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1. Introduction 

The relation between water-storage systems in the real 

world and the system encompassed by the basic theory (due to 

Moran [15,16]may be described as follows in Table 1. 

~t first sight this model would appear to rest on simpli- 

fications that are so drastic as to render it devoid of 

mathematical interest or of practical potentialities. In fact, 

however, this is not the case. As far as purely mathematical 

developments are concerned, the interest that these simpli- 

fications have aroused is amply illustrated by the so-called 

"Dam Theory," in which the basic Moran theory was transformed 

largely by Moran [I 41 himself and by D. G. Kendall [ I  01 into 

a sophisticated corpus of pure mathematics dealing with con- 

tinuous-state, continuous-time stochastic processes. (For 

comprehensive contemporary surveys see Gani [61, Moran [151, 

and Prabha [ 22 I . 
It is true that the "reservoirs" in Dam Theory are of 

infinite capacity, that the release occurs at unit rate, and 

that the "water" involved posesses no inertia and no correla- 

tion structure of any kind, so that the inflow rate at t + Bt 

is statistically independent of the inflow rate at time t, 

however small the increment Bt. This lack of realism does not 

detract from the beauty of the mathematics involved, but it does 

limit the possibilities of applying the theory to the real world. 

.- - 
 his report is an expanded version of a seminar pre- 
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Table 1.  

A second avenue of development, which is directed specif- 

ically towards engineering applicability, is also possible. This 

development views the basic Moran theory as an extremely inge- 

nious abstraction from reality, so constructed as to allow 

modifications which are capable of removing practically all the 

restraints listed in Table 1 above. In particular, seasonality 

in inflow and outflow processes may be accommodated; the errors 

involved in approximating continuity by discreteness may be re- 

duced to an acceptable level by working in appropriate units; 

Basic Moran theory 

Single reservoir 

Discrete in state 

and time 

Non-seasonal 

Independent incre- 

ments 

Ignored 

Constant 

Discrete in state 

and time 

Constant rate of 

release 

Storage 

mechanism: 

Inflow 

process 

Losses 

Capacity 

Release 

procedure 

Real World Situation 

System of interconnected 

reservoirs 

Continuous in state and 

time 

Seasonal 

Autocorrelated 

Evaporation, seepage 

Time-dependent due 

to silting 

Continuous in state and 

time 

Related to past, current 

and predicted future 

contents 



flexible release rules may be built in; and, most important, 

the original requirement of mutual independence in the 

sequence of inflows may be abandoned, and realistic auto- 

correlation structures incorporated by using Markovian approx- 

imations of arbitrary complexity (Kaczmarek [8] , Lloyd [I 21 ) . 
What this development of the theory produces is the 

probabilistic structure of the sequence of storage levels and 

overspills in the reservoir -- both structures being obtained 

in terms of the size of the reservoir, the inflow characteris- 

tics and the release policy. (See for example Odoom and 

Lloyd [1 91 , Lloyd [I 21 , Anis and El-Naggar [2] , Gani [51 , 
Ali Khan [1 1 , Anis and Lloyd [3] , Phatarfod and Mardia [21] ; 

and review articles by Gani [7] and Lloyd [1 31 . ) Thus the 

effect of varying the release policy may be determined, with a 

view to optimizing various performance characteristics. 

The theory can therefore be said to have reached a fairly 

satisfactory form, and regarded as a probabilistic model. 

The same cannot perhaps be said of the statistical estimation 

and modelling procedures needed for the practical application 

of the theory, and since the usefulness of the theory must 

depend on the reliability of the numerical estimates of the 

probability distribution and autocorrelation structure of the 

inflow process, it is the authors' opinion that particular 

attention ought now to be concentrated on these statistical 

problems. This is discussed further in Section 9. 

2. The Basic Moran Model: Inde~endent Inflows 

In this section we describe the simplest version of the 

model, as outlined by the following diagram of the reservoir 

(see Figure 1). The llscheduling" or "programming" required by 

the fact that continuous time is being approximated by discrete 

time is shown in Figure 2. 
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"intermedi- 
ate Storage" 
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Capacity 

! Contents {zt} 
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Actual release Dt = Wt - < w 

Figure 1 .  

time epochs 

Figure 2. 



