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PREFACE

The development of better methods to compute optimal solutions to
models is a basic task in the System and Decision Sciences Area. Of particu-
lar interest are linear models with linear constraints. An important problem
here is to be able to characterize when one solution is “adjacent” te another,
since most practical algorithms for linear models operate by moving from
one solution to an adjacent “better” one.

In this paper a convenient criterion is formulated to characterize
adjacency for constraint systems that arise from orderings. The results have
application to models in which the object is to find a best ordering of alter-
natives using some linear criterion, for example. In particular, it was used
as a technique for studying collective decision criteria (H.P. Young and
A. Levenglick, A Consistent Extension of Condorcet’s Election Principle,
RR-77-15, International Institute for Applied Systems Analysis, Laxenburg,
Austria).
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SUMMARY

Permutation polytopes arise in a class of problems in which the objec-
tive is to find an optimal complete ordering of some given alternatives, sub-
ject to a linear objective criterion. In this paper an easy characterization is
given of neighbors on permutation polytopes. Using this characterization
it is shown that the graph of any such polytope is Hamiltonian, and that the
diameter is two.

The methods used are combinatorial in nature.
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On Permutations and Permutation Polytopes

1. INTRODUCTION

A permutation, or linear ordering, on the n symbols 1,2,...,n
will be denoted by the n-tuple o = (o0(1),0(2),...,0(n)). We also
write hok if h precedes k in the order o. One useful algebraic
representation of a permutation is by a permutation matrix. Here
we shall consider another way of representing permutations by (0,1)
matrices that has application to a variety of problems including

computer design [2] and collective decision making [5].

For any linear ordering ¢ = (¢(1),0(2),...,0(n)) let EO be the

nxn matrix with 1 in position (i,j) if ioj and 0 otherwise. The

permutation polytope Pn is defined to be the set of all convex com-
binations of the matrices EO, o a permutation of order n. It is
an unsolved problem to determine the complete set of inequalities
defining a general P (those proposed in [1] being insufficient).
On the other hand various characterizations of neighbors on these
polytopes are known. Here we shall give a computationally easy way
of recognizing neighbors in terms of the structure of the permuta-
tions. This approach also reveals some facts about the structure
of a class of graphs (implicitly introduced in [3,4] called trans-—
position graphs that are intimately connected with adjacency ques-
tions on the graph of Pn.

2. BLOCKS

An interval of a permutation ¢ = (0(1),0(2),...,0(n)) is a
subsequence of form (c(i),o0(i+1),...,0(j)). We also allow the
empty subsequence. Let e = (1,2,...,n) be the 7dentity permutation.

A block of o is any interval of ¢ that can be rearranged to be an

interval of e. A common interval of o and e is an interval (without

rearrangement) of both ¢ and e.

Example 1. Let e = (1,2,3,...,10,11) and let o = (2,10,4,11,
6,5,8,7,9,3,1). The blocks of ¢, aside from ¢ and the singletons,

are:



B, = (2,10,4,11,6,5,8,7,9,3)
B, =0

= (10,4,11,6,5,8,7,9)

Bu = (1Olul1116I518I71973)
Bs = (6,5)

86 = (6,5,8,7)

B-I = (615181719)

Bg = (8,7)

= (8,7,9)

The transposition set of o, S(o), is the set of all unordered
pairs {i,j} i # j inverted by o: S(o) = {{i,j}:1i<3j and joil.
The transposition set of a block B of o, S(B) = {{i,j}:i,jeB,
i<j and jaoil.

Notice that for any two blocks 81, 82 of ¢, B1r\82 is also a
block and

S(B,NB,) = S(By) NS (By)

Let LO = {s :S==S(Bi) for some block Bi of 0}. Then the ele-

ments of L ordered by inclusion, form a lattice, called a permu-

tation lattice. In general, l'u'b'{si}s.eﬁaLJiSi’ but equality

may not hold. 1

For the o of Example 1, we obtain the following lattice.

S(8,) o
s(81) = s(Bu) l-
S(B3) {-
S(Bg) = S(Bg) o/ \o S(Bg)

%
¢



3. CHARACTERIZATION OF NEIGHBORS BY BLOCKS

Two permutations ¢ and T are said to be neighbors written
o~1 if E’ and E' are neighboring extreme points on Pn' We may
now give the following easy characterization of neighbors on

permutation polytopes.

