., f(x) =f(yj) +<gj,x-yj>, then
rule IIb will not drop gj no matter how far yj is away from x. Use
of this rule causes the polyhedral example due to M.J.D. Powell in [39]
to be solved in a finite number of steps, if the line search proce-
dure is modified to find the exact minimum of £ (x+td) over t >0,
which is possible in the polyhedral case.

These deletion tests which are applied before each Nr(G) cal-
culation cause selective dropping of old generalized gradients.
When applied to unconstrained problems, this makes our method sig-
nificantly different from the methods in [10,21,39], because these
latter algorithms accumulate gradient information until ¢ertain
distances are too large and then drop all but the most recently
generated gradient. Our method also differs from those in ([10,21,39]
because of the way it incorporates a convergence variable 3§ that is
automatically generated and forced to zero by tests involving user-
supplied parameters.

For the case of guadratic f and no constraint h the finitely
terminating conjugate gradient property in [39, Section 6] is re-
tained if our line search is modified to be exact and 2, happens
to be so large that no deletion at Step 2¢ occurs.
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Our line search subroutine is a modification of the
bisection-typve procedure in ([39] which was modelled on the
differentiable case. The idea of using two points from the line
search rather than one appears to be new and is crucial in deal-
ing with constraints. Qur procedure has a stopping criterion
depending on the convergence variable § and different decision
rules from those in (39] due to the fact we work on nonconvex
and/or constrained problems and LT MRT may have an empty interior.

4. LINE SEARCH CONVERGENCE AND ASSOCIATED RESULTS

Throughout the remainder of this paper we assume that f and

-

, - : n o <
h are weakly upper semismooth functions on S CR” where S is the set

of all points in r" lying within a Euclidean distance of uzigoi of
So = (zeRM:£(z) L £(xy) h(z) <0}
In this section we discuss convergence of the line search
procedure in Step 1 of the algorithm and give some implications
of this procedure's termination conditions. This discussion de-
pends on our parameter choices satisfying 0 <m, <m1 < 1.
Theorem 4.1. Suppose x£S,, |[d] #0 znd §>0. Then the
iine seurech procedure of Step 1 either
(a) terminates with € Yy ¥g and 9n sarisfying
4.1
h(yL) < 0 { )
2
- - = - | - 4
£ly,) - £(x) ¢ -myt. {d my Ly, - x| |d] (4.2)
-t 'J,
‘YL IR‘ < 253 (4.3)
and
< d> > - Jd|2
gR' = m11 : ’ (.’J.SJ)
op
‘b) generates a2 sezcuencz ‘L, - +® 3uca shas

he
{f(x+ tkd)} == and hl{x+t,d) <) For 2I1 k.
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Proof: If every t generated by the search satisfies t z LT
and t ZRT then t‘N and £a
ate and doubling causes t <~ +=, In this case the definition of LT

remain +«, the procedure does not :termin-

shows that a(x+td) g0 for all t and £(x+td) ===, siace -m,|d|% <0,
so (b) holds.

Suppose (b) does not hold. Then some % either satisfies t # LT
or £t £RT. In the former case, N becomes finite, doubling ceases
and bisection begins, unless the procedure terminates, because
t-tp =ta -t ga,8/|d|. If the former case does not hold, i.e.

t ¢ LT, then t ¢ LT NRT and the search terminates. If the search does
not terminate, then bisection causes RI - tL to approach zero, because
either & or t is replaced by %(tL + t'N) in each loop.

Let us suppose bisection has begun, i.e., £{x+td) /-, and

assume, for contradiction purposes, that the search does not ter-
minate. In this case the interval [tL’t\I] converges to scme ¢ > 0.
Since t. * %t and £ and h are continuous on S, the definition of LT

L
shows that £t LT, i.a.