Here Xg denotes the acceptable part of the inflow, in 

the light of the restraints imposed by the finite capacity of 

the reservoir. Similarly Dg (= W ) is the feasible part of 
t 

the desired outflow w, taking into account the fact that the 

reservoir may contain insufficient water to meet the whole of 

the demand. 

In the Moran sequencing illustrated above, the outflow 

W is supposed to occur after the inflow has been completed. t 
The inflow quantities Xt = 0.1 ,..., the outflow quantities 

Wt 
= 0~1 , .  .. ,w, and the storage quantities Zt = 0 , l  ,... ,c 

are all quantized, all being expressed as integer multiples of 

a common unit. The "intermediate storage" indicated in the 

figure is required for the operation of the program. 

The inflow process {X is supposed to be IID: that is, t 
the random variables 

are supposed to be mutually - independent, and - identically - dis- 

tributed. 

Taking account of the finite size of the reservoir and of 

the sequencing imposed by the "program" we may formulate the 

following stochastic difference equation for the storage 

process {zt1: 

which we shall abbreviate when necessary in the form 

Here the constant, w, represents the desired outflow Dt. 

The actual outflow Wt is given by 



so t h a t  

The a c t u a l l y  accepted inf low i n t o  t h e  r ese r vo i r  dur ing 

(t , t  + I ) ,  a s  d i s t i n c t  from t h e  a v a i l a b l e  in f low X t ,  i s  

and t he  quan t i t y  l o s t  through overf low i s  

It i s  worth po in t ing  ou t  t h a t ,  whi le p resen ta t i ons  of 

t h i s  theory o f t e n  concen t ra te  on t h e  determinat ion of t h e  

s to rage  process { z t l ,  both t h e  out f low process {wtl and t h e  

s p i l l a g e  process {St} a r e  probably more important  i n  app l i -  

ca t i ons ,  p a r t i c u l a r l y  when it is  des i red  t o  opt imize t h e  

r e l e a s e  po l i cy ,  s i nce  t h e  func t ion  t o  be optimized w i l l  nor- 

mally depend d i r e c t l y  on t hese  two processes.  

(An a l t e r n a t i v e  "programming,11 which- may be descr ibed a s  

a n e t  in f low scheme, and which d ispenses  wi th  t h e  need t o  - 
in t roduce an in te rmed ia te  s to rage  zone, i s  shown i n  F igure 3. 

Here t h e  t o t a l  acceptab le  in f low X z  t h a t  occurs  dur ing ( t , t  + 1 )  

and t h e  t o t a l  out f low Wt a r e  assumed t o  be spread over t h e  

e n t i r e  i n t e r v a l  (wi th  s u i t a b l e  mod i f i ca t ions  when a boundary 

i s  reached) both tak ing  p lace  a t  cons tan t  r a t e  dur ing t h a t  

i n t e r v a l ,  s o  t h a t  they combine t o  form a s i n g l e  " inf low" of 

magnitude Xt - W t ,  t h i s  being negat ive  i f  Xt < Wt.  The 

s t o c h a s t i c  d i f f e rence  equat ion f o r  {z t l  i s  then 



which coincides with the equation (1) obtained for Moran's 

own program. Similarly the actual outflow Wt and the spillage 

S are the same as under Moran's programming.) t 

Lt Lt+l 

f) time 
I I 

Figure 3. 

3 .  The Storage Process {ztI for the Basic Moran Model 

AS before, we take {xtI to be an IID process, and D+ = w. - 
Then {zt] is a lag-1 Markov Chain. For. since (by (2)) 

where 

the information relating to Zt,Zt-l,..., is suppressable on 

account of the assumed structure of {xtI. Since (4) depends 

on s but does not depend on sl,s",,.., the result follows. Thus 



where 

and 

q ( r , s )  = P(Z t+ ,  = r ( z t  = s) , f o r  r ,s  = 0.1 ,..., c . 

