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Intersections of Corner Polyhedra#*

David E. Bell

Abstract

The aim of this paper is to present some results
concerning the intersection of a generalized form of
corner polyhedra and its relation to the integer

polyhedron for the general linear
problem. In particular a theorem
concerning such intersections for
problems will be proved here as a

integer programming
proved earlier

low dimensional
special case of

theorems for higher dimensions.

1. Integer Programming Background

For an m x (n + m) integer matrix A and integer m vector

b, let
W= {wer™™™ AW = b , w integrall
then the linear integer programming problem is
Minimize cw
weW
v >0 (1.1)
Define

W(I) = {wew | v, > 0 ielI}

where I € 8 = {1,2,3,...,n + m}. Then the convex hull of wis)y,

denoted [W(S)], is the integer polyhedron for (1+1l) which may

be written as
Minimize cw

wve[W(s)] .

(1.2)

* - . . .

This is adapted from my dissertation supervised by
Professor J.F. Shapiro s+ the Massachusetts Institute of
Technology Operations Research Center.




An aigorithm in Bell and Fisher [l] suggested replacing the
integer polyhedron in (1.2} by the intersection of polyhedra
of the form [W(I)] where {Wi, i¢1} forms & linear programming
basis for (1.1). A result of that paper was that for the low
dimensional cases n = 0,1,2 the two problems were equivalent,
that is the integer polyhedron and the intersection of the

corner polyhedra are equal.

This paper will present some further results on the
connection between the integer polyhedron and intersections of
related polyhedra and hopefully will lay a foundation for

further work in this area.

2. Generalized Corner Polyhedra

Since the set W lies in an n-dimensional affine space,
take a basic set of variables y, where w = (y, x) and
¥y = b - Nx and let
X = {x | x integral, b - Nx integrall .
The set X completely defines W and the remainder of the paper

w1l be in terms of the x, rather than the w, variables. The sets

X(1) |, X(w {xex | w; > 0 ieI}l ,

are equivalent.

CallEX(I)]a generalized corner polyhedron of order lz].

Thus the normal corner polyhedra associated with L.P. bases are
corner polyhedra of order n. Define a function r{(m, m) to be

the smallest number such that



x(s)] = /2 x(1)]

|I]|=r(n,m)
for all problems of the form (1.1).
The following properties hold for this funetion.

Proposition 2.1, The case n = 0, m = 0 is meaningless,

otherwise

i) r(n, m) < n +m
ii) r(n, m) = n , n=1,2 |, m > 0
iii) r(n, m) >n + 1, n > 3 , m>0
iv) np 2mn, , omyp >m,=r(n;, m) > r(n,, m,)
v) r(n, 0) = 1
Proof. 1) is evident since |S| =n + m.
ii) follows from the work in [l] but will be proved

again later in Corollary 3.6.

iii) Consider the problem
Max 3x + 3y + bkz

s.t. bsx + 51y + 60z + 8w = 2kLb

W,X,¥Y,z > 0 and integral,
Optimal integer solutions are (4,0,0,8), (0,0,3,8), (0,4,0,5)
each with value 12. However, the point (13,1}1,1,5) with value
13 lies in the intersection of the four corner polyhedra of
order 3, with representations

%(]4,0,0,8) + %(_1’392’2)

2(0,4,0,5) + £(3,-1,2,5)

%(030,358) + %(3539-192)

i(4,0,0,8) + i(0,0,3,8) + 1(0,4,0,5) + i(2,2,1,-1)




Hence r(3, 1) > 4. Generalizing the example by substituting
VoS oW, o+ W, +,...,v _, vhere (13,13,1,5,0,0,...,0) is always
in the intersection of all corner polyhedra of order n, shows

that r(n, 1) > n + 1 for all n. Together with part (iv) of

this proposition this gives that r(n, m) > n + 1.
iv) This will require the following lemma.

Lemma 2.2, If W may be partitioned as (U x V, T), that is
v o= (ul, vl, t) and w2 = (u2, v2, t) € W implies (ul, v, t)
and (u”, v-, t) € W, then

X(u>0,v>0,t;20] = [x(u20, t;20] N [x(v>o0,t, >0]]

where tI 1s a subset of the t variables,.

