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Introduction

The numerical methods we present are based on trans-

forming a given constrained minimization problem into an

unconstrained maximin problem. This transformation is

accomplished by utilizing generalized Lagrange multipler

technique. Such an approach permits us to use Newton's and

gradient methods for nonlinear programming. Convergence

proofs are provided and some numerical results are given.

§l. Statement of problem and description of numerical

methods. He consider the following general non-linear

programming problem:

minimize F(x) (1)

sUbject to constraint XEX = {xlg(x) = 0, h(x) ~ 0, xEE n },

where F, g, h are real-valued twice continuously differenti~ble

functions defined on E , Euclidean n-space; x = (x l ,x2 , ... ,xn )
n

in a point in E; vector-functions g(x), h(x) define the
n

. () ~ v h()mapplngs g x: .c.. n -+ .~e' x: E -+ E .n c

We define the modified Lagrangian function H(x, P, w)

associated with problem (1) as

where

H(x, p, w) - F(x) +
e
L:

i=l

i i
p g (x) +

c
L:

i=l

1 2 e
p - (p , p , •.. , p ) EEe' w i 2 c= (w , w , . .. ,~ )EE

c
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Consider an unconstrained maximin problem

max
wEE c

mln
xEE

n

H(x, p, w) (2 )

We shall solve this problem instead of (1). Under

cert~in conditions, which we shall formulate later in §2,

tbe ~;()luti(m x to prob lem (2) coincides with solution to

prLnal nonlinear programming prob lem (1). As a rUle, the

Lagrangian is defined as

C( x, p, w) = F(x) + ~ pigi(x) +
i=l

and the following problem is solved

max
pEE

e

max
wET

min
x£E

n

C(x, p, w)

where T = {wlw > O}. Problem (3) is a constrained maximin

probJem and this circumstance complicates its solution.

When we use the modified Lagrangian H(x, p, w) we do not

have such difficulties because (2) is an unconstrained

maximin problem and for solving (2) we can use all well-

known numerical methods for solving unconstrained maximin

and saddle point problems. For example, using the simplest

gradient method yields the following method

x = -H P =x' = Hw' x (0) = xO ' p (0) =



where H , H , Hw are n x I, e x I, c x 1 vectors, whose ith
x p

elements are

iiioH(x, p, w)/5x , oH(x, p, w)/op , oH(x, p, w)/ow

respectively.

In (4) and everywhere later a super dot denotes differ-

entiation with respect to time variable t, i.e. (0) = d/dt.

In §2 we shall prove that the solution x(t), p(t), wet)

of sys 'Gem (4) locally converges to solution of (2) as t -+ CD •

'1'he author presented in [1, 2] a number of i terati ve methods

for finding local solutions of a maximin unconstrained

problem. Using three of them yields

0 _ TH-IH 2D(w) [h _hTH-'lHJ (5)x = _. H
P = C'" \v =x' <:..> gx xx x' x xx x

0 -1 4h D(\'1) D(w) h) ,
. .

2D(w)h (6 )x = -H -Hxx(gxg + p = g, w =x x

. -H-J·H 0 T --I .
2D(w) [h _hTH-IH ] (7)x = x' p = g -g H H w =xx x xx x' x xx x

whEre g h Hare n x e, n x c, n x n Jacobian matricesx' x' xx

respect~vely, whose ijth elements are

respectively; D(w) is the diagonal matrix whose ith diagonal

t
. ielemen 1S W ; superscript -1 denotes the inverse of a
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matrix; superscript T denotes the transpose of a matrix.

