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PREFACE

Interest in water resources systems has been a critical part of resources
and environment related research at IIASA since its inception. As demands
for water increase relative to supply, the intensity and efficiency of water
resources management must be developed further. This in turn requires
an increase in the degree of detail and sophistication of the analysis,
including economic, social and environmental evaluation of water resources
development alternatives aided by application of mathematical modelling
techniques, to generate inputs for planning, design and operational de-
cisions.

In 1976 and 1977 IIASA initiated a concentrated research effort
focusing on modelling and forecasting of water demands. Our interest
in water demands derived from the generally accepted realization that
these fundamental aspects of water resources management have not been
given due consideration in the past.

This paper, the sixth in the IIASA water demand series, reports on a
price coordination method proposed for the solution of a complex
demand-supply problem in water resources management. It is assumed that
mathematical models are available for the description of each “supply” and
“demand” unit in the region. The method presented in this paper allows
one to determine optimum levels of development for both supply and
demand units, such as to maximize total net benefits from water use in a
given region. Although the complexity of the problem under consideration
necessitated some simplifying assumptions, practical applicability of the
method is demonstrated and recommendations are made as to how it could
be extended further.

Janusz Kindler
Task Leader
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Summary

A scheme is proposed for the coordination by prices of water supplies
and demands in a region. The objective is to maximize the total regional
net benefit from water use and it is achieved when the marginal benefit
at each demand point is equal to the marginal cost of delivering water to
that point. The class of problems to which the scheme can be applied is
determined from the graph of the network connecting supplies and
demands. An example is presented in which the scheme is applied to
analyze possible interbasin water transfers in the Northwest Water Plan in
Mexico.
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Supply-Demand Price Coordination in
Water Resources Management

1. INTRODUCTION

In water resources management, the demands for the use of
water traditionally have been treated as fixed "requirements".
These requirements are based on coefficients (e.g. so many liters
per person per day, so many liters per ton of steel) which have.
been assumed to be constant over time. Future water requirements
have been forecast by extending past trends.

In many industrialized countries, this approach to the
management of natural resources is proving inadequate. Demands
are not growing as forecast; factories and power plants are
switching to recycling; the number of water-using appliances in
homes is leveling off; irrigation is becoming more efficient.
Moreover, it is being increasingly recognized that instead of
investing more money on the supply side of the supply-demand
picture to bring extra water from further away, it may be more
effective to invest this money on the demand side to ensure
more efficient use of the water currently available.

To cope with this rapidly changing situation new management
approaches are being developed and applied. Water demands are
being forecast using the alternative futures concept in which
various scenarios of future changes in demand are developed.

The factors affecting the various types of water demands are
being modelled by mathematical programming and statistical
techniques.

Now that better models for water demands are becoming
available, it is necessary to seek ways in which they can be
combined with the models currently existing for water supply
(e.g. models for reservoir releases) in order to solve problems
of regional water management. The objective of this paper is
to develop an algorithm for the coordination of supplies and
demands in a region assuming that each significant unit is
represented by such a model, and that there is no economic
linkage among demand and supply units.

Two general approaches to this type of analysis may be
noted: aggregated and disaggregated. In the aggregated approach,
a large mathematical model is formulated to represent the supplies
and demands over the whole region and solved to yield the optimal
solution, which maximizes the total net benefit from water use.
When the supplies and demands are connected in a complex network
under centralized management, the aggregated approach may be the
most appropriate one to use, but it is often difficult to synthe-
size all the information into one aggregated model. Computer



time and memory requirements may be prohibitive; the models which
currently exist for various types of demands may not be compatible
(e.g. agricultural water demands are commonly modelled by linear
programming while statistical regression is usually used to esti-
mate municipal water demands); because of insufficient data, it
may not be feasible to construct any satisfactory "mathematical”
model for some of the demands.

A disaggregated approach attempts to avoid these difficulties
by treating supplies and demands as independent entities which
must be coordinated sequentially by a supervisor. Such a unit
needs information only on the structure of the system, namely
upon the interconnections existing among the different supplies
and demands. Using this information, the supervisor can guide a
kind of game consisting of a sequence of questions and answers
between himself and the agencies responsible for the different
supplies and demands. These questions and answers are repeated
in a well specified order until convergence to an optimal balance,
or equilibrium, between supplies and demands is obtained.

