| g International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

LPS/11 Users Manual

Orchard-Hays, W.

IIASA Research Memorandum
December 1978

Orchard-Hays, W. (1978) LPS/11 Users Manual. lIASA Research Memorandum. IIASA, Laxenburg, Austria, RM-
78-066 Copyright © December 1978 by the author(s). http://pure.iiasa.ac.at/931/ All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage. All copies
must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or
to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

RM-78-66

LPS/11 USERS MANUAL

Wm Orchard-Hays

December 1978

Research Memoranda are interim reports on research being conducted
by the International Institute for Applied Systems Analysis, and as such
receive only limited scientific review. Views or opinions contained
herein do not necessarily represent those of the Institute or of the
National Member Organizations supporting the Institute.

Copyright (c)1978 IASA

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without
permission in writing from the publisher.

LPS/11 Users Manual

PREFACE

The set of programs described in this paper were originated
partly as a result of frustration. 1In 1976, the writer found
that although access to large mathematical programming systems
(MPS) was possible at IIASA, it was awkward, time-consuming and
expensive. Furthermore, most of the 1linear programming (LP)
models wused at the time were for small pilot studies which did
not require the power of the large MPSs.

Although a PDP 11/45 was in constant use in-house, operating
under the excellent UNIX system (developed at Bell Telephone La-
boratories) no LP system was available. In summer 1976 the writ-
er was faced with the necessity of analysing a small LP energy
model which existed only in the form of a deck of punched cards
in bad condition. To facilitate the analysis, he wrote a FORTRAN
program to read the deck (which was in standard MPS input for-
mat), <check for obvious errors, and produce a tabular listing
(tableau) of the model. Satisfied that the model was now in
gquite good shape, the next step was to solve some cases. 1t was
quickly realized that the model-analysis program was, in essence,
a CONVERT procedure very similar to those in MPSs, and it was de-
cided to proceed with writing a SETUP procedure and the simplex
algorithm. Having designed and implemented many MPSs, it was
only a matter of a couple of weeks work to get an acceptable,
small package of programs functioning.

Although large MPSs are now more conveniently accessible and
many LP models at IIASA are quite large, the small package on the
PDP has proven very useful and has been in almost constant use.
It has been refined and enhanced into a reliable, robust set of

programs reported in this paper.

-iii-

LPS/11 Users Manual

SUMMARY

A package of programs for solving small 1linear programming
(LP) problems on a PDP-11 computer is described. Although the
paper constitutes a users manual, the style 1is conversational.
The paper is not a tutorial on LP or on mathematical programming
systems (MPS) in general. The reader should be familiar with
standard MPS input formats (originally developed for 1IBM's
MPS/360 and now a de facto industry standard), and have had some
experience in solving LP problems on a computer.

The package consists of eight executable programs,
equivalent to corresponding procedures in an MPS, and includes
both the primal and dual algorithms and two parametric algo-
rithms. The programs are written entirely in FORTRAN IV (the PDP
dialect) and are designed for all in-core operation during solu-
tion of the model case. The size of models is arbitrarily limit-
ed to 109 rows and 258 columns to make this mode of operation
possible on a relatively small computer.

The eight programs are quite similar to the corresponding
procedures in large MPSs, both in construction and operation, and
give essentially identical results. Output formats are also very
similar to those of standard MPSs. (Readers unfamiliar with the
algorithms actually used in computer systems will find consider-
able discussion in the IIASA publication "Some Additional Views
on the Simplex Method and the Geometry of Constraint Space",
RR-76-3, May 1976, by the same writer.)

It is possible to modify the programs for larger models and
to transfer them to other computers but certain internal changes
will be required. Some of these considerations are discussed in
the final section.

This paper was produced from computerized text formatted by
the NROFF program under UNIX on a PDP 11/78 with Diablo terminal.