For simplicity we shall denote

z = (x, p, vl)E:En +e +c '

z = (x p w )EE* *, *, * n+e+c '

1-1(z) = H(x, p, "1;/), H(z*) = H(x*, p*, w*)

Definition: The point z* is a local maximin of function H(z)

in problem (2) if there exist neighborhoods A, Q, G about the

points x*, p*, w* respectively such that for all xEA, x~x*'

pEQ, pip*, WEG, wtw* the following inequalities hold

where

H ( x (p, w), p, w) = mi n H(x, p, w)
xEA

The nect'ssary conditions that z* be a local maximin of problem

(2) are (see [1])

Hp (z*) = 0, (9 )

All the points satisfying these conditions we will call
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stationary points. Now we apply Newton's methods for

computation of stationary points. We obtain the following

continuous version of method

. . .
H x + H P + H w = -Hxx xp xw x

:= -Hp' Hwx x + H w = -Hww w (10)

where H H, U are the matrices whose iJ'th elementsxp' XV-I WW
.) . . 2 . . 2

are 8~H(x, p, w)/8x1 8pJ, 8 H(x, p, w)/8x1 8wJ , 8 H(x, p,w)/

8wi 8w j respectively' H = HT Hxw = HT . Utilizing, xp px' wx

abbreviated notations yields the following continuous and

discrete version of (10).

z = -H (z)z , z (0) = Zo (11)

= z - H- l (z ) H (z )s zz s z s (12)

where Zo - is given, s = 1,2, ... ,

In the case when constraints are absent, these methods

coincide with Newton's methods. These methods are also well

known and ar'e studied when problem (1) has no inequality

cons trai nts (see [3J).

On the basis of continuous methods (4) - (7), we can

construct a number of discrete methods for finding saddle

points. But we shall use only the simplest finite d.ifference
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approximation to (4) - (7). For example method (4) yields

ws + aH (z )w s

where 0 < a is the step length. The discrete version of

other methods can be written in a completely similar way,

except in (12), where it i~ possible to use a = 1.

Convergence proofs.

In this section we shall give rigorous convergence proofs

of all the methods suggested above. Now we shall state some

preliminary results.

Define the following set of integers

1 < l < c}

Definition: The constraint qualification holds at a point x

i
if all gradients {gx(x)}, 1 ~ i ~ c and all gradients

j E B(x) are linearly independent.

Definition: The strict complementarity holds at a point z*

if from hi(x*) 0 follows that i
"# 0, 1 i <= w* < c .

- (x, - w) isLemma 1: If z = p, a saddle point of function

H(z) in problem (2), then x solves problem (1), and

F(x) := Hex, p, w).
Lemma 2: Let A be a neighborhood of x and let the following

inequalities hold

H(x, p, w) < H(x, p, w) < H(x, P, w) (14)



for any P E Ee , wEE ,c

-7-

X E A, x t x* then x is a local,

isolated solution to problem (1).

Lermna 3: If x E X then

F(x) = sup
pEEe

sup
WEE c

H(x, p, w)

We shall not give a proof of these lemmas, because it is

quite similar to the proof of analogous results for problem

(3) (see for example [4]).

Consider the following auxilliary problem

P(x, u)

where P(x, u) is a continuous function of x and u·

(15)

- P (y*) are positiveuu

US8 will be made of the following lemma, which lS stated

here wi t.hout proof (for proof see [lJ).

Lemma 4: Suppose that function P(x, u) is twice continuously

differentiable on En x Ek , and a solution to problem (15)

exists. Sufficient conditions that y* = (x*, u*) be an

isolated (unique locally) maximin point of problem (15) are

that

1) y* lS a stationary point, i.e.

Px(y*) = 0, Pu(y*) = 0,

Pxx(y*) and M(y*) =

Pux(y*) P~~(y*) Pxu(y*)

definite matrices.
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If matrices Pxx(x, u) and M (x, u) are positive

definite for arbitary x E En' u E Ek then the stationary

point y* is a global maximin point of P(x, u). Though y*

may not be a saddle point of P(x, u) (see also [lJ).
Le~na 5: Suppose that constraint qualification and strict

complelm:ntarity hold at a stationary point z*, the Hessian

H (z*) is positive definite, and h(x*) ~ o..Then thexx

Hessian Hzz(z*) is nonsingular, the symmetric block matrix

N = [Hxp ~
H I H ~-1· pp. pwH [H . H J - --- _1- __ - _

xx xp· xw H I H
wP: ww

is positive definite, z* is a local, isolated saddle point

of H(z), and x* is a local, isolated solution of problem (1).