(1) o $# e is a neighbor of e on P, if and only if

Lo has a unique nonempty element.
This will be established below as a consequence of Theorem 1.

For the moment let us notice that this criterion leads to a
highly efficient method for checking whether a given ¢ is a neighbor
of e.

First, find the least p°, 1<p’<n such that o(p°)  p® (if
none exists, o=e). Next, order the pairs (p,q), pof_p< g<n,
lexicographically. For each successive pair we check to see
whether the interval (o(p),...,c(q)) is a block: this is true
iff g - p=M-m, where M = max (i), m = min o(i). Moreover,

pii<q plizq

this block is nontrivial (that is, it is not an interval of e)

if M ¥ 6(q). If (p',q') is the first pair for which a nontrivial
block is found, we check that o(i) = i for g'< i < n: if this

is false, o is not a neighbor of e. 1If true, repeat the above
process for successive pairs (p,q), (p'+1) <p<g<qg': if any
nontrivial block is found, ¢ is 7ot a neighbor of e; otherwise

o 78 a neighbor of e.

Notice that the computation of the new M and m at each stage
is easy, since the pairs (p,q) are taken in lexicographic order.

The number of pairs (p,g) that have to be considered is at most(g).

4. CHARACTERIZATION OF NEIGHBORS BY GRAPHS

A second way of characterizing neighbors on permutation poly-
topes is based on a certain class of comparability graphs. An un-
directed graph G is said to be a comparability graph if its edges
can be directed so as to form a strict partial order ©: i.e.,



(i) exactly one of (i,j), (j,i) € © iff {i,j} is an edge of G,
(ii) (i,3), (j,k) € © implies (i,k) e 0O.

Given a permutation o = (0(1),...,0(n)), the permutation graph
[3] of o, Go’
set {1,2,...,n} and edge set S(ou). Notice that G, is a comparabil-

is defined to be the undirected graph with vertex

ity graph by the partial order 0 = {(j,i) + i < j and {i,j} es(0)}
(or the reverse order ©). Similarly, Gg is a comparability graph
for the order ¢' = {(i,j) :i<j and {i,j} ¢ S(0)}. Conversely, if
G is some graph such that both G and G are comparability graphs

then G = G0 for some o [3].

Given permutation o, a graph related to G0 is the transposition
set F defined as follows: FO has vertex set S(o), and {i,j} ¢ S(o)
is adjacent to {j,k} e S(o) (written {i,jl}l'{j,k}) if and only if

i £ k and {i,k} ¢ S(o); these are all the adjacencies in I

The following connection between Fo and neighbors on the per-

mutation polytope is due to Alan Hoffman.

(2) 0 + e is a neighbor of e if and only if ', is connected

To prove sufficiency, suppose FO is connected and ¢ # e is

) s
not a neighbor of e. Then S(0) = L_} S(nr) for distinct permuta--
r=1

tions T + 0, r> 2.

Since T _ is connected, there is 7 + m_.. and {i,5te s(m.) -
S(m 1), {3,k} eS(n_,), such that {i,3Ir{j,k}, i.e. {i,k} £S(o).
Hence {i,k}z's(nr)kJS(ﬂr.). Hence, of i,j,k, T, reverses only
j and k, and T,. reverses j and i but not i and k. Therefore,
either i <« j < k or k < j < i. But o reverses {i,j} and {j, k}
and not {i,k}, an absurdity. The converse will be established
as a consequence of the following connection between Fc and the

permutation lattice L;-

Theorem 1. For any ¢, the components of FO are precisely the
N
nonempty sets of form S Si% S Si where Se¢ Lo'
SisL0
We proceed by several lemmas.



Lemma 1.1. If C is any component of PO and CNs + ¢ for some
SeLO, then CCS.

Proof: If C¢S then {i,31r{j,k} for some {i,j}eCNsS and
some {j,k}eC-S. Let S =5(g), B = (o(p),---,0(q)}; then i,j¢ B,
kg B. Since o reverses j and k it must also reverse i and Xk,

whence {i,k} €S, a contradiction.
Recall that Go has vertex set V = {1,2,...,n} and edge set S(o).