The objective of the coordination algorithm is to maximize
the total regional net benefit but instead of approaching this
by accounting for total benefits and costs, as is usually the
case, the algorithm works with marginal benefits and costs. The
key idea in determining the optimal solution is that if a certain
flow is to be transferred from a supply to a demand, the cost of
delivering the final unit of water (which is the marginal cost
of this flow) must be equal to the benefit generated by this
final unit, or marginal benefit. This is analogous to deter-
mining the equilibrium price in a market, so "price" is often
substituted for marginal cost or benefit in the discussion which
follows.

The snag in applying a market equilibrium approach to
regional water management is that water supplies and demands
are not independent of one another as is usually assumed in
market equilibrium analysis. For example, upstream users affect
downstream users; groundwater withdrawals deplete surface waters.
Although some of these complexities are treated in the present
paper, a number of simplifying assumptions still had to be made
including the following: water quality is not explicitly con-
sidered; all flows are made available at the same time; all
supplies have the same reliability.

The paper is structured in the following way: Section 2
provides background information on the basic concepts which are
used in Section 3 for the analysis of a typical water resources
management problem involving the coordination of two supplies
and two demands; Section 4 expands this analysis into a general
scheme which is applied in Section 5 to determine the optimal
interbasin water transfers in the Northwest Water Plan in Mexico;
Section 6 presents concluding remarks.



2. SOME BACKGROUND INFORMATION

Since the main tools of the method presented in this paper
are the so-called demand and supply models we now shortly review
what they are.

The benefit B of a demand unit (a firm, a city, an agricul-
tural area, an entire region, ...) is, in general, a function of
the amount Q of water consumed or used by the unit, i.e.

B = B(Q)

Naturally, in real cases, the benefits depend on the timing and
reliability of the flow delivered. For example, in irrigation
planning it is important to know the flow able to be delivered
with high reliability (e.g. 95%, 99%) during the critical weeks
of the growing season. However, most irrigation demand models
are formulated to yield the total volume needed in the whole
growing season rather than some critical peak flow, so the
assumption in the present analysis of a constant average flow
is consistent with the output of these models. The time period
over which the flow is being delivered should be the same for
all demands.

If the water is paid for at a price p the profit of the
unit is [B(Q) - pQ] so that a particular amount of water will
be demanded for each given price. Under the assumption that
the unit is profit maximizing, this amount of water can easily
be determined by solving the following optimization problem

max[B{(Q} - pQ] . (1)
Q

If problem (1)} is solved for all values of the parameter p, a
function, called the demand function

0 = oP(p) (2)

is obtained which gives the amount of water demanded by the unit
as a function of the price of the water. If there are no explicit
inequality constraints added to problem (1) the necessary condi-
tions for optimality implies that

d -
o B(Q) =p



so that the demand function (2) can be interpreted as the marginal
benefit of the unit (actually the inverse of this function).

The same considerations can be applied to a supply unit (a
reservoir, a desalination plant, a pumping station, a region, ...)
which at cost C(Q) supplies an amount Q of water and sells it at
a price p. In this case the optimization problem solved by the
unit is

max[pQ - C(Q)] ,
Q

and the corresponding solution gives a supply function

0=0%m , (3)

which is nothing but the inverse of the marginal cost of supply.

The benefit and cost functions B(Q) and C(Q) and the demand

and supply functions QD(p) and Qs(p) may be themselves the result
of complex optimization procedures (e.g. optimal design of the
plant, determination of the optimal size of the reservoir, ...)
and for this reason they may not be explicitly known, i.e. their
functional form may not be available. What is available instead
is a procedure that, given a price, allows the determination of
the water demanded or supplied at that price. 1In many cases this
procedure may be a complex mathematical programming model (see,
for example, [1,2] for industrial demand, [3,4] for agricultural
demand, and [5,6] for municipal demand). 1In other cases the
procedure may be a sequence of operations based on more or less
empirical observations eventually integrated by some simulation
study. This is the way typically followed by consulting agencies
when designing supply units such as reservoirs, interbasin trans-
fers, and pumping stations. Although, strictly speaking, these
procedures are not mathematical models, they can be regarded as
models for the purpose of developing the algorithms.