Proof of the Lemma, The proof will assume that T is empty,

but it is easily seen that nc generality is lost.
Since X{(u > 0, v > 0) is a subset of both X(u > 0) and

X(v > 0) then

[x(u >0, v>o0)]c[x(u>0)]Nn[x(v>o0)]

Let
vO = (%, v e [X(u > ) ]nx(v > 0)] .
Then
kl . . .
(u®, v°) = © A.(u*, ¥Y) witn (u', ¥') € X(u > 0)
i=1
and
k2 . . .
(u°, v°%) = = ui(ﬁl, v')  with (%', v') e x(v > 0) .

i=1




with

Now (ur, ¥%), (%, v9) e W implies (u', v?) e W for all i,j

since W = U x V. Since
A i
wo = % L Aiui(u , vY)
i=1 j=1
and
kl k2 i :
A.u. > 0 X £ A.p. =1 and (u, vy >0 ,
ibi = . . ifi -
i=1 J=1
then

v e [X(u >0, v > O)]

as required.

Proof of (iv). Take a problem with dimensions n,, m and add a

2’
. B s s N _ B
disjoint set of my o, constralnts 1n n, my n, m

variables that have at least one integer solution. If

2 additional

m, = m, add a zero column for each new variable to the
existing constraints. If u is the set of old variables and
v the new, then the new W is a cartesian product of the old

set W and the solution to the added constraints.

Now

x(s)]

[x(u > 0, v > 0)]

[X(I)] . by definition of r(nl, m. )

|Tl=r{ny ,m)) 1

i

1] ) (EX(uI >0)] N EX(VI > O)J) by the lemma
Ij=r{(n.,m
1’71




—|Il=r(nl,ml)

It [X(8)] is the

x(u; > 0)]n

()

x(v, > 0)]
|I1=r(n1,ml) I

(2.1)

integer polyhedron for the smaller problem then

x(s)] = [x(8)] x ¢ (2.2)
for some set C. Comparing (2.1) and (2.2) we have
[x(5)] = Geug 2 0)]
|I|=r(nl,ml)

- M

|I|=r(nl,m

Hence

m. )

r(nl, 1) 2

v) The case for

restricting the variables

are feasible and

n+m
N
i=1

[x(1)]

1)

m = 0 follows since with no equations

all non-negative integer solutions

[(X(w; > 0)] by use of the lemma |,

but this relation is precisely the statement that r(m, 0) = 1.




3. The Structure of the Set of Integer Solutions

Recall that

X = {x | x integral, Nx - b integrall

Hence 1if xl,...,xk g X and 8y5++.>8, are any integers, then
o k 1 k . o . .
x = I a.x will be in X if I a;, =1, since x 1s evidently
i=1 i=1
integral and
k k
¥x° -b = I a. (Nx b) + ( L a, - 1)b
i=1 ? i=1
k
is also integral if ( I a; - 1)b is.

i=1

A lattice may be defined as a set L in R™® which satisfies

i) x,y EL = x +t+y €l

i1) there exists a basis xl,...xn e L for which
L={x ]| x=a xl ++e¢ a_x" for integers a.,.
1 n 1’
iii) for some number 4 >0 , x € L

o< llx-yll <a=>y ¢ L.

The set X is not a lattice since (i), (ii) hold only if b

integral (it is however, a quotient lattice).

Proposition 3.1, There exists & linear transformation T

for which Y is a lattice. Y may be chosen as the integer

..,a_}

n

lattice.

Proof. The following is essentially the Gram-Schmidt process.

1 n

Let x ,...,x € X be any set of independent points, thus defining

a unique hyperplane

n

I a.x. = B
o, i

1




Let

X = . <

X {x e x| Lo, x, B}
and let

B = sug b asx. . (3.1)

xeX
. . 1 n -1

If M is the matrix (x%,.,..,x ) then o = Dbl.M and

X oL xy is rational for all x € X and
B > B + |det M|t

so that B >B .

