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Preface

An important class of stochastic models for describing time
series is the class of autoregressive integrated moving average
(ARIMA) models. This class provides a range of models, station-
ary and non-stationary, that adequately represent many of the
time series met in practice.

At TIASA this class of models has been used to describe the
time dependence of observations and to predict future observa-
tions from past data. Previous publications in the System and
Decision Sciences area on this topic, for example, include a
comparison of forecasts from ARIMA models and forecasts derived
from exponential smoothing. Furthermore it is shown how ARIMA
models can be used in modelling hydrologic sequences.

A common assumption in ARIMA models is the normality of the
distribution of the errors (shocks which drive the system). 1In
this paper it is investigated whether this assumption is critical
or whether inference and prediction of ARIMA models is robust
with respect to non-normality of the error distribution.
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Inference Robustness of ARIMA Models under Non-normality -

Special Application to Stock Price Data

Abstract:

Wold's [16] decomposition theorem states that every
weakly stationary stochastic process can be decomposed into
orthogonal shocks. For practical reasons, however, it 1is
desirable to employ models which use parameters parsimo-
niously. Box and Jenkins [3] show how parsimony can be
achieved by representing the linear process in terms of a
small number of autoregressive and moving average terms
(ARIMA-models). The Gaussian hypothesis assumes that the
shocks follow a normal distribution with fixed mean and
variance. In this case the process is characterized by
first and second order moments. The normality assumption
seems to be reasonable for many kinds of series. However,
it was pointed out by Kendall [8], Mandelbrot [10,11,12],
and Fama [6] that particularly for stock price data the
distribution of the shocks appears leptokurtic.

In this paper we investigate the sensitivity of ARIMA
models to non-normality of the distribution of the shocks.
We suppose that the distribution function of the shocks is
a member of the symmetric exponential power family, which
includes the normal as well as leptokurtic and platikurtic
distributions. A Bayesian approach is adopted and the in-
ference robustness of ARIMA models with respect to

i) the estimation of parameters

ii) the forecasts of future observations
is discussed.

1. Statistical models for stock price series

An early contribution to the theory of stock prices was
made by Bachelier [1]. He suggested the random walk model
with normally distributed errors as a possible stochastic
model for stock price series (Gaussian random walk hypothesis).

Empirical studies of stock price data show that successive
differences of stock prices are nearly independent, thus con-
firming the random walk hypothesis [8,10]. However it is pointed
out that the Gaussian hypothesis is subject to some doubt,

since the distribution of the error terms appears leptokurtic.




This led Mandelbrot [10,11,12] to adopt the stable Paretian
random walk hypothesis, where it is ascsumed that differences
of stock prices follow a stable distribution with character-
istic exponent 1 <« «a 2. The stable Paretian random walk
hypothesis has important implications for data analysis, since
whenever o < 2 the variance is infinite and the sample standard
deviation which is used to measure risk becomes meaningless.
Some doubt of this hypothesis is expressed by other authors.
Hsu, Miller and Wichern [7] point out that the stable Paretian
random walk hypothesis does not agree with many stock price
series observed in practice.

In the literature on economic stock price series various
other characterizations have been put forward. Press [15]
considers a mixture of normal distributions with different var-
iances and Praetz [14] suggests a scaled t distribution to
explain the leptokurtic distribution of the error terms. Miller,
Wichern and Hsu [13], instead of characterizing the errors by
leptokurtic distributions, relax the stationarity assumption
of the model. Changes in the parameters of the model over time
can lead to leptokurtic distributions, an aspect which is further
discussed in Ledolter [9].

In this paper, however, we consider the consequences of a
different hypothesis. We assume the usual form of the ARIMA
model with constant parameters, but allow the possibility of
a symmetric, but not necessarily normal error distribution.
Inctead of assuming it to be a stable distribution we assume
that it is from the class of exponential power distributions.