In the following we assume a model is available for the
description of each supply, demand, and transfer unit of the
system. In particular, the demand and supply units will be
described by models of the kind Q(p), namely procedures that
can allow the determination of the flows given the prices, while
the transfer operations will be described by models of the kind
p(Q). Moreover, we will assume that the models are such that
the corresponding demand and supply functions are differentiable
and strictly monotonic as shown in Figure 1, and that the flows
and the prices involved in the system are not explicitly con-
strained. These assumptions are needed in order to justify the
algorithm presented in the paper and are not very severe in



practical situations. 1In particular, the property that the
flows are unconstrained, which seems to be quite limiting at
first glance, can often be obtained by means of a suitable
formulation of the models. For example, the fact that the flow
Q supplied by an artificial reservoir still to be constructed
cannot be greater than a value Q, is automatically taken into
account if the model describing this supply unit has a supply

function which goes to Q for p going to infinity.

Q 4

Qe

v

Figure 1. Demand (QD) and supply (QS) functions

and equilibrium solution E.

When a supply and a demand unit are connected, the value
of water exchanged can simply be obtained from the plot of
Figure 1. The point E in the plot, called equilibrium point,
is characterized by

o® ey = ooy

and gives the value QE of the flow that must be exchanged

between the two units in order to maximize the total net
benefit of the system, i.e.

max[B{(Q) - C(Q)]
Q

Consequently, the equilibrium price Py is the price that leads

the supply and demand units not only to spontaneously exchange
the same amount of water but also to select that particular value
(namely QE) which maximizes the total net benefit of the system.



Of course, if the two functions QD(p) and Qs(p) are explicitly
given the equilibrium solution is immediately obtained. If, on

the contrary, only the models for computing QD and QS are avail-
able it becomes important to obtain the equilibrium solution
without using the models too many times. One way of doing this
consists of fixing a price P and computing the corresponding

imbalance QS - QD (see Figure 1) and then iterating on the price
until the imbalance is zero. This is the essence of the classical
price coordination method that is applied in this paper to complex
management problems characterized by the presence of many demand
and supply units. (See [7,8] for interesting reviews and appli-
cations of the classical price coordination method. Price coor-
dination in water resource systems is very well surveyed in [9].)

3. ANALYSIS OF A TYPICAL PROBLEM

The aim of this section is to present an ideal but typical
water management problem characterized by many supply and demand
units and to outline our price coordination scheme for the solu-
tion of such problems.

The system is shown in Figure 2 and comprises two supply
and two demand units. It is actually a part of the problem
considered later in the application example. The groundwater
extracted by the pumping station S1 is transferred through an
artificial open channel (the dimension of which is to be deter-
mined) to an irrigation area D1. The water supplied by the
reservoir 82 is first transferred to point A through a natural
channel (no cost of transfer) and then diverted to the two irri-
gation areas D1 and D2 through two artificial channels. In all
of these channels a specified fraction, defined as a, (e.g. 5%)
of the inflow is lost through seepage.

Let us now imagine that a model describing each supply,
demand, and transfer unit of the problem is available. 1In
particular, let us assume that supply and demand models of the
kind Q(p) are available for the pumping station, the reservoir,
and the two irrigation areas, and that models of the kind p(Q)
are available for the determination of the marginal transfer

costs TS1,D1' TA,D1’ TA,D2 for any possible amount of transferred

water. 1In the case of demand units that have more than one source
of supply as is the case of the irrigation area D1, we assume that
the economy of the unit is only sensitive to the sum of the in-
flows. This is equivalent to saying that the same price p must

be associated with all inflows and that the model gives the total
inflow demanded for each given price. This assumption is justi-~
fied only if the flows have the same reliability, timing, and
quality. The same is true of supply units whose outflow goes to
more than one demand.

The problem consists in finding the overall "equilibrium"
solution, i.e. the flows and the prices associated to them that
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Figure 2. A typical example.

maximize the total net benefit of the region. This problem can
be solved in one shot if the models describing the different
units of the system (supplies, demands, and channels) can be
aggregated. For example, if all units are described by linear
programming models, then the aggregation is straightforward and
the overall problem is still a linear one although the problem
becomes sometimes far too big to be handled. Alternatively, the
problem can be solved in a disaggregated way by means of the
classical price coordination method [9], which essentially con-
sists in associating a price to each independent flow (three in
the case of Figure 2), and then searching for the optimum in the
space of these prices. Because of their particular structure,
the problems we are dealing with in this paper can be solved by
more efficient price coordination schemes. For example, for the
problem described in Figure 2 the following one-dimensional
searching scheme can be used:

1. Given a price Pg4 determine, by means of the model

describing the pumping station S1, the amount QS1 of
water supplied by that unit.

