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Stochastic Reservoir Theory: An Outline
of the State of the Art as Understood
by Applied Probabilists1

A.A. An152 and E.H. Lloyd3

1. Introduction

The relation between water-storage systems in the real
world and the system encompassed by the basic theory (due to
Moran [15,16] may be described as follows in Table 1.

At first sight this model would appear to rest on simpli-
fications that are so drastic as to render it devoid of
mathematical interest or of practical potentialities. In fact,
however, this is not the case. As far as purely mathematical
developments are concerned, the interest that these simpli-
fications have aroused is amply illustrated by the so-called
"Dam Theory," in which the basic Moran theory was transformed
largely by Moran [14] himself and by D. G. Kendall [10] into
a sophisticated corpus of pure mathematics dealing with con-
tinuous-state, continuous-time stochastic processes. (For
comprehensive contemporary surveys see Gani [6], Moran [15],
and Prabha [22].)

It is true that the "reservoirs" in Dam Theory are of
infinite capacity, that the release occurs at unit rate, and
that the "water" involved posesses no inertia and no correla-
tion structure of any kind, so that the inflow rate at t + §t
is statistically independent of the inflow rate at time t,
however small the increment &t. This lack of realism does not
detract from the beauty of the mathematics involved, but it does

limit the possibilities of applying the theory to the real world.

1This report is an expanded version of a seminar pre-
sented by the authors at IIASA, in May 1975.

2Ain Shams University, Cairo, Eqynt.

3University of Lancaster, UK.




Table 1.

Real World Situation Basic Moran theor
Storage System of interconnected Single reservoir
mechanism: reservoirs
Inflow Continuous in state and Discrete in state
process time and time

Seasonal Non-seasonal

Autocorrelated Independent incre-

ments

Losses Evaporation, seepage Ignored
Capacity Time-dependent due Constant

to silting
Release Continuous in state and Discrete in state
procedure time and time

Related to past, current Constant rate of

and predicted future release

contents

A second avenue of development, which is directed specif-

ically towards engineering applicabilityv,

is also possible.

development views the basic Moran theory as an extremely inge-

nious abstraction from reality, so constructed as to allow

modifications which are capable of removing practically all the

restraints listed in Table 1 above.

In particular,

seasonality

in inflow and outflow processes may be accommodated; the errors

involved in approximating continuity by discreteness may be re-

duced to an acceptable level by working in appropriate units;

This



flexible release rules may be built in; and, most important,
the original requirement of mutual independence in the
sequence of inflows may be abandoned, and realistic auto-
correlation structures incorporated by using Markovian approx-
imations of arbitrary complexity (Kaczmarek [8], Lloyd [12]).

What this development of the theory produces is the
probabilistic structure of the sequence of storage levels and
overspills in the reservoir -- both structures being obtained
in terms of the size of the reservoir, the inflow characteris-
tics and the release policy. (See for example Odoom and
Lloyd [19], Lloyd [12], Anis and El-Naggar [2], Gani [5],
Ali Khan [1], Anis and Lloyd [3], Phatarfod and Mardia [21];
and review articles by Gani [7] and Lloyd [13].) Thus the
effect of varying the release policy may be determined, with a
view to optimizing various performance characteristics.

The theory can therefore be said to have reached a fairly
satisfactory form, and regarded as a probabilistic model.
The same cannot perhaps be said of the statistical estimation
and modelling procedures needed for the practical application
of the theory, and since the usefulness of the theory must
depend on the reliability of the numerical estimates of the
probability distribution and autocorrelation structure of the
inflow process, it is the authors' opinion that particular
attention ought now to be concentrated on these statistical

problems. This is discussed further in Section 9.

2. The Basic Moran Model: Independent Inflows

In this section we describe the simplest version of the
model, as outlined by the following diagram of the reservoir
(see Figure 1). The "scheduling” or "programming" required by
the fact that continuous time is being approximated by discrete

time is shown in Figure 2.
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Here Xt denotes the acceptable part of the inflow, in
the light of the restraints imposed by the finite capacity of
the reservoir. Similarly Di (= Wt) is the feasible part of
the desired outflow w, taking into account the fact that the
reservoir may contain insufficient water to meet the whole of
the demand.