LPS/11

LPS/11 LINEAR PROGRAMMING SYSTEM

CONTENTS

Preface
Summary
Introduction and General Characteristics
Model Input (LPINPUT progdram)
Case Setup (LPSETUP prodram)
Main Solution Algorithm (LPSOLVE program)

Tolerances and Terminations

Definition of Log-~line Abbreviations
Auxiliary Solution Output (LPSOLN program)
Parametric Objective Algorithm (PARAOBJ program)
Parametric RHS Algorithm (PARARHS program)
Multiple Runs of PARAOBJ and PARARHS
Crashing Algorithm (LPCRASH)
Writing LP Results to a FORTRAN Binary File (LPXVARS)
Other Possibilities for Special Requirements
Considerations for Extendability and Portability

-vii-

Users Manual

LPS/11 ' Users Manual

LPS/11 LINEAR PROGRAMMING SYSTEM

Wm. Orchard-Hays

International Institute for Applied Systems Analysis

INTRODUCTION AND GENERAL CHARACTERISTICS

LPS/11 is a linear programming system available on the PDP
11/70 under the UNIX operating system. It exists as eight exe-
cutable programs which are coordinated in the same sense as pro-
cedures in ‘mathematical programming systems (MPSs) such MPSX,
APEX, SLSAME, etec. However, there 1is n¢ in-core residency
between - programs and no control language in an MPS sense. The
first is nandled by means of scratch files and the second by
standard UNIX command conventions and some specialized interac-
tive responses.

LPS/11 is written entirely in FORTRAN IV and consequently is
less efficient than a large MPS. Nevertheless, 1its execution
speed is acceptable for the size problems for which it is suit-
able. The programs operate entirely in-core and hence problem
size nas been arbitrarily limited to the following:

100 rows:maXimum
250 columns maximum
Approximately 1200 nonzero elements of all kinds in-
cluding all coefficients, right-hand-side (RHS)
elements, range values and bound specifications.
Each bound specification counts for two values,
o regardless of tybe.
The last limit depends'on available core and could be easily in-

LPS/11 Users Manual

creased for a larger machine. The limit on number of rows and
columns could 1likewise be increased with a minimum amount of
change in declaration statements. To make the programs complete-
ly general with respect to size, however, would require the in-
stallation of intermediate I/0 which would be a sizeable under-
taking.
, The eight executable programs are for the following func-
tions: ' '

Input conversion (LPINPUT)

Case setup (LPSETUP)

Main solution algorithm, primal and dual (LPSOLVE)

Parametric objective function algorithm (PARAOBJ)

Parametric RHS algorithm (PARARHS)

Auxiliary solution procedure (LPSOLN)

Initial crash algorithm (LPCRASH)

LP variable values to unformatted file (LPXVARS)
The LPSOLN program is only a convenience for recreating the solu-
tion output from a previously obtained basis. It may also be
used to produce an iteration 0 solution (all-logical or Starting
“basis) which is sometimes desired.

The system uses the following preempted file names which are

explained where appropriate:

LPTEMP, LPBASIS, LPOUT, LPVAR
If it is desired to save one or more of these, they can be
renaied, However, all file names are restricted to a maximum
length of 7 characters. LPBASIS cannot be used under another
name except by LPSETUP (see below).

The internal structure of LPS/11 1is - very similar to the
basic procedures and algorithms of MPS/360 and the SESAME system,
a large interactive MPS developed by the author. However, no
partial or wmultiple pricing is included. (Each iteration makes a
full pass of the matrix.) The inclusion of such features would

LPS/11 ’ Users Manual

have Lincreased core requirements both due to additional program

logic and for expanded vector regions.

MODEL IHPUT

The LP model is input from a file in MPS/360 CONVERT format,
prepared in any appropriate way.* The following exceptions must
be observed: '

1. The first card may have either of two formats: either a

standard NAME card (NAME in columns 1-4 and the name in

15-21) or merely the name (not 'NAME') in columns 1-7. (The

name is a file name and hence limited to 7 characters.)

However, in either case, columns 9-16 are meaningful and

used as follows:

LIST Only a tabular listing of the model is produced.
NOLIST A model file is produced but no tabular listing.
(other) A model file and tabular listing are produced.

For most cases, NOLIST should be specified,

2. The Dx option for rows is not supported and may not be
used.
3. MARKER columns and SCALE values are not recognized and

may not be used.
4, There is a limit of 4 RHSs, 4 RANGES columns, and 4
BOUNUDS sets.
The tabular listing is a tableau-format listing of the model, un-
transformed. It is useful for small models but, for larger ones,
¥ The DATAGEN programs are specifically designed for
matrix generation. See IIASA Software Series No. 4:
TABGEN/MATGEH. (DATAGEN is a single substitute for
both these original programs.)