£lzeid) - £(x) g -m,Ela? (4.3)
and

n(x+td) (3.8)

nn
o

Since QJ:LT, £z LT and Sy
of distinct values greater than t. If &y 2 RT infinitely often %then
(t:.R- tL) = (t'N- tL) -0 for these RI and the search must stop, be-

v e, t-\] must take on an infinite number

cause a25/|d| is positive. So, suppose g 2 RT for only finicely
many bisections. Then for infinitely many bisections we have
C412
<gleg),d> < ~m,;d| /
so

lim §nf <g(g),d>¢ -m, d(° . (5.7)
&E ' )

There are two cases Lo consider depending on whether or aot x +:\]d

1s feasible infinitely often.
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Case I. Suppose for infinitely many tN we have

) -
h(x+tNd) 0o . (4.8)
Then g(tV) aah(x+tvd) and combining (4.5) and (4.8) with the fact
that t_ > t gives

N

h(x+tVd)-h(x+Ed)

Thus, since i is weakly upper semismooth and q(tN)aah(x+&h%tw-Ekﬂ,

h(x+tqd)-h(x+ﬁd)

lim inf <g(tu),d> > lim sup - >0
gt . - ty-t

Buc this contradicts (4.7), because -m1\d\2 <0.
Case II. Suppose for infinitely many N (4.8) does not hold.
Then g(tN) aaf(x+tNd) and, since tNAtLT,

£lxregd) - £(x) > -mytgld]’

which combined with (4.53) gives
2 2 2
E(xreyd) - E(x+td) > -mz(tN—t)\dl
Thus, since f is weakly upper semismooth and q(tw) 53f(x+Ed+(tV-E)d),

f(x+tvd)-f(x+Ed)
lim inf <g(ty),d> lim sup - 2 ~myjdy

r,_ . -A =
th_ tNr 1'11 t

But this also contradicts (4.7), because m, < m, and {dl #0.

2

v
[ad’)

Therefore neither case occurs and the search terminates. From
various definitions and rules of the algorithm it is =asy to
show that (4.1) through (4.4) hold at termination.a
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From the assumptions that h(x,) £ 0, |g0| # 0 and 0 < Bz <
8, < 1/|golq-1, Theorem 4.1 and the rules of the algorithm it is
easy to establish inductively that the following holds:

Lemma 4.2. All values assigned to x, 4, ¢, YL, and YR by
the algorithm satisfy xeS,, [d| # 0, 0 < & < |g4], y €S, and
YR € S.

The next result shows that in the case of a convex problem
we do not need the variable tN in the line search procedure, be-
cause it may be replaced by ta wherever it appears, since if
t £ LT then t e RT.

Theorem ¢.3. If £ and h are convez functions on R® then
every value of t generated by the line search procedure satis-

fies t e LT URT.

Proof: 1If te LT we are done. So, suppose t g LT. Then either
h(x+td) > 0 ' (4.9)
or
£lx+td), - £(x) > -mpt|al? . (4.10)

If (4.9) holds then g(t) € 9f(x+td) and, by the convexity of
h, the subgradient inequality and the feasibility of x, we have

hix+td) - t<g(t),d> ¢ hix) ¢ 0 . (4.11)
Combining (4.9) and (4.11) yields
<g(t),d> > 0 . (4.12)

If (4.9) does not hold then (4.10) holds and g(t) £ 3f (x+td).
By the convexity of f and the subgradient inequality we have

£(x+td) - t<g(t),d> < £(x) . (4.13)
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Combining (4.10) and (4.1'3) gives

. 2
<g(t),d> > -m2|d| . (4.14)

Either by (4.12) or by (4.14) and the fact that m, <m, we

have

cg(t),d> 3 ~my(a|® > -m [d|?

so t €RT. QO

In order to derive convergence results for the algorithm in
the next section we need the following lemma, which does not de-
pend on the convergence assumptions of section 5. It gives the
reason for augmenting G with a 9q satisfying (4.4) where m, < 1.
A similar result for m, < 1/2 is given in [391.