In the Moran sequencing illustrated above, the outflow
Wt is supposed to occur after the inflow has been completed.
The inflow quantities X_ = 0,1,..., the outflow guantities

wt =0,1,...,w, and thetstorage guantities Zt =0,1,...,c
are all quantized, all being expressed as integer multiples of
a common unit. The "intermediate storage" indicated in the
figure is required for the operation of the program.

The inflow process {Xt} is supposed to be IID: that is,

the random variables

RN SURYS FUD FPPI

are supposed to be mutually independent, and identically dis-
tributed.

Taking account of the finite size of the reservoir and of
the sequencing imposed by the "program" we may formulate the
following stochastic difference equation for the storage

process {Zt}:

A = min (2

41 + Xt,c + w) - mln(Zt + Xt,w) (1)

t

which we shall abbreviate when necessary in the form

= h(Zt,X (2)

Ze 41 t)

Here the constant, w, represents the desired outflow Dt'
The actual outflow Wt is given by



so that

W, = min(zt + Xt,w) . (2a)

The actually accepted inflow into the reservoir during

(t,t + 1), as distinct from the available inflow X

ny is
Xt , if Zt + Xt <c+w
Xz =
- : >
w + C Zt , if Zt + Xt cC +w
and the quantity lost through overflow is
S, =max(2, + X, - ¢c - w,0) . (3)

t t t

It is worth pointing out that, while presentations of
this theory often concentrate on the determination of the
storage process {Zt}, both the outflow process {Wt} and the
spillage process {St} are probably more important in appli-
cations, particularly when it is desired to optimize the
release policy, since the function to be optimized will nor-
mally depend directly on these two processes.

(An alternative "programming," which may be described as
a net inflow scheme, and which dispenses with the need to

introduce an intermediate storage zone, is shown in Figure 3.

Here the total acceptable inflow X; that occurs during (t,t + 1)

and the total outflow Wt are assumed to be spread over the

entire interval (with suitable modifications when a boundary
is reached) both taking place at constant rate during that
interval, so that they combine to form a single "inflow" of
magnitude Xt - Wt, £ < Wt. The
stochastic difference equation for {Zt} is then

this being negative if X

e+

min(z, + Xt - w,c) - min(z, + X, - w,0)

t t t

mln(Zt + Xt,w + c) - mln(Zt + Xt,w)




which coincides with the equation (1) obtained for Moran's

own program. Similarly the actual outflow W_ and the spillage

t
St are the same as under Moran's programming.)
* o
Xt Wt
Ze J7 Zee
Ei’ A ‘Ea tim
4 . > time
t t+1
Figure 3.

3. The Storage Process {Zt} for the Basic Moran Model

As before, we take {Xt} to be an IID process, and Dt = w.
Then {Zt} is a lag-1 Markov Chain. For, since (by (2))

Zeer = B2 X)
where
P{Z,,q =r|2, =s,2, 4 =58"2 _,=5s",...,}
= P{h(s,Xt) = rth = 8,79 = 8"se.u4}d
= P{h(S,Xt) =r} , (4)

the information relating to Zt’Zt-1""’ is suppressable on
account of the assumed structure of {Xt}. Since (4) depends
on s but does not depend on s',s",..., the result follows. Thus

P(z

C
g+1 = T = 1 P(Z



or
Cepq () = g q(r,s)z(s)
where
ct(s) = P(zt = 8) ,
and
q(r,s) = P(Zt+1 = r|Zt =g) , forr,s =0,1,...,cC
In an obvious matrix notation this may be written
See1 T Q84 t = 0,1,00.
whence
Ly = gtco . (5)

Thus the distribution vector [ of storage at time t 1is
determined in terms of the initial conditions Lot In all
"realistic" situations the transition matrix Q may be assumed
to be ergodic, whence, for sufficiently large values of t,

