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PREFACE 

In this paper, the authors propose an efficient new method 
for constrained optimization which they call the primal-dual 
quasi-Newton method. The main feature of this method is that 
it improves both the Hessian of the Laqranqian and that of the 
dual objective function using quasi-Newton methods. Several 
variants of the method are possible: the properties of these 
methods are described and the computational results obtained 
for some test problems are given. 

This research was carried out in collaboration with the 
Interactive Decision Analysis Project in the System and Decision 
Sciences Program. 
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Chairman 
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ABSTRACT 

One of the most important developments in nonlinear con- 
strained optimization in recent years has been the recursive 
quadratic programming (RQP) method suggested by Wilson, Han, 
Powell and many other researchers. It is clear that the role 
of the auxiliary quadratic programming problem is to calculate 
(implicitly) the inverse Hessian of the dual objective function. 
We describe the Hessian of the Lagrangian and that of the dual 
objective function as the primal Hessian and the dual Hessian, 
respectively. In this paper, a new method for constrained 
optimization, called the primal-dual quasi-Newton method, is 
proposed. The main feature of this method is that it improves 
(explicitly) both the primal Hessian and the dual Hessian using 
quasi-Newton methods. Several variants of the primal-dual quasi- 
Newton method are possible: the properties of these methods are 
described and the computational results obtained for some test 
problems are given. 
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1. INTRODUCTION 

Consider the following problem: 

Minimize f (x) 

subject to hi (x) = 0, i = I,.. . ,m 

X E E ~ ,  

where E" is an n-dimensional Euclidean space. 

The recursive quadratic programming (RQP) method has been 

recognized as an effective means of solving general nonlinear 

problems of this type. It does not make any assumptions about 

the functions f and hi, except that they should be smooth (in 

some appropriate sense) [l-31. The Lagrangian associated with 

problem A is defined by 

where uT = (ul,. . . ,u ) and h = (hl,. .. ,h )T.   he RQP algorithm m m 
can then be summarized as follows: 

Presented at the XI ~nternational Symposium on Mathematical Pro- 
gramming in Bonn (August 1982). 



(i) Choice of search direction Ax 
k 

Determine bxk by solving the following auxiliary quadratic 

programming problem: 

Minimize k 1 T k  fx(X )AX + B AX 

k k subject to hx(x )AX + h(x) = 0 , 

where the i-th row vector of the matrix hx is the gradient 

of hi with respect to x. 

(ii) Line search; x k k  k+l = xk + a Ax 

Assuming the penalty function 

k where c is sufficiently large, the step-size parameter a is 

given by 

k k k a = arg min P(x +aAx ;c) . 
a 

(iii) Improvement of B k 

Improve B~ using some quasi-Newton method, such as the BFGS 

method : 

Bk+l k T k  k B s s B  = B  - 
T k  s B s  sTy 

where 

and u k+l is the Lagrange multiplier obtained by solving the 

auxiliary quadratic programming problem described in (i). 



The RQP method has several good features and is of con- 

siderable importance ( 2 1 .  On the other hand, however, the method 

also has some drawbacks in that it is necessary to solve a succes- 

sion of auxiliary quadratic programming problems and the line 

search has to be made along the non-smooth function P(x;c) in 

order to ensure global convergence. Before considering how to 

overcome these difficulties, we shall first look at the role of 

auxiliary quadratic programming in RQP. 

From the Kuhn-Tucker condition for the auxiliary quadratic 

programming problem, we have 

where Au = u k+l k - u  . The Kuhn-Tucker condition for problem A is 

given by 

Applying the Newton-Raphson method to equations ' (2) and (3) , we 

have 

Comparing (4) with (l), it is clear that RQP is essentially 

equivalent to the Newton-Raphson method for equations ( 2 )  and 

(3) with Lxx(xktuk) approximated by B ~ .  Tanabe has recently 

reported an attractive unified approach to a class of (quasi) 

Newton methods for constrained optimization which includes 

RQP, the generalized reduced gradient method and the gradient 

projection method as special cases differing only in the 



approximation of L~~ I41. 