Following [3], we say that a subset V'€ V is wuniformly hinged
(u.h.) in G(j if for every kg V', either {k,i} e S(o) for all ieV'
or {k,i} e S(o) for no ievV'. Clearly any block of ¢ regarded as a
set of vertices of Go is u.h., but not every u.h. set constitutes
a block. Por any V'CV and any permutation 7w define cJLTr(V') as

the smallest interval of m containing V'.

Lemma 1.2. If V' is u.h. in G, then, as sets, cle(V')
equals cZO(V'), in which case cSLO(V') is a block of o.

Proof: Suppose V' is u.h., and let c2_ (V') = (0(p),...,0(q)).
Then o(p), 0{g) € V' by definition. If iecZO(V') - V', and
a(p) > o{g), then u.h. implies o{p) >1i>o0(g); similarly, if a{(p) <
og(g) then o(p)<i<o(q). Hence cJLO(V');cRe {(V'). On the other hand,
if ie cle(V') - V' then for some h,ke V' we have h< i<k, Thus i

cannot precede (or follow) both h and k in o without contradicting
u.h., hence ic¢ cJLO(V') and cJLO(V') = cJLe(V').

For any subset of edges E£ S(d), let V(E)ZLV be the set of
endpoints of =2dges in E. The next two results are immediate con-
sequences of Lemmas 2 and 4, respectively in [3].

g

Lemma 1.3. If C is a component of I‘O then V(C) is u.h. 1in "0.

Lemma 1.4. IEf C and C' are distinct components of 1"O then
v(c) ¥ v(c').

Proof of Theorem 1: By Lemma 1.1, any component that meets

S=5- \_J S; + ¢ must be contained in §, hence it will suffice
SigS'SiELO

to show that S is connected in Fo‘
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Let C be any component of Fo contained in §, and let W = V(C).

Since W is u.h., Lemma 1.2 implies clc(w) = B is a block of o,
say B = (o(p),...,0(q)).
Suppose B - W * . (Here we think of B as a set as well as a

sequence.)

Let he B-W and

W; = {keWwW: koh} ,
Wy = {keW: hok} .

. N - + -
Notice that since o(p), o{(gq) € W, w;, Wh + ¢; moreover Wh and wh

+ _ + - _ - _
are each u.h. Therefore Bh = clo(wh) and Bh = clo(wh) are non
empty disjoint blocks.

In general, for any disgoint V',V'QV, let (V',V") denote
the set of edges of Go with one end in V' and the other end in V".

By Lemma 1.1, C N S(B;) = ¢ and C N'S(B.) = ¢, hence C C (W ,W7).

Suppose now that some ke B; - w; # ¢. Then by a similar

argument we have c';(w;,w;). By choice of k, W; - W; + ¢, say

QEW; - W;. Then % ¢ W; and % are the endpoints of some edge in C.
The other endpoint, %', is therefore in w;;;w;, but then both

ends are in W;, a contradiction. Therefore B; = w; is a block

and similarly B; = W; is a block; say B; = (0o(p),s-a.,0(P")),

By = (0(q"),...,0(q)), and let a = (o(p'+1),...,0(q'-1)) ¥ ¢.

Since C ¥ ¢ and C ;(B;,B;) we must have B; > B; (i.e., i>3j for
. + - . - .

all ie Bh’ je Bh). Further, since W = B;L}Bh is u.h. we have

+ - .

pp > @ > Bh’ SO o is also a nonempty block of o.

In summary, for any component CC S, if V(C) = W and B = clO(W),
then either W = B is a block or B has form B = (¥',a,W ) where
W' > a > W are each nonempty blocks.

If S is not connected then there is another component C of

Po such that C # 6g;§ and corresponding w, B. By definition of

S, S(B) = S(B) =5, so B = E.



Now W = 8 = § = W is impossible by Lemma 1.4. Hence say, with-

out loss of generality, that either

w o,

(i) B = (W ,0,W)

or

(ii) B

(w+lo'rw-) = (ﬁ+rarﬁ—) = é ’

where w+ > o >W and W' > o > W~ and each is a nonempty block.