LPS/11 Users Manual

it produces too wmuch paper output.
The input conversion program is invoked with the following
UNIX command:
LPINPUT 5=source 6=+output
"source" is the name of the input file in MPS/360
format. The model name . in the first card

must be different from "source" and from any.

of the preempted file names.

"output" is a print file name such as OUTPUT or
any wunique file name. If NOLIST is speci-
fied, this specification may be omitted and
the statistics summary (plus any error mes-
sages) will appear at the console.

LPINPUT reads the MPS/360 input, produces a full tabular listing
(10 columns per strip of pages) of all columns, RHSs and RANGES
vectors, and BOUNDS in input format. Row types are shown with
the RHS. The listing goes to "output". (All this is omitted if
NOLIST is specified.) A summary of statistics appears at the
end, including the number of errors (also commented where detect-
ed) and the number of zero elements specified. Any such elements
should be deleted from "source" file to save space and time in
subsequent programs, and LPINPUT rerun with the corrécted file.
Successful completion of LPINPUT is indicated by
STOP -- 30 ’

on the terminal. The model statistics are always produced}

CASE SETUP

A model file is not usable directly by the algorithmic pro-
grams although it is read by them for identification and output
purposes. (The row and column names exist only on the model

LPS/11 Users Manual

file.) The program LPSETUP is invoked to set wup a model for
solution. Its input file is the model file and it produces both
LPTEMP and LPBASIS unless a basis is specified in which case it
reads an old LPBASIS file (which may have been renamed) rather
than producing one. Only one LPTEMP can exist at a time.

LPSETUP is interactive. It first asks for your model name.
An lncorrect nawe results in a "failure to open file" error. You
must then restart.)

Wnen a correct name is given, LPSETUP prints the statistics
produced by LPINPUT and asks "ok? (y/n)". A "y" response contin-
ues. You are tnen asked for the row number of +the functional
(oby row) which wmust be typed in positions 1-3. The row names
are not available at this stage which is why the functional must
be specified by row number.

LPSETUP checks that the row number exists. If not, you are
given the message

wrong! try again
It later checks that the row is type N (free) and, if not, aborts
the run atter a message.

The next request is for a scale value for the functional.
For standard minimization, just return a null line. To maximize,
enter -1.0 or some negative value. A magnitude other than unity
has the same effect as the scale factor in most MPSs. (Less than
1.0 terminates sooner, greater than 1.0 drives optimization
further.) . |

All RHS names (up to 4) are then displayed and you are re-
quested to specify one. An incorrect name results in the same
response as for a functional row numbter out of range.

If there are RANGES or BOUNDS the same procedure is followed
as for Ril3 except that a null or incorrect response is interpret-
ed to mean that no RANGES or BOUNDS set is desired for this run.

Next, you are asked whether an old basis is to be 1input.

LPS/11 : Users Manual

This is an LPBASIS file produced by a previous run. The dimen-
sions of the model must be the same or LPSETUP aborts. If no
basis is to be loaded, return a null line. LPSETUP then writes

the all-logical basis to file LPBASIS.

You are then asked to specify 1log-line frequency. Only
numbers 1 through 25 are accepted. A zéro or null response 1is
i'nterpreted as 1, a large number as 25. ‘

If you think the dual algorithm 'will be 'more efficient,
answer "y" to the next request. Any other response causes the
primal algorithm to be used. The dual algorithm is terminated
(or not started) in any of the following circumstances:

(a) No primal infeasibilities exist initially.

(b) Dual infeasibilities exist initially.

(c¢) Dual infeasibilities are created (This can only occur

due to numerical toleranCeidiffieulties, -which should

: be very rare.) |

(d) All primal infeasibilities have been removed.

In case (d), one primal pass is made which should indicate an op-
timal solution. If no primally feasible solution exists, the
usual "NO FEASIBLE SOLUTION" termination occurs.

If no dual infeasibilities exist initially, it has been
found more efficient in all cases tried so far to specify the

dual algorithm. Since a full pricing pass is made each iteration

anyway, the primal efficiencies obtained in large MPSs are not
achieved; the dual algorithm is then wmore efficient in. . most
cases. ’ '

LPSETUP writes a file with the name LPTEMP, only one of
which may exist at a time. This is more or less equivalent to
the scratch MATRIX file in MPS/360. and derivative systems. This
file 1is wused by all other programs. However, 1if errors are
detected by LPSETUP, either this féct is,recorded-iﬁ-'LPTEMP so

that other programs refuse to exeduté; or no LPTEMP ié produced

LPS/11 ' Users Manual

at all.
Successful completion of LPSETUP is indicated by
STGP -=1

a4t the terminal.