Now suppose that Lxx is non-singular and hx has full rank. 

Then, assuming that 

we have 

-1 -1 T -l -Ih L-l -L -1 h T (-h L -1 h T ) -1 L +L h (-h L h x, [: : )=(  xx x x x  -1 X X X X  T -lh L-l -1 T -1 
-(-hxLXXhx) x xx L-hxLxxhx) 

x x x  x x x x  -)- 
Therefore, (4) yields 

iiere all the functions are evaluated at xk and uk. It has already 

been shown [5,61 that the update scheme (5) - (6) is equivalent to 

certain existing methods, for example, the Bard-Greenstadt method 

( 7 1 ,  the multiplier method for inexact unconstrained minimization 

[6], and the diagonalized multiplier method [5] . Note that two - - 
kinds of inverse matrices L;: and (-h ~ - l h ~ ) - l  appear in (5) and 

X XX X -1 T 
(6). We refer to Lxx as the primal Ressian and to -hxLxxhx as the 

dual Hessian. (The name of the latter originates from the fact tha= 

it i s  the Hessian of the dual.objective function Q(u) = min L(x,u) 
X 

associated with problem A. )  One interpretation of RQP is there- 

fore that the approximation of the primal Hessian is improved by 

some quasi-Newton method and the inverse of the dual Hessian is 

calculated implicitly by solving the auxiliary quadratic programm- 

ing problem. Based on this consideration, we shall suggest a methoe, 

called the primal-dual quasi-Newton method, which approximates both 



the primal Hessian and the dual Hessian using some quasi-Newton 

method. 

2. THE PRIMAL-DUAL QUASI-NEWTON METHOD 

Let H1 and H2 approximate the inverses of the primal and 

dual Hessians, respectively. The Newton-Raphson update (5)-(6) 

is then reduced to 

In primal-dual quasi-Newton methods, the matrices H1 and H2 are 

improved by an appropriate quasi-Newton method, for example, 

using the BFGS update 

where we take 

k k  k-1 k-1 k-l and y = Lx(x ,u )-Lx(x ru s = x  - x  

for H1 and 

k k-1 s = u  - u  k k-1 and y = h(x )-h(x ) (11) 

for H ~ .  It should be noted here that the gradient of the dual 

objective function 0 (u) is given by h (x (u) ) , where x (u) = arg 

min L(x,u) . If xk is not a minimizer of L(x,u~) and is deter- 
k m?ned merely from xk+l = x + dxk, with Ax given by (8) , then the 

algorithm based on (7)-(11) does not necessarily perform very 

well because the estimate of the gradient of the dual objective 

function is generally not good enough. We therefore suggest the 

following method: 



(i) First, for a given multiplier Ukr determine the ;k that 

minimizes L (x,uk) . 
^k k 

(ii) From ( 7 ) ,  (8) and Lx(x ,u ) = 0, the next search direction 

from the point (jktuk) is 

where H! and H; are approximations of L-'(G~,u~) and 
XX 

^k k T ^k -1 
(-hx (X ) HlhX (X ) ) , respectively, and are improved using (9) - (11) . 
Note  2 . 1  Henceforth, we shall assume that Lxx is positive defi- 

nite for all (x~u). The matrix 

k is then nonsingular, where G~ minimizes L (x,u ) . 
We can now interpret this procedure geometrically as follows: 

For x(u) = arg min L(x,u), the dual objective function is given by 
X 

@ (u) = L (x (u) ,u) . ~ssuming that Lxx is positive definite and that 

the functions f and h. are smooth (in some appropriate sense), we 
1 

obtain x(u) by solving Lx (x.u) = 0; x (u) also has some appropriate 

smoothness. Then, taking Axk and buk such that 
k k  L (ik+Axkt u +Au ) = 0, the solution to 

X 

yields 

k Here, Au is given by 



using the Newton method for maximizing the dual objective function. 
k Observe that the Ax defined by (13) and the buk defined by (12) 

are identical to the corresponding definitions in (15)-(16) with 
-k -1 -k k T nk L-I (xkluk) and (-hx (x ) LM(x ,u ) hx (x ) ) replaced by H and H2, 

XX 1 
respectively. We can therefore say that the search based on (12)- 

(13) is carried out on the tangent spaceofthe solution surface 

{ (x,u) I LX (x,u) = 0) by considering Lx (x,u) = 0 as a new constraint. 