I n  an obvious mat r i x  no ta t i on  t h i s  may be w r i t t e n  

5 - 
- t+l  - Q C t  t = 0,1,... 

whence 

Thus t h e  d i s t r i b u t i o n  vec to r  L~ of  s to rage  a t  t i m e  t i s  

determined i n  terms of t h e  i n i t i a l  cond i t ions  5 
-0 ' 

I n  a l l  

" r e a l i s t i c "  s i t u a t i o n s  t h e  t r a n s i t i o n  mat r i x  - Q may be assumed 

t o  be ergodic ,  whence, f o r  s u f f i c i e n t l y  l a r g e  va lues  of t ,  

5 = 5 where -t - 

5 being t h e  "equi l ibr ium d i s t r i b u t i o n "  vec to r  which i s  t h e  - 
unique p o s i t i v e  normalized s o l u t i o n  of t h e  honogeneous l i n e a r  

a l geb ra i c  system 



The ma t r i x  - Q ,  of  o r d e r  ( c  + 1 ) x ( c  + 1 ) , has  a s  i t s  ( r ,  s )  

element 

and f o r  any g iven  f u n c t i o n  h(* ) ,  t h i s  i s  e a s i l y  ob ta ined  

i n  terms o f  t h e  i n £  low d i s t r i b u t i o n  P  (Xt = j )  = f  ( j )  , s a y ,  
3 j  = O , l , . . . , L .  

A s  a  s imple  example, t a k i n g  w = 1 ,  w e  have: 

( f o r  r = 1 ,  2 , . .  . , c )  

and 

4 .  The Y ie ld  Process  i n  t h e  Bas ic  Iloran PIodel 

The y i e l d  i s  t h e  a c t u a l  q u a n t i t y  r e l e a s e d  from t h e  

r e s e r v o i r ,  de f i ned  by (2 )  a s  

Wt = min ( Z t  + X t , w )  



Because of a) the "lumping" of Z-states implied by this 

function, and b) the addition process Zt + Xt, the yield 

process {W is not Markovian. For most purposes it is best 
t - 

studied as a function defined on the llarkov Chain {zt), with 

conditional probabilities 

This is, for each r and s, a well-defined function of the 

distribution of Xt, which allows us to evaluate (for example) 

the expected yield at time t as 

For other purposes it may be convenient to use the fact 

that the pair {Zt,Xt} forms a bivariate lag-1 Markov Chain. 

5. The Basic Moran Model with Flexible Release Policy 

If one modifies the release policy Dt so that, instead 

of being a fixed constant w, Dt is, for example, a function 

of the current values of Z and of X--say a monotone non- 

decreasing function of Z + Xt--the effect of this on the t 
theory outlined in Section 5 is merely to modify the transi- 

tion matrix - Q, without altering the Markovian structure of 

{zt}. Equation (I), whether under Moran programming or net- 

inflow programming, is replaced by 

Zt+l 
= min (zt + Xt,c + Dt) - min (Zt + XttDt) (1 2) 

say. This still holds good, and Zt maintains its simple 



Markovian character, if Dt also depends on some additional 

random variable Yt which may be correlated with Xt, provided 

that the sequence Yt consists of mutually independent elements. 

The actual outflow Wt is given by 

the analogue of (2), and the spillage becomes 

st = max (zt + Xt - Dt - c,O) . (1 4) 

If for example Dt is defined by the following Table 2: 

Table 2. 

we may construct Table 3 with entries such as the following 

(for, say, c = 8) as found in Table 3 below. Row (a) indicates 

a situation giving no spillage, (b) one where five units 

are spilled, (c) one where several combinations of Z and Xt t 
lead to the same value of Zt+l, in which case we have 

whereas q(O,O) = f(O), a single term. 

6. The Basic Moran Model Operating Seasonally 

The effect of working with a multi-season year may be 

adequately illustrated in terms of a two-season year (See Table 4): 



Table 3 .  

Dt Zt+l 

Table 4.  

Epoch: 

Storage 
d i s t r i b .  
vectors 

Year t + 2 

- - -  

Transi- 
t i on  
matrix 

Year t 

i 

Season 

0 

Year t + 1 

Season 

1 

Season 

0 

Season 

1 



Here 

where Q = Q Q and z (t) is the storage distribution vector 
0 1, - 

at the beginning of season 1 of year t. Clearly the year-to- 

year storage sequence at this season is a homogeneous llarkov 

Chain, with transition matrix Q = QoQ1, and the preceding 

theory applies. 