In the first case notice that both (W+,a) and (o,W ) are
blocks. Choose any ke a; then {j,k} e C for some j and either
{j,k}e S(W+,a) or {j,k}e S(o,W ). But neither S(W+,a) nor S(a,W )
equals S, contradicting the definition of S.

In the second case suppose w+ f ﬁ+; without loss of gener-
ality W+§EW+. Then (W' - w',o,#”) = ¢ is a block. For any
kK e W - W+,{k,j} ¢ C for some j and either {k,j} € S(W') or {k,j}
€ S(6). Since neither S(8) nor S(W+) equals S, this contradicts

e = + ~ 4 . . -
the definition of S. Thus W = W , and likewise W = W . But

then W = W, contradicting Lemma 1.4.0

The proof of statement (1) is now as follows.

If LO has one nonempty element S, then S = S is the unique
component of Fo; hence by the argument following (2) o is a
neighbor of e. If on the other hand Lo has distinct, nonempty
elements, let S0 = S(B) be a minimal nonempty element of Lc'
Then within B we may rearrange the elements to be an interval of
e, and the resulting permutation ¢' satisfies S(g') = S(o)-SO.
Likewise we may rearrange o to agree with e everywhere except
within B, and the resulting ¢" has S(o") = SO' But then EO' +
89" = e + ES, showing that ¢ is not a neighbor of e. Statement
(2) now follows at once also, since if 0 is a neighbor of e, then
L, has a unique nonempty element; hence by Theorem 1 Ty is con-

nected.

Example 2. For n = 3, the neighbors of e = (1,2,3) are seen
by inspection to be: (2,1,3), (2,3,1), (1,3,2), (3,1,2).



For n = 4, the neighbors of e = (1,2,3,4) are seen by in-

spection to be the following twelve permutations:

(1,2,4,3) (2,1,3,4) (3,1,2,4) (4,1,2,3)
(1,3,2,4) (2,3,1,4) (3,1,4,2)

(1,3,4,2) (2,3,4,1) (3,4,1,2)

(1,4,2,3) (2,4,1,3)

5. THE CIRCUMFERENCE OF P1

The graph of Pn’ H(Pn), is the undirected graph whose vertices
are the permutations o = (6(1),...,0(n)), where o and 1T are adjacent

if and only if 0 # 1T and ¢ is a neighbor of T.

Theorem 2. The graph H(Pn) is Hamiltonian for any n > 3.

Proof: For n = 3 a Hamiltonian circuit is
2 2 3 1
> 1 > 3 > 2 > + 3 > 2
3 1 1 2 3

Suppose the result has been proved for n-~ 1, and let Tyreees

T(n_1),T1 be a Hamiltonian circuit on the permutations T of

1,2,...,n-1. Por each odd i, 1 < i < (n-1)!, let T, T (Ti(1),...,
Ti(n—1), and for each k, 1 < k < n define the permutations Oix

of 1,2,...,n as follows:

Q
Il

i1 (Ti(1)l---lTi(n_1)ln)

Q
|

i2 = (Ti(1),...,n,Ti(n—1))

Q
|

in = (D,Ti(1),...,Ti(n—1)) .

For 1 even, let



Q
|

(ani(1)l-°-lTi(n-1))

i1
0i2 = (Ti(1)lnl---rTi(n_1)).
Oin = (Ti(1),...,ri(n—1),n)

Since (n-1)! is even, (1) implies that Oqq10qgre10y 10,q000e0y 4

0(n_1):n,o11 is a Hamiltonian circuit in H(Pn). e}

It will be noticed that each successive pair of permutations
on the Hamiltonian circuit are "close" neighbors in the sense
that they differ by just one adjacent transposition. This con-

struction is known in combinatorics, see for example [6,7].

6. AN INDUCTIVE LEMMA

Pick m, 1 <m < n, and let my =m-1, my = m+ 1. (Ifm-=1,

only m, is defined, and if m = n only m, is defined.)

Given any permutation m, let 7 be the permutation on n- 1
symbols obtained from 5 by removing m from the sequence. Thus,
if = = (2,3,5,1,4) and m = 3 then & = (1,2,4,5) and 7 = (2,5,1,8).