Ly = &t where

£z = lim Sy v (6)
troo

¢ being the "equilibrium distribution" vector which is the
unique positive normalized solution of the homogeneous linear

algebraic system

Q@-I)cg=0 . (7)



The matrix Q, of order (c + 1) x (¢ + 1), has as its (r,s)

element

P(2

g(r,s) = r|Zt = s)

t+1

P{h(s,xt) =r} ,

and for any given function h(:), this is easily obtained
in terms of the inflow distribution P(xt = j) = £(j), say,
o)

j=0,1,.--,‘.-

As a simple example, taking w = 1, we have:
q(0,0) = £(0) + £(1) , gqg(o0,1)= £(0) ,

f(r + 1-s) , s

0,1,...,r + 1

qg(r,s) =

(for r = 1,2,...,C)

and

g(c,s) = f(c +1 -58) + f(c + 2 -58) + f(c +3 -58),...,

s =0,1,...,c . (8)

L, The Yield Process in the Basic Moran Model

The yield is the actual quantity released from the

reservoir, defined by (2) as

W, = min (Zt + xt,w) (9)

g(Zt,Xt) , say . (10)
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Because of a) the "lumping" of Z-states implied by this
function, and b) the addition process Zt + Xt’ the yield
process {Wt} is not Markovian. For most purposes it is best
studied as a function defined on the Markov Chain {Zt}, with

conditional probabilities

P(W, = r|zt = s) = Plg(s,X,) - r} . (11)

This is, for each r and s, a well-defined function of the
distribution of Xt, which allows us to evaluate (for example)
the expected yield at time t as

E(Wt) = z rP{Wt = r) = z z rP(Wt = r|Zt = s) P(Zt - S)
r r s
=] ) re{g(s,X.) = r} P(z2_ = s) .
r s

For other purposes it may be convenient to use the fact

that the pair {Zt,Xt} forms a bivariate lag-1 Markov Chain.

5. The Basic Moran Model with Flexible Release Policy

If one modifies the release policy D, so that, instead

of being a fixed constant w, D, is, for example, a function

t
of the current values of Z and of X--say a monotone non-

€ + Xt—-the effect of this on the

theory outlined in Section 5 is merely to modify the transi-

decreasing function of Z

tion matrix Q, without altering the Markovian structure of
{Zt}. Equation (1), whether under Moran programming or net-

inflow programming, is replaced by

Z = min (Z, + X_,c + D

41 & & t) - min (Zt + Xt,Dt) (12)

= g(z,_,X

tl tlDt) 14

say. This still holds good, and Z, maintains its simple

t
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Markovian character, if Dt also depends on some additional
random variable Y which may be correlated with Xt, provided

that the sequence Y, consists of mutually independent elements.

t

The actual outflow W_ is given by

t

W, = min (zt + xt,Dt) ' (13)

the analogue of (2), and the spillage becomes
S, =max (2, + X, - D, - ¢,0) . (14)

“t t t

If for example Dt is defined by the following Table 2:

Table 2.
Zt + Xt < 2 3 4 5 > 6
Dt 0 1 2 3 4

we may construct Table 3 with entries such as the following
(for, say, ¢ = 8) as found in Table 3 below. Row (a) indicates
a situation giving no spillage, (b) one where five units

are spilled, (c) one where several combinations of Z_ and X

t t
lead to the same value of Zt+1’ in which case we have

q(2,0) = P(Z = 2

4] Zt = Q) = P(Xt = 2 0r 3 or **+ Or 6)
= f£(2) + £(3) + -+« + £(6) ,
whereas q(0,0) = £(0), a single term.