Minimization of L(x,u) over x corresponds to projection onto the 

constraint surface Lx(x,u) = 0. This is illustrated in Fig. 1. 

An algorithm based on the suggested primal-dual quasi-Newton 

method can be summarized as follows: 

S t e p  I .  Take initial values (xo,uO) and convergence parameters 

c1 and c2. Set H1 = I. H2 = -I and k = 0. 

k S t e p  2 .  Solve the unconstrained problem min L(x,u using an 

appropriate quasi-Newton method, for example, the BFGS method: 

(2-ii) ~k k,i ~f I L  (x~'~,u~)!  < clr  then x = x . H! = H F t i  and 
X 

go to Step 3. Otherwise, go to (2-iii). 

(2-iii) Calculate x k, i+l kti i = x + a. Ax1 , where 
1 

'i = arg min L (xkl i+a~x:, uk) . 
a 

(2-iv) Set 
s = x  k,i+l k,i 

-X 

k, i+l and improve H1 using the BFGS update (9). 



Fig. 1. Geometric interpretation of the primal-dual quasi-Newton 
method. 



(2-v) S e t  i = i + 1 and go t o  ( 2 - i i ) .  

S t e p  3. I f  k = O ,  then  go t o  S t e p  4.  Otherwise set 

k 
and improve H2 u s i n g  t h e  BFGS update ( 9 ) .  

S t e p  4. 
k S e t  2 = sk and 6 = u . 

S t e p  5. Ca lcu la te  

where  AX^ and duk are given by ( 12 ) - ( 13 )  and t h e  s tep -  

s i z e  parameter Bk is determined a s  desc r ibed  i n  t h e  

fo l lowing s e c t i o n .  

k + l  k + l  
S t e p  6. I f  ih(xk+') 0 < c2 and nLx(x ,u  ) I < cl ,  then  s top .  

Otherwise, set k = k + l  and go t o  S t e p  2. 

3 .  A METHOD OF LINE SEARCH 

A s  s t a t e d  i n  t h e  p rev ious  s e c t i o n ,  t h e  update 

fo l lows from t h e  quasi-Newton method f o r  maximizing t h e  d u a l  

o b j e c t i v e  func t ion  Q (u )  = min L ( x ,u )  o r ,  e q u i v a l e n t l y ,  f o r  so l v ing  
X 

BU(u) = h ( x ( u ) )  = 0. W e  t h e r e f o r e  determine t h e  s t e p - s i z e  para- 

meter Bk i n  such a way t h a t  some norm of h ( x )  i s  minimized. Here 

we sugges t  

1 h (x )  1 = hT (x )  (-H2) h (x )  
-H2 



as line-search objective function. 

Letting 

we have 

k Since H: and -H2 are positive definite under the BFGS update, 
^k relation (19) yields $ '  (0) < 0, assuming that hx(x ) has maximum 

k rank. This means that the Ax given by (13) ensures a search 

direction in which $ ( B )  is decreasing. 