The n- 1 elements of T we call dots and the n positions de-
fined between the dots or at either end of the dots we call slots.
Given any dot sequence B (i.e., an interval of ﬁ,) where |S| = k,
let (B8) denote the sequence of k dots and k- 1 slots beginning
with the first dot in B and ending with the last dot in B; let
(B] denote the sequence with k dots and k slots consisting of (B)
and the end slot to the right of B; let [B) be (B) and the end
slot to the left of B8, and let [B] be (B) together with both
end slots. We call these open, half-open and closed slot-dot
sequences, respectively. We adopt the convention that if 8 is
the empty sequence then [B] consists of one slot, and the others
are empty. We also write m € (B), m € [B] etc., when we mean that

m occupies a slot in that sequence.
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Let Y, be the longest initial interval of 7 that is also
an initial interval of &, v, the longest terminal interval of
T that is also a terminal interval of é (either may be empty).
f = y,my, where 7 is a block of 7 (relative to &) and S(f) = S(f1.
pDefine 6, to be the longest common interval of T and e ending
with my, 6, to be the longest common interval of T and & be-
ginning with m,. (Ifm=1o0or m=n, one of these sequences

is wvacuous.)

Lemma 3.1. Let 7 be a neighbor of €. Then T is a neighbor
of e if and only if

(1) mg (8 ,mg (8,1

and

(ii) [87)€ [v,) implies m# [y,]: (8,] € (y,] implies m¢ [y4].

Proof: Let the conditions (i) and (ii) be satisfied and

suppose B, B' are any two blocks of m. We must show that
(3) S(B) £ ¢ , S(B') % ¢ implies S(B) = S(B)

For any block B of 7m, let é denote 8 with m removed. Note
that 8 is then a block of 7 (with respect to the "identity", é).

Ifm¢B, S(B) + ¢, then S(B) = s(B) % ¢ so s(B) = s(f) =
S(ﬁ), since 7 is a neighbor of €. 1If me B, S(B) $+ ¢, then since
7 is a neighbor of &, either s(A) = ¢, or s(B) = s(f) = s(M).
In the former case é is a common interval of e and T and since
B is a block with S(R) + ¢, either m, € 8 or m, € B. 1It follows
that either B has a subinterval of form (m,di) where di is a
common interval of 7 and & ending with m,, or 8 has a subinterval
of form (Gé,m), where 65 is a common interval of 7 and & beginning

with m,. Both situations violate condition (i). Hence

(4) S(B) ¥+ ¢ implies S(B) = S(T) and 7cB
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Suppose both m,, m, are defined, i.e. m $ 1,n.

If my,m,e€ %, then for any block g of m, S(8) $ ¢ implies

A A A
T & B, hence m,,m, € B, so me B. Then the sequence u = clﬂ(ﬂ,m)

2
is a block of n, uecpB, and s(u) = S(B), so (3) holds.

If m, € :, ngf;, then m, is maximal in %, so m, € v, and in
fact m, is the initial "dot" of Yo, SO 62 =Yy Then conditions
(i) and (ii) imply me (%]. Hence the sequence w obtained from
7 by re-inserting m in (ﬁ] is a block of m and m is its maximal
element. If m is not the last element of the sequence w, i.e.
if me (T'l\\'), then for any block B of 7, S(B) ¥ ¢ implies '?IQB, SO
wgh and S(w) = s(B), so (3) holds. If m is the last element of
w, then m maximal in @ implies T is also a block of m and S(w) =
S(ﬁ). By choice of T we then have T cp and S(%) = S(B) for any
block B8 of 7 such that S(B) % ¢, and again (3) holds. A similar
argument applies if1n1¢?, m, € 7.

Finally, if m, ¢§, m, ¢;, then by choice of %, m, is adjacent
to m, in 7 and both are in Y, or in Y,i say without loss of gen-
erality m,,Mm,€v,. Then [Y1] = [61)0(62], and conditions (i)kand
orme (m),

(ii) imply that in 7, either m is between m, and m

1 27!
In the former case % is also a block of 7 and it is clearly the
unique nontrivial block. 1In the latter case, let B be any block

of m such that S(B) + ¢. Then 7 <8 hence me B; hence m, e B (since

B is a block and the elements of T are larger than m). Therefore
v = clﬂ(mz,%) is a block of m, B2v, and S(B) = S(v), so (3) holds.