For shorthand in the formula for N, we omit the argument

which 1S z*. We shall use the same abbreviations later.

Proof: Stationary conditions (9) and inequality h(x*) ~ 0

imply that x* E X, i.e. x* is a feasible point for problem (1).

To prove nonsingularity H (z*) we need only show thatzz

there is no non-zero solution of the following system of

linear equation

(16)

(17)

From the last system and strict complementarity, it
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follows that for all l such that l £ B(x*)

w~ t- 0 ,

also

-iw = 0

for all i such that i £ B(x*).
i -i

In both cases h (x*)w = 0

'1' -and D(w*)hx(x*)x = O. Let i t- 0, then premultiplying (16)

-'ron the left by x and taking into account (17) yields

It is possible only if x = o. Consider this case. From (16)

and (17) we find

The first system can be rewritten In form

(18 )

iAll w* > 0 for i E B(x*), by assumed constraint qualification

all the gradients in (18) are linearly independent, (18)

- -i
holds if p = 0 and w = 0 for all i £ B(x*). But we obtained
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-i
above that w = 0 for i £ B(x*). Thus x = 0, p ~ 0, w = 0

for all solutions. This contradiction proves that the

matrix H (x*) is nonsingular. We can assume without losszz

of generality that hl(x*) = 0 for 1 ~ i ~ sand hi(x*) < 0

for 1 + c, < i < c. Intrl)duce the vec tors

rl 2 e 1 2 sJv = Ul , P , ... , p , w , '\II , ... , w £Ek , k = e + sand

'v r: s+l s+2 c]h = Lh , h , ... ,h £E r , r = c-s. Making use of strict

complementarity, we obtain w~ = 0 for alII + s < i < c.

Therefore, omitting arguments we can rewrite matrix N as

1,1 [H,,= xv
o l~\

nrJ

-1
Hxx - 2

[

) : 0 jee I ec
-- - - - {. - - - _.

o I D(h)ce I
I

where 0 .. is i x j matrix whose elements are all equal to
IJ

zer'o; D(h) is the diagonal fila trix whose i th diagonal element

. hiIS . The matrix N can be written in the four blocks form

where

is n x k matrix. Under assumption of strict complementarity,

i
w* 1 0 for alII < i < s. Since constraint qualification
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iii
hold~, all gradients gx(x*), 1 < i < e and w*hx(X*)'

1 < i ~ s are linearly independent columns; that is,Hxv

has lllaximuIll rank k.
-1

Since H (z*) is a nonsingular matrix,xx

there exists a symmetric, nonsingular matrix W such that

B- 1 (z ) ;: T,V·\J. It is \,.jell known [5J that if a matrix is
xx *

multiplied on the left or on the right by a nonsingular

matrix, the rank of the original matrix remains unchanged.

ThuG matrices Hx~ Wand W Hxv have maximum rank k. Their

T '1' -1
Product H W W H = H H Hxv is a nonsingular symmetricxv xv xv xx

. B ' t . '\, 0 . D ( ;"v ). • t .matrIX. ecause 01 assump lon h < matrlx - 11 18 POSl lve

definite and consequently N is also positive def~nite.

According to sufficient conditions, formulated in lemma

4, the stationary point z* is the local, isolated maximin

point of problem (2), hence taking into account that x* is

a feasib Ie point for problem (l), we get from lemma 3 that

F(x*) = H(2*) = max max min H(x, p, w)
PE:Q WE:G XE:A

= sup sup H(x*, p, w) (19 )
pE:E WEEe c

where Q, G, A are neighborhoods about points p*, V1 *, x*

respectively. From (8) and (19) the inequalities (14)

follow. Therefore z* is a local, isolated solution of (1).