The reason why Bk = arg min $(B) is also used as the step- 

size parameter when updating u may be understood by taking into 

account the following relationship between the minimization of 

1 h (x) 1 and the maximization of the dual objective function B (u) . 
-H2 

Define 

k T B; = -h H h x l x '  

Then 

B (uk + Au) 

Ak k) where the right-hand side is evaluated at (x ,u . On the other 
k T hand, since h (fk + Ax) 2 h - h H h Au, we have x l x  

k 1 T k k k  T k k  T k  I h (2  + Ax) I k -2 (TAu B2H2B2Au + h H ~ B ~ A u )  - h H2h . 
-H2 

k k -1 
Suppose that H2 is a sufficiently good approximation of (B2) , 

k k -  i.e., H2B2 = I. Then from (20) we have 



1 T k  T T k  Ih (jk+~x) 1 k ; -2 (TAu B2Au+h Au) - h H2h 
-H2 

Hence, if H~ is a sufficiently good approximation of (gk) -', then 
k 2 k k k  for the Bk that minimizes 4(8 )  = I ~ ( C ~ + ~ A X  ) I k ,u + B  Au maxi- 

k k mizes the dual objective function @(u +BAu ) .  
-H2 

4. AN EXTENSION TO NONCONVEX AND/OR INEQUALITY CONSTRAINED CASES 

We have so far assumed that Lxx is positive definite. How- 

ever, in cases where Lxx is not always positive definite, we can 

develop a similar argument by using some appropriate augmented 

Lagrangian instead of the conventional Lagrangian. It is shown 

in [8] that 

. . .., T L(x,u,v;c) = f (x) + u h(x) + chT(x)h(x) (21 

where I = {ilgi(x) 2 0, 1 I i I r}, is an augmented Lagrangian 

for problem A with additional inequality constraints gi(x) 5 0 ,  

i = l,...,r. 

The optimal solutions x*, u* and v* are clearly obtained as 

the solutions to 

where 



Note that the condition of complementary slackness is embedded 

in the equation f, = 0. Moreover, it is known that qx is posi- 
X 

tive definite even in nonconvex cases as long as c is sufficiently 

large [a]. Therefore, the suggested primal-dual quasi-Newton 

method can be modified for use in this case simply by taking the 

additional condition v 2 0 into account. (This constraint is - 
easily handled by the gradient projection method: set v = 0, i 

It is clear from the previous sections that the suggested 

primal-dual quasi-Newton method can be regarded as an accelerated 

multiplier method. Hence, its convergence can be verified in the 

same way as that of the multiplier method [9] or the diagonalized 

multiplier method [lo]. Another extension of multiplier methods 

has been made by Kameyama and others [ll], who modified the tra- 

ditional multiplier method in such a way that the Lagrange multi- 

pliersare updated by some quasi-Newton method for maximizing the 

dual objective function. This method was named the quasi-Newton 

multiplier method, and may be regarded as another type of primal- 

dual quasi-Newton method. Unlike the primal-dual quasi-Newton 

method suggested in this paper, however, the quasi-Newton multi- 

plier method only updates the Lagrange multipliers in the maximi- 



zation of the dual objective function. Note that in the quasi- 

Newton multiplier method it becomes virtually impossible to carry 

out the line search required to update the Lagrange multipliers 

because each estimation of the step-size parameter requires an 

infinite number of steps in the unconstrained minimization of 

the (augmented) Lagrangian. We shall now compare these methods 

using a few test problems. 

Example I (Rosen-Suzuki  p rob l em)  

Minimize 

2 2 
f (x) = x2 + x2 + 2x3 + X4 - 5x1 1 2 -5x2- 21x3 + 7x4 

subject to 

The optimal solution is x* = (0, 1, 2, -1) , v* = (1, 0, 2) and 

f(x*) = -44. The results obtained on applying the multiplier 

method, the quasi-Newton multiplier method and the proposed 

primal-dual quasi-Newton method to this problem are given in 

Table 1. The following values were taken: x O = (0, 0, 0, 01, 

vo = (0, 0, 0) , penalty parameter c = 1, and convergence para- 
-6 -3 meters E~ = 10 and c2 = 10 . 