2. ARIMA time series model with shocks from the family of

symmetric exponential power distributions:

We consider the linear filter model

2, = Lp(B)at ’ (2.1)
where
. . . m _
1) B is the backshift operator; B z, = zt—m ,
5 _(B) 1-6,B=...-0 B4

ii)  p(B) = | 5= g < . and

(bp(B)(1 - B) (1 -¢1B—...-¢pB ) (1 - B)
iii) a, are independent drawings (shocks) from the family

of symmetric exponential power distributions with



probability density

2
- -1 _ _c(B) T+8
p(a) = w(B)o exp{: ;§7T:§’a) } , (2.2)
with
{r(%(wg))}vz
niE 14y {r(Tep))b 32
( 8){ z(1+8) ),
P2 (1+8))|T+B
c(B) = 7 \
r(§(1+e))

The quantity o > O is the standard deviation of the population
and B(-1<B<1) is a measure of kurtosis indicating the extent of
non-normality of the parent distribution of the shocks. If B =
O the shocks are normally distributed. B8 > O will result in a
leptokurtic and B < O in a platikurtic distribution. This family
ranges from the uniform (g approaching -1) to the double exponen-

tial distribution (B =1).

In time series analysis the usual assumption is that shocks
come from a normal distribution (B=0). 1In this paper we char-
acterize the error distribution through one additional parameter,
B, thus broadening the model. Proceeding this way has proved
useful in studies of what has been called inference robustness
by Box and Tiao [4,5]. Inference robustness is concerned with
how inferences are affected when assumptions about the under-
lying distribution are changed.

For f # O the distribution of Z, in (2.1) is complicated.
However it 1is easily shown that for any given stationary process

the kurtosis of z,_ is given by

t
E(z") L 4
V(@) = s = 3 = g (@)
[E(z%)] A0S




where, as shown by Box [2],

F(G(1+8)) T (1(1+8))
Yo(a) = 3 5 -3
[T(3(148)) ]

3. Parameter estimation for autoregressive models of order p

with shocks from the family of symmetric exponential power

distributions

We consider the process

—¢.B-...-t BP =

(1 ¢1B een ¢pB )zt a, (3.1)
where zt-is a stationary difference of original observations
with Ez, = 0. To assure stationarity the roots of (1-¢,B-...
—¢PBP) = 0 are assumed to lie outside the unit circle [3].
Furthermore the a, are assumed independent with distribution
given in (2.2). Thus,

2
p(a a ) - [w(B)](Il’P)U“(n"P)@{p]'_ C(B) 3:1 ‘a ‘1+B}
p+1 | n 1 U27'1'+B E=p1 t

Transforming

z, - ¢1zt_1—...—¢pzt_p = ag p+1 <t <n

and treating gé = (21,22,...,zp) as given, we derive the

density of z' (zp+1,...,zn) to be
(z|o,B,0,2) = [w(B)](n—p)O—(n-p)exp - B % 2, =02, _=...=0 2
piziG,B,0r2, ;77ﬁ+8 - t T1%t-1 p t-p

(3.2)
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First we derive the posterior distribution of the parameters

o and ¢' = (¢1,...,¢p) for a specific parent distribution of

the shocks, thus considering B fixed. For given B and fixed

starting values gp, the likelihood function of (o,9) is given
by

2
- (n-p) c® § T+8 |
B) o expi- —>,— ) |2, = ¢z, ;~e..=0 2, |
{ S2/T+E k1P T PP ptp |

(3.3)

Bayes formula states that the posterior distribution of (o,¢)

is

p(o,¢]z,2 .8)=p(0,0)2(0,0]2,2,,8)

P ~
where 2(0,¢[z,2z,,8) is the likelihood given in (3.3) and

p(0,9) is a chosen prior.

An analysis would usually be required in circumstances
where little was assumed to be known about the parameters
a priori. The question of choosing a prior so as to be "non-
informative" has been the subject of considerable research,
speculation and arguments. In particular in cases where it
is applicable one can use Jeffreys' principle to derive a non-
informative prior distribution. According to this rule, the
prior distribution is chosen proportional to the square root
of Fisher's information matrix (see for example [4]). For the
case B < O it is easily shown [9] that Jeffreys' principle
leads to a prior distribution of the form

1
2
l

P(o,0) = p(op(or=d [p [° (3.4)

where Pp is a p Xp autocorrelation matrix with elements

S E S | tisdce




For autoregressive parameters well within the stationarity
region the prior p(¢) appears sufficiently flat compared with
the likelihood and ghus can be considered constant. 1In the
following we therefore use the approximation

p(o,@)oco—1 . (3.5)