In casem = n, 62 is impty and mg¢ [Y1] by condifionA(ii).
Moreover we must have my e, since if not then Y, =T = e con-
trary to the assumption that f is a neighbor of € (and hence
T + €). The argument of the second paragraph preceding then im-
plies (3). Similar remarks hold if m = 1. The converse is left

to the reader. O

Given ﬁ, we represent slots by the symbol o; we also (where
relevant) mark a bracket with an arrow "»" if it coincides with
the left end of 7, and with an arrow "<«" if it coincides with the

right end of 7. The proof of Lemma 3.1 then actually shows that
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the "forbidden" slot-dot sequences for m must have one of the

following forms relative to T:

0

(A1) ees [0 4. m1)o”TT‘."o(m2 eea 0] ...

¢ 4

(A2) ...o(mz... o] ... [0... m1)o e

(B1) +[o... 0l . efo ... m1)o"TATTo(m2 . 0]«
or
$¢ $6  v,¥0
(B2) +{o ... m1)o P o(m2 ...o]l8. . e[0 ... 0]

The indicated sequences in every case are dot disjoint,
and, as dot sequences, are subintervals of e. Of course, if
some mi does not exist, the corresponding half open seguence
is empty. Since in any case some slot is not forbidden, we

have the following result.

(5) Corollary. For any m, 1 <m < mun, let & be as above and

let n be a permutation on the n- 1 symbols {1,...,n} - {m} that
is a neighbor of 8. Then there is some slot in n in which m

can be inserted such that the resulting permutation on n symbols

is a neighbor of e.

7. THE DIAMETER OF P,1

Theorem 3. For n > 2 the diameter of Pn is two.

Proof. The proof is constructive, and proceeds by induc-

tion on n. For n = 2,3 it is obvious.

(6) Suppose then that the result is proved for 2 < n' < n,
n > 4, and let o be a permutation on n symbols such that o § e
and 0 is not a neighbor of e.

We say that the permutation o is degenerate if

(i) o and e have a common interval of length > 2,
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or

(ii) o and e have the same first symbol or the same last
symbol.

If o is degenerate as in case (i) then by treating y as a
new symbol we obtain permutations § and & on n- |y| + 1 symbols
such that & # é and & is not a neighbor of &. Hence by induc-
tion &~ T~ é& for some 7 and it follows that o~ T .e for the
corresponding m on {1,2,...,n}. Induction also yields the

theorem if ¢ is degenerate as in case (ii).

Hence we may assume in the sequel that (6) holds and o is

nondegenerate.

(7) We say that a symbol m is <nadmissible in o if

(i) m is the predecessor* in ¢ of m-1 or the successor in
o of m+ 1;

or
(ii) m =1 and 1 is last in 0 or m = n and n is first in 0;
or
(iii) m is the predecessor in o of some block 8', where B'
is a rearrangement of e' = (m-j,...,m-1) for some j >3
and B' is a neighbor of e';
or

(iv) m is the successor in ¢ of some block B", where B" is
a rearrangement of e" = (m+1,...,m+k) for some k > 3

and B" is a neighbor of e".

~

For any given symbol m, 1 < m < n, let T, e, etc. be de-

fined as in Section 6.

Lemma 3.2. Suppose n 2 4, o is nondegenerate, and m is
admissible. If G~n-~é for some permutation n on symbols
{1,2,...,n} - {m}, then there is a slot of n into which m can

be inserted, such that the resulting n' satisfies o .~n' ~e.

The proof is given later in this Report.

¥, . .
1.e., the immediate predecessor.



-14=

Any permutation ¢ that can be partitioned into subintervals

o = 6162... Gr such that
(8) 61 = ¢ or 51 = (n) ,
Gr = ¢ or Gr = (1) ,
and, for 1 < p < r,
Gp is an interval of € = (n,n-1,...,2,1), |6p| > 2,

will be called a quasi-inverse of e*. (e is the iInverse of e.)

3.3. If n > 4, o is nondegenerate, and every m is

Lemma

inadmissible in o, then o is a quasi-inverse of e. (The proof

is given below.)

Theorem 3 now follows from the following explicit construc-

tion.