2. Compute the water losses a QS1 incurred in the transfer

from S1 to D1, the corresponding amount of water supplied
to the irrigation area D1 (QD1 = (1 - a)QS1), and the



marginal costs T of this operation (the total cost

s1,D1

s1,01%1) -
Ppq = (pS1 + TS1,D1)/(1 - a). (This relationship comes

of transfer is T Finally, determine the price

from the following balance equation: cost of water at
point S1 + cost of transfer from S1 to D1 = cost of water
at point D1; i.e. pS1QS1 + TS1,D1QS1 = pD1QD1J

3. Determine by means of the model describing the irriga-
tion area D1 the total amount of water demanded by this
area at the price Ppq and, consequently, the flow that

the channel (A,D1) must supply in addition to the flow
coming from S1.

4. Compute the flow entering the channel (A,D1) by taking
the water losses into account, the corresponding marginal
cost TA,D1' and the new price Py = pD1(1 - a) - TA,D1

associated with point A.
5. Determine the water supplied by the reservoir S2 at
price Pg, = pA(1 - a) and the corresponding losses in

the natural channel connecting S2 with A. Then, by
means of the mass balance equation in point A determine
the amount of water entering the channel (A,D2).

6. Compute the losses in channel (A,D2), the amount QS of
water supplied to the irrigation area D2, the marginal
cost TA,DZ’ and the price Ppy = (py + TA,D2)/(1 - a).

7. Determine the amount QD of water demanded by D2 at
the price Ppo+

If the demand QD equals the supply QS, the flows and prices
computed in the above seven steps are the optimal ones. 1In fact,
by construction, at each point in the system marginal benefits
equal marginal costs and hence the maximum total net benefit has

been obtained. 1I£f, on the contrary, QD differs from QS the price
Pg4 must be suitably updated and the operations repeated until

QS - QD = 0. This corresponds to finding the value of Pg1 for

which the imbalance of flow QI = QS - QD given by the seven
proceeding operations is equal to zero.

Therefore, one must first determine a pair of prices
(p;1,p§1) such that the corresponding imbalances are of opposite
sign and then progressively reduce the interval of uncertainty
[p;1,p§1] by following a suitable scheme, such as the bisection

procedure or the Fibonacci search. This procedure will certainly
converge to the optimal solution under the assumption that the



optimal price Pg1 is the only value for which the imbalance in

the initial interval of uncertainty is zero. This assumption

is not at all a restrictive one since in almost all practical
situations good lower and upper bounds of the optimal price are

a priori known. As far as the speed of convergence of the method
is concerned we can expect that just a few iterations are needed.
For example, if a bisection procedure is used after ten iterations
the interval of uncertainty for the price will be reduced more
than a thousand times.

4. THE COORDINATION SCHEME

Particular coordination schemes, like the one described in
the preceding section, can be formally derived from the general
price-coordination method [9] when one assumes that the economy
of each unit only depends upon the sum of all inputs or outputs.
One can also obtain these schemes by directly imposing the neces-
sary conditions for optimality, namely by setting to zero the
first order derivatives of the total net benefit with respect to
all the flows present in the system. By interpreting these condi-
tions in terms of relationships between marginal transfer costs
and supply and demand functions and by reading them in a suitable
sequential order one exactly obtains a scheme of the kind used
in the preceding section. Since both these ways of deriving the
coordination scheme are abstract and difficult to follow in com-
plex cases, we prefer to suggest a heuristic method which is based
only upon the characteristics of the graph describing the inter-
actions among the units of the system. By inspecting and inter-
preting the case presented in the preceding section we will
identify the class of systems for which a one-dimensional coor-
dination scheme can be devised in order to solve the problem.
Moreover, we will point out how the sequence of operations of
the scheme can be obtained.

Let us first analyze the properties of the graph shown in
Figure 3 which describes the system considered in Section 2. A
model of the kind Qi(p) is associated to each node i of this

graph representing supply and demand units, while no model is
associated to the diversion point A which represents only the
mass balance equation. On the other hand, each arc (i, j) of the
graph is characterized by a pair (Qi,Qj) of flows representing

the upstream and downstream flows of the channel. Thus, a
relationship between Qi and Qj describing the water losses is

associated to the arc (i, j) together with a model of the kind
pij(Qi) giving the marginal transfer cost. 1In other situations

some supply (demand) nodes can have input (output) arcs as in
the case of reservoirs in cascade, or recycling. In such cases
the model associated with the node enables the computation of
the net amount of water supplied or demanded for any given price.
Moreover, the arcs of the graph can also represent instream uses
of the water and, therefore, the model pij(Qi) gives in such
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situation the marginal benefit of the use. Of course, in the
limit case of no consumptive use on an arc (i,j) the relation-
ship between Qi and Qj is the identity function.