Lemma 4.4. Let d =-Nr(G) be a search direction used at Step 1
to generate a g, that is added to G at Step 2b to form G =G«J{gL,gR}
and suppose no gj is deleted from G, at Step 2c. Let d =-Nr(G+)

+
be computed at Step 2d and suppose ¢ > max {\gjé :gj 5G+}, Then

2
a, 1" < {d!zmax (m1,1—[(1-m1)2{di2/“C2]}
Proof By assumption
ld, | = Inr@ )| ¢ (NG ulggh) | ¢ [Nr(i-d,gp})]
SOP
‘ L 2
1d, %< min ju(-d) + (-wgg® . (4.15)
0gHg )
Let
= < d> ! 12 <
a gR'gR+ = Lan + gqld> (4.186)

and
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b= <d,gp+d> = |d|% + <gg,d>

(.17

Recall that 0<m, <1 and |d| #0, so by (4.4), (4.16) and (4.17)

1
we have

b2 (1 -m1)1d|2 > 0

a+b = |gR+d|2 >0 .

So, for uceR,

lu (=) +(1-u)galz = lquz - 2au + (a+b)u2

is a strictly convex function of u with a global minimum at

u = a/(a+b)

(4.

—
[*}

(4.79)

and, therefore, by (4.18) and (4,19), with a constrained minimum

for u= (0,1] at

a/(a+b) if a

v

0 if a g0
So, if a <0, them, by (4.16) and (4.4),

. 2 2 2
min |u(=d) + (1-u)gy|* = 1 ¢ < =<g,,d> < m,|d|
o<ue! R l9gl® < R = ™

Suppose a > 0. Then

mia [ul-d) + (1=u)gp|® = [gg]? = a%/(a+b)
Ogug? :

From (4.16) and (4.17) we have
2
l

2
a-b=|gy|” - |a

14

. (4.20)

(3.21)
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so
(a?-52)/(a+b) = |gg|? - 4l
or
1gR|2 - a%/(a+b) = |d|? - b%/(a+b)
Thus, from (4.18) and (4.19),
tqal2 - a’/(a+b) < 14)2 - (1-m1)2\d|”/(a+b) . (4.22)
By assumption c2max [|d[,|gg|l, so, by (4.16), (4.17) and the
Cauchy-Schwartz inequality,
a+bg 4c? . (4.23)
Combining (4.21), (4%4.22) and (4.23) gives
min |u(=4) + (1-u)gR|2 < |d|2(1 - [(1-m1)2ld|2/uc2]}. (4.24)
0;p§1
The desired result then follows from (4.15), (4.20) and (4.24).0Q

Remarks: Lemma 4.4 also holds if any g. is deleted from G, for

which A, =0 where =d=Nr(G) = I X.g., LA, =1 and A, >0 for all i.
3 g.<G i7ir 4 i=
i€

Thus, such gj may also be deleted at Step 2c and this device can
be used to keep the number of elements in G bounded, because, by
Caratheodory's Theorem, Nr(G) can be expressed as a convex combina-
tion of n+ 1 or less elements of G.

Lemma 4.4 also holds if G_ = G\J(qa}, so g, need not be
added to G at Step 2b, but in order to implement deletion rule
IIb 9y, must be saved, because it replaces Iy when X, replaces x.

We conclude from Lemma 4.4 that §d+\ is less than a fraction
of |d| and that if there is an infinite number of consecutive iter-
aticons where each =-Nr(G) computed at Step 2d is a search directiocn
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4, no significant g. is deleted from G and all \gjl are uniformly
bounded then |d| +0. This idea is used in the next section to
show that § +0 when £(x) and g ¢ M(y) are uniformly bounded for all
X and y generated by the algorithm.

5. CONVERGENCE OF THE ALGORITHM

Throughout this section we assume that each execution of the
line search procedure of Step 1 terminates and that the following
boundedness assumption holds:

There exists a positive number C such that

lgl ¢ c for all y € S and g € M(Y) . (5.1)

Note that if S is bounded then a value for C is sup {|g| 1 g eM(Y),
y €S} which is finite, because, by Proposition 7, M is bounded on
bounded subsets of R". Under this assumption Lemma 4.2 implies

that all g, generated by the algorithm satisfy ]gjl < C.

The next result is the principal lemma from which the various
convergence theorems dealing with stationarity and optimality
follow. It is the only result in this section that does not de-
pend on which deletion rule is used by the algorithm.

Lemma 5.1. Suppose (5.1) holds. Then either §+ 0 or £(x)+-=.