Combining the above prior with the likelihood in (3.3) we

derive
w —(n-p+1) _ _c(B) .
p(o,@lg,gp,B) o exp{ ;7771@ S(Q,B{} + (3.6)
where
n 2
1+8
S(¢;B) = ) |z, - ¢z, —e..=0 2z |
4 t=pt1 © 1%¢-1 p t-p
Integration over ¢ gives
- SR1+8)
P(¢lz,z,,8)«{S(¢:8)] . (3.7)

From (3.7) it is clear that the posterior distribution of ¢
depends heavily on the value of B. However, this does not
necessarily mean that for a given body of data the inferences
will be imprecise. Considering B as a random variable it
will itself possess a posterior distribution. It is often
the case in time series work that the number of observations
is rather large. Thus some rather precise information about
B can be supplied by the data and may be incorporated in the

analysis.

Since there appears to be no reason why B should depend
on o and ¢ a priori, we assume that the prior of (o,¢,B) is

given by



p(0,4,8) = p(0,0)p(B)=c” 'p(B) . (3.8)

Box and Tiao [5] introduce the concept of a reference prior
for B. This is usually, but not necessarily, taken to be a
uniform prior and is intended, as its name implies, for ref-
erence purposes. It has the property that if the data are
viewed in the light of some other prior distribution the new

posterior distribution could be readily obtained by using the

reference prior. Using the prior in (3.8) we derive
- n-p - (n-p+1) _ _c(B) _
P(O.Q,Blg,gp) p(B) [w(B)] o exp{; 02/1+B S(Q,B{} . (3.9)

Integrating over ©

P+ 2R (14p) - T2 (148)

P(Bglz 2l p(t) o P {smg;B)} . (3.19)
Furthermore
p(B!g,gp)&ég P(B/¢lz,2,)d9 (3.11)
where the stationarity region
s = {a: (10 men P = 0 TaT foote ouraicel

It is not possible to obtain a closed form expression for
(3.11). However for low order autoregressive processes the

integral can be evaluated numerically.

The posterior distribution p(B(g,gp) serves as weight

function in deriving the posterior distribution of ¢.

o~




+1
z,z = z,z_,B z,z_)dB . 3.12
p(glz,2 ) g p(¢lz,z 8 p(Blz,z ) (3.12)
4. Parameter estimation for moving average models of order g

with shocks from the family of symmetric exponential power

distributions.

We consider the invertible model

= - - - q
zZ, (1-6,B-... qu Yag (4.1)
where 2, is a stationary difference with Ezt = 0 and where a,
are independent drawings from the distribution in (2.2). To

assure invertibility we assume that the roots of 1—61B-...—6qu =0

lie outside the unit circle [3]. Again,

- 78
c(B) 1
plajray,....a, g:B)-—[w(m Yz Z ’al
1792 2/1+8 L% j
Transforming
z, = a, - 61at_1—...—6qat_q 1 <t <n ,
and treating the starting values g; = (ao,a_1,...,a_(q_1))

as nuisance parameters, we get

p(z|o,B,8,a,) = [w(B)]%e™D exp{} g%§%£§ S(Q;B,g*{} (4.2)
where
n t-1 _%E
S(O:Bra) = L | 1 iz g Mgt g gt gy 22g e HOT g3 gy |

t=1 §=0



no = -1 and the nj weights (j > 1) are the coefficients in the

expansion

mT(B) =1 -
j

e~ 8

j q, -1
.B° = (1 - 6,B-...-0 B .
s ( 1 g8

The likelihood function for (4.1) is given by

(0,B,8,a.]2) « [w(R)]1P™™ exp{} S S(Q;B,g*)} (4.3)
o

Combining the non-informative prior distribution
-1
p(Olglé*)aO

with the likelihood in (4.3) we derive for given B

« o (nt1) _ _c(B) ]
p(o,8,a,[z,B) «0 exp{' g§7TIE S(Q,B,g*{} . (4.4)

Integrating over o

-3 (1+8)
P(0,a,]z,B)={S(8;8,a,)} . (4.5)

Since for any invertible process the m-weights decrease fairly
rapidly, the choice of the starting values a, wWill not be
critical. A sensible approximation, and one which is most

convenient in practice, is

p(8lz,B) = /p(8,a,]z,B)da,

~

-3 (1+8)
~ p(6,a, = 0[z,B8)={5(8;8)} (4.6)
where
n t-1 T%E
S(6:;B) = 5(8;B8,a,=0) = ] | [ mize s .