Let
* .
811 T al— > bI = é -
B -8B B -8
then all x € X satisfy
g * o )
L 8y;%; = b1 (nodulo 1) ,

i=1
for otherwise 1t is possible to show the existence of a point

xo € X such that

o . .. .
B < I a;x; < B which is impossible by (3.1).

. + . .
Now choose any point x™ L not satisfying

, * %

@14%; T B

and form another set of n independent points with n - 1 points
1 .

from {x ,...,xn}. The process 1s repeated so that eventually

* *
for some real n x n matrix A and vector b all elements of

X will satisfy




and

* ®
{x | A’x - b is integrall

s
1]

Define

* *
Yy = {y | y =Ax -Db , X% £ X}

then Y is the required set and is easily ehecked to be the

lattice of all integer points. ||
An n-cube will be defined as the set of 2% solutions of
the form
*
A x =c¢ + 8

where ¢ = b*¥ (mod 1) is some constant vector and § is any

-

vector of 0's and 1's.

Define the function & : X - {O,l}n by the relation

* *
S(x) = A x - b (mod 2).
. 1 .2 1, _ .2y . )
Proposition 3.2, For x , x~ € X , §(x ) = §{x") if and only if
x4+ x® e X
2
Proof.
1 2
* * *
A (X ; Xy = 3(a xl + A x2)
Since
* * 1
Axt = b o+ 6(x") (mod 2) i = 1,2
then

A%+ A% %% = ot 4 6(xl) + 6(x2) (mod 2) . (3.2)
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Thus if
2
5(x1) = 6(x°) ,
then
* * *
a5t ATk = 2 (mod 2) (3.3)
and
*
1%t + aT%%) = v (mod 1)
so that
s 5 e X .
2
xl + x2
Conversely if — € X, then (3.3) is true so that in (3.2)
6(xl ) o+ 6(x2) =0 {(mod 2)
hence
s(x) = 6(x%) . |

Theorem 3.3. Let C C R" be a convex set containing an

(n-1)-cube of X in a hyperplane tx = to. IT k*¥ is the smallest

positive integer such that

= = - L
Xy {x ¢ X | tx t k#}

is non empty and C N Xy, = @, then

tx >t for all x e CMNH X .

Proof. Without loss of generality it may be assumed that X
is the integer lattice {Proposition 3.1), that the hyperplane

is X, = 0, and that the n -1 cube is thet consisting of points
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1 n-1
X o0 ,X with O and 1 entries.
[ = =
tx tO s xl 0
L J = - =—
tx to 1, xq 1
. tx=t -2 , x =-2
x2=2
Suppose there is a point x° € C ™ X satisfying
tx% = t, -k (xl = - k) for some k > 2. Consider the convex
n-1
hull of the points {xo, xl,...,x2 } and its intersection
with the plane X, = - 1. This consists of all points x
satisfying
o o
ii < x. < k=1-, fi » 1=2,...,n.
X . k k

. o . . . .

Since x 1s 1ntegral, each of these intervals must contain an
integer and hence the intersection must comtain an integral
point. This is a contradiction to the assumption that

cn X was empty and so the point x° cannot exist. ||
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If the convex set of the theorem is a corner polyhedron
this means that if tx = t, -1 contains no elements of X(I)
then tx = tg is a face of the polyhedron. If a face of the
integer polyhedron is to be a face of the intersection
polyhedron then it must be the face of some corner polyhedron.
Hence if it contains an (n - 1)-cube, then if a subset I C S can

be found such that

{xex | tx=¢t_ -1 , x

o >0}

I
is empty, then the corner polyhedron [X(I)] will contain that face.
Theorem 3.4. If F is a feasible region defined by n +m linear
constraints and F N X = ¢, and ifn +m > 2™ then there exists

a subset I of these constraints having a feasible region F

such that

i)y FCF

A
N

i) |1
iii) FNx=9¢ .

Proof. It can be seen readily for the case n=1. I; general,

label each element of X with the indices of the constraints

which it violates. Let I be the set of all constraints for

which there is some point which violates only that one constraint.

Then all points in X which violate no constraint in I must have

at least two labels. Thus any one constraint not in I may be

removed entirely without any point in X becoming feasible. Now

there may be some nevw points with only one label,l is updated

and the process 1is repeated until all the constraints are either
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in I or have been removed.