Example 2 (Powe l l  ' s  problem}  

Minimize 

subject to 

hl (x) = x2 + x2 + x2 + x 1 2 3 4 5 2 + x 2 - 1 0 = o  



T a b l e  1. R e s u l t s  o b t a i n e d  on a p p l y i n g  v a r i o u s  methods  t o  t h e  
Rosen-Suzuki  p rob lem.  

The o p t i m a l  s o l u t i o n  is  x* = (-1.71714, 1 .59571,  1 .82725,  -0.763643, 

-0 .763643) ,  u* = (0.74446, -0.703575, 0.096806) a n d  f (x*) =-2.91970. 
0 The i n i t i a l  v a l u e s  w e r e  t a k e n  as x = (-2, 2 ,  2 ,  -1, -1) a n d  

0 
u = (0 ,  0,  O ) ,  w h i l e  t h e  p e n a l t y  a n d  c o n v e r g e n c e  p a r a m e t e r s  were 

-6 r e s p e c t i v e l y  c = 0.5,  E = 1 0  a n d  E~ = The r e s u l t s  are 1 
g i v e n  i n  T a b l e  2.  

The augmented L a g r a n g i a n  (21)  was u s e d  i n  e a c h  c a s e .  When 

u s i n g  t h e  t r a d i t i o n a l  m u l t i p l i e r  method [ 8 ] ,  w e  i n c r e a s e d  t h e  

p e n a l t y  p a r a m e t e r  i n  s u c h  a way t h a t  c ~ + ~  = 2ck a t  e a c h  u p d a t e  

of t h e  Lagrange m u l t i p l i e r s .  I n  g e n e r a l ,  as t h e  p e n a l t y  p a r a m e t e r  

b 

CPU time 

(-1 

45 

4 6 

4 1 

* 

Method 

Mult ipl ier 
method 

Quasi- 
Newton 
mu1 t i p l i e r  
method 

Proposed 
primal-dual 
quasi- 
Newton 
method 

L 

Number of i te r -  
a t ions for  .dual 
optimization 
problem 

9 

9 

5 

Number of i t e r -  
a t ioas  f o r  un- 
constrained 
minimization 
'problem 

32 

24 

16 

f (x) 

-44.000 

-44 - 0 0  

-44.000 

g (x) 

gl=-0.21x10 -10 

g2=-1. 0000 
- 10 g3=0. 32x1 0 

gl=-0. 19 x10 -8 

g2~-1. 0000 

g 3 = ~ .  86xl0-~ 

g l=-~ .  76~10-' 

g2=-1.0000 
- 9 g3=-0. 60x10 



Table 2. Results obtained on applying various methods to 
Powell's problem. 

c increases, the contour of the dual objective function approaches 

a circle and hence the dual objective function can be maximized 

more easily. This explains why the multiplier method with mono- 

tonically-increasing c and the quasi-Newton multiplier method 

have a similar rate of convergence for the dual maximization 

problem in our experiments. However, as the penalty parameter c 

increases, the unconstrained minimization problem becomes ill- 

conditioned and hence more difficult to solve. In fact, our 

experiments show that the multiplier method requires more iter- 

ations than the quasi-Newton multiplier method for the uncon- 

strained minimization of ~(x,u,v;c). Our experiments also show 

that the proposed primal-dual quasi-Newton method has better con- 

vergence properties than the other two methods considered. 

Unfortunately, we do not have any QP program as yet, and so 

we could not compare our method with the RQP method directly. 

I 

Number of iter- 
atians.for duai 
optimization 
problem 

7 

8 

5 

C 

Method 

Y 

Multiplier 
method 

Quasi- 
Newton 
multiplier 
method 

Proposed 
primal-dual 
quasi- 
Newt on 
met hod 

Number of iter- 
ations for uncon- 
strained minimi- 
zation problem 

30 

21 

15 

I 

CPU time 

(ms) - 
t 

51 

46 

41 

A 

f (XI 

-2.9197 

-2.9197 

-2.9197 

r 

g (XI 

hl-0. l5xl0-~ 

h2=0. 45x16~  

h3=-0. 12 x10 -9 

h1=0. 4lx10-~ 

h2=-0.14X10-8 

h3--0. 20x10-~ 

hl=-0. l lxld8 

h2 -0.3 9 x10-~ 

h3-0. 26x16~ 



However, Fukushima (121 describes the results of two experiments 

in which the RQP met'hod was applied to Example 1: 