t=1 j=0




Treating B as random variable with prior p(8)

p(0,8,9|§)mp(8)[w(B)]no-(n+1)exp{} ;%§%%§ S(Q;B%— (4.7)

and
L1+ Z(148)) -5 (1+8)
p(8,§|§)mp(8) 7 = {s(6;8)} (4.8)
[T(1+5(148))] N
p(B|z)= S p(B,8]|z)d8 (4.9)
IR
where the invertibility region IR = {Q:(1— 61B—...—6qu) =0

has all roots outside the unit circle}

:
p(6lz) = sp(®|z,B)p(B|lz)ap . (4.10)
-1

5. Forecasting time series models with shocks from the family

of symmetric exponential power distributions with special
reference to the ARIMA (0,1,1) model.

In the following we discuss the integrated moving average

model of the form

(5.1)

This type of model is particularly important since many economic,
business and engineering data behave according to this model.
Furthermore, as pointed out in Section 1, stock price data
follow a model of this kind in which the moving average param-

eter is close to zero.

Sample theory approach

Two approaches to forecasting can be distinguished. The



first is a sample theory approach. The minimum mean square
error (MMSE) forecast of a future observation Zn+2 is the con-
ditional expectation of Z 48 at time n. For any class of
distributions with finite second order moments the distribu-
tional assumption about the shocks a, are irrelevant for the
derivation of the MMSE forecast. Forecasts, however, are of
little value if they are not accompanied by some measure of

their variability. The variance of the forecast error

2-1

en(R) =z +2-2n(2) = a + ) v

s (5.2)
n n+% j=1

.a .
J n4l-j
provides such a measure, and is given by

2-1

2 2
Vie (2)) = o (1 + E wj) .

3=1

The distributional assumptions about the shocks a, change the
interpretation of the probability interval
1
~ 2
{Zn(l) + K[V(en(l))] } . ‘ (5.3)

If one is interested in one step ahead forecasts, the forecast

error is given by en(1) Thus (1-0) 100% probability

= a .
n+1

limits for the future observation z are given by {ﬁn(1) +

XOa} where A is chosen such that Prg;1{|a|> ‘o } = a.

For the case B = 0, the normal table provides ) corresponding
to a. If B > O however, the distriblition of the shocks a,

is leptokurtic and the normal probability limits will under-
estimate therisk of a realization in the extreme tails. For
the platikurtic case (B < 0) the normal theory probability
limits will overestimate this risk. Box and Tiao [5] show that
the probability limits can be quite different for very small

o (0<<.05); however for o = .05 they are not very sensitive to

the choice of B.




For lead times % > 2 the distribution of the forecast
errors en(R) can readily be derived only in the case of a
normal parent. For general B its distribution is complicated.
Me ertheless some idea of the approach to normality of en(Q)
can be obtained by considering the kurtosis of the forecast

error

=

—
+
o fd-

fhemg Tl p~q )
— - | —

<
[
L)

[\

-_—
-+
-l

Yz(en( ) = e Yz(a) . (5.4)

.

The kurtosis depends on

i) the non-normality parameter in the distribution of
the shocks,

ii) the Y-weights of the ARIMA model.

For the case of an ARIMA (0,1,1) model, wj = (1-8) for all
j > 1 and

1+ (3=1) (1-9) *

Y, (e _(2)) = Y, (a) . (5.5)
2''n [1 + (2-1) (1-8) %1% 2

The above sample theory interpretation of forecasting has the
drawback that it assumes that the values of the parameters are
known. But parameters are estimated and parameter estimation
errors are therefore present. A sample theory development which
allows for errors in the parameters would he extremely dif-
ficult. However, some progress has been made by investigating
how much the variance of the forecast errors increases if the

parameters are estimated from the data [3].

Bayesian approach

Another approach to forecasting is a Bayesian one. This

approach does provide a manageable way of incorporating



estimation errors in the parameters. Treating the parameters
in the ARIMA model as random variables, the predictive distri-

bution of future observations can be derived.

We illustrate this approach for the one step ahead pre-
dictive distribution of the integrated first order moving

average process.