S1T S2 @

D1 6— < T

4
L
=]
I

Figure 3. The interaction graph.

Let us now analyze, on the graph shown in Figure 3, the
seven steps of the one-dimensional algorithm described in the
preceding section. The first operation consists in associating
a price Pg1 with the node S1 of the graph and in computing the

corresponding flow Qgq- Since node S1 is a terminal one (i.e.
there is only one arc connected to it) the flow QS1 is uniquely
associated with arc (S1,D1), so that the flow QD1' the marginal

transfer cost T (QS1)' and the price Ppq can be computed

s1,D1
(step 2 of the algorithm). At this point one can eliminate

node S1 and arc (S1,D1) from the graph of Figure 3 and consider
the reduced graph shown in Figure 4 in which node D1 is charac-
terized by the new demand function QB1(p) = QD1(p) = Qpq- Thus,

we are in the same situation we were at the beginning of our
analysis since we can associate the price Ppq to the terminal

node D, and proceed by eliminating node D1 and arc (A,D1) (see

1
steps 3 and 4 of the algorithm). Unfortunately, after these

two operations we are not in the same condition as with the
previous node since node A is not a terminal node. Nevertheless,
we can turn our attention to the terminal node S$S2 since the
price Pg) must be equal to pA(1 - a) because of the absence of

any transportation cost on the arc (S2,Aa).



-11-

D1 [®}— < —e

Y
|
R

Figure 4. The reduced graph after the first two operations with price associated to D1.

It is very important to notice that the price Pg» could
also be computed from Pa if the arc (S2,A) were characterized

by a constant marginal cost for transfer T since we would

S2,A’
obviously have

Pgp = Ppll = a) = Tgy 5

On the contrary, if the transfer cost and/or the seepage losses
are not linearly related to the flow (e.g. when there are econo-
mies of scale) there is no possibility of extending the analysis
to a new terminal node. In conclusion, once the price of a non-
terminal node i has been computed it is possible to determine the
price of a new terminal node j only if the arcs between i and j
have constant marginal transfer costs and are characterized by

a fixed fraction of water lost through seepage. For example, in
the case of Figure 5 where the dashed arcs are assumed to have
constant marginal costs and linear seepage losses one can start
from the terminal node 7 and eliminate node 7 and arc (7,8), thus
finding the price Pgr and then continue to reduce the graph by

jumping on the terminal node 1 which is connected to node 8
through the arcs (8,4), (2,4) and (1,2). The price P4 is given

by
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Figure 5. Interaction graph (dashed arcs have
' linear transfer costs and losses).

Coming back to our example we are now reduced to the graph
constituted by the three nodes (S2,A,D2) and by the two arcs
($2,A) and (A,D2). A price is associated to the terminal node
S2 so that we can eliminate it (and, consequently, the arc
(s2,A)) as indicated in step 5 of the coordination scheme, thus
reducing the graph to a pair of nodes connected by an arc. By
means of the mass balance equation in node A we compute the flow

QA in arc (A,D2) and then we can eliminate arc (A,D2) as indicated

in step 6, thus reducing the graph to the only node D2. Since a
price Ppo is associated with this node the final operation (step

7) consists in computing the amount of water QD demanded by the
unit. Thus, a comparison between QD and the flow QD2 associated

with arc (A,D2) is possible.

It is important to notice that even when the problem is
solvable by means of a one-dimensional coordination scheme it
is not possible in general to start the procedure from any
terminal node. For example, the case described in Figure 5 can
be solved by alternatively eliminating nodes and arcs in the
following order: 6, (5,6), 5,(4,5), 1,(1,2), 3,(3,2), 2,(2,4),
4,(8,4y, 7,(7,8), 8,(9,8), 10,(10,9), 9,(12,9), 11,(11,12},
12,(13,12), 13. On the contrary, if one starts from node 7 the
following sequence is obtained: 7,(7,8), 1,(1,2), 3,(3,2),
2,(2,4) which leads to the reduced graph shown in Figure 6 where
a price is associated to the nonterminal node 4. Since this
node is not connected with any other terminal node through a
dashed path the graph cannot be reduced any more. It is there-
fore of interest to first identify the class of the problems
solvable by means of a one-dimensional coordination scheme and
then to give a rule for constructing at least one seguence of
operations that solves the problem in this way.
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Figure 6. The graph that cannot be further reduced,
with a price associated with node 4.