We shall show now that z* is an isolated saddle point

of H(z) in problem (2). If it is not true, then for any

~eighborhocd of point z* there would exist a saddle point zl
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of H(z). This point would be stationary. Applying the

Taylor formula for first-order expansions, we obtain

Hz(zl) = Hz(z*) + Hzz(z* + t(zl - z*)) (zl - z*) = 0

(20)

where 0 < t < 1. The Hessian H (z*) is not singular. By- - zz

continuity of the Hessian we may select zl so close to z*

that the Hessian Hzz(Z. + t(zl - z*)) is also nonsingular

for arbltary 0 ~ t < 1. Hence the system (20) has unly

trivial solution zl = z*. The contradiction is evident.

Local uniqueness of the saddle point is proved.

The proof of the lemma 5 is now complete.

'I'heorem 1: Suppose that the assumptions of lemma 5 a.re

satisfied. Then the solutions of systems (4) - (7), (10)

locally, exponentially c.onverge to z* as t ---i"-CO (i. e. exist

such pOt;itive numbers E, j.l that I/z(t) - z*11 ~ ~ (E)e-j.lt

if II Zo - z* II ::: E). There exists a number a such that for

-
any 0 < a < a the solutions of finite difference approximations

to (Ij) - (7), similar to (13), converge locally and linearly

to z .. (i.e. 0 < E, 0 ~ q ::: 1 exist such that Ilz s - z*11 ~

s
<P (E)q~ if liz. - z*11 < E).

Proof: All the methods suggested a~ove have two common

properties. They are autonomous and any stationary point z*

is an equilibrium position for all these systems. This permits

us to use for proof the linearization principle which was first

proved by Liapunov [6] and often called "the first method of
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Liapunov ll
• We shall prove on the basis of this technique

asymtotic stability of solution z(t) = z of systems (4) - (7),
*

(10). This result implies local convergence of their solutions

z(t) to a stationary point z*.

Denote ox = x(t) - x*, op = pet) - p*, ow = wet) - w*,

6z = (8x, op, ow). By the Taylor formula for first order

expansions uolng stationary condition Hz(Z*) = 0, we obtain

H (z* + oz)z

where oll IYI I) is a vector such that

lim o(llyll)
II y II

< 00 when Ilyll~O

The equation of the first approximation of system (4) about

the equilibrium point z* is

D(w)-2h
x

2D(h)

oec

.. H
xx

I
I

I '-- --- -,- -- -_.: - ----
I I
I I
I 0ee I
t ,

- - - -, - - - - - -, - - - - - - - -
I

2D(w)hT
I 0

X ce

o~(t) = M oz(t) where M =

(21)
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j\ L1 ,.:LLU..~lIt~3 j C lI1:lt.rix IV! are computed at the point z ;.: z*.

rl'1Jl~ eur'/I~rgt~lJee at' method (4) wil.l be proved if we :.»,ow that

all eigrmvaliles A of matrix M have r,egati ve real parts. Let

l·~ (, ~ .- p, 0Z • L .. '.:·· ~-' '5 z· (ox, op, ow) lie curnpLex conjugate to

\il::,~t(.L' liZ, R,.} LJ l1en()1-L'~; real part uf COIJl1J.l~x number b.

r)

= Re A I I 0z 1 1 c-

Here we take into account that H (z*) is positive definitexx

and xi' Js a feasible point. (;onsider the Gase when He A ;.: O.
,n

'l'hen Re c:-oxJ.HxxOX + 20wD(h(x*))ovU = 0 if and only if ox = 0,

o\'\? t 0 for all i such that i £ B(x*). From the characteristic

equatioli we have

From constraint qualification it follows that ow i = 0 for

any i E. B(x*). Hence Iiozil = 0, the case Re A = 0 is

impos:::it·le and strict inequality Re A < 0 holds.