For known parameters of the process the one-step-ahead
predictive distribution of the integrated first order moving

average process 1is given by

2
, - —‘1 _ C(B) A T]— 5.
Pz 410/8,8,2) = w(B)o exp{ RTART 2, -2 (1] +e} (5.6)
where
R n-1 3
' 1) = (1-06 3] ..
zn( ) ( ) jzo zn__:l

In a Bayesian context the parameters ¢,8,6 are considered

random and its posterior distribution can be derived.

The one step ahead predictive distribution (unconditional
on the parameters) is thus given by

1 1
p(zn+1|§) = J J

52 p(z,,4:9,8,8|2)doapas

O 8

1 1
= J J Jplz  4]0,8,0,2)p(0,8,6]|z)doapas.

-1 -10
(5.7)

Combining (5.6) with the posterior distribution of the param-
eters in (4.7) we derive




2
- A 1+8
plz_,1/0,8,8]D=p(8) [w(B) 1™ o (“+2’e»a»{} c{f) [|zn+1-zn(1)| + s(e;eﬂ:}

o2/ 148
(5.8)
Integrating over 5 and for fixed B
) = a2
—5 ()| |z -2, (D]
P(Zn+1re|§,B)°“ [S(8;B)] 1+ p(e|§,8)
S(8;B)
’ (5.9)

where p(6|z,B8) is given in (4.6)

The posterior predictive distribution for given B and 6 is

given by
2o -2 (4
Pz, |2z,B,0)xi1 + n (5.10)
S(8;RB)
and
]

plz_  412,8) = ;q p(z, ,,12,:8,8)p(8|z,8)a8 .  (5.11)

It can be seen that for the case B = O, p(zn+1|g,8=0) is an

average of t distributions, weighted by p(6]|z,B=0).

Equation (5.11) allows one to determine the sensitivity
(or conversely the robustness) of the predictive distribution
to changes in the assumption about the distribution of the B
shocks a, . It expresses how the predictive distribution varies

for changing B.

p(zn+1|g) is derived by averaging the conditional predict-
ive distributions in (5.11). The posterior distribution of B

given in (4.9) acts as a weighting function.



1
plz_ . l2) = ;q Pz ,,12,8)p(B|2z)dB . (5.12)

6. Example and concluding remarks

To illustrate the above robustness study we analyze daily
IBM common stock closing prices given in (3). It is shown that
the model for this series is given by an integrated first order
moving average process. Under the assumption of normal shocks
the point estimates (means of the posterior distribution) are

N /\2_
8 = -.087 O, = 52.2 .

The conditional posterior distributions p(6|§,B) are derived
for various values of B. They are given in Figure 1 and show

moderate sensitivity to changes in B.

The parameter B, considered as a random variable, possesses
a posterior distribution. Assuming a uniform reference prior
for B, the posterior distribution p(8|§) is derived and given in
Figure 2. It shows very clearly that the error distribution is
not normal (B=0); strong evidence for a leptokurtic error dis-

tribution is given.

The posterior distribution p(6|§) is compared to the pos-
terior distribution of 6 assuming normal distributed errors,
p(8|z,B=0). Both are plotted in Figure 3.

The predictive distributions p(zn+i|g,8) for various
values of B are given in Figure 4. The modes of these distri-
butions are shown to be insensitive to the choice of 8; the
shape of the distribution (uncertainty of forecast), however,

changes considerably.

The predictive distributions p(zn+1|g) and p(zn+1lg,8=0)

are compared in Figure 5. The difference in the shape of
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the predictive distributions is very marked and shows that the
assumption of normality would result in quite a different 50%
highest posterior density region for the forecast. 90% highest
posterior density regions, however, are virtually the same,
whereas the normality assumption would underestimate the risk

in the extreme tails of the distribution. Summarizing, it can

be said that in this example the pointforecast (mode of the
posterior distribution) and 90% highest posterior density regions
are not seriously affected by symmetric non-normality of the

error distribution.



p(e|z,8)
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Figure 1. Posterior distribution of 6 for various fixed 8
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Figure 2. Posterior distribution of 8 assuming uniform reference prior.
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Figure 3. Posterior distribution of 0, p(0/z), and the posterior distribution
of 8 assuming normal distribution shocks, p(6/z, 8 = 0).
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Posterior one step ahead predictive distribution p(zn+l/z)
compared with p(zn+l/z,8 = 0), the posterior one step ahead
predictive distribution assuming normal distributed shocks,

and their 507 (90%) probability limits.
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