As far as the first question is concerned, it is possible
to prove that "solvable" problems are characterized by a graph
that satisfies the following two conditions:

(i) the graph is a tree (i.e. interpreted as an undirected
graph, is acyclic and connected);

(ii) for any node of degree k > 2 at least (k - 2) of the
disconnected subgraphs obtained by eliminating this
node from the graph must have constant marginal costs
and linear losses on all arcs (the degree of a node
is the number of arcs connected with it).

For example, in the case of Figure 5 there are five nodes
of degree 3 (nodes 2, 4, 8, 9, 12). Since for each one of these
nodes condition (ii) is satisfied (easy to check), and the graph
is a tree, one can a priori conclude that the problem can be
solved by means of a one-dimensional coordination scheme.

In order to answer the second question (determination of
the sequence of operations) we must first introduce the notion
of critical nodes as follows: a node of degree k > 2 is said
to be critical if two of the disconnected subgraphs obtained by
eliminating it from the graph contain arcs with nonconstant
marginal cost and/or nonlinear losses. These are termed critical
subgraphs in the following. For example, the critical nodes of
the graph shown in Figure 5 are the nodes 4, 8, 9, and 12, while
the node 2, which is of degree 3, is not critical since only one
of its disconnected subgraphs contains nonconstant marginal costs
and/or nonlinear losses. At this point we can state the following

for the selection of the initial node of the sequence in solvable
problems:

(a) If there are no critical nodes the first node to be
considered can be any terminal node.
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(b) If there are critical nodes, determine for each one of
them the set (called terminal critical set) of the
terminal nodes of its two critical subgraphs and then
determine the nodes that are in common to all the ter-
minal critical sets. Any one of these nodes (which can
be proved to exist) can be considered as initial nodes
of the sequence.

For example, for the case of Figure 5 the terminal critical sets
are shown on the rows of Table 1, so that the possible initial
nodes are the nodes 6 and 13 (recall that a sequence starting
from node 6 and solving the problem has already been indicated).
As for the determination of the rest of the sequence, the problem
is straightforward since the application of the criteria outlined
above naturally leads to the complete reduction of the graph.

Table 1. The terminal critical sets for the graph
of Figure 5.

NODES

CRITICAL
NODES 1 2 3]als|el7 8|9 10|1]|12]1
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It is now worthwhile to interpret the algorithm in terms
of a two-level recursive decision-making process. For this let
us consider Figure 7 where the central block represents the
supervisor, while the external blocks represent the seven steps
of the scheme discussed in Section 3. Their order corresponds
to a sequence of operations that solves the problem and has
been predetermined by the supervisor by applying rules (a) and
(b). The algorithm can therefore be interpreted as a recursive
sequence of questions and answers between the supervisor and
the single components. The question of the supervisor in general
depends upon some of the preceding answers, while the answer of
each component is totally independent from the preceding ones.
In this way the global problem of maximizing the total net bene-
fit of the system is solved without requiring the information
on the economy of all components to be centralized. Each sub-
problem relates with only one component and is solved by means
of the corresponding model. A final interesting remark is that



-15=~

the sequence of questions and answers between the supervisor
and one component of the system develops like a common recursive
negotiation until the equilibrium is reached.

$1

2%

_—r SUPERVISOR T
6 / T

/ \

s O

Figure 7. The two-level recursive decision-making process.

5. APPLICATION EXAMPLE

In this section the algorithm previously presented is
applied to the proposed Northwest Water Plan in Mexico. This
project is part of the Plan Hidraulico del Noroeste which
involves the transfer of water from south to north along the
Mexican coast of the Gulf of California. The motivation for
the project is that the groundwater level in the agquifer of the
Costa de Hermosillo at the northern end of the region is con-
tinually declining due to excessive pumping for irrigation,
leading to seawater intrusion of the aquifer at the rate of
about 1 km per year (see Figure 8). The rate of recharge of
the aquifer is estimated as 350 million cubic meters per year,
and the current rate of pumping is more than twice this rate.

It is proposed to slow down this seawater intrusion by
bringing water about 480 km north to the Costa de Hermosillo
from the Fuerte River through a series of canals but this water
could also be used in other irrigation areas located closer to
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Figure 8. The Northwest Water Plan in Mexico.

the Fuerte River. The algorithm is applied to determine the
optimal balance between supplies and demands in the region and
the associated pattern of interbasin water transfers. All data
and models used in this example are taken from the comprehensive
economic analysis of the region given in [10].