Lemma 3.4. Let g be a quasi-inverse of e, where e= (1,2,...,n)

and n > U:

(1)

(ii)

(iii)

(iv)

if n is even, and 1 is not the predecessor of
n in o, then 7™ = (2,4,...,n,1,3,...,n-1) is a

neighbor of both ¢ and e;

if n is even, and 1 is the predecessor of n in
6, then m = (1,3,...,n-1,2,4,...,n) is a neighbor
of both ¢ and e;

if n is odd, and 1 is the predecessor of n -1
in ¢, then # = (1,3,...,n,2,4,...,n-1) is a
neighbor of both ¢ and e;

if n is odd, 1 is not the predecessor of n-1 in

0, and n is not first in o, then nmn = (2,4,...,n-1,

1,3,...,n) is a neighbor of both ¢ and e;

¥For example, (8,7,6,3,2,5,4,1) is a guasi-inverse of (1,2,3,4,

5,6,7,8)

and it can be partitioned as in (8) by (8) (76) (32) (54) (1)

as well as by () (876)(32) (54)(1).
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(v) if n is odd, 1 is not the predecessor of n-1 in
o, and n is first in o, then 7 = (2,4,...,n-1,
1,n,3,...,n-2) is a neighbor of both ¢ and e.

Proof of Lemma 3.4. We illustrate the method of proof

for case (i); the others are similar.

Let B be any interval of e, |B| > 2, that can be properly
rearranged to be an interval B of m. By properly we mean B #
B. Then B contains an odd number and an even number, so

1,neB, hence 1, nepB and B = e. Thus, T and e are neighbors.

Let B be any interval of o, |B| > 2, that can be properly
rearranged to be an interval B of w. Suppose [B| = 2, say B =
(3:3'). We cannot have |j-3j'| = 1, because then B would not
be an interval of n. Hence by (8), j is the last element of

some Gp, j' the first in § Since B is an interval of m,

p+1°
either [j-3'| = 2 or (j,3"') = (n,1). 1In the former case ¢
could not be a gquasi-inverse of e. In the latter case n pre-
cedes 1 in o (by case (i) hypothesis), so B is not a proper

rearrangement of B,

We may therefore assume that |B| > 3. Since ¢ is a quasi-
inverse, n > 4, B contains some interval of form (k,k-1). But

then czﬂ(k,k-])S B, and by construction of 7,
(9) for any consecutive integers j,j' in e at least one of j,j'eB.

Moreover, 1, ne B. Suppose 2¢g 8. If 2 succeeds B then 1
must also succeed 2, whence 1 ¢ B, contradicting (9), hence 2
precedes B and (since ne B) we must have o = (2, T —..).
In particular, 4 ¢ B, for otherwise there is no position for 3
consistent with ¢ being a quasi-inverse. Similarly, if n-1¢ 8,
then n-1 is last in o, and n- 3¢ B. Therefore ¢ = (2,8,n-1)
or ¢ = (2,B) or 0 = (B,n=1), or 0 = B so 7 is a neighbor of ¢.0O

Proof of Lemma 3.3. Let (i), (ii), (iii) or (iv) hold in

(7) for every m, 1 < m < n. Suppose that neither (i) nor (ii)
holds for some particular m. Say B" is as in (iv) for m (a
similar arqument holds if m satisfies (iii) with B').
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Let m+ j be the predecessor of m in o, m + j ¥ m + 1 by

hypothesis. Since m+ j is inadmissible, is neither first nor

last in o, and cannot satisfy (iii) we have that either

(a) m+ j is inadmissible by (iv),
or

(b) m+ j is the successor of m+ j+ 1.

In case (a) m+ j must be the successor of a block y which
is a rearrangement of (m+3j+1,...,m+j+2), &> 3. Clearly vy &B",
since m+ 1 ¢ vy but precedes m+ j in B". Since B" is a neighbor

of e", and (y,m+3j) is a nontrivial subblock of 8", y must be an
interval of e, that is vy = (m+j+1,...,m+j+2). But then o is

degenerate, a contradiction.

Therefore (b) holds. Again, since B8" is a neighbor of e",
and {(m+j+1, m+j) is a nontrivial subblock of 3", we conclude that
the predecessors of m+ j+ 1 in b" form an interval B™ of e. Then
o is degenerate unless |8"| = 1. Thus " = (m+1 , m+3 , m+2, m).