MAIN SOLUTIONW ALGORITHM

The program LPSOLVE is the main solution algorithm (primal
and dual). Its only inputs are the LPTEMP file and the model
file from which LPTEMP was created by LPSETUP. However, it takes
two arguients: BASI3 and TOLCHK in that order. (To use the
second without the first, put a dummy word for the first.) Their
use 1s explained below. At termination, LPSOLVE produces a solu-
tion output and writes or rewrites the final basis to file
LPBASIS. All printed output is written to file LPOUT.

The BASIS argument causes a basis to be 1loaded from file
LPBASIS, 1initially. This is often more convenient than doing it
in LPSETUP but no renaming is permitted.

The algorithnin is the revised simplex method with product
form of inverse, both primal and dual forms. The program reads
the latest existing LPTEMP and starts to iterate. If a basis was
specified to LPSETUP or by the argument BASIS, the subroutine
INVERT 1s executed first. This 1is a triangularization scheme
followed by a 'Markowité-like selection scheme for the non-
triangularizavle columns (the "bump" in Hellerman-Rarick termi-
nology).

The usual messages and loglines are produced. All iterating
output (except a few fatal error messages) is written both to the
terminal and to LPOUT. However, final output is written only to
LPOUT. .-This file should be printed with the ASA filter for full
page control. 'Output format is sufficiently close to MPS/360, et

LPS/11 Users Manual

al, to require no explanation. (The column of "row values" and
the coluun of "input costs" are omitted. However, the status of
a row refers to the constraint rather than the slack value. Thus

a row shown at upper limit (UL) means that the row value has at-_
tained its hignest value, not the slack.) There is one majoh de-
viation from standard practice, however. GE rows are converted
to LE rows internally (as in almost all MPSs) “but .£he inverse
transformation is not done at output. The lower and upper limits-
and other values are shown correctly for LE forhat but = thé wuser
may have to mentally invert the sense of his original GE con-
straints.

A complete primal and dual check is made whenever a primal
feasible solution 1is obtained (after an infeasible one), after
execution of INVERT, and at all terminations. The tolerance for
both primal and dual errors is 107%. an error larger than this
in magnitude causes an error message showing the largest primal
and/or dual error, the constraint or variable on which it oc-
curred (denoted by J-number defined below), and a logline with an
approprlaie uesSsage. INVERT 13 then called aad the check made
again. If errors persist, the iterative procedure is terminated
and a full solution output is produced. However, an error after
an initial INVERT causes an immediate stop with | -

" STOP -- 399 :
displayed at the terminal. _

If it is necessary to use a larger tolerance to complete
solution of a model which goes through ill-conditioned bases, the
argument TOLCHK can be used. This causes a prompt at the termi-
nal at which time the user types an appropriate tolerance (real

nuiiber) .

LPS/11 ’ Users Manual

The full set of tolerances used are as follows:

Primal infeasibility 10"6
Dual infeasibility 10=°
Smallest pivot (except INVERT) 10~7
Threshhold magnitude 1015

Maximuw magnitude ("infinity") 1030

Check error tolerance 1074
None of these except the last is settable by the user as present-
ly implemented. They are defined in LPSETUP and, since this pro-
gram is relatively small, additional interactive logic could be
added to make tnhe tolerances settable. However, 1long experience
has shown that only the check tolerance should be changed by most
users since the effects of the other ones are intricate and sub-
tle.

In addition to tne uses of INVERT described above, the
subroutine 1is called whenever <core available for the eta file
(product form of inverse) fills up. This will be indicated by a
minus sign for length of eta file in the logline which is always
output in this case. There is no invert frequency as in most
MPSs. (If core fills up in INVERT itself, STOP -- 390 occurs.)

The normal terminations possible are:

NO FEASIBLE SOLUTION.

UNBOUNDED SOLUTION.

OPTIMAL SOLUTION....