(i) when the line search was made along the function 

P(x;c) given in Section 1, the RQP method converges 

after 8 iterations 

(ii) when no line search was made and the step-size para- 

meter a was assumed to be constant and equal to 1, k 
the RQP method converges after 12 iterations. 

It was also pointed out that (i) consumed more CPU time than (ii), 

because the line search is made more difficult by the non-smoothness 

of the objective function. Recall that the RQP method requires 

both the updating of B~ and the solution of an auxiliary quadratic 

programming problem (which isequivalent to calculating the inverse 

of the dual Hessian) at each iteration. Therefore, there were a 

total of 24 updates of H1 and H2 in the case of (ii) above. The 

number of updates in our proposed method is 21. Thus, the sug- 

gested primal-dual quasi-Newton method seems to have the advantage 

that it does not require the solution of successive auxiliary qua- 

dratic programming problems and, moreover, the line search is very 

easy . 

6. CONCLUDING REMARKS 

In this paper, we have proposed an effective method for con- 

strained optimization which we call the primal-dual quasi-Newton 

method. The main feature of this method is that it approximates 

the inverses of both the primal Hessian and the dual Hessian by 

B1 and H2, respectively, and then improves these approximations 

by some quasi-Newton method. Note that the RQP method implicitly 

calculates the inverse of the dual Hessian by solving an auxiliary 

quadratic programming problem, while Tapia's diagonalized multi- 

plier method requires explicit calculation of the inverse of the 

dual Hessian. The suggested primal-dual quasi-Newton method can 

also be regarded as an extension of multiplier methods. Although 

the method requires infinite steps in the unconstrained minimi- 

zation problem, the number of iterations expected in practice 

is quite small (except for the first step) because the initial 



point for each unconstrained minimization is forced by the method 

to be near the true minimum of the unconstrained optimization prob- 

lem (see Fig. 1). In the neighborhood of the optimal solution 

(x*,u*,v*), the unconstrained minimization problem is considered 

to be solved with sufficient accuracy in one step, and hence the 

search direction of the primal-dual quasi-Newton method becomes 

equivalent to that of the RQP and diagonalized multiplier methods. 

However, taking the ease of line search into account, the primal- 

dual quasi-Newton method seems to be the most efficient. In 

addition, this nethod has the advantage that it is not necessary 

to solve auxiliary quadratic programming problems nor to calculate 

the inverse of the dual Hessian explicitly. On the other hand, 

the primal-dual quasi-Newton method uses an augmented Lagrangian 

including a penalty parameter to ensure that the primal Hessian 

is positive definite. The arbitrary value assigned to the penalty 

parameter isadrawback of the primal-dual quasi-Newton method. 

However, this problem also arises to some extent in the RQP and 

diagonalized multiplier methods. 

The idea of considering Lx = 0 as an additional constraint 

is very interesting. One obvious possibility is to include the 

constraint L = 0 in the augmentedLaqrangianas a penalty term. 
X 

In fact, Pillo and Grippo [I31 and Boggs and Tolle [14] did just 

this, but for a completely different reason. (They wished to make 

the augmented Lagrangian convex with respect to both x and u.) 

The suggested primal-dual quasi-Newton method can also be regarded 

as a method which projects (x,u) onto the constraint L = 0 by 
X 

solving the unconstrained problem min L(x,u) while finding the 

solution to h(x) = 0 (in other words, finding the saddle point 

of L(x,u)). Other methods for handling the constraint Lx = 0 

(e.g., a GRG-like method) are of course possible. This will be 

discussed in a forthcoming paper. 
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