7. Reservoir Theory with Correlated Inflows: Basic Version 

F4oran's basic theory is applicable as a first approxima- 

tion, more or less without modification, to a reservoir providing 

year-to-year storage, in which there is a well-defined 

"inflow season" with no outflow, followed by a well-defined 

and relatively short "outflow interval," a situation approxi- 

mated by the conditions on the Nile at Aswan. This approxi- 

mation holds only to the extent that inter-year inflow correla- 

tions can be neglected, which may not be totally unreasonable 

for a one-year time scale. The approximation becomes increas- 

ingly inaccurate if one reduced the working interval from a 

year to a quarter, or a month, or less, and it becomes essen- 

tial to provide a theory that allows the inflow process to have 

an autocorrelation structure. It was pointed out simultaneously 

in independent publications in 1963 by Kaczmarek [8] and by 

Lloyd that this could be done by approximating the actual 

inflow process by a Markov Chain. 

In the simplest form of this theory we may consider a 

discrete-state/discrete-time reservoir, with stationary 

inflow process ( ~ ~ 1 ,  where Xt is a finite homogeneous lag-1 



Markov Chain w i t h  e r g o d i c  t r a n s i t i o n  m a t r i x  B = b say ,  

where brs = P(Xt+l = r l x t  = s ) ,  w i t h  r ,s = 0 ,1 , . . . , n  

( X t  be ing  assumed - < n f o r  a l l  t)  and t h e  d i s t r i b u t i o n  v e c t o r  

of  Xt is - 5 ,  where - 5 i s  t h e  un ique non-negat ive normal ized 

s o l u t i o n  o f  t h e  homogeneous system 

With a r e l e a s e  p o l i c y  Dt which may be  a f u n c t i o n  o f  Z t ,  

Z t - l ,  Xt and Xt - l ,  t h i s  s t o c h a s t i c  d i f f e r e n c e  e q u a t i o n  f o r  { z t )  

is t h e  same a s  i n  ( 1 2 ) ,  w i t h  t h e  supplementary i n fo rma t i on  t h a t  

{x t )  i s  a Markov Chain. It is  e a s y  t o  show, by an  argument 

e n t i r e l y  ana logous t o  t h a t  employed i n  S e c t i o n  3 ,  t h a t  { z t )  

i s  no l onge r  a Markov Chain,  b u t  t h e  o r d s r e d  p a i r  { z t , x t l  - 
forms a b i v a r i a t e  lag-1 ~ a r k o v  Chain, t h a t  i s ,  t h a t  

i s  independent  o f  i ' , j l , i " , j " ,  ...,. The v e c t o r :  

where 



represents the joint distribution vector of Z and Xt, and this t 
is determined by a vector equation of the form 

where M - is the relevant transition matrix, of order 

(c + 1 ) (n + 1 ) x (c + I ) (n + 1 ) . The structure of M is obtained - 
from the stochastic equation for {zt) and the inflow transition 

matrix. If for example we take the simple release policy 

Dt = 1, the equation (17) in partitioned form becomes 

where the M (r, s) are submatrices of order (n + 3 ) (n + 1 ) , - 
which may most easily be defined in terms of the following 

representation of the inflow transition matrix B. Let 

where b represents the s-column of B, that is 
-S - 

and let 

Then, in formal agreement with (8), we find 



for r = 1,2,. ..,c 

and 

Equation (17) has as its solution: 

giving the joint distribution vector of Z and Xt in terms of t 
the initial vector L, this being the analogue for Markovian 

inflows of the equation (5) for independent inflows. The 

analogue of (6) is given by the statement that, for large 

values of t, T~ 2 3 where - ~r is the "joint equilibrium 

distribution" vector which is the unique normalized non-negative 

solution to the homogeneous system 

(M-I) Tr = 0 . - 

One extracts the distribution Z from the joint distri- 
t 

bution by using the result that 

where, for given r, the terms P(Zt = rrXt = s) are elements of 



t h e  vec to r  ~ ( r )  of ( 3 6 ) ,  t h i s  i n  t u r n  being a  subvector  of 

t h e  vec to r  zt given by ( 21 ) . 