INDICATED TERMINATION.
The last is used when repeating check errors occur at one of the
other terminations. A logline and caption is output when the
solution goes primal feasible but no stop occurs. If this hap-
pens more than once, it indicates that a feasible solution has
gone slightly infeasible due to roundoff error. This should hap-
pen only rarely and the amount of infeasibility should be insig-
nificant. 'Phase switching is automatic, in either direction.

LPS/11 Users Manual

Operation of LPSOLVE 1is automatic except that every 50

iterations the message '

50 iters. continue? (y/n)
is displayed followed by a pause for terminal input. A "y
response continues; any other causes a termination with full
checking and output, including a valid LPBASIS file.

An explanatory header is produced every 25 loglines, approx-
imately often enough that it is usually on the terminal scope.
It is fairly self-explanatory but is detailed here: ' |

ITER iteration number. Always starts from O.

JIN sequence number of incoming variable, 1i.e. the
J~nuuber. Logical variables are numbered 1 to m,
structural variables m+1 to m+n,.

JOUT sequence number of outgoing variable. If
JOUT=JIN, the variable changed bound. Variables
coming in from or going out to'uppen limit are in-
dicated by an adjoining U.

DJ pricing derivative for JIN (reflects phase pric-
ing form).

VALUE sum of infeasibilities 1in phase 1, value of
functional in phase 2. (Latter reflects value of
SCALE.)

PINF number of primal infeasibilities.

DINF number of dual infeasibilities (reflects phase).

NETA number of eta colunmns.

LETA 1length of (in-core) eta file.

(A few debugging stops have been left in the routines which
can only occur in "impossible" situations. If any of these actu-
ally occur, as much information as possible should be forwarded
to the author.)

=710~

LPS/11 ‘ Users Manual

LPSOLN

This program simply inverts the basis currently existing on
LPBASIS and produces a scolution output. If no basis was loaded
in LPSETUP or produced afterward, the output reflects the all-

logical vasis ("iteration O" solution).

PARAMETRIC OBJECTIVE ALGORITHM (PARAOBJ program)

In order to use this algorithm, the model must contain at
least two type N (free) rows. One (say OBJ) is used as the ob-
jective function and an optimal solution is obtained with LPSOLVE
in the normal way. LP3SOLVE must have written an optimal basis to
file LPBASIS betore PARAOBJ can be used.

Another type N row (say COBJ) is then used as a change row
to OBJ. The functional is progressively modified to

OBJ + @ COBJ, @ > 0
for increasing values of ©®, starting from Q = b.b. Both a limit
value for ¥ and an incremental value must be specified. If the
incremental value is zero or greater than the maximum value, it
has no effect. Otherwise, a solution output is produced when the
incremental value is attainable (since the last time).

The specification of thée change row and the #-values is done
interactively when PARAOBJ starts to execute. It first diéplays
the message '

no. of delta obj row
and pauses for the user to type in an integer, Jjust as for the
obj row in LPSETUP. If this row number does not exist or is the
same as the obj row, an appropriate message is displayed followed
by -
STOP -~ 399

=11~

LPS/11 Users Manual

The same occurs if the row specified is not type N. In any of
these cases, PARAOBJ must be restarted.

PARAOBJ then reads the file LPBASIS and if the basis read is
for a model of different dimensions, a message is displayed fol-
lowed by the same stop as above. No other checking for a proper
basis is possible at this point but an incorrect basis will (with
alumwost probability of 1.0) cause termination when the solution is
found not to be optimal.

If all appears 0K, the following message is displayed

type initial and final para values (real, 2 lines)
Unless PARAOBJ itself is being restarted (see below), the first
value 1is 0.0 followed by a carriage return (end of line) and the
second the upper limit which @ is to attain, often 1.0. Next the

message

type delta value for solns
is displayed to prompt the user to type in the increment. Thus,
for'example, responding with

0.0

1.0

.25

to the previous two displays means to drive @ to 1.0 and produce
a solution at .25, .50, .75, and 1.0. If it is not possible to
drive @ to the limit specified, a solution is produced ét the
largest possible value preceded by a logline with the caption |
PARAMETER AT ABS. MAX
Conversely, if the specified limit has not yet been reached but
it 1s discovered that no maximuin exists, the algorithm will ter-
minate with the caption
PARAMETER UNBOUNDED

but the specified 1limit will be honored. Iun other cases, one of

-12-

LPS/11 Users Manual

the captions

INCREMENT ON PARAMETER
or

PAKAMETER AT LIMIT
will be used.