But then m + 1 is admissible, a contradiction.

Thus 7(i) or 7(ii) holds for every m, 1 <m n, from which

A

it follows that ¢ has a decomposition as in (8), i.e. o is a

quasi-inverse of e. This completes the proof of Lemma 3.3. O

Proof of Lemma 3.2. Let n > 4, o nondegenerate, m admis-

sible, and suppose G-~ n-~é&. We cannot have G = € (since o is
nondegenerate). If n = € or N = 0, then the Corollary to Lemma
3.1 implies there is an n' such that o~ n' ~e. Hence we may

assume that

(10) 8, N, e are distinct.

By Lemma 3.1, the collection Gé of forbhidden slot-dot se-
quences in n are of form (A) or (B). That is, if m is put in a
slot which is in no sequence se ﬁé then the resulting n' is a
neighbor of e. Symmetrically, there is a collection E% of slot-

dot sequences in n having form (A) or (B) (with my replaced by

ml

;» 1 = 1,2) such that if m is put in a slot which is in no
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se‘%; then n' is a neighbor of o. To show that there is some
n' that is a neighbor of both e and o, it suffices to show
that

(11) Vs does not contain every slot of n.
§66;m0

Suppose both 6e and 50 are of type (A). The sequences
(there are at most two of them) in Ge are dot-disjoint, as are
the sequences in %%. Moreover, each has equally many slots and
dots. But n has n slots and n- 1 dots, hence if (11) is false,
there is some sce¢ 8e’ s'e E% such that s/N\s' contains more dots
than slots. But if §f\§' contains > 2 dots, then the dots in
§f\§' constitute a common interval of e and o, contrary to
the nondegeneracy of o. Hence §/\§' consists of one dot, but
then this dot must be m, = m% for some i and j, contradicting

i
the hypotheses that o is nondegenerate and m is admissible.

Therefore we may assume that at least one of %;, %% is of

type B, say without loss of generality that %; has form B1:

3 X

(12) +lo...0ld efo...mpd Lo (my L. 0]le, o, vio.

‘ s

{(13) Suppose, by way of contradiction, that every slot is for-

bidden by sequences in either %3 or %g. Suppose also that

[61) = [o... m1)e @g meets the slot-dot sequence v. If [61)(ﬂ

(mé... o]l ¥ ¢, then either m, = mé, or they overlap in > 2 dots;

the first is impossible because m is admissible, the second
violates the assumption that ¢ is nondegenerate. Therefore
the slot immediately to the right of [61) is in v and not

forebidden by %;, a contradiction.

If €, is of type (&), this means that v 9(52] = (m, ... o0].
Since mzt U)...m;), it then follows that the slot immediately
to the left of (62] is not forbidden by %% or %; (A2 contradiction)

unless 82(62]. Now 0 is obtained from n by rearranging only

the elements within B. Let e" be the subinterval of §., beginning

2
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with m, = m+ 1 and ending with the last element of 8. e" is
by definition a subinterval of e, and its rearrangement, g",
in ¢ is a neighbor of e", because 8 is a neighbor of n. More-

over, m; is the last element in the rearrangement B", and by

definition m is the successor in o of B". If [B"| = 2 then
B" = e" = (m2,m;) and n = a, contrary to assumption. Hence
[B"| > 3 and (B",m) is a subsequence of ¢ satisfying (iv),

whence m is inadmissible, a contradiction.

If %é is of type (B1), we have by paragraph (13) that
vg[Y1]U (62]. If v<_=(52], then, as above, we find that
Bg(ézl, which results in the same sort of contradiction.
The case vs;[y1] is seen to be symmetric by interchanging

the roles of ¢ and e.

Suppose q% is of type (B2). 1If mi exists and més LY2],
then n is last in both ¢ and e, contradicting nondegeneracy.
Therefore if mé exists, vg;(mz... o] by paragraph (13), hence
] Ssz... o] and a contradiction is obtained as before. We
may therefore assume that mé does not exist, and, symmetric-
ally, that m, does not exist. But then m = 1 was last in o,

so m was inadmissible, a contradiction. D
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