The claim is that ]II < 2", Suppose the contrary is true.
The proof will show a contradiction by constructing an infinite
sequence of distinct elements of X lying in a bounded region,

which is clearly impossible.

Note that for each constraint remaining (that is, in 1)
there exists at least one point of X which violates only that
constraint. Choose |I| such points, one for each constraint
forming a set P. Since |I]| is finite, the set [P] is bounded
and [P] A X is finite.

Consider the following comstruction. Since [P| > 2"

there must exist two points xl, x2 € P for which G(xl) = §(x

1 2
By Proposition 3.2 x° = é——%—i— € X. Suppose that xl violates

).

constraint i, x2 violates constraint j (remember j # i) then

x°® must violate constraint i or J or both. It cannot violate a

third constraint k since then xl or x2 must also. ‘

Now perform the following updating process.

iy If x° violates only i, let pt P -{xl} + 1x°}.

ii) 1f x° violates only j, let Pl P -{x2} + {x°}.

iii) If x° violates i anad J replace the ith constraint

in the problem by

o .
(or by W > bi - Nix in some cases).

. . . . s s o
Every point which satisfies v, > 0 satisfies v > X5 because

x? < 0 but xl still violates it because x? > 0 and
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x% = 2x° - x? < x%. In this case let Pl = P - {x2} + {x°}.
1 1 1 1
The changed constraint is only a temporary construction for the

proof.

Now |[PY| = |P| > 2" and each element of Pl

violates exactly
one constraint of I and each constraint of I is violated by
exactly one point in Pl. Hence a set P2 may be constructed in
the same manner and, since there is no stopping condition the
sequence {P*} will bve infinite with P¥* ¢ [Pkl which is
impossible by the finiteness of [P]f\ X. This contradicts the

basic assumption that |I| > 2", The feasible region defined

by the original constraints of I is F. I

Phe following result now combines the last two theorems
to give conditions under which a face of the integer polyhedron

will be a face of a lower order corner polyhedron.

Theorem 3.5. If a face of the integer polyhedron contains an
{n -1)-cube, then it is also a face of some corner polyhedron of
order |[I| , satisfying

|1 < min (n +m, 2n-l)

Proof. Since the integer polyhedron has order n+m, |[I] < n+m

is clear. If n+m> 2n—l and 1f the face is the hyperplane

tx = tO then if F is the L.P. feasible region for the problen,

FA XN {x | tx = t,o -1} =9

1

and by Theorem 3.lL there is a subset of 2" © of the constraints

which also gives a feasible region F satisfying

FAxN {x | tx =t -1} =¢ .
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Consider the corner polyhedron which enforces these 2n—l
constraints. All the points in the (n -1)-cube are feasible in
it but no elements of X satisfying tx = to ~ 1 are. By Theorem

3.3 this implies that tx > to for all points of X in the corner
polyhedron and thus this face of the integer polyhedrcn is a

face of the corner polyhedron. |

Corollary 3.6, r(l, m) =1 , r{(2, m) = 2
Proof. For any problem satisfying n > 2n—l all the faces of a
non-degenerate integer polyhedron contain (n -1)-cubes. Hence

Theorem 3.5 applies and in these cases r{(n, m) < 2n—1. ||

L. Conclusions

The rank function r(n, m), suggested here, is likely to
be a gross overestimate of the order of corner polyhedra
required to give an intersection which is the integer polyhedron.
However, precise numerics was not the aim of this paper. What
has been demonstrated are some of the possibilities that can
result from making use of the lattice structure of the set of
integer solutions. The analysis here could lead to the
construction of a class of "difficult" integer programs, that

is, problems with a high intersection order.

What has not been studied here is the further connection
between the lattice X and the linear programming constraints
{Nx < b, x > 0}. VWhat information about the constraints can

be deduced from a knowledge of X?

From an algorithmic peint of view it is difficult to judge
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how useful an approximation an intersection polyhedron is

likely to be without some computational experience but from
a structural point of view it is hoped that the approach of
this paper will lead to further insights into the nature of

integer programs.
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