As shown in Figure 8, the system consists of 4 supplies:
the groundwater pumping in the Costa de Hermosillo, and the three
surface water reservoirs on the Yaqui, Mayo, and Fuerte Rivers.
Water is demanded in 4 irrigation areas. The supplies, {, con-
sidered to be available for allocation from the three surface
water reservoirs are 2483, 946, and 1000 million cubic meters
per year, respectively, and from the groundwater aquifer, 350
million cubic meters. The reservoir supply functions are assumed
to be of the form Q(p) = Q.

The Fuerte River supply (S#) could be brought by canal 4
to an irrigation area in the Fuerte-Mayo valley (Di4) and further
by canal 3 to another irrigation area in the Mayo valley (D3).
This transfer would release supplies from the Mayo river (S3),
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formerly used in Mayo valley, to flow through canal 2 to an
irrigation area in the Yaqui valley (D2), thus releasing supplies
from the Yaqui river (S2) to be pumped to the Costa de Hermosillo
along canal 1 to complete the transfer.

The demands for water in the four irrigation areas are
described by linear programming models which maximize the total
annual net benefits of irrigated farming. The net benefits are
given by the value of crop outputs less the costs of production,
and allowance is made for the dependence of the nearby urban
communities on the farm economy.

Two cost functions for the channels were tried, one linear,
and one nonlinear reflecting economies of scale. Since the
results obtained from the two analyses did not differ greatly,
only the results from the nonlinear cost function are presented.
This function is of the general form: marginal cost in dollars

per cubic meter = bV_O'u for a transfer of V cubic meters, where
b is a coefficient computed for each channel. The values of b
are 0.01296, 0.00384, 0.00018, and 0.00612 for channels 1 to 4
respectively. The corresponding seepage losses expressed as a
proportion of the inflow are 18%, 2.5%, 5%, and 5%.

The interaction graph for the case at hand is shown in
Figure 9. As one can easily verify the problem is solvable
with our one dimensional search since the conditions (i) and
(ii) of the preceding section are satisfied. To select the
sequence of operations we must first choose the starting node.
The critical nodes are A1, A2, and A3 and in Table 2 their
terminal critical sets are shown, so that one can see that
the possible initial nodes are S1 and S4, We choose node St
as the starting node, and by applying the ideas outlined in
the preceding section, the following sequence is obtained:
sS4, (s4,An), AL, (A4,A3), D4, (A3,D4), A3, (A3,D3), D3,(A2,D3),
$3,(s3,A2), A2, (A2,D2), D2,(A1,D2), S2,(S2,A1), A1, (A1,D1),
D1,(s1,D1), S1. The initial range of the price Pgyr wWas the

interval 0.01 to 0.25 dollars per cubic meter. Convergence of
the algorithm is obtained in 12-15 iterations in this example.

] S1 T S2 * S3 T D4 ’ sS4
I I I
I 1 ' |
: } [ } |
| I |
] | o
Y Y Y A \
| | | | |
| ! | ! |
b —— - ——————¢
D1 Al D2 A2 D3 A3 A4

Figure 9. The interaction graph of the Northwest Water Plan.
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Table 2. The critical nodes and their
terminal critical sets.

terminal
critical critical set
nodes 1 52 $3 D4 <
A1l ¥ % %

The results of two cases are presented. In the first,
the price coordination algorithm is applied to each supply and
demand pair in isolation, i.e. (81,D1), (S2,D2), ...; in the
second, transfers along all canals are feasible. The balance
of flows between supplies and demands (Table 3) shows that with
each pair considered in isolation the demand is equal to the
supply available. It may be noted in Table 3 that D# receives
5% less flow than S4 supplies because of losses in the transfer
channel. When all transfers are possible, D1 (the Costa) draws
some water from each of the other demands so that the flow in
the channels increases as the Costa is approached.

Table 3. The balance of flows (in millions of cubic meters).

S1 Dl T21 D2 S2 T32 D3 S3 T43 D4 T44 S4

without 350 350 - 2482 2482 - 946 946 - 950 1000 1000
transfers

with

350 779 523 2438 2482 491 748 946 308 642 1000 1000
transfers —_— —_— —_—

S = supply, D = demand, T = transfer.

The annual total net benefit in the region increases by
6% from 741.4 million dollars to 784.2 million dollars if the
transfer scheme is built with the capacities indicated in Table
3. The annualized construction and maintenance cost is 16.1
million dollars, yielding a benefit-cost ratio of 2.7 for the
project.