A full check is performed before each output. If check er-

rors occur, the caption

(INDICATED OUTPUT)
is used followed by execution of INVERT. If errors persist, an
appropriate message is displayed, a full output is produced and
the procedure terminates. The use of INVERT, handling of errors,
loglines and interruption (at 50 iterations) are exactly the same
as in LPSOLVE except that the DJ value on loglines is replaced by
the value of @, denoted by PARAMETER.

PARAMETRIC RHS ALGORITHM (PARARHS program)

In order to use this algorithm, the model must 1include at
least two RHSs. One (say BRHS) is used as the base RHS and an
optimal solution is obtained with LP3OLVE in the normal way.
LPSOLVE must have written an optimal basis to file LPBASIS before
PAKARHS can be used.

Another kHS (say CRHS) is then used as a change column to
BRHS. The KHS is progressively modified to

BRHS + @ CRHS, © > 0
for increasing values of &, starting from & = 0.0. Both a limit
value for © and an incremental value must be specified. The
usage, formats and action of PARARHS are otherwise exactly 1like
those for PARAOBJ except that the change RHS is specified by name
and wmust be‘diffeﬁent from the base RHS.

-13-

LPS/11 Users Manual

MULTIPLE RUNS OF PARAOBJ AND PARARHS

Either of the parametric algorithms can be restarted from
tne value of the parameter previously attained. It is only
necessary to type in the old terminal value as the new initial
value and a higher value for the new terminal value (assuming it
was not at an absolute maximum before). The LPBASIS file pro-
duced by the prior run must still be available.

On the other hand, PARAOBJ and PARARHS cannot be run end to
end. LPSOLVE does not recognize @ or 8, PARAOBJ does not recog-
nize ©, and PARARHS does not recognize @. However, the following
seqguence 1s possible. Let there be three RHSs, say RHS1, CRHS,
RHS2 such that RHS1 + CRHS = RHS2. Set up for RHS1 and obtain an
optimal solution with LPSOLVE. Then run PARARHS for CRHS and the
limit of © specified as 1.0. Now set up again for RHSZ2. (The
basis from PARARHS iaust be specified.) Now PARAOBJ can be run
starting from the optimal RHS2 (with, of course, some change row
to the objective). Various combinations of this technique can
obviously be formulated.

Note that if the PARARHS basis is not specified (as
LPBASIS), LPSETUP will write the all-logical basis to file
LPBASIS, destroying the basis previously obtained. If bases are
to be wused at a later time, the LPBASIS file should be renamed
and then specified to LPSETUP by the new name at the appropriate
time. Note that every termination of every algorithm (except
LPSOLN) writes on LPBASIS.

14~

LPS/11 ' Users Manual

LPCRASH

This program may only be run immediately after LPSETUP with no
loaded basis. It produces a (somewhat) advanced basis and writes
it to LPBASIS. Loglines are produced and the solution is checked
but a0 LP output is written. It should be followed by LPSOLVE
with tie BASIS argulent.

LPCRASH‘is not highly effective for small models. It often
takes as iumuch time as starting LPSOLVE from scratch. The user
should try it and see if it provides any benefit for his models.

LPXVARS

This program extracts LP results and writes them to an un-
formatted file called LPVAR. This file can be read with a
FORTRAN program for downstream use, such as report writing.

LPXVARS only obtains values associated with main LP vari-
ables (columns), not logical or slack variables (rows). It re-
quires LPTEMP, the model file from which it was produced, and a
valid LPBASIS (no renaming).

The program requires two arguments. The second must be
properly specified or no output will be produced. The first is
optioital; 1if not desired, wuse a dummy such as "x", This will

cause all wvariable names selected by the second argument to be
output along with the primal value, as two 8-byte fields. The

second arygument is a standard mask, enclosed in quotes. For ex-

ample, 'apc¥*¥%¥%¥%¥! selects all variables whose names start with
'abe'. The length of the mask is significant; thus '¥¥¥¥10°'

selects all names with '10' is positions 5 and 6 and which are

blank in positions 7 and 8.