Proof: There exists a number § > 0 such that & + §, because
the successive values of § are positive and form a monotone non-
increasing sequence.

Suppose 3 > 0. We must show that f(x) + -». Define segquences
{xk} and {§,} by setting k = -1 at Step 0 and, at entry to Step !
replacing k by k+1 and then setting X = X and Gk = §, Note that
the loop consisting of Steps 2c-2d-2e-2c¢c cannot be executed in-
finitely often, because, since 816q-1 < B1|go|q"1 < 1, the $-change
at Step 2e would imply that § + 0, a contradiction.

Thus, the sequences {xk} and {Sk} are infinite, {Gk} + § and

we may assume without loss of generality that all exits from Step
2e are to Step 1. Now we show, by contradiction, that {f(xk)}+-@.
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Suppose {£(x,)} is bounded from below. From (4.2) with %, . = X

and X, = X we have that
Elxeyq) = 060 £ =my Ixy = x| 4l (5.2)
where, by Step 2e and the monotonicity of {§1},

4| 28, 23>0 . (5.3)

= %k
Thus, {f(xk)} is monotone nonincreasing. So, there exists a real
number ¥ such that {f(xk)}+€. By (5.2) and (5.3), for i < ¢ we
have
151 _1§1|
f(x,) = £(x;) = (E(x, ) -£(x)) g -my$ X - % |-
2 i k=i k+1 Xk 2 ke i k+1 k

Therefore, by the definition of £ and the triangle inequality we

have for i g 2

F~ £0xy) g £(xy) = £(x;) g -my3lx, - x| (5.4)
Since 5 <a,, we may choose n such that (az/a1) <n<1. Then, since
{Sk} + §>0 and {f(xk)} + £, there exists an integer I such that for
all i > 1I

azdi_1 < na1§ (5.5)
and

flxy) - £ < £(xq) - £ < my (1 -n)a132 . (5.6)

So, by (5.4) and (5.6), for £ 2 i > I

le-xi\ < (1 -n)a1§ . (5.7)
Consider any gj that enters G after the definition of X1e i.e.
there is an i > I +1 = 5 =4 =
re i 1 >1I such that X9 X, °i-1 3, Xy = yL and

the yj associated with gj equals Yy OT Ygp. By (4.3) and (5.95),
we have

|, -yjl S 3,8, 4 & na, 8 (5.8)



If such a gj is deleted from G then, by Step 2c, there exists an
2 > i such that

|x£-yj\ > a,8 2 a8
But, by the triangle inequality, (5.7) and (5.8), we have

|x£-yj| Slxg-x |+ |xi-yj| < (1 -n)c..lg + na 8 = a3
which is a contradiction. Thus, no such 9 is deleted from G, so
the only candidates for deletion from G are the finite number of
gj's that entered G at or before the definition of Xpe Therefore,
there are an infinite number of consecutive iterations where G is
replaced by GU{g;,gp}, no q'j is deleted from G and, hence, by
Lemma 4.4, since lgjl < C for all j,

[Nr(G)| = |d]+0 .

But this contradicts (5.3). So, {f(xk)} +-= when § > 0.0

From here on we assume f(x) #=-=, so, by Lemma 5.1, §+0 and,
thus, for infinitely many algorithm variable triples (x,G,§) at
Step 2e we have |Nr{(G)| <§. Each time |Nr(G)| < ¢ occurs let an
integer sequence index k be increased by 1 and define segquence
quantities x5 = X, 6K =G and 6% =5. Note that { INr(Gk) |} ~0, since
{6k} + 0. Also, note that these sequences do not necessarily cor-

respond to the ones defined in the previous proof.

Our first convergence result shows stationarity of accumulation
points of (xk}, when deletion rule I is used. Consider the fol-~
lowing condition:

f is bounded from below on SO and there exists an
X € Sy and an infinite set K ¢ {1,2,...,} such that
k -
{x }keK + X. (5.9)

Remark: By the continuity of f and h, (5.9) holds if S,is
bounded, for then SO is also closed and, hence, compact. Also
" note that the continuity of h implies h(x) £ 0.
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Theorem 5.2. Suppose tnat (5.1) and (5.9) hold and that the

.

algorttnm uses deletion rule I. Then h(X) <0 and J eM(x), %.2.,

x 1§ stationary.