8 .  Reservoir  Theory wi th  Cor re la ted  Inf lows:  E labora t ions  

The theory  descr ibed  i n  Sec t ion  7 r e f e r s  t o  a  s t a t i o n a r y  

lag-1 Markovian in f low process,  and a  constant -va lue r e l e a s e  

po l i cy .  The replacement of a  cons tan t  r e l e a s e  by a  r e l e a s e  

Dt depending on Z t , X t , Z t - l  and Xt- l  and poss ib l y  f u r t h e r  

random elements Yt  and Yt- l  i s  achieved by s u i t a b l y  modifying 

t h e  mat r i x  M. This does no t  a l t e r  t h e  s t r u c t u r e  of t h e  

{ Z  , X t }  process.  ( A s  has been po in ted ou t  by Kaczmarek [9] t 
t h e  s t o r a g e  process {zt}  becomes a  lag-2 Markov cha in  provided 

t h a t  t h e  equat ion ( 1 2 )  can be solved t o  g i ve  a unique va lue  of 

Xt  f o r  each p a i r  ( Z t ,  Z t+ l  ) . ) 
Fur the r ,  t h e  i n t roduc t i on  of seasona l l y  vary ing in f low 

and out f low processes may be achieved by us ing t h e  mat r i x  

product  technique descr ibed  i n  Sec t ion  6. A s  i n  t h e  case  of 

independent in f lows,  once one has obta ined t h e  d i s t r i b u t i o n  of 

Z one may o b t a i n  t h a t  of t h e  a c t u a l  r e l e a s e  Wt and t h e  t 
s p i l l a g e  S t ,  and u t i l i z e  these  i f  d e s i r e d  i n  op t im iza t ion  

s t u d i e s .  

We have spoken so  f a r  of a  lag-1 Markovian inf low. 

Genera l i za t ions  t o  a  mul t i - lag Markovian in f low a r e  immediate: 

w i th ,  f o r  example, a  lag-2 Markov in f low one cons ide rs  t h e  

three-vector  - q ( t )  = { Z  X X . This w i l l  be a lag-2 t '  t ' t -1 
( t r i v a r i a t e )  Markov chain .  S i m i l a r l y  we may accommodate a 

m u l t i v a r i a t e  in f low process.  Suppose f o r  example we have a  

b i v a r i a t e  in f low process {xt ) ( 2 )  1 ,  i n  which t h e  components , Xt 
a r e  c ross -co r re la ted  a s  we l l  a s  s e r i a l l y  c o r r e l a t e d .  This 

in f low process w i l l  be s p e c i f i e d  by an app rop r ia te  t r a n s i t i o n  

mat r i x  whose elements rep resen t  t h e  cond i t i ona l  p r o b a b i l i t i e s  

us ing  any s u i t a b l e  o rde r ing  convention, f o r  example t h e  

fo l lowing Table 5.  



Table 5. 

va lue  

a t  

t i m e  

t + l  

I n  t h i s  example t h e  t r i p l e t  {z~,x : ' )  , x i 2 )  1 would be a  

( t r i v a r i a t e )  lag-1 Markov cha in  (Lloyd [ I  1 ] , Anis and Lloyd [ 4  1 . 

x ( l )  

0 

1 

n  

9. Clos ins  Remarks: P e r s ~ e c t i v e s  

I n  t h e  a u t h o r s '  op in ion,  t h e  . p r o b a b i l i s t i c  framework 

0 

1 

. 

n  

0 

n  

- 

o 
1 

n  

Values a t  t ime t 

0 1 . . . n  

0 l . . . n  0 l . . .n  ... 

I 
I 
I 

-- 

0 l . . .n  

-- -- 

I 
I 

I 
I 
I 
I 

- 
I 
I 

I 
I 
I 
I 
I 



provided by the model described above is adequate for practical 

purposes, and the next steps ought to be concerned with the 

statistical problems of specifying families of few-parameter 

inflow transition matrix models and estimating their parameters. 

In the case of a nonseasonal univariate lag-1 inflow process, 

for example, it is likely that the available information will 

be best adapted to estimating the inflow distribution vector 

p (which is of course a standard and well-understood statis- - 
tical procedure) and the first few autocorrelation coefficients, 

say P1 and P2* A model involving these directly would be 

particularly welcome. In the case of where an exponential 

autocorrelation function 

were thought to be appropriate, the Pegran [ 201  transition 

model 

that is 

where 

and 

1, r = S 
cS(r,s) = 

0, otherwise 

satisfies these requirements. Further development along 

these lines, making m a discrete-state and discrete-time 

framework, and avoiding the difficulties inherent in the use 



of transformations of the normal autoregressive model, 

(Moran, [ 1 7 1 ) ,  would be highly desirable, particularly 

in the case of multivariate inflows. 
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