The convergence of methods (4) - (7) can be proved by

the similar analysis of their characteristic equations. Their

eigenvalues proved to be real and this circumstance simplifies

investigation. For example, the linearized system of equation

(5) about the stationary point z* is
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· ox - g op - 2h x D(w) owox = -Hxx x

· 'r -1 [g op 2h D(w)ow]op = -g H +
x xx x x

· T -1
[gXOP + 2hXD(W)OW]OVi = ~wow -2D(w)h xHxx

rrfle cowli t ion for asymptotic stability ean be expresses by

means of the characteristic roots of the following secular

equation

H + AI
xx n

ocn

I 2h D(w)
I x

___J _
I

(22)

= 0

\\There 1,_; is j x j unit matrix.

It is easy to see that determinant (22) is equal to the

product of determinants of the diagonal cells:

(23)

According to lemma 5 the matrices Hand N are symmetricalxx

and positive definite; hence, characteristic roots of equation

(23) are real and strictly negative.

After some transformation it can be shown that secular
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equations for systems (6) and (7) also have real, strictly

negative roots. From the integration of (10) along a

~olution, we have

H (z(t)) = H (z(O))e- t
z z

, z(O) = 2 o

This shows that if for any initial state zo there exists the

solution z(t) of system (10) for all t ~ 0, then this

solution converges to a stationary point, which may not be

feasible for problem (1), nor be a saddle point in problem

(2). But if Zo is chosen sufficiently close to a saddle

point z* at which all assumptions of lemma 5 hold, then the

solution z(t) of (10) exists for all t > 0, and z(t) converges

to the saddle point z* as t -+00.

The principle of determining the stability from the

equation of the first approximation about an equilibrium state

is also valid for discrete systems. Denote ~x = x - x*,s s

~ps = Ps - p*, ~ws = w - w*, ~z = (~x , ~p , ~w). Thes s s s s

linearized system of (13) about equilibrium point z* is

(24)

where ~ = I + aM, M is defined by (21).n+e+c

The solution z - z* of the autonomous discrete systems

(24) is asympototically stable if all eigenvalues of the

matrix ¢ have magnitudes smaller than 1.
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Let u and A = (A
l

, A2 , ... ,A n +e +c ) be eigenvalue of matrices

¢ and M respectively, i.e.

Consequently, we have relationship u = 1 + aA.

Denote

a
:>= -2 Re A I\Ao I~

s J

We proved that all A have negative real parts, hence a > O.

Magnitudes of all u smaller than I (in modulus) if a is

sufficiently small 0 < a < a.. It follows from inequalities:

= I +a IAI2 [a + 2 Re 1 <
IAI 2

2
1 +a IAI [a-a.] < 1

For computation it is desirable to take step length a

as large as possible. But in the case of large a values we

may los~ convergence. The maximum admissible a value depends

on function F, g, h, point z* and the computational method.

ID all other discrete versions of systems (5) - (7), the proof

of convergence follows from proof of convergence of respective

continuous system, as it was shown above.
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Theorem 2: Suppose that the assumptions of lemma 5 are

satisfied and the function H (z) satisfies Lipschi~zzz

condition in a vicinity of the point z*. Then the solution

Zs of (11) locally quadratically converges to the saddle

point z* (i.e. q, £ exist such that

'fhe proof is completely similar to the proof of Nel,·lton' s

method of convergence theorem [7] ,and is therefore omitted.

To hasten convergence to solution of problem (1) we can use

in ~ethods (4) - (7), (10), (11) instead of H the function

e
r = H + a l:

i=l

c
l:

i=l

where a, b - some positive coefficients. From (4), for

example, we obtain

.
x = - r x' P = r p' \'i = rw (25)

All other methods can be modified in a similar way. It is

easy to prove that if assumptions of theorem 1 hold, then

the solution of (25) locally converges to z* for any 0 ~ a,

o < b.

§3. Numerical examples.

We shall give an example that was solved using three
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presented methods to illustrate their convergence properties.