Proof: For each kK, by Caratheodory's theorem, there ex-

ko

ists a positive integer p n+ 1 such that

~ U

k

p 1
(g1 < conv (U M(v5)
1 % g=1 *

) o]
Nr(G*) e conv ( U
1=

where for each 2 ¢ (1,2,...,pk}, there is a j depending on & such
that g’;=gj, yi:=yj and gj aM(yj) ﬂGk. Then there exists an in-
finite set R, CXK and an integer p=: {(1,2,...,n+1} such that pk=p
for all k= L O and, thus,

k ° K 5

Nr(G") £ conv (U M(yl)) for all k ¢ K, - (3.10)

By assumption (3.7) and Proposition 7, M is bounded and uppersemicon-
n .
tinuous on S, so, the map T : sP + 2R" defined by

o

T(z1,22,..-,zp) = conv (

uC

- aP
L 1M(zi)) for (21/221---129) £ S

is uppersemicontinucus on sP. By deletion rule I

k

lxk—y}z( ¢ a,8" for each 2 ¢ {1,2,...,p}and k ¢ K,

. K - k —
Thus, since {x }kex-’xzs, {86%} +0 and K,CK,

\( -
{ygl + x for each 2 = {1,2,...,p} . (5.12)
kEK1
Combining (5.10), (5.11) and (5.12) with the facts that T is upper-

Ne (G5 |} -0 gives

semicontinuous on S® and {
? - -
0 £ conv { U M(x)) = conv (M(x))
=1

By definition , M(X) is convex, so 0= M(X).aQ
Combining Theorem 5.2 with Theorem 9 of {27] gives the following:
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Corollory5.3. Suppose, in addition to the assumptions of Theorem 5.2,

that £ and h are semiconvex (27] on R". Then at least one of the
following holds:

(a) x is optimal.
(b) {zeR?:h(z) <0} is empty.

The remaining convergence results are for convex problems,
and, hence, assume the following condition:

f and h are convex functions on R® . (5.13)

The £irst such result shows how an x generated by the algor-
ithm approximates satisfaction of saddle point optimality condi-
tions in terms of Nr(G) and 5. This result parallels Theorem 1
in [39) for unconstrained problems and depends on our deletion
rule II.

Theorem 5.4. Suppose (5.1) and (5.13) hold, the algorithm
uses deletion rule 1I and x, G and § are algorithm variables at
the end of Step 2d. Let J=1{] f 9y eGﬂM(yj), h(_yj) <al,

T ={j =qj€GﬂM(Yj), h(yj),>0}, and ;20 for eJUT satisfy
Nr(G) = T _A.g. and T A.=1. Define e [0,1] by A= I A..

jeguF 173 jequd jeg ?
Then for all z & R®

(a) MER) -£(2z) + (1=2) (h(x) ~h(z})) $ N£(G) ,x=2> + (1+X)Ca\d
(b) ME) -£(2) ¢ INe(@) | [z=x| + a8 if h(z) 20

and

(c) A= 1if hx) g a8 -

Proof: Wote that J may be empty, but J is nonempty, because
x is feasible and gxeGﬂM(x). Since gj eG for j ¢J was not de-
leted at Step 2c¢ by rule IIb and (3.3) was satisfied, because f
is convex, we conclude that (3.4) was not satisfied. Therefore,

since Xj >0, we have

>‘j (f(yj) -f(x)) + )\j<gj,x-yj> 2 —Xja16|gx-qj] for 3 €6 J . (5.14)
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Similarly from (3.2) of rule IIa we have

. = (5.13)
A\, L X=Y. - .| fo g J
]<qj,x Y5> 2 A3a15lgj\ rj
Also, since h(yj) >0 for j¢J and h(x) <0, we have
20 for j eJ . (5.16)

Ay (hlyg) = h(x)