The corresponding balances of marginal benefits and costs
are shown in Figure 10, where the solid line represents the
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marginal value of water when all transfers are possible. The

flat portions of this line are the equilibria at each demand

point and the inclined portions represent the marginal cost of
transfer along the channels. As expected, the marginal value

rises in the direction of transfer to a maximum in the Costa

(D1). The dashed lines in Figure 10 show the price equilibria
reached when each supply-demand pair is isolated. When the

transfer scheme is introduced, the price falls from 24 to 10

cents per cubic meter in the receiving area (D1) but rises from 4

to 9 cents per cubic meter on average in the donor areas (D2 to D4).

25 1

20 ————equilibrium without transfers

—— equilibrium with transfers

-133
\

change in price with transfers
(cents / m3 )

—_
(2,
)

Marginal Value { Price) Cents/m3
>

+5.7
51 J +5.7
D4 By

Figure 10. Balance of marginal values.

This change in the prices is an important result because
it quantifies the degree to which the farmers in the donor areas
are being penalized for the sake of the farmers in the Costa.
A common criterion of the viability of such transfer projects
is the willingness of the farmers to pay for the water brought
to them. If the demand models used in this example properly
reflect the real situation, then the prices used in the algorithm
are indicative of the marginal value of water to the farmers, and
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hence what they could afford to pay for the water. Although
water is not normally priced as a market commodity, the prices
obtained by the algorithm may be useful as reference points
against which prices determined by more conventional methods
could be compared (such as pricing to cover supply costs).

6. CONCLUSIONS

A particular price coordination scheme for the solution of
a complex water management problem has been presented in this
paper. The method works in the "marginal domain", thus making
use of demand and supply models describing the economy of the
single units of the system. The scheme is essentially a one-
dimensional search coordinated by a supervisor. The advantages
of this scheme with respect to aggregated cost-benefit analysis
are the saving of computation time and memory requirements, and
the fact that the information structure needed is highly decen-
tralized. Also, the marginal benefits or costs associated with
each unit are explicitly obtained as part of the problem solution.

The class of problems to which the method can be applied
has been identified by means of a simple topological analysis
of the graph describing the interactions among the various units
of the system. The classical price coordination scheme applied
to the same class of problems would require to search for the
optimum in a space of dimensions equal to the number of indepen-
dent flows to be determined (roughly the number of arcs of the
graph). Thus, for example, in the case of the Northwest Water
Plan in Mexico analyzed in Section 5, a straightforward applica-
tion of the classical price coordination method would require an
eight-dimensional search, while our one-dimensional scheme has
been shown to be well suited for determining the optimal solution.

When the interaction graph is too complex, i.e. when the
topological conditions presented in Section 4 are not satisfied,
theé problem cannot be solved by means of a one-dimensional search.
Nevertheless, one can eliminate arcs from the interaction graph
until the above-mentioned conditions are satisfied, thus obtaining
a subproblem solvable by means of our one-dimensional search.

This corresponds to solving the global problem by searching for
the optimum values of the flows associated with the arcs elimi-
nated from the original graph and using our one-dimensional
searching scheme as a subroutine at each iteration of the multi-
dimensional search. In this way one still obtains a great
computational advantage with respect to a straightforward appli-
cation of the classical price coordination method.

The algorithm is applied to the Northwest Water Plan in
Mexico, a region involving a groundwater supply, three surface
water supplies, and four irrigation areas which could be inter-
connected by a proposed interbasin water transfer scheme. Con-
vergence is achieved in 12-15 iterations. The results indicate
a 6% increase in the total net benefit from crop production in
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the region if the scheme is constructed but the average price
of water would double in the areas from which the water is
taken if the water were priced as a market commodity.

The method described in the paper is presented in a quite
heuristic way and is not qualified from the mathematical point
of view. Some results on this line, related, for example, to
the convergence of the method, could certainly be obtained in
terms of properties of the demand and supply functions of the
various units.. Nevertheless, in the spirit of the paper which
assumes that the demand and supply functions of the units are
not explicitly given, the knowledge of such properties would
not be of great interest. On the other hand, the problem of
relating these properties to the structural properties of the
models seems to be a rather difficult task.

On the contrary, a much more interesting line for further
investigation seems to be the extension of the present method
to water management problems in which the quality of the water
exchanged among the different units, as well as the reliability
of the flows exchanged, is taken into account.
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