6. The Basic Moran Model Operating Seasonally

The effect of working with a multi-season year may be

adequately illustrated in terms of a two-season year (See Table 4):
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Table 3.
2 X¢ D¢ 2y 1 Wy S¢
(a) 4 2 2 4 0
(b) 5 12 8 4 5
0 2 2 0 0
0 3 2 1 0
(e)< o 4 2 2 2 0
0 5 2 3 0
L0 6 2 4 0
Table 4.
Year t Year t + 1 Year t + 2
Season Season Season Season - - -
0 1 0 1
EpOCh: (t,o) (tr1) (t,2) (t + 1I1) (t + 112)
= (t +1,0) = (t + 2,0)
Storage
distrib. (t,0) z(t +1,0) z(t + 2,0)
vectors c(t,1) c(t +1,1)
Transi-
tion Q Q Q Q
matrix —0 1 =0 =1
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Here
g+ 1,1) =9  z(t +1,0)
=9, 2 &l
or, say,
z(t + 1) = 0z(t)

where Q = QoQ1’ and z(t) is the storage distribution vector
at the beginning of season 1 of year t. Clearly the year-to-
year storage sequence at this season is a homogeneous Markov
Chain, with transition matrix Q = IR P and the preceding

theory applies.

7. Reservoir Theory with Correlated Inflows: Basic Version

Moran's basic theory is applicable as a first approxima-
tion, more or less without modification, to a reservoir providing
year-to-year storage, in which there is a well-defined
"inflow season” with no outflow, followed by a well-defined
and relatively short "outflow interval," a situation approxi-
mated by the conditions on the Nile at Aswan. This approxi-
mation holds only to the extent that inter-year inflow correla-
tions can be neglected, which may not be totally unreasonable
for a one-year time scale. The approximation becomes increas-
ingly inaccurate if one reduced the working interval from a
year to a quarter, or a month, or less, and it becomes essen-
tial to provide a theory that allows the inflow process to have
an autocorrelation structure. It was pointed out simultaneously
in independent publications in 1963 by Kaczmarek [8] and by
Lloyd that this could be done by approximating the actual
inflow process by a Markov Chain.

In the simplest form of this theory we may consider a
discrete-state/discrete-time reservoir, with stationary

inflow process {Xt}, where X, is a finite homogeneous lag-1

t
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Markov Chain with ergodic transition matrix B = (brs) say,

where brs = P(Xt+1

(Xt being assumed < n for all t) and the distribution vector

= r|Xt =s), withr,s =0,1,...,n

of Xt is §, where { is the unique non-negative normalized
solution of the homogeneous system

®-1 g=0 .

With a release policy Dt which may be a function of Zt’
Z,_q+ X, and X, _,, this stochastic difference equation for {Zt}
is the same as in (12), with the supplementary information that
{Xt} is a Markov Chain. It is easy to show, by an argument
entirely analogous to that employed in Section 3, that {Zt}

is no longer a Markov Chain, but the ordered pair‘{ztizti

forms a bivariate lag-1 Markov Chain, that is, that

P(Zyq = LiXpyq = s|zt =1i,X = 3,2 q = 1%X g = 3" eees)
is independent of i',3j',i",j",...,. The vector:
7, (0)
T (1)
T = . (15)
7, (c)
where
P[Zt = r,Xt = 0]
P[Zt = r,Xt = 1]
Et(r) = . r =0,1,...,¢c  (16)
P[St = r,Xt = n]
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represents the joint distribution vector of Zt and Xt, and this

is determined by a vector equation of the form

£t+1 = Pﬂt (17)

where M is the relevant transition matrix, of order

(c+ N(n+ 1) x (¢c +1)(n+ 1). The structure of M is obtained
from the stochastic equation for {Zt} and the inflow transition
matrix. If for example we take the simple release policy

D, = 1, the equation (17) in partitioned form becomes

Il ~10

Teqq (L) M(r,s)m, (s) , (18)

s=0
where the M(r,s) are submatrices of order (n + 1) x (n + 1),
which may most easily be defined in terms of the following
representation of the inflow transition matrix B. Let

B= ( "b—1’...’b)

b
-0 =n

where Es represents the s-column of B, that is

b, = (bygsibqgre-esb ', s =0,1,...,n,
and let
By = (byr0,0,...,0)
By = (0,b4,0,...,0) (19)

n

Then, in formal agreement with (8), we find
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M(0,0) = By + By, , M(0,1) =B, ,
Br+1-s s, s =0,1,...,r + 1
Mir,s) = (20)
0 ry S = TrXr,2,.¢.,C
for r =1,2,...,cC
and
M(c,s) = Bc+1—s + Bc+2-s oo ot Bn’

Equation (17) has as its solution:
m =M£O r t=1[2'..a, (21)

giving the joint distribution vector of Zt and X, in terms of
the initial vector Mot this being the analogue for Markovian
inflows of the equation (5) for independent inflows. The
analogue of (6) is given by the statement that, for large

values of t, T, =1, where T is the "Joint equilibrium
distribution" vector which is the unique normalized non-negative

solution to the homogeneous system
(M-1I) m =0 .