The first argument is used to extract more information for

-15-

LPS/11 Users Manual

each variable selected and to arrange these values. Three addi-
tional values are possible, denoted by L for lower limit, U for
upper limit, and D for dual value. These characters are written
together with no spaces between. Thus the command

LPXVARS LUD ‘'**&*kiik?
selects all variables and outputs the name, primal value, lower
and wupper limits and the dual value, in that order. Each field
is 8-bytes. However, the order of L, U and D are significant.
They may be permuted in any way and the fields output will be
permuted in the same way. The first two fields (name and primal
value) are fixed and always output first in that order. Thus

LPXVARS DU PRk kkokokkok !
outputs four 8-byte fields for each variable in the order

name, primal value, dual value, upper limit
The unformatted file LPVAR is continuous and must be read with
appropr iate FORTRAN FORMAT statements. The file ends with a dum-
my variable whose name is 8 blanks and all values =zero. The
number of values is the same as for all other variables, as per

""1&‘ Eivme Avarymande
- A e alin A Bt e _‘l—:ua-~_n.\--

OTHER POSSIBILITIES

Several experimental prbcedures have been produced fairly
easily, most of them for speéial purposes. An experimental MIP
algorithm exists but is not generally available since its perfor-
mance is erratic. If you have special requirements, contact the
author; it may be quite feasible to accomodate them with a
minimum of effort.

~16-

LPS/11 ’ Users Manual

CONSIDERATIONS FOR EXTENDABILITY AND PORTABILITY

The restriction to 190 rows and 258 columns is quite arbi-
trary, intended to keep the largest procedure and all active data
within the approximately 56K bytes of core available to a user
program. The dimensions have in fact been changed for special
cases where the known sparsity of the model insured that avail-
able space would not be exceeded. Maximum dimensions of 150 by
200 might be allowable, for example. The indexing used 1is not
itself restrictive up to much larger dimensions.

The maximum model dimension involve several different con-
siderations. First, they are built into the (fixed) dimensions
of certain LOGICAL*1l arrays in the COMMON area named TYPES (ex-
cept in LPINPUT where the array is not in COMMON). These have to
be changed in all main programs and a fairly large number of
subroutines. Second, LPINPUT has checks for maximum number of
rows (100), columns(250) and total elements of all kinds (3008)
which are coded numerically and a little hard to find. (They
should be variables set at the top.) Third, enough room must be
left for a reasonable-sized inverse representation ("eta" columns
for product form). Fourth, total space available is controlled
by wvarious vectors in LPINPUT and by the array KORE defined in
all other main programs. The size of KORE is also built into a
couple of statements in the main programs for defining the amount
left for the inverse. With a good editor and knowing where to
look, all these changes can be made in about an hour or less but
one can expect to miss a couple of required changes on the first
attempt.

Core assignment, per se, is done primarily in LPSETUP and it
is possible that adjustments have to be made there, not only for
sizes but possibly for different options. LPSETUP works in an
interactive question-response mode.

-17-

LPS/11 Users Manual

In order to extend the package for arbitrarily large (within
reason) model dimensions, intermediate input/output buffering of
matrix and eta files would have to be installed. This would be a
large undertaking and one should consider whether the use of
standard large MPSs would not be more practical. Such buffering
could be done in FORTRAN but, for efficiency, should be done in a
better system programming language. Furthermore, such features
as multiple and partial pricing and a more powerful inversion
routine would become desirable. Thus one could be quickly led
into a large system effort.

Since LPS/11 is all-FORTRAN, it might be assumed that it is
easily portable. This 1is not quite true. First, the use of
LOGICAL*]1 may not be available in other systems. (It doesn'‘t
work correctly with some older sets of library subroutines even
under UNIX.) Second, the PDP default for integers is two bytes
(which is sensible) but four bytes in IBM FORTRAN (causing subtle
problems in call statements if mixed) and a full 68 bits in CDC
FORTRAN (which is somewhat ridiculous). A working conversion of
LPS/11 for a CDC Cvber 74 exists but reanired ~vé-ongjve modifica-
tion for a number of reasons peculiar to that system. A further
consideration is the definition and accessing of files which 1is
particularly convenient on the PDP. System prcgrammers will be
familiar with such matters but implementing the package on anoth-
er system may take a good deal of hunting and fixing.

A final consideration is the continuous nature of unformat-
ted files with the library subroutines used. There is no concept
0of a 1ogyical record. READ and WRITE statements must specify ex-
actly how many bytes are to be transmitted. Some rather intri-
cate sequences exist for writing and reading intermediate files

which must match across programs.

-18-