The function to be minimized is

The constraints are

, 122x,h =-x,

3= - x , 3 2 1 33 - 4x - 6x + [x J

T~2 starting point is assumed to be

1x = 0.1 , 2
x = 0.7 , , 1

P = -0.1 ,

4
w = 1 ,

The step length was a = 0.02.

Approximate solution of this problem is F* = 1.8311. The

iterations were terminated if the difference between current

value of F(x ) and the following one remained less than 10- 5 .s

If number of iterations was more than 100, then the process

was also manually terminated.

Denote maximum number of steps by N. Let 0 be a

difference between F(x
N

) and F* and T be the time of

computations.

For the discrete version of (4) N = 100, B = 0.0064,
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T = 11 sek were obtained. For the discrete version of (5)

N = IOC, 8 = 0.0056, T = 16 sek, for method (11), N = 4,

8 = 0.0001, T = 3 sek.

The modified Newton's method converges after 4 iterations.

While this method has the best rate of convergence, it also

requires more time per iteration than the other methods. The

size of the region of convergence of this method waG also less

than for the other methods. The simplest method (4) has the

largest region of convergence.

It is not possible to state without ambiguity that one

numerical method is superior to some other methGd. It is

also doubtful whether a universally best method exists. For

computation the combination of different methods seems to be

most expedient.

For finding a rough solution, the simplest methods like

(4), may be used; a more accurate solution would be found by

a more complicated method like (11).

The difference o(s) = F(x ) - F* as a function of steps

number ::3 is shown in fig. 1 for method (13). Various values

a = a.os, a = 0.04, a = 0.02 were used For a = 0.2 the

method (13) does not converge. The increasing of step

length a hastens the rate of convergence, but the solution

becomes less stable.

The influence of coefficient a on the rate of convergence

of method (25) is shown in fig. 2. For computation, a discrete
I

approximation similar to (13) was used with a = 0.02, b = O.
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Utilization of a small value of a (a = 1, a = 2) hastens

convergence, but for a larger value (a = 5) the convergence

rate decreases.

§4. Some Generalizations

Consider the following minimax problem. Find

min
x£X

max
y£Y

K(x, y) (2G)

where X = {x £ Enlg(x) = 0, hex) ~ O}, Y = {y £ Enlg(x) = 0,

H(x) = u}, x £ En' y £ Em' g £ Ee , h £ Ec ' G £ Ek , H £ Es '

Functions K, g, h, G, H are continuously differentiable.

Introduce Lagrangian as follows

e
gi(x)4>(x, P, lV) K(x, y) L:

l
y, p, w, = + P

i=l

c
(wi )2h i(x) piGi(y) (Wi )2 Hi(y)+ L: -

i=l i=l i=l

Where P £ Ek , W £ Es ' P £ Ee , w £ Ec '

Consider an unconstrained maximin problem

max max max min min min 4>(x,y,p,w,P,W)
y£E pEE wEE x£E PEEk W£E

ITl e c n ~s

(27)

Lemma 5: If z = (x, y, p, w, :P, VI) is a saddle point of

function L(z) in problem (27), then (x, y) - is a saddle

point of function K(x, y) in problem (26) •

For solving problem (27) any of the above methods can
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be used. Utilizing, for example, the simplest method (4),

yields

. . .
x = - ¢x' P = ¢p' "vI = ¢w

(28)
. . .
y = ¢ p = - ¢p' W = ¢y' w

Those points z*, where the righ~hand sides of the equations

of this system are equal to zero, we shall call stationary points.

Theorem 3: Suppose constraint qualifications (ror constraints

g, h, and G, H) and strict complementarity hold at d point

z* "which is a :feasible for problem (26), and matrices ¢xx(z*)

and - ¢ (z) are positive definite. Then the solution of
yy *

system (28) locally, exponentially converges to z* us t __ 00.

The proof is similar to the proof of theorem 1 and there-

fore is omitted. Analogous to (28), all other methods can be

generalized.
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