One extracts the distribution Zt from the joint distri-

bution by using the result that

n
P(z, = 1) = Y P(Z2_ =1,X_=8) , r=0,1...4C

where, for given r, the terms P(Zt = r,X, = s) are elements of
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the vector m(r) of (16), this in turn being a subvector of

the vector e given by (21).

8. Reservoir Theory with Correlated Inflows: Elaborations

The theory described in Section 7 refers to a stationary
lag-1 Markovian inflow process, and a constant-value release
policy. The replacement of a constant release by a release

D, depending on Z and X and possibly further

t er &2y

random elements Y  and Y__,

the matrix M. This does not alter the structure of the

t-1
is achieved by suitably modifying

{Zt,xt} process. (As has been pointed out by Kaczmarek [9]
the storage process {Zt} becomes a lag-2 Markov chain provided
that the equation (12) can be solved to give a unique value of

Zt+1) -)
Further, the introduction of seasonally varying inflow

Xt for each pair (Zt'
and outflow processes may be achieved by using the matrix
product technique described in Section 6. As in the case of
independent inflows, once one has obtained the distribution of
Zt one may obtain that of the actual release Wt and the
spillage St’ and utilize these if desired in optimization
studies.

We have spoken so far of a lag-1 Markovian inflow.
Generalizations to a multi-lag Markovian inflow are immediate:
with, for example, a lag-2 Markov inflow one considers the

three-vector n(t) = {Zt,X This will be a lag-2

er¥eq}-
(trivariate) Markov chain. Similarly we may accommodate a

multivariate inflow process., Suppose for example we have a
(1)
t

are cross-correlated as well as serially correlated. This

bivariate inflow process {X ,Xéz)}, in which the components
inflow process will be specified by an appropriate transition
matrix whose elements represent the conditional probabilities

(2)
t

px{1) = 4,xf2) 2 j|Xé1) =r,X =s} ,

t+1 T4+

using any suitable ordering convention, for example the
following Table 5.
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Table 5.

Values at time t

X(1) O 1 LTI n

x(2) 01...n 0 1eeon| oo | 01...n

value

at

time . |

In this example the triplet {Zt,Xé1),Xé2)} would be a

(trivariate) lag-1 Markov chain (Lloyd [11], Anis and Lloyd [4].

9. Closing Remarks: Perspectives

In the authors' opinion, the probabilistic framework
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provided by the model described above is adequate for practical
purposes, and the next steps ought to be concerned with the
statistical problems of specifying families of few-parameter
inflow transition matrix models and estimating their parameters.
In the case of a nonseasonal univariate lag-1 inflow process,
for example, it is likely that the available information will
be best adapted to estimating the inflow distribution vector

p (which is of course a standard and well-understood statis-
tical procedure) and the first few autocorrelation coefficients,
say p, and py. A model involving these directly would be
particularly welcome. In the case of where an exponential

autocorrelation function

k
pk = 01 ’ k=1,2,...,

were thought to be appropriate, the Pegran [20] transition

model
B=op I+ (1 =-p) 821" ,
that is
B(r,s) = p,6(r,s) + (1 - py) &,
where
B(r,s) = P(X_,, = r|X = s)
and

1, r = s
§(r,s) =
0, otherwise

satisfies these requirements. Further development along
these lines, making m a discrete-~state and discrete-time

framework, and avoiding the difficulties inherent in the use
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of transformations of the normal autoregressive model,
(Moran, [17]), would be highly desirable, particularly

in the case of multivariate inflows.
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