Adding (5.14) summed over jeJ to (5.15) and (5.16) summed over
j¢J and using the fact that \qjl <C for all j gives

A (f(y,) =£(x)) + I_A.(h(y,) =h(x)) + I _i,<g, x-v,>
jEJ ] J jEJ J ] jEJUJ ] 1 J
2 -(2 L A, + T A)Ca 8 . (5.17)
= jeg I 3e3 7

Since f and h are convex, 94 € af(yj) for j€J and gj € ah(yj)
for jeJ, the subgradient inequality implies that for any z z D

Aj(f(z) -f(yj)) 2 Aj[<gj,z-x>+<gj,x-yj>] for j £ J (5.18)

and

Aj(h(z) -h(yj)) > )‘j[<gj’z-X>+<gj’x-yj>] for 3 eI . (5.19)

Adding (S.718) and (5.19) over jcJUJ gives

L Aj(f(z)-f(y.)) + I_i;(h(z2) -h(yy)) 2 < £ _A.g.,2z-x>
jed ] je3 ! ] jequd 37
+ IO_Ai<gL R-YL> . (5.20)
jegu3 3 73 J

\

Adding (5.17) and (5.20), and noting that A =

Nr(G) = L _A.g, gives for all z e R",

jequd 377
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\'Z

A(E(z) - £(x)) + (1 =-A4)(h(2) -h(x})) <Nr(G),z-x> - (1 +A)Ca16

which is equivalent to the first desired result (a).

Now suppose h(x) ;-Ca16. We show (c) by showing that J is
empty. Suppose J is nonempty, i.e., there is a y. corresponding
to gj e G such that h(yj) >0. Then, by deletion rule IIa,

‘gyrx=y4> 2 -a16|gj| 2 ~Cay 8 2 h(x) . (5.21)

Since gj sah(yj), the convexity of h and (5.21) implies

h(yj) * <GysX-y> < h(x) g 94Xy

Hence, h(yj) ¢ 0, but this contradicts the supposition that
h(yj) >0. Thus, J is empty, A =1, and (c) holds.

To establish (b), we note that if h(z) <0 then, by (a) and
the Cauchy-Schwarz inequality

A(E(x) - €(2)) ¢ |Nr(G)[|z-x| + (1+X)Ca,8 + (1-24)(-h(x))
(5.22)

If A=1, then (b) follows immediately from (5.22). If A <1 then,

by (c), -h(x) <Ca16, which combined with (5.22) gives (b).o
Returning to the sequence (xX}, we next show that any accu-

mulation point X satisfies saddle-point conditions if the prob-

lem functions are convex and the algorithm uses deletion rule II.

Define the sequence (3% C [0,1) corresponding to ((xk,Gk,Gk)}

by letting A% =\ where \ is the multiplier as in Theorem 5.4 cor-

responding to (x,G,$) when the latter quantity equals (xk,Gk,sk).

Theorem 5.5. Suppose (5.1), (5.3) and (5.13) hold and the
algorithm uses deletion rule TI. Let rce [0,1] be any accumula-

tion point of {A Then

X
}kex'
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(£(%) -£(2)) + (1=-%) (h(X) -h(z)) ¢ 0 for all z ¢ R"

o
>

(¢) X =1 1if h(x) < 0,

(d) (zeR%:h(z) <0} is empty if X = 0,

and
(e) X is optimal if X > 0

Proof: Part (a) follows from the remark following assumption
(5.9).
)40 and f and h are con-

. \ -3 7 k - ‘s
Since (xkfksx x, {|NC(G™) |} ~0, {3
k Gk 5k

’

. - . JON .k , ,
tinuous, (a) of Theorem 5.4% with (x,G,3,4) = (x ,A ) implies
(b).
. 13 X K _
By (c) of Theorem 5.4, if h(x™) <-Ca,$ then A" =1. Thus,
if h(X) <0, since {x‘}kgx*i, (%} +0 and h is continuous, we have
kk=1 for all k sufficiently large and, hence, X=1. Thus, (c)

holds.

Parts (d) and (e) are well-known [23] consequences of (a),
(b) and (c).a
Theorem 5.4 shows that if x* is optimal and the multiplier A
is positive then

£(x) - £(x*) g (|Nr(G)|[x-x*| + 2Ca,8)/A

Under the stronger assumptions given helow we can obtain upper
bounds on the quantities |x-x*| and 1/X in terms of |Nr(G)| and 3.

Theorem 5.3. In addition to the assumptions of Theorem 5.4,

3uppose that x* is optimal and that £ 135 strongly convez [30]

on SO t.2., there zzists a number u> I sucn that

f(%—(yq-z)) < %f(y) + 17:‘.(2) - %|y—z|2 for all y,zcS {5.23)

0

Then
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(a) X* Z3 the only optimal point
and
(b) Ax-x*| g 3UIN£(@) ] +(Ine (@) |2+ 8cayus) 1m0 .

Furthermore, if there ezists X ¢ R® such that h(X) < 0 then

(e) A 2 (=h(R) = |%=x| [N£(G) | = 2Ca,8)/ (£(X) - £(x*) - h (X))
where
(d) |%-x| g |&=x*| + [(£(xg) = £ 12,

Proof: Note that, by the convexity of £ and h, S0 is a

convex set so if y, z €S, then ¥{y+2z) ESOA Part (a) follows
immediately from (5.23), by contradiction, if we suppose Yy
and z to be two distinct optimal points.

Since x* is optimal, (5.23) with y=x and z =x* implies

that

£(x%) g £(Flxex®)) £ TE(x) + 2E(x*) = Fx-x+|?

1
2
Thus,
2
£(x) = £(x*) 2 ulx-x*| . (5.24)
Combining (S.24) and (b) of Theorem 5.4 with z = x* gives

INZ(G) | |x-x*| + 2Cayé 3 Au|x-x*|°

v

which, when multiplied by (A/u)

v

0, yields

02 t:2 —ut -v= {t-%[u+(u2

2
+uv)1/']}{t-%[u-'(u2+uv)1/2]} (5.25)
where t = |x-x*|, u=|Nr(G)|/u and v =2ACay$/u. Considered as a
function of t the right hand side of (5.25) is a strictly convex
quadratic, so an upper bound on all t satisfying (5.25) is the



root %[u-+(u2+4v)%]. Thus, t<klu +(u2+4v)5], which, by the defi-
nitions of £, u and v, implies (b), since X < implies v ;2Ca15/u.
low suppose n(x) <0 and note that (¢) holds if X =1, be-

cause f(X) - £(x*) - h(X) ;-h(ﬁ) >0 implies that the right hand
side of (¢) is bounded above by one. So, suppose A <1, which
by (c¢) of Theorem 5.4 implies

h(x) > -Ca1d . (5.286)

Prom (a) of Theorem 5.4 with z =x and the Cauchy-Schwartz inequality
we have

AMEX) -EX)) + (1= () -hX)

A

|Hr(G) | | %-x| + (T+Nca, s . (5.27)

Combining (5.26) and (5.27) with the fact that £ (x*) < £(x) gives
ME*) -£R) + (1-0) (€Cad-h&) ¢ INe@ | [&=x| + (1+X)Cays

which is equivalent to (c).

In order to have a lower bound on ) that does not depend on
X we need an upper bound on

|%=x| < [%-x*| + [x*-x| . (5.28)

Combining (5.28) and (5.24%) with the fact that f(x) ;f(xa) gives
the last desired result (d4).g

Our final result shows that under the strong assumptions of
Theorem 5.6 we have that the accumulation voint existence condition
(5.9) for {x%} nolds with K=1{1,2,...} and x =x* and that all the
accumulation points of {Xk} are bounded below by a positive number.

Corollary 5.7. 1If all the assumptions of Theorem 5.% hold then

lim inf A% 3 (=h(%))/(£(X)-£(x*) =h(X)) > 0

K+x
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and {xk}-’x‘.

Proof: The results follow immediately from (b), (¢c) and (d)
of Theorem 5.6 with (x,G,5,0) = (x5,6%,6%,1%), since (6%} +0 and
[Nz (cX) ([}~ 0.0
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